code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off _SCREAMING_SNAKE_CASE = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) _SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], """image_std""": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: List[str] ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **UpperCAmelCase_ ) def UpperCamelCase ( self: int , **UpperCAmelCase_: Any ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , **UpperCAmelCase_: int ): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = self.get_image_processor() _SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_image_processor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE = image_processor(UpperCAmelCase_ , return_tensors="""np""" ) _SCREAMING_SNAKE_CASE = processor(images=UpperCAmelCase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_image_processor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """lower newer""" _SCREAMING_SNAKE_CASE = processor(text=UpperCAmelCase_ , return_tensors="""np""" ) _SCREAMING_SNAKE_CASE = tokenizer(UpperCAmelCase_ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_image_processor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """lower newer""" _SCREAMING_SNAKE_CASE = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """google/owlvit-base-patch32""" _SCREAMING_SNAKE_CASE = OwlViTProcessor.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = ["""cat""", """nasa badge"""] _SCREAMING_SNAKE_CASE = processor(text=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """google/owlvit-base-patch32""" _SCREAMING_SNAKE_CASE = OwlViTProcessor.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [["""cat""", """nasa badge"""], ["""person"""]] _SCREAMING_SNAKE_CASE = processor(text=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = len(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = max([len(UpperCAmelCase_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """google/owlvit-base-patch32""" _SCREAMING_SNAKE_CASE = OwlViTProcessor.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = ["""cat""", """nasa badge"""] _SCREAMING_SNAKE_CASE = processor(text=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = inputs["""input_ids"""] _SCREAMING_SNAKE_CASE = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_image_processor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE = processor(images=UpperCAmelCase_ , query_images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_image_processor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE = processor.batch_decode(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
306
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
from scipy.stats import spearmanr import datasets UpperCamelCase = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' UpperCamelCase = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' UpperCamelCase = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __UpperCAmelCase (datasets.Metric ): def UpperCamelCase ( self: Dict ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any]=False ): '''simple docstring''' _SCREAMING_SNAKE_CASE = spearmanr(UpperCAmelCase_ , UpperCAmelCase_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> float: """simple docstring""" return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(snake_case__ ,snake_case__ ) ) ) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: _SCREAMING_SNAKE_CASE = ( """Wrong input data's dimensions... """ F'dataset : {dataset.ndim}, value_array : {value_array.ndim}' ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: _SCREAMING_SNAKE_CASE = ( """Wrong input data's shape... """ F'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}' ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: _SCREAMING_SNAKE_CASE = ( """Input data have different datatype... """ F'dataset : {dataset.dtype}, value_array : {value_array.dtype}' ) raise TypeError(snake_case__ ) _SCREAMING_SNAKE_CASE = [] for value in value_array: _SCREAMING_SNAKE_CASE = euclidean(snake_case__ ,dataset[0] ) _SCREAMING_SNAKE_CASE = dataset[0].tolist() for dataset_value in dataset[1:]: _SCREAMING_SNAKE_CASE = euclidean(snake_case__ ,snake_case__ ) if dist > temp_dist: _SCREAMING_SNAKE_CASE = temp_dist _SCREAMING_SNAKE_CASE = dataset_value.tolist() answer.append([vector, dist] ) return answer def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> float: """simple docstring""" return np.dot(snake_case__ ,snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
306
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if isinstance(snake_case__ ,collections.abc.Iterable ): return x return (x, x) @require_flax class __UpperCAmelCase : def UpperCamelCase ( self: int , UpperCAmelCase_: Any , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: str , UpperCAmelCase_: np.ndarray , UpperCAmelCase_: np.ndarray , UpperCAmelCase_: float ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.abs((a - b) ).max() self.assertLessEqual(UpperCAmelCase_ , UpperCAmelCase_ , F'Difference between torch and flax is {diff} (>= {tol}).' ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any]=None , **UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_vision_text_model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""vision_model""": vision_model, """text_model""": text_model} _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: int , UpperCAmelCase_: str=None , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_vision_text_model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""vision_model""": vision_model, """text_model""": text_model} _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = after_output[0] _SCREAMING_SNAKE_CASE = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase_ , 1E-3 ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Union[str, Any]=None , **UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_vision_text_model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""vision_model""": vision_model, """text_model""": text_model} _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model( input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , output_attentions=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = output.vision_model_output.attentions self.assertEqual(len(UpperCAmelCase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _SCREAMING_SNAKE_CASE = to_atuple(vision_model.config.image_size ) _SCREAMING_SNAKE_CASE = to_atuple(vision_model.config.patch_size ) _SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _SCREAMING_SNAKE_CASE = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _SCREAMING_SNAKE_CASE = output.text_model_output.attentions self.assertEqual(len(UpperCAmelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Any , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' pt_model.to(UpperCAmelCase_ ) pt_model.eval() # prepare inputs _SCREAMING_SNAKE_CASE = inputs_dict _SCREAMING_SNAKE_CASE = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _SCREAMING_SNAKE_CASE = pt_model(**UpperCAmelCase_ ).to_tuple() _SCREAMING_SNAKE_CASE = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCAmelCase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase_ , from_pt=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = fx_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCAmelCase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = VisionTextDualEncoderModel.from_pretrained(UpperCAmelCase_ , from_flax=UpperCAmelCase_ ) pt_model_loaded.to(UpperCAmelCase_ ) pt_model_loaded.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE = pt_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(UpperCAmelCase_ , pt_output_loaded.numpy() , 4E-2 ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: str , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = VisionTextDualEncoderModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = fx_state self.check_pt_flax_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = VisionTextDualEncoderModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = load_flax_weights_in_pytorch_model(UpperCAmelCase_ , fx_model.params ) self.check_pt_flax_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() self.check_save_load(**UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCAmelCase_ ) @is_pt_flax_cross_test def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = config_inputs_dict.pop("""vision_config""" ) _SCREAMING_SNAKE_CASE = config_inputs_dict.pop("""text_config""" ) _SCREAMING_SNAKE_CASE = config_inputs_dict self.check_equivalence_pt_to_flax(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.check_equivalence_flax_to_pt(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_pretrained_model_and_inputs() _SCREAMING_SNAKE_CASE = model_a(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_a(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = after_outputs[0] _SCREAMING_SNAKE_CASE = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase_ , 1E-5 ) @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=UpperCAmelCase_ , text_from_pt=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _SCREAMING_SNAKE_CASE = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _SCREAMING_SNAKE_CASE = random_attention_mask([batch_size, 4] ) _SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxViTModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) return vision_model, text_model def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) _SCREAMING_SNAKE_CASE = FlaxBertModelTester(self ) _SCREAMING_SNAKE_CASE = vit_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = bert_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = vision_config_and_inputs _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=UpperCAmelCase_ , text_from_pt=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _SCREAMING_SNAKE_CASE = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _SCREAMING_SNAKE_CASE = random_attention_mask([batch_size, 4] ) _SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxCLIPVisionModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) return vision_model, text_model def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxCLIPVisionModelTester(self ) _SCREAMING_SNAKE_CASE = FlaxBertModelTester(self ) _SCREAMING_SNAKE_CASE = clip_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = bert_model_tester.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = vision_config_and_inputs _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) _SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _SCREAMING_SNAKE_CASE = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors="""np""" ) _SCREAMING_SNAKE_CASE = model(**UpperCAmelCase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _SCREAMING_SNAKE_CASE = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , UpperCAmelCase_ , atol=1E-3 ) )
306
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
1
def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowerCamelCase ( snake_case__ ) -> list[tuple[int, int]]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) # No of vertices in graph _SCREAMING_SNAKE_CASE = [0] * n _SCREAMING_SNAKE_CASE = [False] * n def dfs(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(snake_case__ ,snake_case__ ,snake_case__ ,id_ ) _SCREAMING_SNAKE_CASE = min(low[at] ,low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge _SCREAMING_SNAKE_CASE = min(low[at] ,low[to] ) _SCREAMING_SNAKE_CASE = [] for i in range(snake_case__ ): if not visited[i]: dfs(snake_case__ ,-1 ,snake_case__ ,id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
306
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : @staticmethod def UpperCamelCase ( *UpperCAmelCase_: Optional[Any] , **UpperCAmelCase_: Any ): '''simple docstring''' pass def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = np.array(snake_case__ ) _SCREAMING_SNAKE_CASE = npimg.shape return {"hash": hashimage(snake_case__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __UpperCAmelCase (unittest.TestCase ): __snake_case : Optional[Any] = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __snake_case : int = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCamelCase ( self: str , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MaskGenerationPipeline(model=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase ( self: str , UpperCAmelCase_: Tuple , UpperCAmelCase_: Optional[int] ): '''simple docstring''' pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @slow @require_torch def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) _SCREAMING_SNAKE_CASE = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing _SCREAMING_SNAKE_CASE = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCAmelCase_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.04_44}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0_21}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.01_67}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.01_32}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.00_53}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.99_67}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.9_93}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.99_09}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.98_79}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.98_34}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.97_16}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.96_12}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.95_99}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.95_52}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.95_32}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.95_16}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.94_99}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.94_83}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.94_64}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.9_43}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.9_43}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.94_08}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.93_35}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.93_26}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.92_62}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.89_99}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.89_86}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.89_84}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.88_73}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.88_71} ] , ) # fmt: on @require_torch @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """facebook/sam-vit-huge""" _SCREAMING_SNAKE_CASE = pipeline("""mask-generation""" , model=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _SCREAMING_SNAKE_CASE = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(UpperCAmelCase_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.04_44}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.02_10}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.01_67}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.01_32}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.00_53}, ] , )
306
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Tuple , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any]=7 , UpperCAmelCase_: int=3 , UpperCAmelCase_: List[str]=30 , UpperCAmelCase_: Union[str, Any]=400 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase_: Any=[0.5, 0.5, 0.5] , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]=1 / 255 , UpperCAmelCase_: int=True , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333} _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean _SCREAMING_SNAKE_CASE = image_std _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_pad def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Any=False ): '''simple docstring''' if not batched: _SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(UpperCAmelCase_ , Image.Image ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.size else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * h / w ) _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] elif w > h: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * w / h ) else: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] else: _SCREAMING_SNAKE_CASE = [] for image in image_inputs: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _SCREAMING_SNAKE_CASE = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[0] )[0] _SCREAMING_SNAKE_CASE = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[Any] = YolosImageProcessor if is_vision_available() else None def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = YolosImageProcessingTester(self ) @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' pass def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) _SCREAMING_SNAKE_CASE = self.image_processing_class(do_resize=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ , do_rescale=UpperCAmelCase_ ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors _SCREAMING_SNAKE_CASE = image_processing_a.pad(UpperCAmelCase_ , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = image_processing_a(UpperCAmelCase_ , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: _SCREAMING_SNAKE_CASE = json.loads(f.read() ) _SCREAMING_SNAKE_CASE = {"""image_id""": 39_769, """annotations""": target} # encode them _SCREAMING_SNAKE_CASE = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) _SCREAMING_SNAKE_CASE = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , return_tensors="""pt""" ) # verify pixel values _SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase_ ) ) # verify boxes _SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase_ ) ) # verify is_crowd _SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase_ ) ) # verify class_labels _SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase_ ) ) # verify orig_size _SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase_ ) ) # verify size _SCREAMING_SNAKE_CASE = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase_ ) ) @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: _SCREAMING_SNAKE_CASE = json.loads(f.read() ) _SCREAMING_SNAKE_CASE = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target} _SCREAMING_SNAKE_CASE = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them _SCREAMING_SNAKE_CASE = YolosImageProcessor(format="""coco_panoptic""" ) _SCREAMING_SNAKE_CASE = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , masks_path=UpperCAmelCase_ , return_tensors="""pt""" ) # verify pixel values _SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase_ ) ) # verify boxes _SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase_ ) ) # verify is_crowd _SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase_ ) ) # verify class_labels _SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase_ ) ) # verify masks _SCREAMING_SNAKE_CASE = 822_873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCAmelCase_ ) # verify orig_size _SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase_ ) ) # verify size _SCREAMING_SNAKE_CASE = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase_ ) )
306
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''MobileNetV2FeatureExtractor'''] UpperCamelCase = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar UpperCamelCase = TypeVar('''T''') class __UpperCAmelCase (Generic[T] ): def __init__( self: Optional[int] , UpperCAmelCase_: T ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = None def __str__( self: Optional[int] ): '''simple docstring''' return F'{self.data}' class __UpperCAmelCase (Generic[T] ): def __init__( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = None def __iter__( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.top while node: yield node.data _SCREAMING_SNAKE_CASE = node.next def __str__( self: Union[str, Any] ): '''simple docstring''' return "->".join([str(UpperCAmelCase_ ) for item in self] ) def __len__( self: Any ): '''simple docstring''' return len(tuple(iter(self ) ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return self.top is None def UpperCamelCase ( self: Tuple , UpperCAmelCase_: T ): '''simple docstring''' _SCREAMING_SNAKE_CASE = Node(UpperCAmelCase_ ) if not self.is_empty(): _SCREAMING_SNAKE_CASE = self.top _SCREAMING_SNAKE_CASE = node def UpperCamelCase ( self: Dict ): '''simple docstring''' if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.top _SCREAMING_SNAKE_CASE = self.top.next return pop_node.data def UpperCamelCase ( self: str ): '''simple docstring''' if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = None if __name__ == "__main__": from doctest import testmod testmod()
