code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : def __init__( self: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Dict=13 , UpperCamelCase__: int=30 , UpperCamelCase__: Optional[int]=2 , UpperCamelCase__: Tuple=3 , UpperCamelCase__: Any=True , UpperCamelCase__: Dict=True , UpperCamelCase__: Optional[int]=32 , UpperCamelCase__: Tuple=2 , UpperCamelCase__: Tuple=4 , UpperCamelCase__: Optional[Any]=37 , UpperCamelCase__: List[Any]="gelu" , UpperCamelCase__: Union[str, Any]=0.1 , UpperCamelCase__: List[Any]=0.1 , UpperCamelCase__: Tuple=10 , UpperCamelCase__: Optional[Any]=0.02 , UpperCamelCase__: List[Any]=3 , UpperCamelCase__: str=0.6 , UpperCamelCase__: str=None , ): lowerCamelCase__ : List[Any] = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Union[str, Any] = image_size lowerCamelCase__ : Any = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : Optional[Any] = is_training lowerCamelCase__ : int = use_labels lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : Optional[Any] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Dict = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : List[str] = mask_ratio lowerCamelCase__ : Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCamelCase__ : Any = (image_size // patch_size) ** 2 lowerCamelCase__ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : List[Any] = None if self.use_labels: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Any ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict , UpperCamelCase__: List[str] ): lowerCamelCase__ : Tuple = TFViTMAEModel(config=UpperCamelCase__ ) lowerCamelCase__ : int = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: List[Any] , UpperCamelCase__: Any ): lowerCamelCase__ : Optional[int] = TFViTMAEForPreTraining(UpperCamelCase__ ) lowerCamelCase__ : int = model(UpperCamelCase__ , training=UpperCamelCase__ ) # expected sequence length = num_patches lowerCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 lowerCamelCase__ : Union[str, Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCamelCase__ : List[Any] = 1 lowerCamelCase__ : Union[str, Any] = TFViTMAEForPreTraining(UpperCamelCase__ ) lowerCamelCase__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ , training=UpperCamelCase__ ) lowerCamelCase__ : int = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : Optional[int] = config_and_inputs lowerCamelCase__ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () a = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} a = False a = False a = False a = False def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : int = TFViTMAEModelTester(self ) lowerCamelCase__ : List[Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self: Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def lowerCamelCase_ ( self: Any ): pass def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCamelCase__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : List[Any] = model(UpperCamelCase__ , noise=UpperCamelCase__ ) lowerCamelCase__ : int = copy.deepcopy(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : List[str] = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) lowerCamelCase__ : str = outputs_dict[0].numpy() lowerCamelCase__ : Optional[int] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def lowerCamelCase_ ( self: Dict ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Tuple = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase__: int ): lowerCamelCase__ : Optional[int] = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase__ ): lowerCamelCase__ : List[str] = v.numpy() else: lowerCamelCase__ : Union[str, Any] = np.array(UpperCamelCase__ ) return inputs_np_dict for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : str = prepare_numpy_arrays(UpperCamelCase__ ) lowerCamelCase__ : int = model(UpperCamelCase__ , noise=UpperCamelCase__ ) lowerCamelCase__ : Any = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict , UpperCamelCase__: Dict , UpperCamelCase__: Any , UpperCamelCase__: str ): # make masks reproducible np.random.seed(2 ) lowerCamelCase__ : List[str] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowerCamelCase__ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ : Optional[int] = tf.constant(UpperCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCamelCase__ : Tuple = tf_noise super().check_pt_tf_models(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : List[Any] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase__ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(UpperCamelCase__ , UpperCamelCase__ ),) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase__ , """_keras_serializable""" , UpperCamelCase__ ) } lowerCamelCase__ : List[str] = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ : List[str] = tf.convert_to_tensor(UpperCamelCase__ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: lowerCamelCase__ : List[str] = main_layer_class(UpperCamelCase__ ) lowerCamelCase__ : int = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowerCamelCase__ : List[str] = tf.keras.Model(UpperCamelCase__ , outputs=main_layer(UpperCamelCase__ ) ) lowerCamelCase__ : Union[str, Any] = model(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : int = os.path.join(UpperCamelCase__ , """keras_model.h5""" ) model.save(UpperCamelCase__ ) lowerCamelCase__ : int = tf.keras.models.load_model( UpperCamelCase__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase__ , tf.keras.Model ) lowerCamelCase__ : Tuple = model(UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: str ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Tuple = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ : Tuple = model_class(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : List[Any] = model(UpperCamelCase__ , noise=UpperCamelCase__ ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ : Any = outputs.last_hidden_state.numpy() lowerCamelCase__ : List[str] = 0 else: lowerCamelCase__ : int = outputs.logits.numpy() lowerCamelCase__ : Dict = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ , saved_model=UpperCamelCase__ ) lowerCamelCase__ : Dict = model_class.from_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Tuple = model(UpperCamelCase__ , noise=UpperCamelCase__ ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ : str = after_outputs["""last_hidden_state"""].numpy() lowerCamelCase__ : Optional[Any] = 0 else: lowerCamelCase__ : Union[str, Any] = after_outputs["""logits"""].numpy() lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1e-5 ) def lowerCamelCase_ ( self: Any ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(UpperCamelCase__ ) lowerCamelCase__ : Any = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : List[str] = model(UpperCamelCase__ , noise=UpperCamelCase__ ) lowerCamelCase__ : List[Any] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase__ ) lowerCamelCase__ : int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowerCamelCase__ : int = model_class.from_config(model.config ) lowerCamelCase__ : List[Any] = new_model(UpperCamelCase__ ) # Build model new_model.set_weights(model.get_weights() ) lowerCamelCase__ : List[Any] = new_model(UpperCamelCase__ , noise=UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self: List[str] ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def lowerCamelCase_ ( self: Optional[int] ): pass @slow def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Tuple = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ () -> List[Any]: lowerCamelCase__ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Optional[Any] ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: List[str] ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCamelCase__ : Optional[int] = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) lowerCamelCase__ : Dict = self.default_image_processor lowerCamelCase__ : int = prepare_img() lowerCamelCase__ : List[Any] = image_processor(images=UpperCamelCase__ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCamelCase__ : Tuple = ViTMAEConfig() lowerCamelCase__ : Dict = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCamelCase__ : str = np.random.uniform(size=(1, num_patches) ) # forward pass lowerCamelCase__ : str = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) # verify the logits lowerCamelCase__ : Any = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase__ : str = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 )
41
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
0
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowercase : Union[str, Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __A ) -> Union[str, Any]: _snake_case = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _snake_case = 128 elif "12-12" in model_name: _snake_case = 12 _snake_case = 12 elif "14-14" in model_name: _snake_case = 14 _snake_case = 14 elif "16-16" in model_name: _snake_case = 16 _snake_case = 16 else: raise ValueError('Model not supported' ) _snake_case = 'huggingface/label-files' if "speech-commands" in model_name: _snake_case = 35 _snake_case = 'speech-commands-v2-id2label.json' else: _snake_case = 527 _snake_case = 'audioset-id2label.json' _snake_case = json.load(open(hf_hub_download(__A , __A , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(__A ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( __A ) -> Any: if "module.v" in name: _snake_case = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: _snake_case = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: _snake_case = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: _snake_case = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: _snake_case = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: _snake_case = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: _snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _snake_case = name.replace('attn' , 'attention.self' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _snake_case = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: _snake_case = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: _snake_case = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Any: for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(__A ) if "qkv" in key: _snake_case = key.split('.' ) _snake_case = int(key_split[3] ) _snake_case = config.hidden_size if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val[:dim] _snake_case = val[dim : dim * 2] _snake_case = val[-dim:] else: _snake_case = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( __A ) -> int: _snake_case = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(__A , __A ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=False ) -> Union[str, Any]: _snake_case = get_audio_spectrogram_transformer_config(__A ) _snake_case = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict _snake_case = model_name_to_url[model_name] _snake_case = torch.hub.load_state_dict_from_url(__A , map_location='cpu' ) # remove some keys remove_keys(__A ) # rename some keys _snake_case = convert_state_dict(__A , __A ) # load 🤗 model _snake_case = ASTForAudioClassification(__A ) model.eval() model.load_state_dict(__A ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _snake_case = -4.2_6_7_7_3_9_3 if 'speech-commands' not in model_name else -6.8_4_5_9_7_8 _snake_case = 4.5_6_8_9_9_7_4 if 'speech-commands' not in model_name else 5.5_6_5_4_5_2_6 _snake_case = 1_024 if 'speech-commands' not in model_name else 128 _snake_case = ASTFeatureExtractor(mean=__A , std=__A , max_length=__A ) if "speech-commands" in model_name: _snake_case = load_dataset('speech_commands' , 'v0.02' , split='validation' ) _snake_case = dataset[0]['audio']['array'] else: _snake_case = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) _snake_case , _snake_case = torchaudio.load(__A ) _snake_case = waveform.squeeze().numpy() _snake_case = feature_extractor(__A , sampling_rate=16_000 , return_tensors='pt' ) # forward pass _snake_case = model(**__A ) _snake_case = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _snake_case = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _snake_case = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _snake_case = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _snake_case = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _snake_case = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _snake_case = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _snake_case = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0] ) elif model_name == "ast-finetuned-speech-commands-v2": _snake_case = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , __A , atol=1e-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(__A ).mkdir(exist_ok=__A ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(__A ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowercase : Any = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
42
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be an \'int\' type''' ) __UpperCamelCase :List[str] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _a : Any = TypeVar('T') class __A ( Generic[T] ): _UpperCamelCase : deque[T] # Cache store of keys _UpperCamelCase : set[T] # References of the keys in cache _UpperCamelCase : int = 10 # Maximum capacity of cache def __init__( self , a__ ): _lowerCAmelCase : Any = deque() _lowerCAmelCase : List[Any] = set() if not n: _lowerCAmelCase : List[str] = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: _lowerCAmelCase : List[Any] = n def __A ( self , a__ ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _lowerCAmelCase : Dict = self.dq_store.pop() self.key_reference.remove(a__ ) else: self.dq_store.remove(a__ ) self.dq_store.appendleft(a__ ) self.key_reference.add(a__ ) def __A ( self ): for k in self.dq_store: print(a__ ) def __repr__( self ): return F"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}" if __name__ == "__main__": import doctest doctest.testmod() _a : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
44
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
0
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = tempfile.mkdtemp() __a = 8 # DPR tok __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) __a = os.path.join(_a , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok __a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __a = dict(zip(_a , range(len(_a ) ) ) ) __a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __a = {'''unk_token''': '''<unk>'''} __a = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) __a = os.path.join(_a , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) __a = os.path.join(_a , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def __UpperCAmelCase ( self ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCAmelCase ( self ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __UpperCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) @require_tokenizers def __UpperCAmelCase ( self ): __a = os.path.join(self.tmpdirname , '''rag_tokenizer''' ) __a = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __a = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) __a = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __UpperCAmelCase ( self ): __a = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' ) __a = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] __a = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def __UpperCAmelCase ( self ): __a = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' ) __a = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] __a = tokenizer(_a ) self.assertIsNotNone(_a )
45
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets SCREAMING_SNAKE_CASE__ = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" SCREAMING_SNAKE_CASE__ = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" SCREAMING_SNAKE_CASE__ = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : bool , SCREAMING_SNAKE_CASE : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE : bool = False , ): '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): lowerCAmelCase = new_id # turn into Numpy arrays lowerCAmelCase = np.array(SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.array(SCREAMING_SNAKE_CASE ) if reduce_labels: lowerCAmelCase = 2_55 lowerCAmelCase = label - 1 lowerCAmelCase = 2_55 lowerCAmelCase = label != ignore_index lowerCAmelCase = np.not_equal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = pred_label[mask] lowerCAmelCase = np.array(SCREAMING_SNAKE_CASE )[mask] lowerCAmelCase = pred_label[pred_label == label] lowerCAmelCase = np.histogram(SCREAMING_SNAKE_CASE , bins=SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] lowerCAmelCase = np.histogram(SCREAMING_SNAKE_CASE , bins=SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] lowerCAmelCase = np.histogram(SCREAMING_SNAKE_CASE , bins=SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : bool , SCREAMING_SNAKE_CASE : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE : bool = False , ): '''simple docstring''' lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = intersect_and_union( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE : bool = False , ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = total_intersect_and_union( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # compute metrics lowerCAmelCase = {} lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() lowerCAmelCase = total_area_intersect / total_area_union lowerCAmelCase = total_area_intersect / total_area_label lowerCAmelCase = np.nanmean(SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.nanmean(SCREAMING_SNAKE_CASE ) lowerCAmelCase = all_acc lowerCAmelCase = iou lowerCAmelCase = acc if nan_to_num is not None: lowerCAmelCase = {metric: np.nan_to_num(SCREAMING_SNAKE_CASE , nan=SCREAMING_SNAKE_CASE ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def _snake_case ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), } ) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase = None , lowercase = None , lowercase = False , ) -> Tuple: lowerCAmelCase = mean_iou( results=lowercase , gt_seg_maps=lowercase , num_labels=lowercase , ignore_index=lowercase , nan_to_num=lowercase , label_map=lowercase , reduce_labels=lowercase , ) return iou_result
46
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
0
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A__ ( nn.Module ): A__ = 42 A__ = 42 A__ = 0.0 A__ = 1 A__ = 1 A__ = True A__ = False A__ = False A__ = False A__ = jnp.floataa def A ( self : str ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for i in range(self.num_layers ): _SCREAMING_SNAKE_CASE =self.in_channels if i == 0 else self.out_channels _SCREAMING_SNAKE_CASE =FlaxResnetBlockaD( in_channels=_a , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _SCREAMING_SNAKE_CASE =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_a ) _SCREAMING_SNAKE_CASE =resnets _SCREAMING_SNAKE_CASE =attentions if self.add_downsample: _SCREAMING_SNAKE_CASE =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , _a : Union[str, Any] , _a : Union[str, Any] , _a : str , _a : Optional[Any]=True ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =() for resnet, attn in zip(self.resnets , self.attentions ): _SCREAMING_SNAKE_CASE =resnet(_a , _a , deterministic=_a ) _SCREAMING_SNAKE_CASE =attn(_a , _a , deterministic=_a ) output_states += (hidden_states,) if self.add_downsample: _SCREAMING_SNAKE_CASE =self.downsamplers_a(_a ) output_states += (hidden_states,) return hidden_states, output_states class A__ ( nn.Module ): A__ = 42 A__ = 42 A__ = 0.0 A__ = 1 A__ = True A__ = jnp.floataa def A ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] for i in range(self.num_layers ): _SCREAMING_SNAKE_CASE =self.in_channels if i == 0 else self.out_channels _SCREAMING_SNAKE_CASE =FlaxResnetBlockaD( in_channels=_a , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _SCREAMING_SNAKE_CASE =resnets if self.add_downsample: _SCREAMING_SNAKE_CASE =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , _a : int , _a : Tuple , _a : Union[str, Any]=True ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =() for resnet in self.resnets: _SCREAMING_SNAKE_CASE =resnet(_a , _a , deterministic=_a ) output_states += (hidden_states,) if self.add_downsample: _SCREAMING_SNAKE_CASE =self.downsamplers_a(_a ) output_states += (hidden_states,) return hidden_states, output_states class A__ ( nn.Module ): A__ = 42 A__ = 42 A__ = 42 A__ = 0.0 A__ = 1 A__ = 1 A__ = True A__ = False A__ = False A__ = False A__ = jnp.floataa def A ( self : int ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for i in range(self.num_layers ): _SCREAMING_SNAKE_CASE =self.in_channels if (i == self.num_layers - 1) else self.out_channels _SCREAMING_SNAKE_CASE =self.prev_output_channel if i == 0 else self.out_channels _SCREAMING_SNAKE_CASE =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _SCREAMING_SNAKE_CASE =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_a ) _SCREAMING_SNAKE_CASE =resnets _SCREAMING_SNAKE_CASE =attentions if self.add_upsample: _SCREAMING_SNAKE_CASE =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , _a : Optional[Any] , _a : Dict , _a : Union[str, Any] , _a : str , _a : List[str]=True ) -> int: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _SCREAMING_SNAKE_CASE =res_hidden_states_tuple[-1] _SCREAMING_SNAKE_CASE =res_hidden_states_tuple[:-1] _SCREAMING_SNAKE_CASE =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _SCREAMING_SNAKE_CASE =resnet(_a , _a , deterministic=_a ) _SCREAMING_SNAKE_CASE =attn(_a , _a , deterministic=_a ) if self.add_upsample: _SCREAMING_SNAKE_CASE =self.upsamplers_a(_a ) return hidden_states class A__ ( nn.Module ): A__ = 42 A__ = 42 A__ = 42 A__ = 0.0 A__ = 1 A__ = True A__ = jnp.floataa def A ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] for i in range(self.num_layers ): _SCREAMING_SNAKE_CASE =self.in_channels if (i == self.num_layers - 1) else self.out_channels _SCREAMING_SNAKE_CASE =self.prev_output_channel if i == 0 else self.out_channels _SCREAMING_SNAKE_CASE =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _SCREAMING_SNAKE_CASE =resnets if self.add_upsample: _SCREAMING_SNAKE_CASE =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , _a : Dict , _a : Dict , _a : Optional[Any] , _a : str=True ) -> Optional[int]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states _SCREAMING_SNAKE_CASE =res_hidden_states_tuple[-1] _SCREAMING_SNAKE_CASE =res_hidden_states_tuple[:-1] _SCREAMING_SNAKE_CASE =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _SCREAMING_SNAKE_CASE =resnet(_a , _a , deterministic=_a ) if self.add_upsample: _SCREAMING_SNAKE_CASE =self.upsamplers_a(_a ) return hidden_states class A__ ( nn.Module ): A__ = 42 A__ = 0.0 A__ = 1 A__ = 1 A__ = False A__ = False A__ = jnp.floataa def A ( self : List[str] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _SCREAMING_SNAKE_CASE =[] for _ in range(self.num_layers ): _SCREAMING_SNAKE_CASE =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_a ) _SCREAMING_SNAKE_CASE =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_a ) _SCREAMING_SNAKE_CASE =resnets _SCREAMING_SNAKE_CASE =attentions def __call__( self : Union[str, Any] , _a : List[Any] , _a : Tuple , _a : Optional[Any] , _a : str=True ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.resnets[0](_a , _a ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _SCREAMING_SNAKE_CASE =attn(_a , _a , deterministic=_a ) _SCREAMING_SNAKE_CASE =resnet(_a , _a , deterministic=_a ) return hidden_states