306
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
1
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCamelCase = logging.get_logger(__name__) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ = None ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = tesseract_config if tesseract_config is not None else """""" # apply OCR _SCREAMING_SNAKE_CASE = to_pil_image(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = pil_image.size _SCREAMING_SNAKE_CASE = pytesseract.image_to_data(snake_case__ ,lang=snake_case__ ,output_type="""dict""" ,config=snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates _SCREAMING_SNAKE_CASE = [idx for idx, word in enumerate(snake_case__ ) if not word.strip()] _SCREAMING_SNAKE_CASE = [word for idx, word in enumerate(snake_case__ ) if idx not in irrelevant_indices] _SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] _SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] _SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] _SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _SCREAMING_SNAKE_CASE = [] for x, y, w, h in zip(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = [x, y, x + w, y + h] actual_boxes.append(snake_case__ ) # finally, normalize the bounding boxes _SCREAMING_SNAKE_CASE = [] for box in actual_boxes: normalized_boxes.append(normalize_box(snake_case__ ,snake_case__ ,snake_case__ ) ) assert len(snake_case__ ) == len(snake_case__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = ["pixel_values"] def __init__( self: List[str] , UpperCAmelCase_: bool = True , UpperCAmelCase_: Dict[str, int] = None , UpperCAmelCase_: PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_: bool = True , UpperCAmelCase_: Optional[str] = None , UpperCAmelCase_: Optional[str] = "" , **UpperCAmelCase_: str , ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224} _SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = resample _SCREAMING_SNAKE_CASE = apply_ocr _SCREAMING_SNAKE_CASE = ocr_lang _SCREAMING_SNAKE_CASE = tesseract_config def UpperCamelCase ( self: Dict , UpperCAmelCase_: np.ndarray , UpperCAmelCase_: Dict[str, int] , UpperCAmelCase_: PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_: Tuple , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) _SCREAMING_SNAKE_CASE = (size["""height"""], size["""width"""]) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: int , UpperCAmelCase_: ImageInput , UpperCAmelCase_: bool = None , UpperCAmelCase_: Dict[str, int] = None , UpperCAmelCase_: PILImageResampling = None , UpperCAmelCase_: bool = None , UpperCAmelCase_: Optional[str] = None , UpperCAmelCase_: Optional[str] = None , UpperCAmelCase_: Optional[Union[str, TensorType]] = None , UpperCAmelCase_: ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_: Dict , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE = size if size is not None else self.size _SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE = apply_ocr if apply_ocr is not None else self.apply_ocr _SCREAMING_SNAKE_CASE = ocr_lang if ocr_lang is not None else self.ocr_lang _SCREAMING_SNAKE_CASE = tesseract_config if tesseract_config is not None else self.tesseract_config _SCREAMING_SNAKE_CASE = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE = [to_numpy_array(UpperCAmelCase_ ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for image in images: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = apply_tesseract(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) words_batch.append(UpperCAmelCase_ ) boxes_batch.append(UpperCAmelCase_ ) if do_resize: _SCREAMING_SNAKE_CASE = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _SCREAMING_SNAKE_CASE = [flip_channel_order(UpperCAmelCase_ ) for image in images] _SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] _SCREAMING_SNAKE_CASE = BatchFeature(data={"""pixel_values""": images} , tensor_type=UpperCAmelCase_ ) if apply_ocr: _SCREAMING_SNAKE_CASE = words_batch _SCREAMING_SNAKE_CASE = boxes_batch return data
306
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
1
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
1
from __future__ import annotations import math def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(snake_case__ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def __lowerCamelCase ( snake_case__ ) -> list[int]: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) _SCREAMING_SNAKE_CASE = [] for num in range(len(snake_case__ ) ): _SCREAMING_SNAKE_CASE = 0 while 2 * i * i <= odd_composites[num]: _SCREAMING_SNAKE_CASE = odd_composites[num] - 2 * i * i if is_prime(snake_case__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case__ ) == n: return list_nums return [] def __lowerCamelCase ( ) -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f"{solution() = }")
306
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __UpperCAmelCase (unittest.TestCase ): @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.dummy_uncond_unet _SCREAMING_SNAKE_CASE = PNDMScheduler() _SCREAMING_SNAKE_CASE = PNDMPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) pndm.to(UpperCAmelCase_ ) pndm.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pndm(generator=UpperCAmelCase_ , num_inference_steps=20 , output_type="""numpy""" ).images _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pndm(generator=UpperCAmelCase_ , num_inference_steps=20 , output_type="""numpy""" , return_dict=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _SCREAMING_SNAKE_CASE = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """google/ddpm-cifar10-32""" _SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = PNDMScheduler() _SCREAMING_SNAKE_CASE = PNDMPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) pndm.to(UpperCAmelCase_ ) pndm.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pndm(generator=UpperCAmelCase_ , output_type="""numpy""" ).images _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _SCREAMING_SNAKE_CASE = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCamelCase = 16 UpperCamelCase = 32 def __lowerCamelCase ( snake_case__ ,snake_case__ = 16 ,snake_case__ = "bert-base-cased" ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(snake_case__ ): # max_length=None => use the model max length (it's actually the default) _SCREAMING_SNAKE_CASE = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case__ ,max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _SCREAMING_SNAKE_CASE = datasets.map( snake_case__ ,batched=snake_case__ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,load_from_cache_file=snake_case__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(snake_case__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ ,padding="""max_length""" ,max_length=1_28 ,return_tensors="""pt""" ) return tokenizer.pad(snake_case__ ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. _SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["""train"""] ,shuffle=snake_case__ ,collate_fn=snake_case__ ,batch_size=snake_case__ ) _SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["""validation"""] ,shuffle=snake_case__ ,collate_fn=snake_case__ ,batch_size=snake_case__ ) return train_dataloader, eval_dataloader def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _SCREAMING_SNAKE_CASE = config["""lr"""] _SCREAMING_SNAKE_CASE = int(config["""num_epochs"""] ) _SCREAMING_SNAKE_CASE = int(config["""seed"""] ) _SCREAMING_SNAKE_CASE = int(config["""batch_size"""] ) _SCREAMING_SNAKE_CASE = args.model_name_or_path set_seed(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = get_dataloaders(snake_case__ ,snake_case__ ,snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(snake_case__ ,return_dict=snake_case__ ) # Instantiate optimizer _SCREAMING_SNAKE_CASE = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _SCREAMING_SNAKE_CASE = optimizer_cls(params=model.parameters() ,lr=snake_case__ ) if accelerator.state.deepspeed_plugin is not None: _SCREAMING_SNAKE_CASE = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = (len(snake_case__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=snake_case__ ,num_warmup_steps=0 ,num_training_steps=snake_case__ ,) else: _SCREAMING_SNAKE_CASE = DummyScheduler(snake_case__ ,total_num_steps=snake_case__ ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) # We need to keep track of how many total steps we have iterated over _SCREAMING_SNAKE_CASE = 0 # We also need to keep track of the stating epoch so files are named properly _SCREAMING_SNAKE_CASE = 0 # Now we train the model _SCREAMING_SNAKE_CASE = evaluate.load("""glue""" ,"""mrpc""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = {} for epoch in range(snake_case__ ,snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = model(**snake_case__ ) _SCREAMING_SNAKE_CASE = outputs.loss _SCREAMING_SNAKE_CASE = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _SCREAMING_SNAKE_CASE = 0 for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**snake_case__ ) _SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case__ ) - 1: _SCREAMING_SNAKE_CASE = predictions[: len(eval_dataloader.dataset ) - samples_seen] _SCREAMING_SNAKE_CASE = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case__ ,references=snake_case__ ,) _SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' ,snake_case__ ) _SCREAMING_SNAKE_CASE = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: _SCREAMING_SNAKE_CASE = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,"""all_results.json""" ) ,"""w""" ) as f: json.dump(snake_case__ ,snake_case__ ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" ,type=snake_case__ ,default="""bert-base-cased""" ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,required=snake_case__ ,) parser.add_argument( """--output_dir""" ,type=snake_case__ ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,) parser.add_argument( """--performance_lower_bound""" ,type=snake_case__ ,default=snake_case__ ,help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" ,) parser.add_argument( """--num_epochs""" ,type=snake_case__ ,default=3 ,help="""Number of train epochs.""" ,) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case__ ,snake_case__ ) if __name__ == "__main__": main()
306
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __lowerCamelCase ( snake_case__ ,snake_case__=False ) -> List[str]: """simple docstring""" try: _SCREAMING_SNAKE_CASE = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _SCREAMING_SNAKE_CASE = default else: # KEY is set, convert it to True or False. try: _SCREAMING_SNAKE_CASE = strtobool(snake_case__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" return unittest.skip("""Test was skipped""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" return unittest.skipUnless(_run_slow_tests ,"""test is slow""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() ,"""test requires only a CPU""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() ,"""test requires a GPU""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_xpu_available() ,"""test requires a XPU""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_mps_available() ,"""test requires a `mps` backend support in `torch`""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() ,"""test requires the Hugging Face suite""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() ,"""test requires the bitsandbytes library""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tpu_available() ,"""test requires TPU""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> List[str]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 ,"""test requires a GPU""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 ,"""test requires a XPU""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 ,"""test requires multiple GPUs""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 ,"""test requires multiple XPUs""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_safetensors_available() ,"""test requires safetensors""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() ,"""test requires DeepSpeed""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version(""">=""" ,"""1.12.0""" ) ,"""test requires torch version >= 1.12.0""" )(snake_case__ ) def __lowerCamelCase ( snake_case__=None ,snake_case__=None ) -> List[Any]: """simple docstring""" if test_case is None: return partial(snake_case__ ,version=snake_case__ ) return unittest.skipUnless(is_torch_version(""">=""" ,snake_case__ ) ,F'test requires torch version >= {version}' )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() ,"""test requires Tensorboard""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_wandb_available() ,"""test requires wandb""" )(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() ,"""test requires comet_ml""" )(snake_case__ ) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available ,"""test requires at least one tracker to be available and for `comet_ml` to not be installed""" ,)(snake_case__ ) class __UpperCAmelCase (unittest.TestCase ): __snake_case : List[Any] = True @classmethod def UpperCamelCase ( cls: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() @classmethod def UpperCamelCase ( cls: Tuple ): '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCAmelCase_ ) class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Any ): '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[mock.Mock, List[mock.Mock]] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = mocks if isinstance(UpperCAmelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = AcceleratorState() _SCREAMING_SNAKE_CASE = tensor[None].clone().to(state.device ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ).cpu() _SCREAMING_SNAKE_CASE = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] ,snake_case__ ): return False return True class __UpperCAmelCase : def __init__( self: int , UpperCAmelCase_: Dict , UpperCAmelCase_: int , UpperCAmelCase_: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = returncode _SCREAMING_SNAKE_CASE = stdout _SCREAMING_SNAKE_CASE = stderr async def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = await stream.readline() if line: callback(snake_case__ ) else: break async def __lowerCamelCase ( snake_case__ ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=False ,snake_case__=False ) -> _RunOutput: """simple docstring""" if echo: print("""\nRunning: """ ,""" """.join(snake_case__ ) ) _SCREAMING_SNAKE_CASE = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=snake_case__ ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=snake_case__ ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] def tee(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__="" ): _SCREAMING_SNAKE_CASE = line.decode("""utf-8""" ).rstrip() sink.append(snake_case__ ) if not quiet: print(snake_case__ ,snake_case__ ,file=snake_case__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout ,lambda snake_case__ : tee(snake_case__ ,snake_case__ ,sys.stdout ,label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr ,lambda snake_case__ : tee(snake_case__ ,snake_case__ ,sys.stderr ,label="""stderr:""" ) ) ), ] ,timeout=snake_case__ ,) return _RunOutput(await p.wait() ,snake_case__ ,snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__=None ,snake_case__=None ,snake_case__=1_80 ,snake_case__=False ,snake_case__=True ) -> _RunOutput: """simple docstring""" _SCREAMING_SNAKE_CASE = asyncio.get_event_loop() _SCREAMING_SNAKE_CASE = loop.run_until_complete( _stream_subprocess(snake_case__ ,env=snake_case__ ,stdin=snake_case__ ,timeout=snake_case__ ,quiet=snake_case__ ,echo=snake_case__ ) ) _SCREAMING_SNAKE_CASE = """ """.join(snake_case__ ) if result.returncode > 0: _SCREAMING_SNAKE_CASE = """\n""".join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) return result class __UpperCAmelCase (_UpperCAmelCase ): pass def __lowerCamelCase ( snake_case__ ,snake_case__=False ) -> Any: """simple docstring""" try: _SCREAMING_SNAKE_CASE = subprocess.check_output(snake_case__ ,stderr=subprocess.STDOUT ) if return_stdout: if hasattr(snake_case__ ,"""decode""" ): _SCREAMING_SNAKE_CASE = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'Command `{" ".join(snake_case__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
306
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
1
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
306
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 0 @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCAmelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCAmelCase_ ) , 0 ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) # Check that tokenizer_type ≠ model_type _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(UpperCAmelCase_ , """vocab.txt""" ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="""bert""" , use_fast=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(UpperCAmelCase_ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(UpperCAmelCase_ , """merges.txt""" ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="""gpt2""" , use_fast=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) @require_tokenizers def UpperCamelCase ( self: Any ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(UpperCAmelCase_ , """vocab.txt""" ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="""bert""" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(UpperCAmelCase_ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(UpperCAmelCase_ , """merges.txt""" ) ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="""gpt2""" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' with pytest.raises(UpperCAmelCase_ ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def UpperCamelCase ( self: int ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCAmelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCAmelCase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def UpperCamelCase ( self: List[str] ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCAmelCase_ , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TOKENIZER_MAPPING.values() _SCREAMING_SNAKE_CASE = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCAmelCase_ ) @require_tokenizers def UpperCamelCase ( self: Any ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , UpperCAmelCase_ ) @require_tokenizers def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """Hello, world. How are you?""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase_ ) self.assertEqual("""[UNK]""" , tokens[0] ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase_ ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = get_tokenizer_config("""bert-base-cased""" ) _SCREAMING_SNAKE_CASE = config.pop("""_commit_hash""" , UpperCAmelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCAmelCase_ , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. _SCREAMING_SNAKE_CASE = get_tokenizer_config(UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = get_tokenizer_config(UpperCAmelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("""custom""" , UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CustomTokenizer.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def UpperCamelCase ( self: Any ): '''simple docstring''' try: AutoConfig.register("""custom""" , UpperCAmelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoTokenizer.register(UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: _SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained(UpperCAmelCase_ ) bert_tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CustomTokenizerFast.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase ( self: Dict ): '''simple docstring''' with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def UpperCamelCase ( self: Dict ): '''simple docstring''' class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = False class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[int] = NewTokenizer __snake_case : Optional[Any] = False try: AutoConfig.register("""custom""" , UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) # If remote code is not set, the default is to use local _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""bert-base""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCAmelCase_ , revision="""aaaaaa""" ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
306