47
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar('T') class UpperCamelCase__ (Generic[T] ): '''simple docstring''' lowerCamelCase_ : deque[T] # Cache store of keys lowerCamelCase_ : set[T] # References of the keys in cache lowerCamelCase_ : int = 1_0 # Maximum capacity of cache def __init__( self , UpperCamelCase__ ) -> None: lowerCamelCase : Dict = deque() lowerCamelCase : int = set() if not n: lowerCamelCase : Optional[int] = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: lowerCamelCase : Union[str, Any] = n def _lowercase ( self , UpperCamelCase__ ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCamelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(UpperCamelCase__ ) else: self.dq_store.remove(UpperCamelCase__ ) self.dq_store.appendleft(UpperCamelCase__ ) self.key_reference.add(UpperCamelCase__ ) def _lowercase ( self ) -> None: for k in self.dq_store: print(UpperCamelCase__ ) def __repr__( self ) -> str: return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
48
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
0
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __snake_case ( _UpperCAmelCase ): random.seed(_UpperCAmelCase ) np.random.seed(_UpperCAmelCase ) torch.manual_seed(_UpperCAmelCase ) torch.cuda.manual_seed_all(_UpperCAmelCase ) # ^^ safe to call this function even if cuda is not available class _A : def __init__( self : Any , __SCREAMING_SNAKE_CASE : Iterable[torch.nn.Parameter] , __SCREAMING_SNAKE_CASE : float = 0.99_99 , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Union[float, int] = 1.0 , __SCREAMING_SNAKE_CASE : Union[float, int] = 2 / 3 , __SCREAMING_SNAKE_CASE : Optional[Any] = None , __SCREAMING_SNAKE_CASE : Dict[str, Any] = None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , torch.nn.Module): __a = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , __SCREAMING_SNAKE_CASE , standard_warn=__SCREAMING_SNAKE_CASE , ) __a = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility __a = True if kwargs.get('''max_value''' , __SCREAMING_SNAKE_CASE) is not None: __a = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , __SCREAMING_SNAKE_CASE , standard_warn=__SCREAMING_SNAKE_CASE) __a = kwargs['''max_value'''] if kwargs.get('''min_value''' , __SCREAMING_SNAKE_CASE) is not None: __a = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , __SCREAMING_SNAKE_CASE , standard_warn=__SCREAMING_SNAKE_CASE) __a = kwargs['''min_value'''] __a = list(__SCREAMING_SNAKE_CASE) __a = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , __SCREAMING_SNAKE_CASE) is not None: __a = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , __SCREAMING_SNAKE_CASE , standard_warn=__SCREAMING_SNAKE_CASE) self.to(device=kwargs['''device''']) __a = None __a = decay __a = min_decay __a = update_after_step __a = use_ema_warmup __a = inv_gamma __a = power __a = 0 __a = None # set in `step()` __a = model_cls __a = model_config @classmethod def _lowerCamelCase ( cls : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a , __a = model_cls.load_config(__SCREAMING_SNAKE_CASE , return_unused_kwargs=__SCREAMING_SNAKE_CASE) __a = model_cls.from_pretrained(__SCREAMING_SNAKE_CASE) __a = cls(model.parameters() , model_cls=__SCREAMING_SNAKE_CASE , model_config=model.config) ema_model.load_state_dict(__SCREAMING_SNAKE_CASE) return ema_model def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''') if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''') __a = self.model_cls.from_config(self.model_config) __a = self.state_dict() state_dict.pop('''shadow_params''' , __SCREAMING_SNAKE_CASE) model.register_to_config(**__SCREAMING_SNAKE_CASE) self.copy_to(model.parameters()) model.save_pretrained(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = max(0 , optimization_step - self.update_after_step - 1) if step <= 0: return 0.0 if self.use_ema_warmup: __a = 1 - (1 + step / self.inv_gamma) ** -self.power else: __a = (1 + step) / (10 + step) __a = min(__SCREAMING_SNAKE_CASE , self.decay) # make sure decay is not smaller than min_decay __a = max(__SCREAMING_SNAKE_CASE , self.min_decay) return cur_decay_value @torch.no_grad() def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Iterable[torch.nn.Parameter]): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , torch.nn.Module): __a = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , __SCREAMING_SNAKE_CASE , standard_warn=__SCREAMING_SNAKE_CASE , ) __a = parameters.parameters() __a = list(__SCREAMING_SNAKE_CASE) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. __a = self.get_decay(self.optimization_step) __a = decay __a = 1 - decay __a = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __SCREAMING_SNAKE_CASE): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): __a = deepspeed.zero.GatheredParameters(__SCREAMING_SNAKE_CASE , modifier_rank=__SCREAMING_SNAKE_CASE) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param)) else: s_param.copy_(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Iterable[torch.nn.Parameter]): '''simple docstring''' __a = list(__SCREAMING_SNAKE_CASE) for s_param, param in zip(self.shadow_params , __SCREAMING_SNAKE_CASE): param.data.copy_(s_param.to(param.device).data) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=None): '''simple docstring''' __a = [ p.to(device=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE) if p.is_floating_point() else p.to(device=__SCREAMING_SNAKE_CASE) for p in self.shadow_params ] def _lowerCamelCase ( self : str): '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Iterable[torch.nn.Parameter]): '''simple docstring''' __a = [param.detach().cpu().clone() for param in parameters] def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Iterable[torch.nn.Parameter]): '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''') for c_param, param in zip(self.temp_stored_params , __SCREAMING_SNAKE_CASE): param.data.copy_(c_param.data) # Better memory-wise. __a = None def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : dict): '''simple docstring''' __a = copy.deepcopy(__SCREAMING_SNAKE_CASE) __a = state_dict.get('''decay''' , self.decay) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''') __a = state_dict.get('''min_decay''' , self.min_decay) if not isinstance(self.min_decay , __SCREAMING_SNAKE_CASE): raise ValueError('''Invalid min_decay''') __a = state_dict.get('''optimization_step''' , self.optimization_step) if not isinstance(self.optimization_step , __SCREAMING_SNAKE_CASE): raise ValueError('''Invalid optimization_step''') __a = state_dict.get('''update_after_step''' , self.update_after_step) if not isinstance(self.update_after_step , __SCREAMING_SNAKE_CASE): raise ValueError('''Invalid update_after_step''') __a = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup) if not isinstance(self.use_ema_warmup , __SCREAMING_SNAKE_CASE): raise ValueError('''Invalid use_ema_warmup''') __a = state_dict.get('''inv_gamma''' , self.inv_gamma) if not isinstance(self.inv_gamma , (float, int)): raise ValueError('''Invalid inv_gamma''') __a = state_dict.get('''power''' , self.power) if not isinstance(self.power , (float, int)): raise ValueError('''Invalid power''') __a = state_dict.get('''shadow_params''' , __SCREAMING_SNAKE_CASE) if shadow_params is not None: __a = shadow_params if not isinstance(self.shadow_params , __SCREAMING_SNAKE_CASE): raise ValueError('''shadow_params must be a list''') if not all(isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor) for p in self.shadow_params): raise ValueError('''shadow_params must all be Tensors''')
49
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
0
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Dict = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = flatten_dict(_UpperCAmelCase ) return flax_params def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : List[str] = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } lowerCamelCase__ : int = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowerCamelCase__ : Union[str, Any] = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowerCamelCase__ : str = new_key.replace(_UpperCAmelCase , _UpperCAmelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowerCamelCase__ : int = new_key.replace(_UpperCAmelCase , _UpperCAmelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowerCamelCase__ : Tuple = re.sub(r'layers_(\d+)' , r'layer.\1' , _UpperCAmelCase ) lowerCamelCase__ : Dict = new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowerCamelCase__ : str = re.sub(r'layers_(\d+)' , r'layer.\1' , _UpperCAmelCase ) lowerCamelCase__ : Optional[int] = flax_dict[key] lowerCamelCase__ : Any = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowerCamelCase__ : Tuple = torch.from_numpy(converted_dict[key].T ) else: lowerCamelCase__ : Union[str, Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False ) -> List[str]: lowerCamelCase__ : Any = get_flax_param(_UpperCAmelCase ) if not use_large: lowerCamelCase__ : str = PixaStructVisionConfig() lowerCamelCase__ : Dict = PixaStructTextConfig() else: lowerCamelCase__ : Dict = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowerCamelCase__ : Optional[Any] = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowerCamelCase__ : Any = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = PixaStructForConditionalGeneration(_UpperCAmelCase ) lowerCamelCase__ : Tuple = rename_and_convert_flax_params(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) lowerCamelCase__ : str = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) lowerCamelCase__ : List[str] = PixaStructImageProcessor() lowerCamelCase__ : Dict = PixaStructProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) if use_large: lowerCamelCase__ : Any = 4096 lowerCamelCase__ : Tuple = True # mkdir if needed os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) print('Model saved in {}'.format(_UpperCAmelCase ) ) if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") _UpperCAmelCase : Optional[int] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