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __UpperCAmelCase : def __init__( self: Optional[int] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) _SCREAMING_SNAKE_CASE = img _SCREAMING_SNAKE_CASE = img.shape[1] _SCREAMING_SNAKE_CASE = img.shape[0] _SCREAMING_SNAKE_CASE = dst_width _SCREAMING_SNAKE_CASE = dst_height _SCREAMING_SNAKE_CASE = self.src_w / self.dst_w _SCREAMING_SNAKE_CASE = self.src_h / self.dst_h _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): _SCREAMING_SNAKE_CASE = self.img[self.get_y(UpperCAmelCase_ )][self.get_x(UpperCAmelCase_ )] def UpperCamelCase ( self: Any , UpperCAmelCase_: int ): '''simple docstring''' return int(self.ratio_x * x ) def UpperCamelCase ( self: Any , UpperCAmelCase_: int ): '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": UpperCamelCase , UpperCamelCase = 800, 600 UpperCamelCase = imread('''image_data/lena.jpg''', 1) UpperCamelCase = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f"Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}", n.output ) waitKey(0) destroyAllWindows()
306
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase = logging.get_logger(__name__) class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : str = ["pixel_values"] def __init__( self: List[str] , UpperCAmelCase_: bool = True , UpperCAmelCase_: Dict[str, int] = None , UpperCAmelCase_: PILImageResampling = PIL.Image.BICUBIC , UpperCAmelCase_: bool = True , UpperCAmelCase_: Dict[str, int] = None , UpperCAmelCase_: Union[int, float] = 1 / 255 , UpperCAmelCase_: bool = True , UpperCAmelCase_: bool = True , UpperCAmelCase_: Optional[Union[float, List[float]]] = None , UpperCAmelCase_: Optional[Union[float, List[float]]] = None , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 256, """width""": 256} _SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase_ , param_name="""crop_size""" ) _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = resample _SCREAMING_SNAKE_CASE = do_center_crop _SCREAMING_SNAKE_CASE = crop_size _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase ( self: Any , UpperCAmelCase_: np.ndarray , UpperCAmelCase_: Dict[str, int] , UpperCAmelCase_: PILImageResampling = PIL.Image.BICUBIC , UpperCAmelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_: Optional[int] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( UpperCAmelCase_ , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: np.ndarray , UpperCAmelCase_: Dict[str, int] , UpperCAmelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_: List[Any] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(UpperCAmelCase_ , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: np.ndarray , UpperCAmelCase_: Union[int, float] , UpperCAmelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_: int , ): '''simple docstring''' return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: np.ndarray , UpperCAmelCase_: Union[float, List[float]] , UpperCAmelCase_: Union[float, List[float]] , UpperCAmelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_: Any , ): '''simple docstring''' return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: ImageInput , UpperCAmelCase_: bool = None , UpperCAmelCase_: Dict[str, int] = None , UpperCAmelCase_: str=None , UpperCAmelCase_: bool = None , UpperCAmelCase_: Dict[str, int] = None , UpperCAmelCase_: bool = None , UpperCAmelCase_: float = None , UpperCAmelCase_: bool = None , UpperCAmelCase_: Optional[Union[float, List[float]]] = None , UpperCAmelCase_: Optional[Union[float, List[float]]] = None , UpperCAmelCase_: Optional[Union[str, TensorType]] = None , UpperCAmelCase_: ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_: str , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop _SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE = size if size is not None else self.size _SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size _SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase_ , param_name="""crop_size""" ) _SCREAMING_SNAKE_CASE = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] if do_center_crop: _SCREAMING_SNAKE_CASE = [self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_ ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ ) for image in images] _SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] _SCREAMING_SNAKE_CASE = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
306
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
1
from math import factorial def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> int: """simple docstring""" if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(snake_case__ ) // (factorial(snake_case__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"fifty-two card deck is: {combinations(52, 5)}\n", ) print( '''If a class of 40 students must be arranged into groups of''', f"4 for group projects, there are {combinations(40, 4)} ways", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"are {combinations(10, 3)} ways that first, second and", '''third place can be awarded.''', )
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __UpperCAmelCase (_UpperCAmelCase ): def __lt__( self: Any , UpperCAmelCase_: Any ): '''simple docstring''' return self[-1] < other[-1] def __eq__( self: List[str] , UpperCAmelCase_: str ): '''simple docstring''' return self[-1] == other[-1] def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = [] # sort into stacks for element in collection: _SCREAMING_SNAKE_CASE = Stack([element] ) _SCREAMING_SNAKE_CASE = bisect_left(snake_case__ ,snake_case__ ) if i != len(snake_case__ ): stacks[i].append(snake_case__ ) else: stacks.append(snake_case__ ) # use a heap-based merge to merge stack efficiently _SCREAMING_SNAKE_CASE = merge(*(reversed(snake_case__ ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
306
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} UpperCamelCase = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } UpperCamelCase = { '''openbmb/cpm-ant-10b''': 1_024, } def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = collections.OrderedDict() with open(snake_case__ ,"""r""" ,encoding="""utf-8""" ) as reader: _SCREAMING_SNAKE_CASE = reader.readlines() for index, token in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = token.rstrip("""\n""" ) _SCREAMING_SNAKE_CASE = index return vocab class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Tuple , UpperCAmelCase_: Any , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: int=200 ): '''simple docstring''' _SCREAMING_SNAKE_CASE = vocab _SCREAMING_SNAKE_CASE = unk_token _SCREAMING_SNAKE_CASE = max_input_chars_per_word def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > self.max_input_chars_per_word: return [self.unk_token] _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [] while start < len(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = len(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = None while start < end: _SCREAMING_SNAKE_CASE = """""".join(chars[start:end] ) if substr in self.vocab: _SCREAMING_SNAKE_CASE = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = end return sub_tokens class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = VOCAB_FILES_NAMES __snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Any = ["input_ids", "attention_mask"] __snake_case : str = False def __init__( self: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[Any]="<d>" , UpperCAmelCase_: Optional[int]="</d>" , UpperCAmelCase_: List[Any]="<s>" , UpperCAmelCase_: Dict="</s>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: List[Any]="<unk>" , UpperCAmelCase_: int="</n>" , UpperCAmelCase_: str="</_>" , UpperCAmelCase_: int="left" , **UpperCAmelCase_: Optional[int] , ): '''simple docstring''' requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=UpperCAmelCase_ , eod_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , line_token=UpperCAmelCase_ , space_token=UpperCAmelCase_ , padding_side=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = bod_token _SCREAMING_SNAKE_CASE = eod_token _SCREAMING_SNAKE_CASE = load_vocab(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.encoder[space_token] _SCREAMING_SNAKE_CASE = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _SCREAMING_SNAKE_CASE = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCAmelCase_ : x[1] ) ) _SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} _SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self.encoder[self.bod_token] @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return self.encoder[self.eod_token] @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return self.encoder["\n"] @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return len(self.encoder ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for x in jieba.cut(UpperCAmelCase_ , cut_all=UpperCAmelCase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCAmelCase_ ) ) return output_tokens def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: int , **UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [i for i in token_ids if i >= 0] _SCREAMING_SNAKE_CASE = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: Any ): '''simple docstring''' return token in self.encoder def UpperCamelCase ( self: Any , UpperCAmelCase_: List[str] ): '''simple docstring''' return "".join(UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: Optional[int] ): '''simple docstring''' return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase ( self: int , UpperCAmelCase_: List[Any] ): '''simple docstring''' return self.decoder.get(UpperCAmelCase_ , self.unk_token ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if os.path.isdir(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: _SCREAMING_SNAKE_CASE = (filename_prefix + """-""" if filename_prefix else """""") + save_directory _SCREAMING_SNAKE_CASE = 0 if " " in self.encoder: _SCREAMING_SNAKE_CASE = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: _SCREAMING_SNAKE_CASE = self.encoder["""\n"""] del self.encoder["\n"] _SCREAMING_SNAKE_CASE = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCAmelCase_ : x[1] ) ) with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) _SCREAMING_SNAKE_CASE = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: List[int] = None ): '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None , UpperCAmelCase_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) return [1] + ([0] * len(UpperCAmelCase_ ))
306
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''spm_char.model'''} UpperCamelCase = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } UpperCamelCase = { '''microsoft/speecht5_asr''': 1_024, '''microsoft/speecht5_tts''': 1_024, '''microsoft/speecht5_vc''': 1_024, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Union[str, Any] = VOCAB_FILES_NAMES __snake_case : Dict = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Tuple = ["input_ids", "attention_mask"] def __init__( self: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Dict="</s>" , UpperCAmelCase_: str="<unk>" , UpperCAmelCase_: Optional[Any]="<pad>" , UpperCAmelCase_: Optional[Dict[str, Any]] = None , **UpperCAmelCase_: Tuple , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self.sp_model.get_piece_size() def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None return state def __setstate__( self: Union[str, Any] , UpperCAmelCase_: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' return self.sp_model.piece_to_id(UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(UpperCAmelCase_ ) return token def UpperCamelCase ( self: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase_ ) + token _SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(UpperCAmelCase_ ) out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: List[str]=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self: int , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None , UpperCAmelCase_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [1] if token_ids_a is None: return ([0] * len(UpperCAmelCase_ )) + suffix_ones return ([0] * len(UpperCAmelCase_ )) + ([0] * len(UpperCAmelCase_ )) + suffix_ones def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCamelCase = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class __UpperCAmelCase (unittest.TestCase ): @classmethod def UpperCamelCase ( cls: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def UpperCamelCase ( cls: int ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ , repo_id="""test-config""" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase_ , repo_id="""valid_org/test-config-org""" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase ( self: str ): '''simple docstring''' CustomConfig.register_for_auto_class() _SCREAMING_SNAKE_CASE = CustomConfig(attribute=42 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 42 ) class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _SCREAMING_SNAKE_CASE = c.n_embd + 1 # int _SCREAMING_SNAKE_CASE = c.resid_pdrop + 1.0 # float _SCREAMING_SNAKE_CASE = not c.scale_attn_weights # bool _SCREAMING_SNAKE_CASE = c.summary_type + """foo""" # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(UpperCAmelCase_ , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(UpperCAmelCase_ , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(UpperCAmelCase_ , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(UpperCAmelCase_ , c.summary_type , """mismatch for key: summary_type""" ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = PretrainedConfig() _SCREAMING_SNAKE_CASE = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase_ , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) _SCREAMING_SNAKE_CASE = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase_ , UpperCAmelCase_ )] if len(UpperCAmelCase_ ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" F' {", ".join(UpperCAmelCase_ )}.' ) def UpperCamelCase ( self: Dict ): '''simple docstring''' with self.assertRaises(UpperCAmelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = mock.Mock() _SCREAMING_SNAKE_CASE = 500 _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = HTTPError _SCREAMING_SNAKE_CASE = {} # Download this model to make sure it's in the cache. _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=UpperCAmelCase_ ) as mock_head: _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""bert-base-cased""" ) _SCREAMING_SNAKE_CASE = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase_ , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _SCREAMING_SNAKE_CASE = ["""config.42.0.0.json"""] _SCREAMING_SNAKE_CASE = 768 configuration.save_pretrained(UpperCAmelCase_ ) shutil.move(os.path.join(UpperCAmelCase_ , """config.4.0.0.json""" ) , os.path.join(UpperCAmelCase_ , """config.42.0.0.json""" ) ) _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """hf-internal-testing/test-two-configs""" import transformers as new_transformers _SCREAMING_SNAKE_CASE = """v4.0.0""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase_ , return_unused_kwargs=UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _SCREAMING_SNAKE_CASE = """v3.0.0""" _SCREAMING_SNAKE_CASE = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(old_configuration.hidden_size , 768 )
306
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''spiece.model'''} UpperCamelCase = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: str , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Dict=True , UpperCAmelCase_: int=False , UpperCAmelCase_: List[Any]="<s>" , UpperCAmelCase_: int="</s>" , UpperCAmelCase_: str="<unk>" , UpperCAmelCase_: List[Any]="<sep>" , UpperCAmelCase_: Optional[Any]="<pad>" , UpperCAmelCase_: Optional[Any]="<cls>" , UpperCAmelCase_: Any="<mask>" , UpperCAmelCase_: List[Any]=["<eop>", "<eod>"] , UpperCAmelCase_: Optional[Dict[str, Any]] = None , **UpperCAmelCase_: Dict , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = do_lower_case _SCREAMING_SNAKE_CASE = remove_space _SCREAMING_SNAKE_CASE = keep_accents _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) _SCREAMING_SNAKE_CASE = jieba _SCREAMING_SNAKE_CASE = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCamelCase ( self: Tuple ): '''simple docstring''' return len(self.sp_model ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None return state def __setstate__( self: List[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Optional[int] ): '''simple docstring''' if self.remove_space: _SCREAMING_SNAKE_CASE = """ """.join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE = inputs _SCREAMING_SNAKE_CASE = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE = unicodedata.normalize("""NFKD""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE = outputs.lower() return outputs def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.preprocess_text(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: List[Any] ): '''simple docstring''' return self.sp_model.PieceToId(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[Any] ): '''simple docstring''' return self.sp_model.IdToPiece(UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """""".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , """ """ ).strip() return out_string def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase ( self: Any , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None , UpperCAmelCase_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] return ([0] * len(UpperCAmelCase_ )) + [1, 1] def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,) def UpperCamelCase ( self: int , *UpperCAmelCase_: str , **UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = super()._decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
306
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''PoolFormerFeatureExtractor'''] UpperCamelCase = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
def __lowerCamelCase ( snake_case__ ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError("""Input must be a positive integer""" ) _SCREAMING_SNAKE_CASE = [True] * (num + 1) _SCREAMING_SNAKE_CASE = 2 while p * p <= num: if primes[p]: for i in range(p * p ,num + 1 ,snake_case__ ): _SCREAMING_SNAKE_CASE = False p += 1 return [prime for prime in range(2 ,num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
306
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
1
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
from manim import * class __UpperCAmelCase (_UpperCAmelCase ): def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) _SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) _SCREAMING_SNAKE_CASE = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) _SCREAMING_SNAKE_CASE = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) _SCREAMING_SNAKE_CASE = Text("""CPU""" , font_size=24 ) _SCREAMING_SNAKE_CASE = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [mem.copy() for i in range(1 )] _SCREAMING_SNAKE_CASE = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) _SCREAMING_SNAKE_CASE = Text("""GPU""" , font_size=24 ) _SCREAMING_SNAKE_CASE = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.align_to(UpperCAmelCase_ , UpperCAmelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) _SCREAMING_SNAKE_CASE = Text("""Model""" , font_size=24 ) _SCREAMING_SNAKE_CASE = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(UpperCAmelCase_ , run_time=1 ) , Create(UpperCAmelCase_ , run_time=1 ) , Create(UpperCAmelCase_ , run_time=1 ) , ) _SCREAMING_SNAKE_CASE = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) _SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _SCREAMING_SNAKE_CASE = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=2.5 ) , Write(UpperCAmelCase_ ) , Write(UpperCAmelCase_ ) ) self.add(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.7 ) cpu_target.move_to(UpperCAmelCase_ ) cpu_target.generate_target() _SCREAMING_SNAKE_CASE = 0.46 / 4 _SCREAMING_SNAKE_CASE = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCAmelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=UpperCAmelCase_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=UpperCAmelCase_ , buff=0.0 ) cpu_targs.append(UpperCAmelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(UpperCAmelCase_ ) ) second_animations.append(MoveToTarget(UpperCAmelCase_ , run_time=1.5 ) ) self.play(*UpperCAmelCase_ ) self.play(*UpperCAmelCase_ ) self.wait()
306
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Union[str, Any] = ["vqvae"] def __init__( self: Optional[int] , UpperCAmelCase_: AutoencoderKL , UpperCAmelCase_: UNetaDConditionModel , UpperCAmelCase_: Mel , UpperCAmelCase_: Union[DDIMScheduler, DDPMScheduler] , ): '''simple docstring''' super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , mel=UpperCAmelCase_ , vqvae=UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return 50 if isinstance(self.scheduler , UpperCAmelCase_ ) else 1_000 @torch.no_grad() def __call__( self: str , UpperCAmelCase_: int = 1 , UpperCAmelCase_: str = None , UpperCAmelCase_: np.ndarray = None , UpperCAmelCase_: int = 0 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: int = None , UpperCAmelCase_: torch.Generator = None , UpperCAmelCase_: float = 0 , UpperCAmelCase_: float = 0 , UpperCAmelCase_: torch.Generator = None , UpperCAmelCase_: float = 0 , UpperCAmelCase_: torch.Tensor = None , UpperCAmelCase_: torch.Tensor = None , UpperCAmelCase_: Union[str, Any]=True , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _SCREAMING_SNAKE_CASE = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _SCREAMING_SNAKE_CASE = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCAmelCase_ , device=self.device , ) _SCREAMING_SNAKE_CASE = noise _SCREAMING_SNAKE_CASE = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mel.audio_slice_to_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) _SCREAMING_SNAKE_CASE = (input_image / 255) * 2 - 1 _SCREAMING_SNAKE_CASE = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _SCREAMING_SNAKE_CASE = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase_ , 0 ) ).latent_dist.sample( generator=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = self.vqvae.config.scaling_factor * input_images if start_step > 0: _SCREAMING_SNAKE_CASE = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler.timesteps[start_step - 1] ) _SCREAMING_SNAKE_CASE = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _SCREAMING_SNAKE_CASE = int(mask_start_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE = int(mask_end_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )["""sample"""] else: _SCREAMING_SNAKE_CASE = self.unet(UpperCAmelCase_ , UpperCAmelCase_ )["""sample"""] if isinstance(self.scheduler , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , )["""prev_sample"""] else: _SCREAMING_SNAKE_CASE = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ , )["""prev_sample"""] if mask is not None: if mask_start > 0: _SCREAMING_SNAKE_CASE = mask[:, step, :, :mask_start] if mask_end > 0: _SCREAMING_SNAKE_CASE = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _SCREAMING_SNAKE_CASE = 1 / self.vqvae.config.scaling_factor * images _SCREAMING_SNAKE_CASE = self.vqvae.decode(UpperCAmelCase_ )["""sample"""] _SCREAMING_SNAKE_CASE = (images / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _SCREAMING_SNAKE_CASE = (images * 255).round().astype("""uint8""" ) _SCREAMING_SNAKE_CASE = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase_ , mode="""RGB""" ).convert("""L""" ) for _ in images) ) _SCREAMING_SNAKE_CASE = [self.mel.image_to_audio(UpperCAmelCase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(UpperCAmelCase_ ) ) @torch.no_grad() def UpperCamelCase ( self: str , UpperCAmelCase_: List[Image.Image] , UpperCAmelCase_: int = 50 ): '''simple docstring''' assert isinstance(self.scheduler , UpperCAmelCase_ ) self.scheduler.set_timesteps(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) _SCREAMING_SNAKE_CASE = (sample / 255) * 2 - 1 _SCREAMING_SNAKE_CASE = torch.Tensor(UpperCAmelCase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _SCREAMING_SNAKE_CASE = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _SCREAMING_SNAKE_CASE = self.scheduler.alphas_cumprod[t] _SCREAMING_SNAKE_CASE = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _SCREAMING_SNAKE_CASE = 1 - alpha_prod_t _SCREAMING_SNAKE_CASE = self.unet(UpperCAmelCase_ , UpperCAmelCase_ )["""sample"""] _SCREAMING_SNAKE_CASE = (1 - alpha_prod_t_prev) ** 0.5 * model_output _SCREAMING_SNAKE_CASE = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _SCREAMING_SNAKE_CASE = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase ( UpperCAmelCase_: torch.Tensor , UpperCAmelCase_: torch.Tensor , UpperCAmelCase_: float ): '''simple docstring''' _SCREAMING_SNAKE_CASE = acos(torch.dot(torch.flatten(UpperCAmelCase_ ) , torch.flatten(UpperCAmelCase_ ) ) / torch.norm(UpperCAmelCase_ ) / torch.norm(UpperCAmelCase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(UpperCAmelCase_ ) + sin(alpha * theta ) * xa / sin(UpperCAmelCase_ )
306
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
1
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int]: """simple docstring""" if b == 0: return (1, 0) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = extended_euclid(snake_case__ ,a % b ) _SCREAMING_SNAKE_CASE = a // b return (y, x - k * y) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = extended_euclid(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = na * na _SCREAMING_SNAKE_CASE = ra * x * na + ra * y * na return (n % m + m) % m def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> int: """simple docstring""" ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = extended_euclid(snake_case__ ,snake_case__ ) if b < 0: _SCREAMING_SNAKE_CASE = (b % n + n) % n return b def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = invert_modulo(snake_case__ ,snake_case__ ), invert_modulo(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = na * na _SCREAMING_SNAKE_CASE = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
306
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : int = "nllb-moe" __snake_case : Any = ["past_key_values"] __snake_case : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self: Dict , UpperCAmelCase_: List[Any]=128_112 , UpperCAmelCase_: Any=1_024 , UpperCAmelCase_: Dict=12 , UpperCAmelCase_: int=4_096 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: str=12 , UpperCAmelCase_: Any=4_096 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: Dict=0.05 , UpperCAmelCase_: Union[str, Any]=0.05 , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: str=True , UpperCAmelCase_: str="relu" , UpperCAmelCase_: Optional[Any]=1_024 , UpperCAmelCase_: Any=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: int=0.0 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: Any=2 , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Any=False , UpperCAmelCase_: Optional[Any]="float32" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: str=128 , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int=4 , UpperCAmelCase_: str=4 , UpperCAmelCase_: List[Any]=0.0_01 , UpperCAmelCase_: int=0.0_01 , UpperCAmelCase_: Tuple="all" , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Tuple=1.0 , UpperCAmelCase_: List[Any]=0.2 , UpperCAmelCase_: str=1 , UpperCAmelCase_: List[Any]=0 , UpperCAmelCase_: List[str]=2 , UpperCAmelCase_: Optional[int]=False , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = d_model _SCREAMING_SNAKE_CASE = encoder_ffn_dim _SCREAMING_SNAKE_CASE = encoder_layers _SCREAMING_SNAKE_CASE = encoder_attention_heads _SCREAMING_SNAKE_CASE = decoder_ffn_dim _SCREAMING_SNAKE_CASE = decoder_layers _SCREAMING_SNAKE_CASE = decoder_attention_heads _SCREAMING_SNAKE_CASE = dropout _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = activation_dropout _SCREAMING_SNAKE_CASE = activation_function _SCREAMING_SNAKE_CASE = init_std _SCREAMING_SNAKE_CASE = encoder_layerdrop _SCREAMING_SNAKE_CASE = decoder_layerdrop _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = encoder_layers _SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True _SCREAMING_SNAKE_CASE = router_z_loss_coef _SCREAMING_SNAKE_CASE = router_aux_loss_coef _SCREAMING_SNAKE_CASE = decoder_sparse_step _SCREAMING_SNAKE_CASE = encoder_sparse_step _SCREAMING_SNAKE_CASE = num_experts _SCREAMING_SNAKE_CASE = expert_capacity _SCREAMING_SNAKE_CASE = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) _SCREAMING_SNAKE_CASE = router_dtype _SCREAMING_SNAKE_CASE = router_ignore_padding_tokens _SCREAMING_SNAKE_CASE = batch_prioritized_routing _SCREAMING_SNAKE_CASE = second_expert_policy _SCREAMING_SNAKE_CASE = normalize_router_prob_before_dropping _SCREAMING_SNAKE_CASE = moe_eval_capacity_token_fraction _SCREAMING_SNAKE_CASE = moe_token_dropout _SCREAMING_SNAKE_CASE = output_router_logits super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , )
306
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
1
def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) _SCREAMING_SNAKE_CASE = str(snake_case__ ) _SCREAMING_SNAKE_CASE = """""".join(sorted(snake_case__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCamelCase ( snake_case__ = 99 ) -> int: """simple docstring""" if not 0 < percent < 1_00: raise ValueError("""solution() only accepts values from 0 to 100""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 1 while True: if check_bouncy(snake_case__ ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
306
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
1
def __lowerCamelCase ( snake_case__ = 10**9 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"{solution() = }")
306
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase = logging.get_logger(__name__) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = b.T _SCREAMING_SNAKE_CASE = np.sum(np.square(snake_case__ ) ,axis=1 ) _SCREAMING_SNAKE_CASE = np.sum(np.square(snake_case__ ) ,axis=0 ) _SCREAMING_SNAKE_CASE = np.matmul(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = aa[:, None] - 2 * ab + ba[None, :] return d def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = x.reshape(-1 ,3 ) _SCREAMING_SNAKE_CASE = squared_euclidean_distance(snake_case__ ,snake_case__ ) return np.argmin(snake_case__ ,axis=1 ) class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = ["pixel_values"] def __init__( self: Tuple , UpperCAmelCase_: Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase_: bool = True , UpperCAmelCase_: Dict[str, int] = None , UpperCAmelCase_: PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_: bool = True , UpperCAmelCase_: bool = True , **UpperCAmelCase_: str , ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 256, """width""": 256} _SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array(UpperCAmelCase_ ) if clusters is not None else None _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = resample _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = do_color_quantize def UpperCamelCase ( self: int , UpperCAmelCase_: np.ndarray , UpperCAmelCase_: Dict[str, int] , UpperCAmelCase_: PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_: str , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCAmelCase_ , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: np.ndarray , UpperCAmelCase_: Optional[Union[str, ChannelDimension]] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = rescale(image=UpperCAmelCase_ , scale=1 / 1_27.5 , data_format=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image - 1 return image def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: ImageInput , UpperCAmelCase_: bool = None , UpperCAmelCase_: Dict[str, int] = None , UpperCAmelCase_: PILImageResampling = None , UpperCAmelCase_: bool = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase_: Optional[Union[str, TensorType]] = None , UpperCAmelCase_: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **UpperCAmelCase_: Optional[Any] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE = size if size is not None else self.size _SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _SCREAMING_SNAKE_CASE = clusters if clusters is not None else self.clusters _SCREAMING_SNAKE_CASE = np.array(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE = [self.normalize(image=UpperCAmelCase_ ) for image in images] if do_color_quantize: _SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCAmelCase_ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _SCREAMING_SNAKE_CASE = np.array(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = color_quantize(UpperCAmelCase_ , UpperCAmelCase_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _SCREAMING_SNAKE_CASE = images.shape[0] _SCREAMING_SNAKE_CASE = images.reshape(UpperCAmelCase_ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _SCREAMING_SNAKE_CASE = list(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] _SCREAMING_SNAKE_CASE = {"""input_ids""": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _SCREAMING_SNAKE_CASE = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(snake_case__ ): return None _SCREAMING_SNAKE_CASE = sorted_collection[point] if current_item == item: return point else: if point < left: _SCREAMING_SNAKE_CASE = left _SCREAMING_SNAKE_CASE = point elif point > right: _SCREAMING_SNAKE_CASE = right _SCREAMING_SNAKE_CASE = point else: if item < current_item: _SCREAMING_SNAKE_CASE = point - 1 else: _SCREAMING_SNAKE_CASE = point + 1 return None def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _SCREAMING_SNAKE_CASE = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(snake_case__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) elif point > right: return interpolation_search_by_recursion(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( snake_case__ ,snake_case__ ,snake_case__ ,point - 1 ) else: return interpolation_search_by_recursion( snake_case__ ,snake_case__ ,point + 1 ,snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if collection != sorted(snake_case__ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys UpperCamelCase = 0 if debug == 1: UpperCamelCase = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') UpperCamelCase = 67 UpperCamelCase = interpolation_search(collection, target) if result is not None: print(f"{target} found at positions: {result}") else: print('''Not found''')
306
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
1
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" assert isinstance(snake_case__ ,snake_case__ ), F'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: _SCREAMING_SNAKE_CASE = F'The input value of [n={number}] has to be > 0' raise ValueError(snake_case__ ) else: _SCREAMING_SNAKE_CASE = sylvester(number - 1 ) _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = num return lower * upper + 1 if __name__ == "__main__": print(f"The 8th number in Sylvester's sequence: {sylvester(8)}")
306
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
1
def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 while b > 0: if b & 1: _SCREAMING_SNAKE_CASE = ((res % c) + (a % c)) % c a += a b >>= 1 return res
306
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
1
UpperCamelCase = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} UpperCamelCase = ['''a''', '''b''', '''c''', '''d''', '''e'''] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = start # add current to visited visited.append(snake_case__ ) _SCREAMING_SNAKE_CASE = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _SCREAMING_SNAKE_CASE = topological_sort(snake_case__ ,snake_case__ ,snake_case__ ) # if all neighbors visited add current to sort sort.append(snake_case__ ) # if all vertices haven't been visited select a new one to visit if len(snake_case__ ) != len(snake_case__ ): for vertice in vertices: if vertice not in visited: _SCREAMING_SNAKE_CASE = topological_sort(snake_case__ ,snake_case__ ,snake_case__ ) # return sort return sort if __name__ == "__main__": UpperCamelCase = topological_sort('''a''', [], []) print(sort)
306
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig UpperCamelCase = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } UpperCamelCase = logging.get_logger(__name__) class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[Any] = "maskformer" __snake_case : Union[str, Any] = {"hidden_size": "mask_feature_size"} __snake_case : Any = ["resnet", "swin"] __snake_case : List[Any] = ["detr"] def __init__( self: Optional[int] , UpperCAmelCase_: int = 256 , UpperCAmelCase_: int = 256 , UpperCAmelCase_: float = 0.1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[Dict] = None , UpperCAmelCase_: Optional[Dict] = None , UpperCAmelCase_: float = 0.02 , UpperCAmelCase_: float = 1.0 , UpperCAmelCase_: float = 1.0 , UpperCAmelCase_: float = 1.0 , UpperCAmelCase_: float = 20.0 , UpperCAmelCase_: Optional[bool] = None , **UpperCAmelCase_: Optional[int] , ): '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _SCREAMING_SNAKE_CASE = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" ) _SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] _SCREAMING_SNAKE_CASE = config_class.from_dict(UpperCAmelCase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _SCREAMING_SNAKE_CASE = DetrConfig() else: # verify that the decoder is supported _SCREAMING_SNAKE_CASE = ( decoder_config.pop("""model_type""" ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = CONFIG_MAPPING[decoder_type] _SCREAMING_SNAKE_CASE = config_class.from_dict(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = backbone_config _SCREAMING_SNAKE_CASE = decoder_config # main feature dimension for the model _SCREAMING_SNAKE_CASE = fpn_feature_size _SCREAMING_SNAKE_CASE = mask_feature_size # initializer _SCREAMING_SNAKE_CASE = init_std _SCREAMING_SNAKE_CASE = init_xavier_std # Hungarian matcher && loss _SCREAMING_SNAKE_CASE = cross_entropy_weight _SCREAMING_SNAKE_CASE = dice_weight _SCREAMING_SNAKE_CASE = mask_weight _SCREAMING_SNAKE_CASE = use_auxiliary_loss _SCREAMING_SNAKE_CASE = no_object_weight _SCREAMING_SNAKE_CASE = output_auxiliary_logits _SCREAMING_SNAKE_CASE = self.decoder_config.encoder_attention_heads _SCREAMING_SNAKE_CASE = self.decoder_config.num_hidden_layers super().__init__(**UpperCAmelCase_ ) @classmethod def UpperCamelCase ( cls: Union[str, Any] , UpperCAmelCase_: PretrainedConfig , UpperCAmelCase_: PretrainedConfig , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' return cls( backbone_config=UpperCAmelCase_ , decoder_config=UpperCAmelCase_ , **UpperCAmelCase_ , ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() _SCREAMING_SNAKE_CASE = self.decoder_config.to_dict() _SCREAMING_SNAKE_CASE = self.__class__.model_type return output
306
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
1
from __future__ import annotations from math import pi def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __UpperCAmelCase : def __init__( self: str , UpperCAmelCase_: Tuple , UpperCAmelCase_: int=13 , UpperCAmelCase_: List[Any]=7 , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=99 , UpperCAmelCase_: List[Any]=64 , UpperCAmelCase_: Optional[Any]=5 , UpperCAmelCase_: Optional[int]=4 , UpperCAmelCase_: Optional[Any]=64 , UpperCAmelCase_: List[Any]="gelu" , UpperCAmelCase_: Tuple=0.1 , UpperCAmelCase_: Tuple=0.1 , UpperCAmelCase_: Optional[int]=512 , UpperCAmelCase_: Dict=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: Tuple=0.02 , UpperCAmelCase_: List[Any]=3 , UpperCAmelCase_: Optional[Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: str ): '''simple docstring''' return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: str ): '''simple docstring''' return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MPNetModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MPNetForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = MPNetForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Dict , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_choices _SCREAMING_SNAKE_CASE = MPNetForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = MPNetForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : str = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __snake_case : Dict = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) __snake_case : str = False __snake_case : Tuple = True def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MPNetModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Dict ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*UpperCAmelCase_ ) @require_torch class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) _SCREAMING_SNAKE_CASE = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
1
from __future__ import annotations import math def __lowerCamelCase ( snake_case__ ) -> list[int]: """simple docstring""" if num <= 0: _SCREAMING_SNAKE_CASE = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(snake_case__ ) _SCREAMING_SNAKE_CASE = [True] * (num + 1) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = int(math.sqrt(snake_case__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(snake_case__ ) # Set multiples of start be False for i in range(start * start ,num + 1 ,snake_case__ ): if sieve[i] is True: _SCREAMING_SNAKE_CASE = False start += 1 for j in range(end + 1 ,num + 1 ): if sieve[j] is True: prime.append(snake_case__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
306