50
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
0
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput snake_case_ : Optional[Any] = "scheduler_config.json" class __snake_case ( a ): UpperCAmelCase__ : List[str] = 1 UpperCAmelCase__ : str = 2 UpperCAmelCase__ : Tuple = 3 UpperCAmelCase__ : Union[str, Any] = 4 UpperCAmelCase__ : Tuple = 5 @dataclass class __snake_case ( a ): UpperCAmelCase__ : jnp.ndarray class __snake_case : UpperCAmelCase__ : Tuple = SCHEDULER_CONFIG_NAME UpperCAmelCase__ : Tuple = ['''dtype'''] UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : List[str] = True @classmethod def lowerCamelCase ( cls : int , _snake_case : Dict[str, Any] = None , _snake_case : Optional[str] = None , _snake_case : Any=False , **_snake_case : List[Any] , ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = cls.load_config( pretrained_model_name_or_path=_snake_case , subfolder=_snake_case , return_unused_kwargs=_snake_case , **_snake_case , ) UpperCAmelCase_ , UpperCAmelCase_ = cls.from_config(_snake_case , return_unused_kwargs=_snake_case , **_snake_case) if hasattr(_snake_case , '''create_state''') and getattr(_snake_case , '''has_state''' , _snake_case): UpperCAmelCase_ = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCamelCase ( self : Tuple , _snake_case : Union[str, os.PathLike] , _snake_case : bool = False , **_snake_case : str): """simple docstring""" self.save_config(save_directory=_snake_case , push_to_hub=_snake_case , **_snake_case) @property def lowerCamelCase ( self : Optional[Any]): """simple docstring""" return self._get_compatibles() @classmethod def lowerCamelCase ( cls : Optional[int]): """simple docstring""" UpperCAmelCase_ = list(set([cls.__name__] + cls._compatibles)) UpperCAmelCase_ = importlib.import_module(__name__.split('''.''')[0]) UpperCAmelCase_ = [ getattr(_snake_case , _snake_case) for c in compatible_classes_str if hasattr(_snake_case , _snake_case) ] return compatible_classes def A (__A : jnp.ndarray , __A : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(__A ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__A ) - x.ndim) ) , __A ) def A (__A : int , __A : Tuple=0.999 , __A : int=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(__A : Optional[int] ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 UpperCAmelCase_ = [] for i in range(__A ): UpperCAmelCase_ = i / num_diffusion_timesteps UpperCAmelCase_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__A ) / alpha_bar(__A ) , __A ) ) return jnp.array(__A , dtype=__A ) @flax.struct.dataclass class __snake_case : UpperCAmelCase__ : jnp.ndarray UpperCAmelCase__ : jnp.ndarray UpperCAmelCase__ : jnp.ndarray @classmethod def lowerCamelCase ( cls : Any , _snake_case : Dict): """simple docstring""" UpperCAmelCase_ = scheduler.config if config.trained_betas is not None: UpperCAmelCase_ = jnp.asarray(config.trained_betas , dtype=scheduler.dtype) elif config.beta_schedule == "linear": UpperCAmelCase_ = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase_ = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase_ = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype) else: raise NotImplementedError( F"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""") UpperCAmelCase_ = 1.0 - betas UpperCAmelCase_ = jnp.cumprod(_snake_case , axis=0) return cls( alphas=_snake_case , betas=_snake_case , alphas_cumprod=_snake_case , ) def A (__A : CommonSchedulerState , __A : jnp.ndarray , __A : jnp.ndarray , __A : jnp.ndarray ) -> Dict: """simple docstring""" UpperCAmelCase_ = state.alphas_cumprod UpperCAmelCase_ = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase_ = sqrt_alpha_prod.flatten() UpperCAmelCase_ = broadcast_to_shape_from_left(__A , original_samples.shape ) UpperCAmelCase_ = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase_ = sqrt_one_minus_alpha_prod.flatten() UpperCAmelCase_ = broadcast_to_shape_from_left(__A , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def A (__A : CommonSchedulerState , __A : jnp.ndarray , __A : jnp.ndarray , __A : jnp.ndarray ) -> Dict: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = get_sqrt_alpha_prod(__A , __A , __A , __A ) UpperCAmelCase_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def A (__A : CommonSchedulerState , __A : jnp.ndarray , __A : jnp.ndarray , __A : jnp.ndarray ) -> Any: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = get_sqrt_alpha_prod(__A , __A , __A , __A ) UpperCAmelCase_ = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
51
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCamelCase : Any = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class A__ ( unittest.TestCase ): _UpperCAmelCase :int = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCAmelCase :Any = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _UpperCAmelCase :Tuple = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _UpperCAmelCase :Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) UpperCamelCase : str = text_classifier("This is great !" ) self.assertEqual(nested_simplify(A_ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) UpperCamelCase : Optional[Any] = text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(A_ ) , [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}] ) UpperCamelCase : str = text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(A_ ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) UpperCamelCase : str = text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(A_ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) # Legacy behavior UpperCamelCase : str = text_classifier("This is great !" , return_all_scores=A_ ) self.assertEqual(nested_simplify(A_ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) UpperCamelCase : Any = text_classifier("This is great !" , return_all_scores=A_ ) self.assertEqual( nested_simplify(A_ ) , [[{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}]] ) UpperCamelCase : Optional[Any] = text_classifier(["This is great !", "Something else"] , return_all_scores=A_ ) self.assertEqual( nested_simplify(A_ ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) UpperCamelCase : Union[str, Any] = text_classifier(["This is great !", "Something else"] , return_all_scores=A_ ) self.assertEqual( nested_simplify(A_ ) , [ {"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_0", "score": 0.5_04}, ] , ) @require_torch def __UpperCamelCase( self ): '''simple docstring''' import torch UpperCamelCase : Tuple = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) UpperCamelCase : str = text_classifier("This is great !" ) self.assertEqual(nested_simplify(A_ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @require_tf def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) UpperCamelCase : Tuple = text_classifier("This is great !" ) self.assertEqual(nested_simplify(A_ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @slow @require_torch def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = pipeline("text-classification" ) UpperCamelCase : Any = text_classifier("This is great !" ) self.assertEqual(nested_simplify(A_ ) , [{"label": "POSITIVE", "score": 1.0}] ) UpperCamelCase : Dict = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(A_ ) , [{"label": "NEGATIVE", "score": 1.0}] ) UpperCamelCase : List[Any] = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(A_ ) , [{"label": "POSITIVE", "score": 0.9_88}] ) @slow @require_tf def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = pipeline("text-classification" , framework="tf" ) UpperCamelCase : Dict = text_classifier("This is great !" ) self.assertEqual(nested_simplify(A_ ) , [{"label": "POSITIVE", "score": 1.0}] ) UpperCamelCase : Dict = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(A_ ) , [{"label": "NEGATIVE", "score": 1.0}] ) UpperCamelCase : Optional[int] = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(A_ ) , [{"label": "POSITIVE", "score": 0.9_88}] ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = TextClassificationPipeline(model=A_ , tokenizer=A_ ) return text_classifier, ["HuggingFace is in", "This is another test"] def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 UpperCamelCase : Optional[int] = "HuggingFace is in" UpperCamelCase : List[Any] = text_classifier(A_ ) self.assertEqual(nested_simplify(A_ ) , [{"label": ANY(A_ ), "score": ANY(A_ )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) UpperCamelCase : Union[str, Any] = ["HuggingFace is in ", "Paris is in France"] UpperCamelCase : Optional[int] = text_classifier(A_ ) self.assertEqual( nested_simplify(A_ ) , [{"label": ANY(A_ ), "score": ANY(A_ )}, {"label": ANY(A_ ), "score": ANY(A_ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format UpperCamelCase : List[str] = text_classifier(A_ , top_k=A_ ) UpperCamelCase : int = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(A_ ) , [[{"label": ANY(A_ ), "score": ANY(A_ )}] * N, [{"label": ANY(A_ ), "score": ANY(A_ )}] * N] , ) UpperCamelCase : Optional[int] = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} UpperCamelCase : List[Any] = text_classifier(A_ ) self.assertEqual( nested_simplify(A_ ) , {"label": ANY(A_ ), "score": ANY(A_ )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. UpperCamelCase : int = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(A_ ): text_classifier(A_ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility UpperCamelCase : Any = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(A_ ) , [{"label": ANY(A_ ), "score": ANY(A_ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
52