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[Any] = "encodec" def __init__( self: Optional[Any] , UpperCAmelCase_: Dict=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCAmelCase_: Optional[Any]=24_000 , UpperCAmelCase_: List[str]=1 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: int=128 , UpperCAmelCase_: Any=32 , UpperCAmelCase_: List[str]=1 , UpperCAmelCase_: Optional[Any]=[8, 5, 4, 2] , UpperCAmelCase_: List[Any]="weight_norm" , UpperCAmelCase_: Union[str, Any]=7 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: int=3 , UpperCAmelCase_: int=2 , UpperCAmelCase_: int=True , UpperCAmelCase_: int="reflect" , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=2 , UpperCAmelCase_: Dict=1.0 , UpperCAmelCase_: int=1_024 , UpperCAmelCase_: str=None , UpperCAmelCase_: str=True , **UpperCAmelCase_: Optional[int] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = target_bandwidths _SCREAMING_SNAKE_CASE = sampling_rate _SCREAMING_SNAKE_CASE = audio_channels _SCREAMING_SNAKE_CASE = normalize _SCREAMING_SNAKE_CASE = chunk_length_s _SCREAMING_SNAKE_CASE = overlap _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_filters _SCREAMING_SNAKE_CASE = num_residual_layers _SCREAMING_SNAKE_CASE = upsampling_ratios _SCREAMING_SNAKE_CASE = norm_type _SCREAMING_SNAKE_CASE = kernel_size _SCREAMING_SNAKE_CASE = last_kernel_size _SCREAMING_SNAKE_CASE = residual_kernel_size _SCREAMING_SNAKE_CASE = dilation_growth_rate _SCREAMING_SNAKE_CASE = use_causal_conv _SCREAMING_SNAKE_CASE = pad_mode _SCREAMING_SNAKE_CASE = compress _SCREAMING_SNAKE_CASE = num_lstm_layers _SCREAMING_SNAKE_CASE = trim_right_ratio _SCREAMING_SNAKE_CASE = codebook_size _SCREAMING_SNAKE_CASE = codebook_dim if codebook_dim is not None else hidden_size _SCREAMING_SNAKE_CASE = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**UpperCAmelCase_ ) @property def UpperCamelCase ( self: Any ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def UpperCamelCase ( self: Any ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home UpperCamelCase = HUGGINGFACE_HUB_CACHE UpperCamelCase = '''config.json''' UpperCamelCase = '''diffusion_pytorch_model.bin''' UpperCamelCase = '''diffusion_flax_model.msgpack''' UpperCamelCase = '''model.onnx''' UpperCamelCase = '''diffusion_pytorch_model.safetensors''' UpperCamelCase = '''weights.pb''' UpperCamelCase = '''https://huggingface.co''' UpperCamelCase = default_cache_path UpperCamelCase = '''diffusers_modules''' UpperCamelCase = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) UpperCamelCase = ['''fp16''', '''non-ema'''] UpperCamelCase = '''.self_attn'''
306
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = '''▁''' UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = BertGenerationTokenizer __snake_case : List[str] = False __snake_case : Tuple = True def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' super().setUp() _SCREAMING_SNAKE_CASE = BertGenerationTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """<s>""" _SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(UpperCAmelCase_ ) , 1_002 ) def UpperCamelCase ( self: str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BertGenerationTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [285, 46, 10, 170, 382] , ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCamelCase ( self: Tuple ): '''simple docstring''' return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """Hello World!""" _SCREAMING_SNAKE_CASE = [18_536, 2_260, 101] self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _SCREAMING_SNAKE_CASE = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @require_torch @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _SCREAMING_SNAKE_CASE = list(self.big_tokenizer.get_vocab().keys() )[:10] _SCREAMING_SNAKE_CASE = """ """.join(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.big_tokenizer.encode_plus(UpperCAmelCase_ , return_tensors="""pt""" , return_token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = BertGenerationConfig() _SCREAMING_SNAKE_CASE = BertGenerationEncoder(UpperCAmelCase_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase_ ) model(**UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {"""input_ids""": [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
306
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
1
from collections.abc import Callable import numpy as np def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> np.array: """simple docstring""" _SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) _SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) _SCREAMING_SNAKE_CASE = ya _SCREAMING_SNAKE_CASE = xa for k in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(snake_case__ ,y[k] ) _SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(snake_case__ ,y[k] ) + ode_func(x + step_size ,snake_case__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
306
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _SCREAMING_SNAKE_CASE = True for i in range(snake_case__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _SCREAMING_SNAKE_CASE = True if a[i].islower(): _SCREAMING_SNAKE_CASE = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """laion/clap-htsat-unfused""" _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() def UpperCamelCase ( self: Optional[Any] , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: List[str] ): '''simple docstring''' return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_feature_extractor() _SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _SCREAMING_SNAKE_CASE = self.get_feature_extractor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) _SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_feature_extractor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = floats_list((3, 1_000) ) _SCREAMING_SNAKE_CASE = feature_extractor(UpperCAmelCase_ , return_tensors="""np""" ) _SCREAMING_SNAKE_CASE = processor(audios=UpperCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_feature_extractor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """This is a test string""" _SCREAMING_SNAKE_CASE = processor(text=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_feature_extractor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE = processor.batch_decode(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_feature_extractor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
306
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
1
def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
306
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = '''▁''' UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCamelCase = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } UpperCamelCase = { '''facebook/mbart-large-50-one-to-many-mmt''': 1_024, } # fmt: off UpperCamelCase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = ["input_ids", "attention_mask"] __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Any=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: Optional[int]="</s>" , UpperCAmelCase_: List[str]="</s>" , UpperCAmelCase_: Dict="<s>" , UpperCAmelCase_: List[str]="<unk>" , UpperCAmelCase_: str="<pad>" , UpperCAmelCase_: Union[str, Any]="<mask>" , UpperCAmelCase_: Optional[Dict[str, Any]] = None , **UpperCAmelCase_: str , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs _SCREAMING_SNAKE_CASE = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _SCREAMING_SNAKE_CASE = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = len(self.sp_model ) _SCREAMING_SNAKE_CASE = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCAmelCase_ ) } _SCREAMING_SNAKE_CASE = {v: k for k, v in self.lang_code_to_id.items()} _SCREAMING_SNAKE_CASE = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """en_XX""" _SCREAMING_SNAKE_CASE = self.lang_code_to_id[self._src_lang] _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None return state def __setstate__( self: str , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str ): '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) def UpperCamelCase ( self: Any , UpperCAmelCase_: str ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(UpperCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase ( self: str , UpperCAmelCase_: int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = """""" _SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def UpperCamelCase ( self: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None , UpperCAmelCase_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [1] * len(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCAmelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCAmelCase_ )) + ([0] * len(UpperCAmelCase_ )) + suffix_ones def UpperCamelCase ( self: int , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: Any , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: List[str] ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "en_XX" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "ro_RO" , **UpperCAmelCase_: Optional[Any] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.lang_code_to_id[src_lang] _SCREAMING_SNAKE_CASE = [self.cur_lang_code_id] _SCREAMING_SNAKE_CASE = [self.eos_token_id] def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.lang_code_to_id[tgt_lang] _SCREAMING_SNAKE_CASE = [self.cur_lang_code_id] _SCREAMING_SNAKE_CASE = [self.eos_token_id]
306
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __UpperCAmelCase (unittest.TestCase ): __snake_case : List[str] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def UpperCamelCase ( self: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _SCREAMING_SNAKE_CASE = VideoClassificationPipeline(model=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , top_k=2 ) _SCREAMING_SNAKE_CASE = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def UpperCamelCase ( self: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: str ): '''simple docstring''' for example in examples: _SCREAMING_SNAKE_CASE = video_classifier(UpperCAmelCase_ ) self.assertEqual( UpperCAmelCase_ , [ {"""score""": ANY(UpperCAmelCase_ ), """label""": ANY(UpperCAmelCase_ )}, {"""score""": ANY(UpperCAmelCase_ ), """label""": ANY(UpperCAmelCase_ )}, ] , ) @require_torch def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" _SCREAMING_SNAKE_CASE = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) _SCREAMING_SNAKE_CASE = pipeline( """video-classification""" , model=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , frame_sampling_rate=4 ) _SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _SCREAMING_SNAKE_CASE = video_classifier(UpperCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [{"""score""": 0.51_99, """label""": """LABEL_0"""}, {"""score""": 0.48_01, """label""": """LABEL_1"""}] , ) _SCREAMING_SNAKE_CASE = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [ [{"""score""": 0.51_99, """label""": """LABEL_0"""}, {"""score""": 0.48_01, """label""": """LABEL_1"""}], [{"""score""": 0.51_99, """label""": """LABEL_0"""}, {"""score""": 0.48_01, """label""": """LABEL_1"""}], ] , ) @require_tf def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass
306
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
1
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = VQModel __snake_case : Tuple = "sample" @property def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Optional[Any]=(32, 32) ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) return {"sample": image} @property def UpperCamelCase ( self: Tuple ): '''simple docstring''' return (3, 32, 32) @property def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return (3, 32, 32) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } _SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(UpperCAmelCase_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _SCREAMING_SNAKE_CASE = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _SCREAMING_SNAKE_CASE = image.to(UpperCAmelCase_ ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ).sample _SCREAMING_SNAKE_CASE = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _SCREAMING_SNAKE_CASE = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
306
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
1
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" if len(snake_case__ ) <= 1: return lst _SCREAMING_SNAKE_CASE = 1 while i < len(snake_case__ ): if lst[i - 1] <= lst[i]: i += 1 else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = lst[i], lst[i - 1] i -= 1 if i == 0: _SCREAMING_SNAKE_CASE = 1 return lst if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F'could not parse string as bool {string}' ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) UpperCamelCase = parser.parse_args() UpperCamelCase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
306
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : str = "vivit" def __init__( self: str , UpperCAmelCase_: str=224 , UpperCAmelCase_: str=32 , UpperCAmelCase_: int=[2, 16, 16] , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: str=768 , UpperCAmelCase_: Tuple=12 , UpperCAmelCase_: List[str]=12 , UpperCAmelCase_: Optional[Any]=3_072 , UpperCAmelCase_: str="gelu_fast" , UpperCAmelCase_: int=0.0 , UpperCAmelCase_: Optional[int]=0.0 , UpperCAmelCase_: Optional[int]=0.02 , UpperCAmelCase_: Union[str, Any]=1E-06 , UpperCAmelCase_: Optional[int]=True , **UpperCAmelCase_: Tuple , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = num_frames _SCREAMING_SNAKE_CASE = tubelet_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = qkv_bias super().__init__(**UpperCAmelCase_ )
306
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
1
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
1
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = (32, 32) _SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase_ ) return image @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def UpperCamelCase ( self: str ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase_ ) @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' def extract(*UpperCAmelCase_: Dict , **UpperCAmelCase_: Tuple ): class __UpperCAmelCase : def __init__( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.ones([0] ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' self.pixel_values.to(UpperCAmelCase_ ) return self return Out() return extract def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.dummy_cond_unet _SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.dummy_vae _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _SCREAMING_SNAKE_CASE = 77 _SCREAMING_SNAKE_CASE = self.dummy_image.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) _SCREAMING_SNAKE_CASE = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = alt_pipe.to(UpperCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = alt_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = alt_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _SCREAMING_SNAKE_CASE = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.dummy_cond_unet _SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.dummy_vae _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _SCREAMING_SNAKE_CASE = 77 _SCREAMING_SNAKE_CASE = self.dummy_image.to(UpperCAmelCase_ ) # put models in fp16 _SCREAMING_SNAKE_CASE = unet.half() _SCREAMING_SNAKE_CASE = vae.half() _SCREAMING_SNAKE_CASE = bert.half() # make sure here that pndm scheduler skips prk _SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) _SCREAMING_SNAKE_CASE = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = alt_pipe.to(UpperCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = alt_pipe( [prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""np""" , image=UpperCAmelCase_ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 _SCREAMING_SNAKE_CASE = init_image.resize((760, 504) ) _SCREAMING_SNAKE_CASE = """BAAI/AltDiffusion""" _SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE = """A fantasy landscape, trending on artstation""" _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase_ , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = output.images[0] _SCREAMING_SNAKE_CASE = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _SCREAMING_SNAKE_CASE = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _SCREAMING_SNAKE_CASE = init_image.resize((768, 512) ) _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) _SCREAMING_SNAKE_CASE = """BAAI/AltDiffusion""" _SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE = """A fantasy landscape, trending on artstation""" _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase_ , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
306
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = s.rsplit(snake_case__ ,snake_case__ ) return new.join(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: _SCREAMING_SNAKE_CASE = key.replace(F'{group_key}.' ,F'{group_key}.group.' ) if "res_path" in key: _SCREAMING_SNAKE_CASE = key.replace("""res_path.""" ,"""res_path.path.""" ) if key.endswith(""".w""" ): _SCREAMING_SNAKE_CASE = rreplace(snake_case__ ,""".w""" ,""".weight""" ,1 ) if key.endswith(""".b""" ): _SCREAMING_SNAKE_CASE = rreplace(snake_case__ ,""".b""" ,""".bias""" ,1 ) _SCREAMING_SNAKE_CASE = value.float() return upgrade @torch.no_grad() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ,snake_case__=True ) -> Tuple: """simple docstring""" from dall_e import Encoder _SCREAMING_SNAKE_CASE = Encoder() if os.path.exists(snake_case__ ): _SCREAMING_SNAKE_CASE = torch.load(snake_case__ ) else: _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(snake_case__ ) if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ckpt.state_dict() encoder.load_state_dict(snake_case__ ) if config_path is not None: _SCREAMING_SNAKE_CASE = FlavaImageCodebookConfig.from_pretrained(snake_case__ ) else: _SCREAMING_SNAKE_CASE = FlavaImageCodebookConfig() _SCREAMING_SNAKE_CASE = FlavaImageCodebook(snake_case__ ).eval() _SCREAMING_SNAKE_CASE = encoder.state_dict() _SCREAMING_SNAKE_CASE = upgrade_state_dict(snake_case__ ) hf_model.load_state_dict(snake_case__ ) _SCREAMING_SNAKE_CASE = hf_model.state_dict() _SCREAMING_SNAKE_CASE = count_parameters(snake_case__ ) _SCREAMING_SNAKE_CASE = count_parameters(snake_case__ ) assert torch.allclose(snake_case__ ,snake_case__ ,atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case__ ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') UpperCamelCase = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : str = "microsoft/speecht5_tts" __snake_case : List[str] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) __snake_case : Optional[int] = "text_reader" __snake_case : List[str] = SpeechTaProcessor __snake_case : Union[str, Any] = SpeechTaForTextToSpeech __snake_case : Tuple = SpeechTaHifiGan __snake_case : List[Any] = ["text"] __snake_case : Dict = ["audio"] def UpperCamelCase ( self: List[Any] ): '''simple docstring''' if self.post_processor is None: _SCREAMING_SNAKE_CASE = """microsoft/speecht5_hifigan""" super().setup() def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Tuple=None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.pre_processor(text=UpperCAmelCase_ , return_tensors="""pt""" , truncation=UpperCAmelCase_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _SCREAMING_SNAKE_CASE = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _SCREAMING_SNAKE_CASE = torch.tensor(embeddings_dataset[7_305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Optional[int] ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**UpperCAmelCase_ ) def UpperCamelCase ( self: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' with torch.no_grad(): return self.post_processor(UpperCAmelCase_ ).cpu().detach()
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if hor == 1_28: _SCREAMING_SNAKE_CASE = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") _SCREAMING_SNAKE_CASE = (32, 1_28, 2_56) _SCREAMING_SNAKE_CASE = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: _SCREAMING_SNAKE_CASE = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") _SCREAMING_SNAKE_CASE = (32, 64, 1_28, 2_56) _SCREAMING_SNAKE_CASE = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") _SCREAMING_SNAKE_CASE = torch.load(F'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) _SCREAMING_SNAKE_CASE = model.state_dict() _SCREAMING_SNAKE_CASE = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_55_36, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } _SCREAMING_SNAKE_CASE = UNetaDModel(**snake_case__ ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) _SCREAMING_SNAKE_CASE = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _SCREAMING_SNAKE_CASE = state_dict.pop(snake_case__ ) hf_value_function.load_state_dict(snake_case__ ) torch.save(hf_value_function.state_dict() ,F'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(F'hub/hopper-medium-v2/unet/hor{hor}/config.json' ,"""w""" ) as f: json.dump(snake_case__ ,snake_case__ ) def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 1_28, 2_56), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_55_36, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } _SCREAMING_SNAKE_CASE = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = UNetaDModel(**snake_case__ ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) _SCREAMING_SNAKE_CASE = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _SCREAMING_SNAKE_CASE = state_dict.pop(snake_case__ ) hf_value_function.load_state_dict(snake_case__ ) torch.save(hf_value_function.state_dict() ,"""hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" ,"""w""" ) as f: json.dump(snake_case__ ,snake_case__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