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging a__ : Any =logging.get_logger(__name__) a__ : Optional[Any] ={ '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict ="gpt_neo" SCREAMING_SNAKE_CASE_ : Optional[int] =["past_key_values"] SCREAMING_SNAKE_CASE_ : List[Any] ={"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Union[str, Any] , __A : Union[str, Any]=5_0_2_5_7 , __A : Any=2_0_4_8 , __A : Optional[Any]=2_0_4_8 , __A : Any=2_4 , __A : Union[str, Any]=[[["global", "local"], 1_2]] , __A : str=1_6 , __A : Optional[int]=None , __A : Union[str, Any]=2_5_6 , __A : Any="gelu_new" , __A : Dict=0.0 , __A : Optional[int]=0.0 , __A : int=0.0 , __A : List[str]=0.1 , __A : Any=1e-5 , __A : int=0.02 , __A : List[str]=True , __A : Tuple=5_0_2_5_6 , __A : Optional[Any]=5_0_2_5_6 , **__A : Optional[Any] , ): __UpperCamelCase = vocab_size __UpperCamelCase = max_position_embeddings __UpperCamelCase = hidden_size __UpperCamelCase = num_layers __UpperCamelCase = num_heads __UpperCamelCase = intermediate_size __UpperCamelCase = window_size __UpperCamelCase = activation_function __UpperCamelCase = resid_dropout __UpperCamelCase = embed_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = classifier_dropout __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_range __UpperCamelCase = use_cache __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id __UpperCamelCase = attention_types __UpperCamelCase = self.expand_attention_types_params(__A ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=__A , eos_token_id=__A , **__A ) @staticmethod def _lowerCamelCase ( __A : Tuple ): __UpperCamelCase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowercase__ ( __lowercase : Tuple , __lowercase : Any , __lowercase : Union[str, Any] , __lowercase : List[str] ) -> Any: """simple docstring""" import torch __UpperCamelCase = input.size() __UpperCamelCase = len(__lowercase ) __UpperCamelCase = shape[dimension] __UpperCamelCase = torch.arange(0 , __lowercase , __lowercase ) __UpperCamelCase = torch.div(sizedim - size , __lowercase , rounding_mode='floor' ) + 1 __UpperCamelCase = torch.arange(__lowercase ) + low_indices[:min_length][:, None] __UpperCamelCase = [slice(__lowercase )] * rank __UpperCamelCase = indices __UpperCamelCase = input[s] __UpperCamelCase = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__lowercase ) def lowercase__ ( __lowercase : Union[str, Any] , __lowercase : Optional[int] ) -> Optional[int]: """simple docstring""" import torch __UpperCamelCase = torch.arange(1 , __lowercase ) __UpperCamelCase = torch.remainder(__lowercase , __lowercase ) __UpperCamelCase = remainders == 0 __UpperCamelCase = candidates[divisor_indices] __UpperCamelCase = torch.max(__lowercase ) return largest_divisor, torch.div(__lowercase , __lowercase , rounding_mode='floor' ) class snake_case ( __lowerCamelCase ): """simple docstring""" @property def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(__A , direction='inputs' ) __UpperCamelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def _lowerCamelCase ( self : int ): return self._config.num_heads def _lowerCamelCase ( self : List[str] , __A : PreTrainedTokenizer , __A : int = -1 , __A : int = -1 , __A : bool = False , __A : Optional[TensorType] = None , ): __UpperCamelCase = super(__A , self ).generate_dummy_inputs( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) # We need to order the input in the way they appears in the forward() __UpperCamelCase = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __UpperCamelCase , __UpperCamelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values __UpperCamelCase = seqlen + 2 __UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] __UpperCamelCase = common_inputs['attention_mask'] if self.use_past: __UpperCamelCase = ordered_inputs['attention_mask'].dtype __UpperCamelCase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__A , __A , dtype=__A )] , dim=1 ) return ordered_inputs @property def _lowerCamelCase ( self : Dict ): return 1_3
53
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig a__ : Tuple = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring a__ : Dict = '''UperNetConfig''' class UpperCamelCase_ ( nn.Module): """simple docstring""" def __init__( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[int, Tuple[int, int]] , UpperCAmelCase__ : Union[int, Tuple[int, int], str] = 0 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Union[int, Tuple[int, int]] = 1 , ) -> None: super().__init__() __SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase__ , out_channels=UpperCAmelCase__ , kernel_size=UpperCAmelCase__ , padding=UpperCAmelCase__ , bias=UpperCAmelCase__ , dilation=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = nn.BatchNormad(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = nn.ReLU() def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : torch.Tensor ) -> torch.Tensor: __SCREAMING_SNAKE_CASE = self.conv(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.batch_norm(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase__ ) return output class UpperCamelCase_ ( nn.Module): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> None: super().__init__() __SCREAMING_SNAKE_CASE = [ nn.AdaptiveAvgPoolad(UpperCAmelCase__ ), UperNetConvModule(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(UpperCAmelCase__ ) , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : torch.Tensor ) -> torch.Tensor: __SCREAMING_SNAKE_CASE = input for layer in self.layers: __SCREAMING_SNAKE_CASE = layer(UpperCAmelCase__ ) return hidden_state class UpperCamelCase_ ( nn.Module): """simple docstring""" def __init__( self : Any , UpperCAmelCase__ : Tuple[int, ...] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool ) -> None: super().__init__() __SCREAMING_SNAKE_CASE = pool_scales __SCREAMING_SNAKE_CASE = align_corners __SCREAMING_SNAKE_CASE = in_channels __SCREAMING_SNAKE_CASE = channels __SCREAMING_SNAKE_CASE = [] for i, pool_scale in enumerate(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = UperNetPyramidPoolingBlock(pool_scale=UpperCAmelCase__ , in_channels=UpperCAmelCase__ , channels=UpperCAmelCase__ ) self.blocks.append(UpperCAmelCase__ ) self.add_module(str(UpperCAmelCase__ ) , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : torch.Tensor ) -> List[torch.Tensor]: __SCREAMING_SNAKE_CASE = [] for ppm in self.blocks: __SCREAMING_SNAKE_CASE = ppm(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = nn.functional.interpolate( UpperCAmelCase__ , size=x.size()[2:] , mode="bilinear" , align_corners=self.align_corners ) ppm_outs.append(UpperCAmelCase__ ) return ppm_outs class UpperCamelCase_ ( nn.Module): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] ) -> Optional[Any]: super().__init__() __SCREAMING_SNAKE_CASE = config __SCREAMING_SNAKE_CASE = config.pool_scales # e.g. (1, 2, 3, 6) __SCREAMING_SNAKE_CASE = in_channels __SCREAMING_SNAKE_CASE = config.hidden_size __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module __SCREAMING_SNAKE_CASE = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) __SCREAMING_SNAKE_CASE = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module __SCREAMING_SNAKE_CASE = nn.ModuleList() __SCREAMING_SNAKE_CASE = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __SCREAMING_SNAKE_CASE = UperNetConvModule(UpperCAmelCase__ , self.channels , kernel_size=1 ) __SCREAMING_SNAKE_CASE = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(UpperCAmelCase__ ) self.fpn_convs.append(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: self.apply(self._init_weights ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : str ) -> int: if isinstance(UpperCAmelCase__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : Any ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = inputs[-1] __SCREAMING_SNAKE_CASE = [x] psp_outs.extend(self.psp_modules(UpperCAmelCase__ ) ) __SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase__ , dim=1 ) __SCREAMING_SNAKE_CASE = self.bottleneck(UpperCAmelCase__ ) return output def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : torch.Tensor ) -> torch.Tensor: # build laterals __SCREAMING_SNAKE_CASE = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(UpperCAmelCase__ ) ) # build top-down path __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __SCREAMING_SNAKE_CASE = laterals[i - 1].shape[2:] __SCREAMING_SNAKE_CASE = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=UpperCAmelCase__ , mode="bilinear" , align_corners=self.align_corners ) # build outputs __SCREAMING_SNAKE_CASE = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __SCREAMING_SNAKE_CASE = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="bilinear" , align_corners=self.align_corners ) __SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase__ , dim=1 ) __SCREAMING_SNAKE_CASE = self.fpn_bottleneck(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.classifier(UpperCAmelCase__ ) return output class UpperCamelCase_ ( nn.Module): """simple docstring""" def __init__( self : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() __SCREAMING_SNAKE_CASE = config __SCREAMING_SNAKE_CASE = config.auxiliary_in_channels __SCREAMING_SNAKE_CASE = config.auxiliary_channels __SCREAMING_SNAKE_CASE = config.auxiliary_num_convs __SCREAMING_SNAKE_CASE = config.auxiliary_concat_input __SCREAMING_SNAKE_CASE = in_index __SCREAMING_SNAKE_CASE = (kernel_size // 2) * dilation __SCREAMING_SNAKE_CASE = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=UpperCAmelCase__ , padding=UpperCAmelCase__ , dilation=UpperCAmelCase__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=UpperCAmelCase__ , padding=UpperCAmelCase__ , dilation=UpperCAmelCase__ ) ) if self.num_convs == 0: __SCREAMING_SNAKE_CASE = nn.Identity() else: __SCREAMING_SNAKE_CASE = nn.Sequential(*UpperCAmelCase__ ) if self.concat_input: __SCREAMING_SNAKE_CASE = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=UpperCAmelCase__ , padding=kernel_size // 2 ) __SCREAMING_SNAKE_CASE = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: self.apply(self._init_weights ) def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : int ) -> Union[str, Any]: if isinstance(UpperCAmelCase__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : torch.Tensor ) -> torch.Tensor: # just take the relevant feature maps __SCREAMING_SNAKE_CASE = encoder_hidden_states[self.in_index] __SCREAMING_SNAKE_CASE = self.convs(UpperCAmelCase__ ) if self.concat_input: __SCREAMING_SNAKE_CASE = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) __SCREAMING_SNAKE_CASE = self.classifier(UpperCAmelCase__ ) return output class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Optional[Any] = UperNetConfig snake_case__ : Dict = "pixel_values" snake_case__ : Optional[int] = True def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : str ) -> str: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase_ ( self : int ) -> str: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict=False ) -> Optional[Any]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = value a__ : Any = r''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Optional[Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , UpperCamelCase , ) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase__ : Tuple ) -> Tuple: super().__init__(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) __SCREAMING_SNAKE_CASE = UperNetHead(UpperCAmelCase__ , in_channels=self.backbone.channels ) __SCREAMING_SNAKE_CASE = UperNetFCNHead(UpperCAmelCase__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length" ) ) @replace_return_docstrings(output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Optional[torch.Tensor] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[torch.Tensor] = None , UpperCAmelCase__ : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: __SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE = output_attentions if output_attentions is not None else self.config.output_attentions __SCREAMING_SNAKE_CASE = self.backbone.forward_with_filtered_kwargs( UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , output_attentions=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = outputs.feature_maps __SCREAMING_SNAKE_CASE = self.decode_head(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = nn.functional.interpolate(UpperCAmelCase__ , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = None if self.auxiliary_head is not None: __SCREAMING_SNAKE_CASE = self.auxiliary_head(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = nn.functional.interpolate( UpperCAmelCase__ , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one" ) else: # compute weighted loss __SCREAMING_SNAKE_CASE = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) __SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __SCREAMING_SNAKE_CASE = (logits,) + outputs[1:] else: __SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=UpperCAmelCase__ , logits=UpperCAmelCase__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