306
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __UpperCAmelCase (_UpperCAmelCase ): def UpperCamelCase ( self: Any , UpperCAmelCase_: str ): '''simple docstring''' with open(UpperCAmelCase_ , encoding="""utf-8""" ) as input_file: _SCREAMING_SNAKE_CASE = re.compile(R"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) _SCREAMING_SNAKE_CASE = input_file.read() _SCREAMING_SNAKE_CASE = regexp.search(UpperCAmelCase_ ) return match def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: str ): '''simple docstring''' with open(UpperCAmelCase_ , encoding="""utf-8""" ) as input_file: _SCREAMING_SNAKE_CASE = re.compile(R"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) _SCREAMING_SNAKE_CASE = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _SCREAMING_SNAKE_CASE = regexp.finditer(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = Path("""./datasets""" ) _SCREAMING_SNAKE_CASE = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCAmelCase_ ) ): raise AssertionError(F'open(...) must use utf-8 encoding in {dataset}' ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = Path("""./datasets""" ) _SCREAMING_SNAKE_CASE = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCAmelCase_ ) ): raise AssertionError(F'print statement found in {dataset}. Use datasets.logger/logging instead.' )
306
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[Any] = "altclip_text_model" def __init__( self: Optional[int] , UpperCAmelCase_: Union[str, Any]=250_002 , UpperCAmelCase_: List[Any]=1_024 , UpperCAmelCase_: Tuple=24 , UpperCAmelCase_: str=16 , UpperCAmelCase_: Any=4_096 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Union[str, Any]=0.1 , UpperCAmelCase_: str=514 , UpperCAmelCase_: Any=1 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Dict=0.02 , UpperCAmelCase_: Union[str, Any]=1E-05 , UpperCAmelCase_: str=1 , UpperCAmelCase_: Dict=0 , UpperCAmelCase_: str=2 , UpperCAmelCase_: str="absolute" , UpperCAmelCase_: Any=True , UpperCAmelCase_: int=768 , **UpperCAmelCase_: Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = project_dim class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : str = "altclip_vision_model" def __init__( self: List[str] , UpperCAmelCase_: int=768 , UpperCAmelCase_: List[Any]=3_072 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Optional[Any]=12 , UpperCAmelCase_: List[str]=12 , UpperCAmelCase_: int=3 , UpperCAmelCase_: Any=224 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: Optional[int]="quick_gelu" , UpperCAmelCase_: Union[str, Any]=1E-5 , UpperCAmelCase_: Any=0.0 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: Union[str, Any]=1.0 , **UpperCAmelCase_: List[str] , ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = projection_dim _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = hidden_act @classmethod def UpperCamelCase ( cls: List[Any] , UpperCAmelCase_: Union[str, os.PathLike] , **UpperCAmelCase_: Any ): '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": _SCREAMING_SNAKE_CASE = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[int] = "altclip" __snake_case : str = True def __init__( self: Any , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: Tuple=768 , UpperCAmelCase_: str=2.65_92 , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.pop("""text_config_dict""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = kwargs.pop("""vision_config_dict""" , UpperCAmelCase_ ) super().__init__(**UpperCAmelCase_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: _SCREAMING_SNAKE_CASE = {} # This is the complete result when using `text_config_dict`. _SCREAMING_SNAKE_CASE = AltCLIPTextConfig(**UpperCAmelCase_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: _SCREAMING_SNAKE_CASE = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: _SCREAMING_SNAKE_CASE = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(UpperCAmelCase_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: _SCREAMING_SNAKE_CASE = {} # This is the complete result when using `vision_config_dict`. _SCREAMING_SNAKE_CASE = AltCLIPVisionConfig(**UpperCAmelCase_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _SCREAMING_SNAKE_CASE = { str(UpperCAmelCase_ ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: _SCREAMING_SNAKE_CASE = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: _SCREAMING_SNAKE_CASE = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(UpperCAmelCase_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: _SCREAMING_SNAKE_CASE = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: _SCREAMING_SNAKE_CASE = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) _SCREAMING_SNAKE_CASE = AltCLIPTextConfig(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = AltCLIPVisionConfig(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = projection_dim _SCREAMING_SNAKE_CASE = logit_scale_init_value _SCREAMING_SNAKE_CASE = 1.0 @classmethod def UpperCamelCase ( cls: Dict , UpperCAmelCase_: AltCLIPTextConfig , UpperCAmelCase_: AltCLIPVisionConfig , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE = self.text_config.to_dict() _SCREAMING_SNAKE_CASE = self.vision_config.to_dict() _SCREAMING_SNAKE_CASE = self.__class__.model_type return output
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Any = "roberta" def __init__( self: Union[str, Any] , UpperCAmelCase_: List[str]=50_265 , UpperCAmelCase_: Any=768 , UpperCAmelCase_: Optional[int]=12 , UpperCAmelCase_: Union[str, Any]=12 , UpperCAmelCase_: Optional[int]=3_072 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: Tuple=0.1 , UpperCAmelCase_: Any=512 , UpperCAmelCase_: str=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Optional[Any]=1E-12 , UpperCAmelCase_: Union[str, Any]=1 , UpperCAmelCase_: int=0 , UpperCAmelCase_: Union[str, Any]=2 , UpperCAmelCase_: List[str]="absolute" , UpperCAmelCase_: Optional[int]=True , UpperCAmelCase_: str=None , **UpperCAmelCase_: Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = classifier_dropout class __UpperCAmelCase (_UpperCAmelCase ): @property def UpperCamelCase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
306
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = "dandelin/vilt-b32-finetuned-vqa" __snake_case : List[str] = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) __snake_case : Tuple = "image_qa" __snake_case : Optional[Any] = AutoProcessor __snake_case : Optional[Any] = AutoModelForVisualQuestionAnswering __snake_case : Any = ["image", "text"] __snake_case : List[str] = ["text"] def __init__( self: str , *UpperCAmelCase_: Optional[Any] , **UpperCAmelCase_: Optional[int] ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: "Image" , UpperCAmelCase_: str ): '''simple docstring''' return self.pre_processor(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="""pt""" ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] ): '''simple docstring''' with torch.no_grad(): return self.model(**UpperCAmelCase_ ).logits def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
306
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
1
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap UpperCamelCase = '''Usage of script: script_name <size_of_canvas:int>''' UpperCamelCase = [0] * 100 + [1] * 10 random.shuffle(choice) def __lowerCamelCase ( snake_case__ ) -> list[list[bool]]: """simple docstring""" _SCREAMING_SNAKE_CASE = [[False for i in range(snake_case__ )] for j in range(snake_case__ )] return canvas def __lowerCamelCase ( snake_case__ ) -> None: """simple docstring""" for i, row in enumerate(snake_case__ ): for j, _ in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = bool(random.getrandbits(1 ) ) def __lowerCamelCase ( snake_case__ ) -> list[list[bool]]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.array(snake_case__ ) _SCREAMING_SNAKE_CASE = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(snake_case__ ): for c, pt in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = __judge_point( snake_case__ ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _SCREAMING_SNAKE_CASE = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _SCREAMING_SNAKE_CASE = current_canvas.tolist() return return_canvas def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _SCREAMING_SNAKE_CASE = pt if pt: if alive < 2: _SCREAMING_SNAKE_CASE = False elif alive == 2 or alive == 3: _SCREAMING_SNAKE_CASE = True elif alive > 3: _SCREAMING_SNAKE_CASE = False else: if alive == 3: _SCREAMING_SNAKE_CASE = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) UpperCamelCase = int(sys.argv[1]) # main working structure of this module. UpperCamelCase = create_canvas(canvas_size) seed(c) UpperCamelCase , UpperCamelCase = plt.subplots() fig.show() UpperCamelCase = ListedColormap(['''w''', '''k''']) try: while True: UpperCamelCase = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
306
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCamelCase = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex UpperCamelCase = 10 UpperCamelCase = 256 def __lowerCamelCase ( snake_case__ ) -> Optional[MinHash]: """simple docstring""" if len(snake_case__ ) < MIN_NUM_TOKENS: return None _SCREAMING_SNAKE_CASE = MinHash(num_perm=snake_case__ ) for token in set(snake_case__ ): min_hash.update(token.encode() ) return min_hash def __lowerCamelCase ( snake_case__ ) -> Set[str]: """simple docstring""" return {t for t in NON_ALPHA.split(snake_case__ ) if len(t.strip() ) > 0} class __UpperCAmelCase : def __init__( self: Optional[Any] , *, UpperCAmelCase_: float = 0.85 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = duplication_jaccard_threshold _SCREAMING_SNAKE_CASE = NUM_PERM _SCREAMING_SNAKE_CASE = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: MinHash ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._index.query(UpperCAmelCase_ ) if code_key in self._index.keys: print(F'Duplicate key {code_key}' ) return self._index.insert(UpperCAmelCase_ , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(UpperCAmelCase_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for base, duplicates in self._duplicate_clusters.items(): _SCREAMING_SNAKE_CASE = [base] + list(UpperCAmelCase_ ) # reformat the cluster to be a list of dict _SCREAMING_SNAKE_CASE = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(UpperCAmelCase_ ) return duplicate_clusters def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_duplicate_clusters() with open(UpperCAmelCase_ , """w""" ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( snake_case__ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = element _SCREAMING_SNAKE_CASE = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash ,ThreadedIterator(snake_case__ ,max_queue_size=1_00_00 ) ,chunksize=1_00 ,): if data is not None: yield data def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = DuplicationIndex(duplication_jaccard_threshold=snake_case__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(snake_case__ ) ) ,max_queue_size=1_00 ) ): di.add(snake_case__ ,snake_case__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> float: """simple docstring""" _SCREAMING_SNAKE_CASE = get_tokens(snake_case__ ) _SCREAMING_SNAKE_CASE = get_tokens(snake_case__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCamelCase = None def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = [] for elementa in cluster: _SCREAMING_SNAKE_CASE = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _SCREAMING_SNAKE_CASE = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(snake_case__ ,snake_case__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: _SCREAMING_SNAKE_CASE = 1 extremes.append(snake_case__ ) return extremes def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[Any]: """simple docstring""" global _shared_dataset _SCREAMING_SNAKE_CASE = dataset _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = partial(_find_cluster_extremes_shared ,jaccard_threshold=snake_case__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( snake_case__ ,snake_case__ ,) ,total=len(snake_case__ ) ,): extremes_list.append(snake_case__ ) return extremes_list def __lowerCamelCase ( snake_case__ ,snake_case__ = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: """simple docstring""" _SCREAMING_SNAKE_CASE = make_duplicate_clusters(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = find_extremes(snake_case__ ,snake_case__ ,snake_case__ ) for extremes in extremes_clusters: for element in extremes: _SCREAMING_SNAKE_CASE = element _SCREAMING_SNAKE_CASE = duplicate_indices - set(extreme_dict.keys() ) _SCREAMING_SNAKE_CASE = dataset.filter(lambda snake_case__ ,snake_case__ : idx not in remove_indices ,with_indices=snake_case__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _SCREAMING_SNAKE_CASE = element["""base_index"""] in extreme_dict if element["is_extreme"]: _SCREAMING_SNAKE_CASE = extreme_dict[element["""base_index"""]]["""copies"""] print(F'Original dataset size: {len(snake_case__ )}' ) print(F'Number of duplicate clusters: {len(snake_case__ )}' ) print(F'Files in duplicate cluster: {len(snake_case__ )}' ) print(F'Unique files in duplicate cluster: {len(snake_case__ )}' ) print(F'Filtered dataset size: {len(snake_case__ )}' ) return ds_filter, duplicate_clusters
306
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=7 , UpperCAmelCase_: List[Any]=3 , UpperCAmelCase_: Any=30 , UpperCAmelCase_: str=400 , UpperCAmelCase_: Optional[int]=True , UpperCAmelCase_: List[Any]=None , UpperCAmelCase_: Optional[int]=True , UpperCAmelCase_: Optional[int]=1 / 255 , UpperCAmelCase_: int=True , UpperCAmelCase_: Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_: Any=[0.5, 0.5, 0.5] , UpperCAmelCase_: List[Any]=True , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333} _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean _SCREAMING_SNAKE_CASE = image_std _SCREAMING_SNAKE_CASE = do_pad def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Any , UpperCAmelCase_: Any=False ): '''simple docstring''' if not batched: _SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(UpperCAmelCase_ , Image.Image ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.size else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * h / w ) _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] elif w > h: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * w / h ) else: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] else: _SCREAMING_SNAKE_CASE = [] for image in image_inputs: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _SCREAMING_SNAKE_CASE = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[0] )[0] _SCREAMING_SNAKE_CASE = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = DetrImageProcessor if is_vision_available() else None def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = DetrImageProcessingTester(self ) @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_rescale""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_pad""" ) ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' pass def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: _SCREAMING_SNAKE_CASE = json.loads(f.read() ) _SCREAMING_SNAKE_CASE = {"""image_id""": 39_769, """annotations""": target} # encode them _SCREAMING_SNAKE_CASE = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) _SCREAMING_SNAKE_CASE = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , return_tensors="""pt""" ) # verify pixel values _SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase_ ) ) # verify boxes _SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase_ ) ) # verify is_crowd _SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase_ ) ) # verify class_labels _SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase_ ) ) # verify orig_size _SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase_ ) ) # verify size _SCREAMING_SNAKE_CASE = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase_ ) ) @slow def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: _SCREAMING_SNAKE_CASE = json.loads(f.read() ) _SCREAMING_SNAKE_CASE = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target} _SCREAMING_SNAKE_CASE = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them _SCREAMING_SNAKE_CASE = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) _SCREAMING_SNAKE_CASE = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , masks_path=UpperCAmelCase_ , return_tensors="""pt""" ) # verify pixel values _SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase_ ) ) # verify boxes _SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase_ ) ) # verify is_crowd _SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase_ ) ) # verify class_labels _SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase_ ) ) # verify masks _SCREAMING_SNAKE_CASE = 822_873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCAmelCase_ ) # verify orig_size _SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase_ ) ) # verify size _SCREAMING_SNAKE_CASE = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase_ ) )
306
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''MobileViTFeatureExtractor'''] UpperCamelCase = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = "lxmert" __snake_case : Tuple = {} def __init__( self: Tuple , UpperCAmelCase_: Union[str, Any]=30_522 , UpperCAmelCase_: str=768 , UpperCAmelCase_: Optional[int]=12 , UpperCAmelCase_: str=9_500 , UpperCAmelCase_: Optional[int]=1_600 , UpperCAmelCase_: Any=400 , UpperCAmelCase_: Dict=3_072 , UpperCAmelCase_: Tuple="gelu" , UpperCAmelCase_: Tuple=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Union[str, Any]=512 , UpperCAmelCase_: str=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: List[str]=1E-12 , UpperCAmelCase_: Tuple=9 , UpperCAmelCase_: Union[str, Any]=5 , UpperCAmelCase_: Union[str, Any]=5 , UpperCAmelCase_: Dict=2_048 , UpperCAmelCase_: List[Any]=4 , UpperCAmelCase_: int=6.67 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: str=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Dict=True , **UpperCAmelCase_: Any , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = num_qa_labels _SCREAMING_SNAKE_CASE = num_object_labels _SCREAMING_SNAKE_CASE = num_attr_labels _SCREAMING_SNAKE_CASE = l_layers _SCREAMING_SNAKE_CASE = x_layers _SCREAMING_SNAKE_CASE = r_layers _SCREAMING_SNAKE_CASE = visual_feat_dim _SCREAMING_SNAKE_CASE = visual_pos_dim _SCREAMING_SNAKE_CASE = visual_loss_normalizer _SCREAMING_SNAKE_CASE = task_matched _SCREAMING_SNAKE_CASE = task_mask_lm _SCREAMING_SNAKE_CASE = task_obj_predict _SCREAMING_SNAKE_CASE = task_qa _SCREAMING_SNAKE_CASE = visual_obj_loss _SCREAMING_SNAKE_CASE = visual_attr_loss _SCREAMING_SNAKE_CASE = visual_feat_loss _SCREAMING_SNAKE_CASE = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**UpperCAmelCase_ )
306
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = BlenderbotSmallTokenizer __snake_case : List[Any] = False def UpperCamelCase ( self: str ): '''simple docstring''' super().setUp() _SCREAMING_SNAKE_CASE = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] _SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) _SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] _SCREAMING_SNAKE_CASE = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Any ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """adapt act apte""" _SCREAMING_SNAKE_CASE = """adapt act apte""" return input_text, output_text def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _SCREAMING_SNAKE_CASE = """adapt act apte""" _SCREAMING_SNAKE_CASE = ["""adapt""", """act""", """ap@@""", """te"""] _SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _SCREAMING_SNAKE_CASE = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1_384] _SCREAMING_SNAKE_CASE = """I am a small frog.""" _SCREAMING_SNAKE_CASE = tok([src_text] , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )["""input_ids"""] _SCREAMING_SNAKE_CASE = tok.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) _SCREAMING_SNAKE_CASE = """I am a small frog .""" _SCREAMING_SNAKE_CASE = """.""" _SCREAMING_SNAKE_CASE = tok(UpperCAmelCase_ )["""input_ids"""] _SCREAMING_SNAKE_CASE = tok(UpperCAmelCase_ )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