54
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
0
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def __snake_case ( UpperCAmelCase_ : dict , UpperCAmelCase_ : str , UpperCAmelCase_ : set , UpperCAmelCase_ : set , UpperCAmelCase_ : dict , UpperCAmelCase_ : dict , UpperCAmelCase_ : PriorityQueue , UpperCAmelCase_ : dict , UpperCAmelCase_ : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCamelCase_ = cst_fwd.get(UpperCAmelCase_ , np.inf ) lowerCamelCase_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCamelCase_ = new_cost_f lowerCamelCase_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCamelCase_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : dict , UpperCAmelCase_ : dict ): lowerCamelCase_ = -1 lowerCamelCase_ = set() lowerCamelCase_ = set() lowerCamelCase_ = {source: 0} lowerCamelCase_ = {destination: 0} lowerCamelCase_ = {source: None} lowerCamelCase_ = {destination: None} lowerCamelCase_ = PriorityQueue() lowerCamelCase_ = PriorityQueue() lowerCamelCase_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCamelCase_ ,lowerCamelCase_ = queue_forward.get() visited_forward.add(UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ = queue_backward.get() visited_backward.add(UpperCAmelCase_ ) lowerCamelCase_ = pass_and_relaxation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) lowerCamelCase_ = pass_and_relaxation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCamelCase_ = shortest_distance return shortest_path_distance a_ : List[Any] = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } a_ : Optional[int] = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
55
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_lowerCamelCase ) class a ( _lowerCamelCase ): snake_case_ = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"audio": Audio()} ) snake_case_ = Features({"transcription": Value("string" )} ) snake_case_ = "audio" snake_case_ = "transcription" def A_ ( self : Any , lowercase_ : Optional[int] ): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features." ) if not isinstance(features[self.audio_column] , lowercase_ ): raise ValueError(F"Column {self.audio_column} is not an Audio type." ) snake_case_ = copy.deepcopy(self ) snake_case_ = self.input_schema.copy() snake_case_ = features[self.audio_column] snake_case_ = input_schema return task_template @property def A_ ( self : Any ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
56
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A : Tuple = 2_5_6_0_4_7 A : Dict = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class _UpperCamelCase ( lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict =NllbTokenizer __UpperCAmelCase : str =NllbTokenizerFast __UpperCAmelCase : str =True __UpperCAmelCase : int =True __UpperCAmelCase : List[Any] ={} def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = NllbTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = NllbTokenizer(__a , keep_accents=__a ) __lowerCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def snake_case ( self ): __lowerCAmelCase = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__a , **__a ) __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__a ) __lowerCAmelCase = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) __lowerCAmelCase = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__a ) __lowerCAmelCase = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=True __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__a , legacy_format=__a ) __lowerCAmelCase = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__a ) __lowerCAmelCase = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=False __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = tokenizer_r.save_pretrained(__a , legacy_format=__a ) __lowerCAmelCase = tokenizer_p.save_pretrained(__a ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCAmelCase = tokenizer_r.from_pretrained(__a ) __lowerCAmelCase = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) @require_torch def snake_case ( self ): if not self.test_seqaseq: return __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Longer text that will definitely require truncation. __lowerCAmelCase = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] __lowerCAmelCase = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: __lowerCAmelCase = tokenizer.prepare_seqaseq_batch( src_texts=__a , tgt_texts=__a , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __lowerCAmelCase = tokenizer.prepare_seqaseq_batch( __a , tgt_texts=__a , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __lowerCAmelCase = tokenizer.prepare_seqaseq_batch( src_texts=__a , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , __a ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def snake_case ( self ): pass def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowerCAmelCase = [AddedToken("<special>" , lstrip=__a )] __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __a , additional_special_tokens=__a , **__a ) __lowerCAmelCase = tokenizer_r.encode("Hey this is a <special> token" ) __lowerCAmelCase = tokenizer_r.encode("<special>" , add_special_tokens=__a )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __a , additional_special_tokens=__a , **__a , ) __lowerCAmelCase = self.tokenizer_class.from_pretrained( __a , additional_special_tokens=__a , **__a ) __lowerCAmelCase = tokenizer_p.encode("Hey this is a <special> token" ) __lowerCAmelCase = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Tuple ="""facebook/nllb-200-distilled-600M""" __UpperCAmelCase : Any =[ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] __UpperCAmelCase : List[Any] =[ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] __UpperCAmelCase : str =[ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def snake_case ( cls ): __lowerCAmelCase = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) __lowerCAmelCase = 1 return cls def snake_case ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 25_60_57 ) def snake_case ( self ): __lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a ) def snake_case ( self ): self.assertIn(__a , self.tokenizer.all_special_ids ) # fmt: off __lowerCAmelCase = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on __lowerCAmelCase = self.tokenizer.decode(__a , skip_special_tokens=__a ) __lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def snake_case ( self ): __lowerCAmelCase = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , __a ) __lowerCAmelCase = 10 __lowerCAmelCase = self.tokenizer(__a , max_length=__a , truncation=__a ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __a ) self.assertEqual(len(__a ) , __a ) def snake_case ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_62_03, 3] ) def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a ) __lowerCAmelCase = NllbTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __a ) @require_torch def snake_case ( self ): __lowerCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__a , truncation=__a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __lowerCAmelCase = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(__a , __a ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __a ) self.assertEqual(__a , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def snake_case ( self ): __lowerCAmelCase = self.tokenizer(self.src_text , padding=__a , truncation=__a , max_length=3 , return_tensors="pt" ) __lowerCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=__a , truncation=__a , max_length=10 , return_tensors="pt" ) __lowerCAmelCase = targets["input_ids"] __lowerCAmelCase = shift_tokens_right( __a , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case ( self ): __lowerCAmelCase = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(__a ) , { # A, test, EOS, en_XX "input_ids": [[25_60_47, 70, 73_56, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_60_57, } , ) @require_torch def snake_case ( self ): __lowerCAmelCase = True __lowerCAmelCase = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) __lowerCAmelCase = False __lowerCAmelCase = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
57
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''roberta-prelayernorm''' def __init__( self , A=5_0265 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.02 , A=1e-12 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , **A , ) -> Union[str, Any]: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = classifier_dropout class a_ ( snake_case_ ): '''simple docstring''' @property def snake_case_( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
58
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class UpperCAmelCase ( A_ ): A__ : int = "distilbert" A__ : List[str] = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__(self : str , snake_case__ : Union[str, Any]=3_05_22 , snake_case__ : int=5_12 , snake_case__ : Optional[int]=False , snake_case__ : Optional[int]=6 , snake_case__ : Any=12 , snake_case__ : List[Any]=7_68 , snake_case__ : int=4 * 7_68 , snake_case__ : int=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : str="gelu" , snake_case__ : Any=0.02 , snake_case__ : Optional[Any]=0.1 , snake_case__ : List[Any]=0.2 , snake_case__ : Dict=0 , **snake_case__ : List[str] , ) -> Optional[int]: '''simple docstring''' snake_case : Any = vocab_size snake_case : int = max_position_embeddings snake_case : Optional[Any] = sinusoidal_pos_embds snake_case : List[str] = n_layers snake_case : List[Any] = n_heads snake_case : str = dim snake_case : Tuple = hidden_dim snake_case : Union[str, Any] = dropout snake_case : List[str] = attention_dropout snake_case : Any = activation snake_case : int = initializer_range snake_case : List[Any] = qa_dropout snake_case : str = seq_classif_dropout super().__init__(**snake_case__ , pad_token_id=snake_case__ ) class UpperCAmelCase ( A_ ): @property def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : str = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
59
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = StableDiffusionXLImgaImgPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ ( self : int ): torch.manual_seed(0 ) lowerCAmelCase : str = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) lowerCAmelCase : Optional[Any] = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) lowerCAmelCase : Dict = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=3_2 , ) lowerCAmelCase : int = CLIPTextModel(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=UpperCamelCase_ ) lowerCAmelCase : str = CLIPTextModelWithProjection(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int=0 ): lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = image / 2 + 0.5 if str(UpperCamelCase_ ).startswith('''mps''' ): lowerCAmelCase : Any = torch.manual_seed(UpperCamelCase_ ) else: lowerCAmelCase : str = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[Any] = self.get_dummy_components() lowerCAmelCase : Optional[int] = StableDiffusionXLImgaImgPipeline(**UpperCamelCase_ ) lowerCAmelCase : Tuple = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : List[str] = self.get_dummy_inputs(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = sd_pipe(**UpperCamelCase_ ).images lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase : Optional[Any] = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : int ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self : int ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self : str ): pass def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = self.get_dummy_components() lowerCAmelCase : int = StableDiffusionXLImgaImgPipeline(**UpperCamelCase_ ) lowerCAmelCase : int = sd_pipe.to(UpperCamelCase_ ) lowerCAmelCase : Any = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) # forward without prompt embeds lowerCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) lowerCAmelCase : Tuple = 3 * ['''this is a negative prompt'''] lowerCAmelCase : Dict = negative_prompt lowerCAmelCase : Tuple = 3 * [inputs['''prompt''']] lowerCAmelCase : Union[str, Any] = sd_pipe(**UpperCamelCase_ ) lowerCAmelCase : str = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase_ ) lowerCAmelCase : int = 3 * ['''this is a negative prompt'''] lowerCAmelCase : Optional[int] = 3 * [inputs.pop('''prompt''' )] ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : Tuple = sd_pipe.encode_prompt(UpperCamelCase_ , negative_prompt=UpperCamelCase_ ) lowerCAmelCase : Any = sd_pipe( **UpperCamelCase_ , prompt_embeds=UpperCamelCase_ , negative_prompt_embeds=UpperCamelCase_ , pooled_prompt_embeds=UpperCamelCase_ , negative_pooled_prompt_embeds=UpperCamelCase_ , ) lowerCAmelCase : str = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any]="cpu" , UpperCamelCase_ : Optional[int]=torch.floataa , UpperCamelCase_ : int=0 ): lowerCAmelCase : Union[str, Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = np.random.RandomState(UpperCamelCase_ ).standard_normal((1, 4, 6_4, 6_4) ) lowerCAmelCase : Dict = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) lowerCAmelCase : str = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : List[str] = self.get_inputs(UpperCamelCase_ ) lowerCAmelCase : Any = pipe(**UpperCamelCase_ ).images lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase : Dict = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
60
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
0
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _a = '.' if __name__ == "__main__": _a = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') _a = [] _a = [] with open(doctest_file_path) as fp: for line in fp: _a = line.strip() _a = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _a = '\n'.join(non_existent_paths) raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
61
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
import math class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_=0 ) -> int: # a graph with Node 0,1,...,N-1 __UpperCamelCase =n __UpperCamelCase =[ [math.inf for j in range(0 , A_ )] for i in range(0 , A_ ) ] # adjacency matrix for weight __UpperCamelCase =[ [math.inf for j in range(0 , A_ )] for i in range(0 , A_ ) ] # dp[i][j] stores minimum distance from i to j def _a ( self , A_ , A_ , A_ ) -> int: __UpperCamelCase =w def _a ( self ) -> List[str]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __UpperCamelCase =min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _a ( self , A_ , A_ ) -> List[Any]: return self.dp[u][v] if __name__ == "__main__": _A = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
62
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase_ : List[Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } lowerCAmelCase_ : str = {'facebook/blenderbot_small-90M': 5_12} def _lowerCamelCase ( lowercase : List[Any] ) -> List[str]: _a = set() _a = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _a = char _a = set(lowercase ) return pairs class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a =['input_ids', 'attention_mask'] def __init__( self : List[Any] , __a : List[Any] , __a : List[Any] , __a : Optional[int]="__start__" , __a : Union[str, Any]="__end__" , __a : Any="__unk__" , __a : Union[str, Any]="__null__" , **__a : Tuple , ): super().__init__(unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , **__a ) with open(__a , encoding="utf-8" ) as vocab_handle: _a = json.load(__a ) _a = {v: k for k, v in self.encoder.items()} with open(__a , encoding="utf-8" ) as merges_handle: _a = merges_handle.read().split("\n" )[1:-1] _a = [tuple(merge.split() ) for merge in merges] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = {} @property def UpperCamelCase__ ( self : Any ): return len(self.encoder ) def UpperCamelCase__ ( self : Dict ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self : Tuple , __a : str ): if token in self.cache: return self.cache[token] _a = re.sub("([.,!?()])" , r" \1" , __a ) _a = re.sub("(')" , r" \1 " , __a ) _a = re.sub(r"\s{2,}" , " " , __a ) if "\n" in token: _a = token.replace("\n" , " __newln__" ) _a = token.split(" " ) _a = [] for token in tokens: if not len(__a ): continue _a = token.lower() _a = tuple(__a ) _a = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) _a = get_pairs(__a ) if not pairs: words.append(__a ) continue while True: _a = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _a , _a = bigram _a = [] _a = 0 while i < len(__a ): try: _a = word.index(__a , __a ) new_word.extend(word[i:j] ) _a = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _a = tuple(__a ) _a = new_word if len(__a ) == 1: break else: _a = get_pairs(__a ) _a = "@@ ".join(__a ) _a = word[:-4] _a = word words.append(__a ) return " ".join(__a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : str ): _a = [] _a = re.findall(r"\S+\n?" , __a ) for token in words: split_tokens.extend(list(self.bpe(__a ).split(" " ) ) ) return split_tokens def UpperCamelCase__ ( self : Optional[int] , __a : str ): _a = token.lower() return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self : Optional[int] , __a : int ): return self.decoder.get(__a , self.unk_token ) def UpperCamelCase__ ( self : Tuple , __a : List[str] ): _a = " ".join(__a ).replace("@@ " , "" ).strip() return out_string def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : Optional[str] = None ): if not os.path.isdir(__a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + "\n" ) _a = 0 with open(__a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) _a = token_index writer.write(" ".join(__a ) + "\n" ) index += 1 return vocab_file, merge_file
63
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
0
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = RoCBertTokenizer lowercase__ = None lowercase__ = False lowercase__ = True lowercase__ = filter_non_english def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' super().setUp() _snake_case : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] _snake_case : Tuple = {} _snake_case : Any = {} for i, value in enumerate(a_ ): _snake_case : List[str] = i _snake_case : Optional[int] = i _snake_case : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) _snake_case : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""word_shape_file"""] ) _snake_case : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file, """w""", encoding="""utf-8""" ) as word_shape_writer: json.dump(a_, a_, ensure_ascii=a_ ) with open(self.word_pronunciation_file, """w""", encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(a_, a_, ensure_ascii=a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file ) _snake_case : str = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(a_, ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(a_ ), [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(a_ ), [5, 6, 2, 5, 7, 8] ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Any = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ), ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Tuple = RoCBertBasicTokenizer(do_lower_case=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ), ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ), ["""hello"""] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = RoCBertBasicTokenizer(do_lower_case=a_, strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ), ["""h\u00E9llo"""] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Any = RoCBertBasicTokenizer(do_lower_case=a_, strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ), ["""hello"""] ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ), ["""hello"""] ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Optional[int] = RoCBertBasicTokenizer(do_lower_case=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ), ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : str = RoCBertBasicTokenizer(do_lower_case=a_, strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=a_, strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ), ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : str = RoCBertBasicTokenizer(do_lower_case=a_, never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ), ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _snake_case : Optional[Any] = {} for i, token in enumerate(a_ ): _snake_case : Dict = i _snake_case : Optional[Any] = RoCBertWordpieceTokenizer(vocab=a_, unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ), [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ), ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ), ["""[UNK]""", """runn""", """##ing"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(a_ ) for t in ["""Test""", """\xad""", """test"""]], [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: _snake_case : Optional[int] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(a_ ) for t in ["""Test""", """\xad""", """test"""]], [["""[UNK]"""], [], ["""[UNK]"""]] ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : List[Any] = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _snake_case : List[Any] = tokenizer_r.encode_plus( a_, return_attention_mask=a_, return_token_type_ids=a_, return_offsets_mapping=a_, add_special_tokens=a_, ) _snake_case : Optional[Any] = tokenizer_r.do_lower_case if hasattr(a_, """do_lower_case""" ) else False _snake_case : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results], tokens["""offset_mapping"""] ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Union[str, Any] = ["""的""", """人""", """有"""] _snake_case : Any = """""".join(a_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : int = True _snake_case : Tuple = self.tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : Optional[Any] = tokenizer_p.encode(a_, add_special_tokens=a_ ) _snake_case : int = tokenizer_r.encode(a_, add_special_tokens=a_ ) _snake_case : Optional[Any] = tokenizer_r.convert_ids_to_tokens(a_ ) _snake_case : Optional[int] = tokenizer_p.convert_ids_to_tokens(a_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(a_, a_ ) self.assertListEqual(a_, a_ ) _snake_case : List[str] = False _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : str = self.tokenizer_class.from_pretrained(a_, **a_ ) _snake_case : Optional[Any] = tokenizer_r.encode(a_, add_special_tokens=a_ ) _snake_case : Any = tokenizer_p.encode(a_, add_special_tokens=a_ ) _snake_case : Optional[int] = tokenizer_r.convert_ids_to_tokens(a_ ) _snake_case : Tuple = tokenizer_p.convert_ids_to_tokens(a_ ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case : List[Any] = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(a_ ) ] self.assertListEqual(a_, a_ ) self.assertListEqual(a_, a_ ) @slow def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file ) _snake_case : Tuple = tokenizer.encode("""你好""", add_special_tokens=a_ ) _snake_case : Optional[int] = tokenizer.encode("""你是谁""", add_special_tokens=a_ ) _snake_case : str = tokenizer.build_inputs_with_special_tokens(a_ ) _snake_case : int = tokenizer.build_inputs_with_special_tokens(a_, a_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : List[Any] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : int = """你好,你是谁""" _snake_case : List[str] = tokenizer.tokenize(a_ ) _snake_case : List[str] = tokenizer.convert_tokens_to_ids(a_ ) _snake_case : List[Any] = tokenizer.convert_tokens_to_shape_ids(a_ ) _snake_case : Optional[Any] = tokenizer.convert_tokens_to_pronunciation_ids(a_ ) _snake_case : Dict = tokenizer.prepare_for_model( a_, a_, a_, add_special_tokens=a_ ) _snake_case : Dict = tokenizer.encode_plus(a_, add_special_tokens=a_ ) self.assertEqual(a_, a_ )