306
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
1
def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __lowerCamelCase ( snake_case__ = 50_00 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = [(i * (3 * i - 1)) // 2 for i in range(1 ,snake_case__ )] for i, pentagonal_i in enumerate(snake_case__ ): for j in range(snake_case__ ,len(snake_case__ ) ): _SCREAMING_SNAKE_CASE = pentagonal_nums[j] _SCREAMING_SNAKE_CASE = pentagonal_i + pentagonal_j _SCREAMING_SNAKE_CASE = pentagonal_j - pentagonal_i if is_pentagonal(snake_case__ ) and is_pentagonal(snake_case__ ): return b return -1 if __name__ == "__main__": print(f"{solution() = }")
306
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
1
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __UpperCAmelCase (nn.Module ): def __init__( self: List[Any] ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = nn.Linear(3 , 4 ) _SCREAMING_SNAKE_CASE = nn.BatchNormad(4 ) _SCREAMING_SNAKE_CASE = nn.Linear(4 , 5 ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: List[str] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase_ ) ) ) class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase_ , model.state_dict() ) _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase_ , """index.json""" ) self.assertTrue(os.path.isfile(UpperCAmelCase_ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase_ , F'{key}.dat' ) self.assertTrue(os.path.isfile(UpperCAmelCase_ ) ) # TODO: add tests on the fact weights are properly loaded def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: _SCREAMING_SNAKE_CASE = torch.randn(2 , 3 , dtype=UpperCAmelCase_ ) with TemporaryDirectory() as tmp_dir: _SCREAMING_SNAKE_CASE = offload_weight(UpperCAmelCase_ , """weight""" , UpperCAmelCase_ , {} ) _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase_ , """weight.dat""" ) self.assertTrue(os.path.isfile(UpperCAmelCase_ ) ) self.assertDictEqual(UpperCAmelCase_ , {"""weight""": {"""shape""": [2, 3], """dtype""": str(UpperCAmelCase_ ).split(""".""" )[1]}} ) _SCREAMING_SNAKE_CASE = load_offloaded_weight(UpperCAmelCase_ , index["""weight"""] ) self.assertTrue(torch.equal(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ModelForTest() _SCREAMING_SNAKE_CASE = model.state_dict() _SCREAMING_SNAKE_CASE = {k: v for k, v in state_dict.items() if """linear2""" not in k} _SCREAMING_SNAKE_CASE = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = OffloadedWeightsLoader(state_dict=UpperCAmelCase_ , save_folder=UpperCAmelCase_ ) # Every key is there with the right value self.assertEqual(sorted(UpperCAmelCase_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCAmelCase_ , weight_map[key] ) ) _SCREAMING_SNAKE_CASE = {k: v for k, v in state_dict.items() if """weight""" in k} _SCREAMING_SNAKE_CASE = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = OffloadedWeightsLoader(state_dict=UpperCAmelCase_ , save_folder=UpperCAmelCase_ ) # Every key is there with the right value self.assertEqual(sorted(UpperCAmelCase_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCAmelCase_ , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) # Duplicates are removed _SCREAMING_SNAKE_CASE = OffloadedWeightsLoader(state_dict=UpperCAmelCase_ , save_folder=UpperCAmelCase_ ) # Every key is there with the right value self.assertEqual(sorted(UpperCAmelCase_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCAmelCase_ , weight_map[key] ) ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} _SCREAMING_SNAKE_CASE = extract_submodules_state_dict(UpperCAmelCase_ , ["""a.1""", """a.2"""] ) self.assertDictEqual(UpperCAmelCase_ , {"""a.1""": 0, """a.2""": 2} ) _SCREAMING_SNAKE_CASE = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} _SCREAMING_SNAKE_CASE = extract_submodules_state_dict(UpperCAmelCase_ , ["""a.1""", """a.2"""] ) self.assertDictEqual(UpperCAmelCase_ , {"""a.1.a""": 0, """a.2.a""": 2} )
306
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex UpperCamelCase = logging.getLogger(__name__) class __UpperCAmelCase : def __init__( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[int] ): '''simple docstring''' if not self.initialized: _SCREAMING_SNAKE_CASE = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=UpperCAmelCase_ , generator_tokenizer=UpperCAmelCase_ , index=UpperCAmelCase_ , init_retrieval=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = True def UpperCamelCase ( self: Dict ): '''simple docstring''' self.retriever.index.init_index() def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.retriever._main_retrieve(UpperCAmelCase_ , UpperCAmelCase_ ) return doc_ids, retrieved_doc_embeds class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: List[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict , UpperCAmelCase_: int=None ): '''simple docstring''' if index is not None and index.is_initialized() and len(UpperCAmelCase_ ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( UpperCAmelCase_ , question_encoder_tokenizer=UpperCAmelCase_ , generator_tokenizer=UpperCAmelCase_ , index=UpperCAmelCase_ , init_retrieval=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for worker in self.retrieval_workers ] ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. _SCREAMING_SNAKE_CASE = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ray.get(random_worker.retrieve.remote(UpperCAmelCase_ , UpperCAmelCase_ ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._main_retrieve(UpperCAmelCase_ , UpperCAmelCase_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase_ ) @classmethod def UpperCamelCase ( cls: str , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any]=None , **UpperCAmelCase_: Tuple ): '''simple docstring''' return super(UpperCAmelCase_ , cls ).get_tokenizers(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def UpperCamelCase ( cls: List[str] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[Any]=None , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.pop("""config""" , UpperCAmelCase_ ) or RagConfig.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = RagTokenizer.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rag_tokenizer.question_encoder _SCREAMING_SNAKE_CASE = rag_tokenizer.generator if indexed_dataset is not None: _SCREAMING_SNAKE_CASE = """custom""" _SCREAMING_SNAKE_CASE = CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = cls._build_index(UpperCAmelCase_ ) return cls( UpperCAmelCase_ , question_encoder_tokenizer=UpperCAmelCase_ , generator_tokenizer=UpperCAmelCase_ , retrieval_workers=UpperCAmelCase_ , index=UpperCAmelCase_ , )
306
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } UpperCamelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if weight_type is not None: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ).shape else: _SCREAMING_SNAKE_CASE = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": _SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": _SCREAMING_SNAKE_CASE = value elif weight_type == "bias": _SCREAMING_SNAKE_CASE = value elif weight_type == "running_mean": _SCREAMING_SNAKE_CASE = value elif weight_type == "running_var": _SCREAMING_SNAKE_CASE = value elif weight_type == "num_batches_tracked": _SCREAMING_SNAKE_CASE = value elif weight_type == "inv_freq": _SCREAMING_SNAKE_CASE = value else: _SCREAMING_SNAKE_CASE = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = fairseq_model.state_dict() _SCREAMING_SNAKE_CASE = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,hf_model.config.feat_extract_norm == """group""" ,) _SCREAMING_SNAKE_CASE = True else: for key, mapped_key in MAPPING.items(): _SCREAMING_SNAKE_CASE = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _SCREAMING_SNAKE_CASE = True if "*" in mapped_key: _SCREAMING_SNAKE_CASE = name.split(snake_case__ )[0].split(""".""" )[-2] _SCREAMING_SNAKE_CASE = mapped_key.replace("""*""" ,snake_case__ ) if "pos_bias_u" in name: _SCREAMING_SNAKE_CASE = None elif "pos_bias_v" in name: _SCREAMING_SNAKE_CASE = None elif "weight_g" in name: _SCREAMING_SNAKE_CASE = """weight_g""" elif "weight_v" in name: _SCREAMING_SNAKE_CASE = """weight_v""" elif "bias" in name: _SCREAMING_SNAKE_CASE = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _SCREAMING_SNAKE_CASE = """weight""" elif "running_mean" in name: _SCREAMING_SNAKE_CASE = """running_mean""" elif "inv_freq" in name: _SCREAMING_SNAKE_CASE = """inv_freq""" elif "running_var" in name: _SCREAMING_SNAKE_CASE = """running_var""" elif "num_batches_tracked" in name: _SCREAMING_SNAKE_CASE = """num_batches_tracked""" else: _SCREAMING_SNAKE_CASE = None set_recursively(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(F'Unused weights: {unused_weights}' ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = full_name.split("""conv_layers.""" )[-1] _SCREAMING_SNAKE_CASE = name.split(""".""" ) _SCREAMING_SNAKE_CASE = int(items[0] ) _SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ,snake_case__=None ,snake_case__=True ) -> int: """simple docstring""" if config_path is not None: _SCREAMING_SNAKE_CASE = WavaVecaConformerConfig.from_pretrained(snake_case__ ,hidden_act="""swish""" ) else: _SCREAMING_SNAKE_CASE = WavaVecaConformerConfig() if "rope" in checkpoint_path: _SCREAMING_SNAKE_CASE = """rotary""" if is_finetuned: if dict_path: _SCREAMING_SNAKE_CASE = Dictionary.load(snake_case__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _SCREAMING_SNAKE_CASE = target_dict.pad_index _SCREAMING_SNAKE_CASE = target_dict.bos_index _SCREAMING_SNAKE_CASE = target_dict.eos_index _SCREAMING_SNAKE_CASE = len(target_dict.symbols ) _SCREAMING_SNAKE_CASE = os.path.join(snake_case__ ,"""vocab.json""" ) if not os.path.isdir(snake_case__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(snake_case__ ) ) return os.makedirs(snake_case__ ,exist_ok=snake_case__ ) _SCREAMING_SNAKE_CASE = target_dict.indices # fairseq has the <pad> and <s> switched _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 1 with open(snake_case__ ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( snake_case__ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=snake_case__ ,) _SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == """layer""" else False _SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_60_00 ,padding_value=0 ,do_normalize=snake_case__ ,return_attention_mask=snake_case__ ,) _SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=snake_case__ ,tokenizer=snake_case__ ) processor.save_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE = WavaVecaConformerForCTC(snake_case__ ) else: _SCREAMING_SNAKE_CASE = WavaVecaConformerForPreTraining(snake_case__ ) if is_finetuned: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _SCREAMING_SNAKE_CASE = argparse.Namespace(task="""audio_pretraining""" ) _SCREAMING_SNAKE_CASE = fairseq.tasks.setup_task(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=snake_case__ ) _SCREAMING_SNAKE_CASE = model[0].eval() recursively_load_weights(snake_case__ ,snake_case__ ,not is_finetuned ) hf_wavavec.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = FileLock(str(tmpdir / """foo.lock""" ) ) _SCREAMING_SNAKE_CASE = FileLock(str(tmpdir / """foo.lock""" ) ) _SCREAMING_SNAKE_CASE = 0.01 with locka.acquire(): with pytest.raises(snake_case__ ): _SCREAMING_SNAKE_CASE = time.time() locka.acquire(snake_case__ ) assert time.time() - _start > timeout def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = """a""" * 10_00 + """.lock""" _SCREAMING_SNAKE_CASE = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(snake_case__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 _SCREAMING_SNAKE_CASE = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case__ ): locka.acquire(0 )
306
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''naver-clova-ix/donut-base''': '''https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json''', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = "donut-swin" __snake_case : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: List[Any] , UpperCAmelCase_: List[str]=224 , UpperCAmelCase_: List[Any]=4 , UpperCAmelCase_: int=3 , UpperCAmelCase_: Any=96 , UpperCAmelCase_: Optional[Any]=[2, 2, 6, 2] , UpperCAmelCase_: Dict=[3, 6, 12, 24] , UpperCAmelCase_: List[Any]=7 , UpperCAmelCase_: List[str]=4.0 , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: List[str]=0.0 , UpperCAmelCase_: Dict=0.0 , UpperCAmelCase_: str=0.1 , UpperCAmelCase_: List[str]="gelu" , UpperCAmelCase_: Tuple=False , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: List[str]=1E-5 , **UpperCAmelCase_: List[Any] , ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = embed_dim _SCREAMING_SNAKE_CASE = depths _SCREAMING_SNAKE_CASE = len(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = num_heads _SCREAMING_SNAKE_CASE = window_size _SCREAMING_SNAKE_CASE = mlp_ratio _SCREAMING_SNAKE_CASE = qkv_bias _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = drop_path_rate _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = use_absolute_embeddings _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) )
306
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
1
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=8 ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: List[str] , UpperCAmelCase_: UNetaDConditionModel , UpperCAmelCase_: DDPMScheduler , UpperCAmelCase_: VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , movq=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: int ): '''simple docstring''' if latents is None: _SCREAMING_SNAKE_CASE = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _SCREAMING_SNAKE_CASE = latents.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = latents * scheduler.init_noise_sigma return latents def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[int]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _SCREAMING_SNAKE_CASE = torch.device(F'cuda:{gpu_id}' ) _SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _SCREAMING_SNAKE_CASE = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCAmelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cpu_offload_with_hook(UpperCAmelCase_ , UpperCAmelCase_ , prev_module_hook=UpperCAmelCase_ ) # We'll offload the last model manually. _SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase ( self: Any ): '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCAmelCase_ ) def __call__( self: Union[str, Any] , UpperCAmelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase_: torch.FloatTensor , UpperCAmelCase_: int = 512 , UpperCAmelCase_: int = 512 , UpperCAmelCase_: int = 100 , UpperCAmelCase_: float = 4.0 , UpperCAmelCase_: int = 1 , UpperCAmelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_: Optional[torch.FloatTensor] = None , UpperCAmelCase_: Optional[str] = "pil" , UpperCAmelCase_: bool = True , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._execution_device _SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ , dim=0 ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ , dim=0 ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ , dim=0 ) _SCREAMING_SNAKE_CASE = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) _SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) _SCREAMING_SNAKE_CASE = hint.repeat_interleave(UpperCAmelCase_ , dim=0 ) _SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase_ ) self.scheduler.set_timesteps(UpperCAmelCase_ , device=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.scheduler.timesteps _SCREAMING_SNAKE_CASE = self.movq.config.latent_channels _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = downscale_height_and_width(UpperCAmelCase_ , UpperCAmelCase_ , self.movq_scale_factor ) # create initial latent _SCREAMING_SNAKE_CASE = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance _SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _SCREAMING_SNAKE_CASE = {"""image_embeds""": image_embeds, """hint""": hint} _SCREAMING_SNAKE_CASE = self.unet( sample=UpperCAmelCase_ , timestep=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , added_cond_kwargs=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) _SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE = self.scheduler.step( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ , )[0] # post-processing _SCREAMING_SNAKE_CASE = self.movq.decode(UpperCAmelCase_ , force_not_quantize=UpperCAmelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 _SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ )
306
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase = 16 UpperCamelCase = 32 def __lowerCamelCase ( snake_case__ ,snake_case__ = 16 ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _SCREAMING_SNAKE_CASE = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(snake_case__ ): # max_length=None => use the model max length (it's actually the default) _SCREAMING_SNAKE_CASE = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case__ ,max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _SCREAMING_SNAKE_CASE = datasets.map( snake_case__ ,batched=snake_case__ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(snake_case__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _SCREAMING_SNAKE_CASE = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _SCREAMING_SNAKE_CASE = 16 elif accelerator.mixed_precision != "no": _SCREAMING_SNAKE_CASE = 8 else: _SCREAMING_SNAKE_CASE = None return tokenizer.pad( snake_case__ ,padding="""longest""" ,max_length=snake_case__ ,pad_to_multiple_of=snake_case__ ,return_tensors="""pt""" ,) # Instantiate dataloaders. _SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["""train"""] ,shuffle=snake_case__ ,collate_fn=snake_case__ ,batch_size=snake_case__ ) _SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["""validation"""] ,shuffle=snake_case__ ,collate_fn=snake_case__ ,batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Any: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,snake_case__ ) == "1": _SCREAMING_SNAKE_CASE = 2 # New Code # _SCREAMING_SNAKE_CASE = int(args.gradient_accumulation_steps ) _SCREAMING_SNAKE_CASE = int(args.local_sgd_steps ) # Initialize accelerator _SCREAMING_SNAKE_CASE = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=snake_case__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _SCREAMING_SNAKE_CASE = config["""lr"""] _SCREAMING_SNAKE_CASE = int(config["""num_epochs"""] ) _SCREAMING_SNAKE_CASE = int(config["""seed"""] ) _SCREAMING_SNAKE_CASE = int(config["""batch_size"""] ) _SCREAMING_SNAKE_CASE = evaluate.load("""glue""" ,"""mrpc""" ) set_seed(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = get_dataloaders(snake_case__ ,snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Instantiate optimizer _SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() ,lr=snake_case__ ) # Instantiate scheduler _SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=snake_case__ ,num_warmup_steps=1_00 ,num_training_steps=(len(snake_case__ ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() with LocalSGD( accelerator=snake_case__ ,model=snake_case__ ,local_sgd_steps=snake_case__ ,enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(snake_case__ ): _SCREAMING_SNAKE_CASE = model(**snake_case__ ) _SCREAMING_SNAKE_CASE = output.loss accelerator.backward(snake_case__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**snake_case__ ) _SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=snake_case__ ,references=snake_case__ ,) _SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' ,snake_case__ ) def __lowerCamelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=snake_case__ ,default=snake_case__ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) # New Code # parser.add_argument( """--gradient_accumulation_steps""" ,type=snake_case__ ,default=1 ,help="""The number of minibatches to be ran before gradients are accumulated.""" ,) parser.add_argument( """--local_sgd_steps""" ,type=snake_case__ ,default=8 ,help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(snake_case__ ,snake_case__ ) if __name__ == "__main__": main()
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
1
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.25) = }") print(f"{price_plus_tax(125.50, 0.05) = }")
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : str = StableUnCLIPImgaImgPipeline __snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __snake_case : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __snake_case : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case : List[str] = frozenset([] ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = embedder_hidden_size # image encoding components _SCREAMING_SNAKE_CASE = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase_ , projection_dim=UpperCAmelCase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase_ , layers_per_block=1 , upcast_attention=UpperCAmelCase_ , use_linear_projection=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="""v_prediction""" , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL() _SCREAMING_SNAKE_CASE = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: str=0 , UpperCAmelCase_: Dict=True ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if pil_image: _SCREAMING_SNAKE_CASE = input_image * 0.5 + 0.5 _SCREAMING_SNAKE_CASE = input_image.clamp(0 , 1 ) _SCREAMING_SNAKE_CASE = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _SCREAMING_SNAKE_CASE = DiffusionPipeline.numpy_to_pil(UpperCAmelCase_ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = StableUnCLIPImgaImgPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) inputs.update({"""image_embeds""": None} ) _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).images _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _SCREAMING_SNAKE_CASE = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase_ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase_ ) @slow @require_torch_gpu class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) _SCREAMING_SNAKE_CASE = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , """anime turle""" , generator=UpperCAmelCase_ , output_type="""np""" ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) _SCREAMING_SNAKE_CASE = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , """anime turle""" , generator=UpperCAmelCase_ , output_type="""np""" ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _SCREAMING_SNAKE_CASE = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE = pipe( UpperCAmelCase_ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
306
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off _SCREAMING_SNAKE_CASE = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) _SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], """image_std""": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , **UpperCAmelCase_: Tuple ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any , **UpperCAmelCase_: str ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , **UpperCAmelCase_: str ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = self.get_image_processor() _SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) _SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_image_processor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE = image_processor(UpperCAmelCase_ , return_tensors="""np""" ) _SCREAMING_SNAKE_CASE = processor(images=UpperCAmelCase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_image_processor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """lower newer""" _SCREAMING_SNAKE_CASE = processor(text=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_image_processor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """lower newer""" _SCREAMING_SNAKE_CASE = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_image_processor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE = processor.batch_decode(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.get_image_processor() _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """lower newer""" _SCREAMING_SNAKE_CASE = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
306
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
from collections.abc import Sequence def __lowerCamelCase ( snake_case__ = None ) -> int: """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) _SCREAMING_SNAKE_CASE = nums[0] for i in range(1 ,len(snake_case__ ) ): _SCREAMING_SNAKE_CASE = nums[i] _SCREAMING_SNAKE_CASE = max(snake_case__ ,ans + num ,snake_case__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCamelCase = int(input('''Enter number of elements : ''').strip()) UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
306
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: str , UpperCAmelCase_: pyspark.sql.DataFrame , UpperCAmelCase_: Optional[NamedSplit] = None , UpperCAmelCase_: Optional[Features] = None , UpperCAmelCase_: bool = True , UpperCAmelCase_: str = None , UpperCAmelCase_: bool = False , UpperCAmelCase_: str = None , UpperCAmelCase_: bool = True , UpperCAmelCase_: str = "arrow" , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = load_from_cache_file _SCREAMING_SNAKE_CASE = file_format _SCREAMING_SNAKE_CASE = Spark( df=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , working_dir=UpperCAmelCase_ , **UpperCAmelCase_ , ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _SCREAMING_SNAKE_CASE = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCAmelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
306
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
1
def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> float: """simple docstring""" if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
306
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union UpperCamelCase = re.compile(R'''^(?P<major>\d+)''' R'''\.(?P<minor>\d+)''' R'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class __UpperCAmelCase : __snake_case : str __snake_case : Optional[str] = None __snake_case : Optional[Union[str, int]] = None __snake_case : Optional[Union[str, int]] = None __snake_case : Optional[Union[str, int]] = None def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = _str_to_version_tuple(self.version_str ) def __repr__( self: int ): '''simple docstring''' return F'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def UpperCamelCase ( self: Dict ): '''simple docstring''' return self.major, self.minor, self.patch def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return Version(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return other raise TypeError(F'{other} (type {type(UpperCAmelCase_ )}) cannot be compared to version.' ) def __eq__( self: Optional[int] , UpperCAmelCase_: Any ): '''simple docstring''' try: _SCREAMING_SNAKE_CASE = self._validate_operand(UpperCAmelCase_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self: Optional[Any] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._validate_operand(UpperCAmelCase_ ) return self.tuple < other.tuple def __hash__( self: Optional[int] ): '''simple docstring''' return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def UpperCamelCase ( cls: str , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return self.version_str def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = _VERSION_REG.match(snake_case__ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(snake_case__ ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" return ".".join(str(snake_case__ ) for v in version_tuple )
306
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
1
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = get_failure_array(snake_case__ ) # 2) Step through text searching for pattern _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 0 # index into text, pattern while i < len(snake_case__ ): if pattern[j] == text[i]: if j == (len(snake_case__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _SCREAMING_SNAKE_CASE = failure[j - 1] continue i += 1 return False def __lowerCamelCase ( snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [0] _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 1 while j < len(snake_case__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _SCREAMING_SNAKE_CASE = failure[i - 1] continue j += 1 failure.append(snake_case__ ) return failure if __name__ == "__main__": # Test 1) UpperCamelCase = '''abc1abc12''' UpperCamelCase = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' UpperCamelCase = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase = '''ABABX''' UpperCamelCase = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) UpperCamelCase = '''AAAB''' UpperCamelCase = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) UpperCamelCase = '''abcdabcy''' UpperCamelCase = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) UpperCamelCase = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : jnp.ndarray __snake_case : jnp.ndarray class __UpperCAmelCase (nn.Module ): __snake_case : int __snake_case : Tuple[int] = (16, 32, 96, 256) __snake_case : jnp.dtype = jnp.floataa def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _SCREAMING_SNAKE_CASE = [] for i in range(len(self.block_out_channels ) - 1 ): _SCREAMING_SNAKE_CASE = self.block_out_channels[i] _SCREAMING_SNAKE_CASE = self.block_out_channels[i + 1] _SCREAMING_SNAKE_CASE = nn.Conv( UpperCAmelCase_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Conv( UpperCAmelCase_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = blocks _SCREAMING_SNAKE_CASE = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self: Tuple , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.conv_in(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.silu(UpperCAmelCase_ ) for block in self.blocks: _SCREAMING_SNAKE_CASE = block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.silu(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.conv_out(UpperCAmelCase_ ) return embedding @flax_register_to_config class __UpperCAmelCase (nn.Module ,_UpperCAmelCase ,_UpperCAmelCase ): __snake_case : int = 32 __snake_case : int = 4 __snake_case : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __snake_case : Union[bool, Tuple[bool]] = False __snake_case : Tuple[int] = (320, 640, 1280, 1280) __snake_case : int = 2 __snake_case : Union[int, Tuple[int]] = 8 __snake_case : Optional[Union[int, Tuple[int]]] = None __snake_case : int = 1280 __snake_case : float = 0.0 __snake_case : bool = False __snake_case : jnp.dtype = jnp.floataa __snake_case : bool = True __snake_case : int = 0 __snake_case : str = "rgb" __snake_case : Tuple[int] = (16, 32, 96, 256) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: jax.random.KeyArray ): '''simple docstring''' _SCREAMING_SNAKE_CASE = (1, self.in_channels, self.sample_size, self.sample_size) _SCREAMING_SNAKE_CASE = jnp.zeros(UpperCAmelCase_ , dtype=jnp.floataa ) _SCREAMING_SNAKE_CASE = jnp.ones((1,) , dtype=jnp.intaa ) _SCREAMING_SNAKE_CASE = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _SCREAMING_SNAKE_CASE = (1, 3, self.sample_size * 8, self.sample_size * 8) _SCREAMING_SNAKE_CASE = jnp.zeros(UpperCAmelCase_ , dtype=jnp.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = jax.random.split(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )["params"] def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.block_out_channels _SCREAMING_SNAKE_CASE = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _SCREAMING_SNAKE_CASE = self.num_attention_heads or self.attention_head_dim # input _SCREAMING_SNAKE_CASE = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _SCREAMING_SNAKE_CASE = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _SCREAMING_SNAKE_CASE = FlaxTimestepEmbedding(UpperCAmelCase_ , dtype=self.dtype ) _SCREAMING_SNAKE_CASE = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) _SCREAMING_SNAKE_CASE = self.only_cross_attention if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = (num_attention_heads,) * len(self.down_block_types ) # down _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = block_out_channels[0] _SCREAMING_SNAKE_CASE = nn.Conv( UpperCAmelCase_ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCAmelCase_ ) for i, down_block_type in enumerate(self.down_block_types ): _SCREAMING_SNAKE_CASE = output_channel _SCREAMING_SNAKE_CASE = block_out_channels[i] _SCREAMING_SNAKE_CASE = i == len(UpperCAmelCase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _SCREAMING_SNAKE_CASE = FlaxCrossAttnDownBlockaD( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: _SCREAMING_SNAKE_CASE = FlaxDownBlockaD( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCAmelCase_ ) for _ in range(self.layers_per_block ): _SCREAMING_SNAKE_CASE = nn.Conv( UpperCAmelCase_ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCAmelCase_ ) if not is_final_block: _SCREAMING_SNAKE_CASE = nn.Conv( UpperCAmelCase_ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = down_blocks _SCREAMING_SNAKE_CASE = controlnet_down_blocks # mid _SCREAMING_SNAKE_CASE = block_out_channels[-1] _SCREAMING_SNAKE_CASE = FlaxUNetMidBlockaDCrossAttn( in_channels=UpperCAmelCase_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) _SCREAMING_SNAKE_CASE = nn.Conv( UpperCAmelCase_ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Dict , UpperCAmelCase_: float = 1.0 , UpperCAmelCase_: bool = True , UpperCAmelCase_: bool = False , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.controlnet_conditioning_channel_order if channel_order == "bgr": _SCREAMING_SNAKE_CASE = jnp.flip(UpperCAmelCase_ , axis=1 ) # 1. time if not isinstance(UpperCAmelCase_ , jnp.ndarray ): _SCREAMING_SNAKE_CASE = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCAmelCase_ , jnp.ndarray ) and len(timesteps.shape ) == 0: _SCREAMING_SNAKE_CASE = timesteps.astype(dtype=jnp.floataa ) _SCREAMING_SNAKE_CASE = jnp.expand_dims(UpperCAmelCase_ , 0 ) _SCREAMING_SNAKE_CASE = self.time_proj(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.time_embedding(UpperCAmelCase_ ) # 2. pre-process _SCREAMING_SNAKE_CASE = jnp.transpose(UpperCAmelCase_ , (0, 2, 3, 1) ) _SCREAMING_SNAKE_CASE = self.conv_in(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = jnp.transpose(UpperCAmelCase_ , (0, 2, 3, 1) ) _SCREAMING_SNAKE_CASE = self.controlnet_cond_embedding(UpperCAmelCase_ ) sample += controlnet_cond # 3. down _SCREAMING_SNAKE_CASE = (sample,) for down_block in self.down_blocks: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = down_block(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , deterministic=not train ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = down_block(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid _SCREAMING_SNAKE_CASE = self.mid_block(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , deterministic=not train ) # 5. contronet blocks _SCREAMING_SNAKE_CASE = () for down_block_res_sample, controlnet_block in zip(UpperCAmelCase_ , self.controlnet_down_blocks ): _SCREAMING_SNAKE_CASE = controlnet_block(UpperCAmelCase_ ) controlnet_down_block_res_samples += (down_block_res_sample,) _SCREAMING_SNAKE_CASE = controlnet_down_block_res_samples _SCREAMING_SNAKE_CASE = self.controlnet_mid_block(UpperCAmelCase_ ) # 6. scaling _SCREAMING_SNAKE_CASE = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=UpperCAmelCase_ , mid_block_res_sample=UpperCAmelCase_ )
306
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__="attention" ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = _SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) _SCREAMING_SNAKE_CASE = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) _SCREAMING_SNAKE_CASE = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) _SCREAMING_SNAKE_CASE = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) _SCREAMING_SNAKE_CASE = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=False ) -> Optional[Any]: """simple docstring""" if split_mlp_wi: _SCREAMING_SNAKE_CASE = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] _SCREAMING_SNAKE_CASE = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] _SCREAMING_SNAKE_CASE = (wi_a, wi_a) else: _SCREAMING_SNAKE_CASE = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] _SCREAMING_SNAKE_CASE = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def __lowerCamelCase ( snake_case__ ,*, snake_case__ ,snake_case__ ,snake_case__ = False ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = traverse_util.flatten_dict(variables["""target"""] ) _SCREAMING_SNAKE_CASE = {"""/""".join(snake_case__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _SCREAMING_SNAKE_CASE = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" ,snake_case__ ) _SCREAMING_SNAKE_CASE = collections.OrderedDict() # Shared embeddings. _SCREAMING_SNAKE_CASE = old["""token_embedder/embedding"""] # Encoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(snake_case__ ,snake_case__ ,"""encoder""" ,"""pre_attention_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_attention_lookup(snake_case__ ,snake_case__ ,"""encoder""" ,"""attention""" ) _SCREAMING_SNAKE_CASE = layer_norm _SCREAMING_SNAKE_CASE = k.T _SCREAMING_SNAKE_CASE = o.T _SCREAMING_SNAKE_CASE = q.T _SCREAMING_SNAKE_CASE = v.T # Block i, layer 1 (MLP). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(snake_case__ ,snake_case__ ,"""encoder""" ,"""pre_mlp_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_mlp_lookup(snake_case__ ,snake_case__ ,"""encoder""" ,snake_case__ ) _SCREAMING_SNAKE_CASE = layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE = wi[0].T _SCREAMING_SNAKE_CASE = wi[1].T else: _SCREAMING_SNAKE_CASE = wi.T _SCREAMING_SNAKE_CASE = wo.T if scalable_attention: # convert the rel_embedding of each layer _SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( snake_case__ ,snake_case__ ,"""encoder""" ).T _SCREAMING_SNAKE_CASE = old["""encoder/encoder_norm/scale"""] if not scalable_attention: _SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( snake_case__ ,0 ,"""encoder""" ).T _SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( snake_case__ ,0 ,"""decoder""" ).T if not is_encoder_only: # Decoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(snake_case__ ,snake_case__ ,"""decoder""" ,"""pre_self_attention_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_attention_lookup(snake_case__ ,snake_case__ ,"""decoder""" ,"""self_attention""" ) _SCREAMING_SNAKE_CASE = layer_norm _SCREAMING_SNAKE_CASE = k.T _SCREAMING_SNAKE_CASE = o.T _SCREAMING_SNAKE_CASE = q.T _SCREAMING_SNAKE_CASE = v.T # Block i, layer 1 (Cross Attention). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(snake_case__ ,snake_case__ ,"""decoder""" ,"""pre_cross_attention_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_attention_lookup(snake_case__ ,snake_case__ ,"""decoder""" ,"""encoder_decoder_attention""" ) _SCREAMING_SNAKE_CASE = layer_norm _SCREAMING_SNAKE_CASE = k.T _SCREAMING_SNAKE_CASE = o.T _SCREAMING_SNAKE_CASE = q.T _SCREAMING_SNAKE_CASE = v.T # Block i, layer 2 (MLP). _SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(snake_case__ ,snake_case__ ,"""decoder""" ,"""pre_mlp_layer_norm""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tax_mlp_lookup(snake_case__ ,snake_case__ ,"""decoder""" ,snake_case__ ) _SCREAMING_SNAKE_CASE = layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE = wi[0].T _SCREAMING_SNAKE_CASE = wi[1].T else: _SCREAMING_SNAKE_CASE = wi.T _SCREAMING_SNAKE_CASE = wo.T if scalable_attention: # convert the rel_embedding of each layer _SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup(snake_case__ ,snake_case__ ,"""decoder""" ).T _SCREAMING_SNAKE_CASE = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _SCREAMING_SNAKE_CASE = old["""decoder/logits_dense/kernel"""].T return new def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _SCREAMING_SNAKE_CASE = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _SCREAMING_SNAKE_CASE = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) _SCREAMING_SNAKE_CASE = state_dict["""shared.weight"""] return state_dict def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(snake_case__ ) _SCREAMING_SNAKE_CASE = convert_tax_to_pytorch( snake_case__ ,num_layers=config.num_layers ,is_encoder_only=snake_case__ ,scalable_attention=snake_case__ ) _SCREAMING_SNAKE_CASE = make_state_dict(snake_case__ ,snake_case__ ) model.load_state_dict(snake_case__ ,strict=snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = False ,snake_case__ = False ,) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = MTaConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _SCREAMING_SNAKE_CASE = UMTaEncoderModel(snake_case__ ) else: _SCREAMING_SNAKE_CASE = UMTaForConditionalGeneration(snake_case__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(snake_case__ ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case__ ) print("""Done""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
306
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
1