64
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase__ = [0, 2_5, 5_0] UpperCamelCase__ = [2_5, 5_0, 7_5] UpperCamelCase__ = fuzz.membership.trimf(X, abca) UpperCamelCase__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase__ = np.ones(7_5) UpperCamelCase__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
65
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""", [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ], ) def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Union[str, Any] = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""", """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""", """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""", """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) snake_case_ :Any = DatasetInfosDict.from_directory(_lowercase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""", [ DatasetInfo(), DatasetInfo( description="""foo""", features=Features({"""a""": Value("""int32""" )} ), builder_name="""builder""", config_name="""config""", version="""1.0.0""", splits=[{"""name""": """train"""}], download_size=42, ), ], ) def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :int = str(_lowercase ) dataset_info.write_to_directory(_lowercase ) snake_case_ :List[Any] = DatasetInfo.from_directory(_lowercase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_lowercase, """dataset_info.json""" ) ) def A_ ( ): '''simple docstring''' snake_case_ :int = DatasetInfo( description="""foo""", citation="""bar""", homepage="""https://foo.bar""", license="""CC0""", features=Features({"""a""": Value("""int32""" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="""builder""", config_name="""config""", version="""1.0.0""", splits=[{"""name""": """train""", """num_examples""": 42}], download_checksums={}, download_size=1337, post_processing_size=442, dataset_size=1234, size_in_bytes=1337 + 442 + 1234, ) snake_case_ :List[Any] = dataset_info._to_yaml_dict() assert sorted(_lowercase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) snake_case_ :Any = yaml.safe_dump(_lowercase ) snake_case_ :Optional[Any] = yaml.safe_load(_lowercase ) assert dataset_info_yaml_dict == reloaded def A_ ( ): '''simple docstring''' snake_case_ :int = DatasetInfo() snake_case_ :Optional[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""", [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""", features=Features({"""a""": Value("""int32""" )} ), builder_name="""builder""", config_name="""config""", version="""1.0.0""", splits=[{"""name""": """train"""}], download_size=42, ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=1337 ), } ), ], ) def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :str = str(_lowercase ) dataset_infos_dict.write_to_directory(_lowercase ) snake_case_ :Dict = DatasetInfosDict.from_directory(_lowercase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ :Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ :List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_lowercase, """README.md""" ) )
66
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __UpperCAmelCase =logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): def __init__( self : List[Any] , a : int , a : int , a : float , **a : str ): """simple docstring""" __lowerCamelCase = feature_size __lowerCamelCase = sampling_rate __lowerCamelCase = padding_value __lowerCamelCase = kwargs.pop('''padding_side''' , '''right''' ) __lowerCamelCase = kwargs.pop('''return_attention_mask''' , a ) super().__init__(**a ) def SCREAMING_SNAKE_CASE__ ( self : str , a : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , a : Union[bool, str, PaddingStrategy] = True , a : Optional[int] = None , a : bool = False , a : Optional[int] = None , a : Optional[bool] = None , a : Optional[Union[str, TensorType]] = None , ): """simple docstring""" if isinstance(a , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __lowerCamelCase = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f""" to this method that includes {self.model_input_names[0]}, but you provided""" f""" {list(processed_features.keys() )}""" ) __lowerCamelCase = processed_features[self.model_input_names[0]] __lowerCamelCase = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(a ) == 0: if return_attention_mask: __lowerCamelCase = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __lowerCamelCase = required_input[0] if isinstance(a , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __lowerCamelCase = 0 while len(required_input[index] ) == 0: index += 1 if index < len(a ): __lowerCamelCase = required_input[index][0] if return_tensors is None: if is_tf_tensor(a ): __lowerCamelCase = '''tf''' elif is_torch_tensor(a ): __lowerCamelCase = '''pt''' elif isinstance(a , (int, float, list, tuple, np.ndarray) ): __lowerCamelCase = '''np''' else: raise ValueError( f"""type of {first_element} unknown: {type(a )}. """ '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __lowerCamelCase = to_numpy(a ) else: __lowerCamelCase = [to_numpy(a ) for v in value] # Convert padding_strategy in PaddingStrategy __lowerCamelCase = self._get_padding_strategies(padding=a , max_length=a ) __lowerCamelCase = processed_features[self.model_input_names[0]] __lowerCamelCase = len(a ) if not all(len(a ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) __lowerCamelCase = [] for i in range(a ): __lowerCamelCase = {k: v[i] for k, v in processed_features.items()} # truncation __lowerCamelCase = self._truncate( a , max_length=a , pad_to_multiple_of=a , truncation=a , ) truncated_inputs.append(a ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __lowerCamelCase = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __lowerCamelCase = PaddingStrategy.MAX_LENGTH __lowerCamelCase = {} for i in range(a ): # padding __lowerCamelCase = self._pad( truncated_inputs[i] , max_length=a , padding_strategy=a , pad_to_multiple_of=a , return_attention_mask=a , ) for key, value in outputs.items(): if key not in batch_outputs: __lowerCamelCase = [] if value.dtype is np.dtype(np.floataa ): __lowerCamelCase = value.astype(np.floataa ) batch_outputs[key].append(a ) return BatchFeature(a , tensor_type=a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Union[Dict[str, np.ndarray], BatchFeature] , a : Optional[int] = None , a : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , a : Optional[int] = None , a : Optional[bool] = None , ): """simple docstring""" __lowerCamelCase = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __lowerCamelCase = len(a ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowerCamelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowerCamelCase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(a ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __lowerCamelCase = np.ones(len(a ) , dtype=np.intaa ) if needs_to_be_padded: __lowerCamelCase = max_length - len(a ) if self.padding_side == "right": if return_attention_mask: __lowerCamelCase = np.pad( processed_features['''attention_mask'''] , (0, difference) ) __lowerCamelCase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __lowerCamelCase = np.pad( a , a , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __lowerCamelCase = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) __lowerCamelCase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __lowerCamelCase = np.pad( a , a , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def SCREAMING_SNAKE_CASE__ ( self : int , a : Union[Dict[str, np.ndarray], BatchFeature] , a : Optional[int] = None , a : Optional[int] = None , a : Optional[bool] = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) __lowerCamelCase = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowerCamelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowerCamelCase = len(a ) > max_length if needs_to_be_truncated: __lowerCamelCase = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __lowerCamelCase = processed_features['''attention_mask'''][:max_length] return processed_features def SCREAMING_SNAKE_CASE__ ( self : Any , a : Any=False , a : Any=None ): """simple docstring""" if padding is not False: if padding is True: __lowerCamelCase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(a , a ): __lowerCamelCase = PaddingStrategy(a ) elif isinstance(a , a ): __lowerCamelCase = padding else: __lowerCamelCase = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
67
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
from math import ceil def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> Tuple: '''simple docstring''' A__ = list(range(0 , SCREAMING_SNAKE_CASE_ ) ) A__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check A__ = [] for i in device_map_blocks: if device_map_blocks.count(SCREAMING_SNAKE_CASE_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(SCREAMING_SNAKE_CASE_ ) # Missing blocks A__ = [i for i in blocks if i not in device_map_blocks] A__ = [i for i in device_map_blocks if i not in blocks] if len(SCREAMING_SNAKE_CASE_ ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(SCREAMING_SNAKE_CASE_ ) ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: List[Any] ) -> Any: '''simple docstring''' A__ = list(range(SCREAMING_SNAKE_CASE_ ) ) A__ = int(ceil(n_layers / len(SCREAMING_SNAKE_CASE_ ) ) ) A__ = [layers[i : i + n_blocks] for i in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
68
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
0
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCamelCase = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __UpperCamelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) __UpperCamelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __UpperCamelCase = re.compile(r'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __UpperCamelCase = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: snake_case_ = None # source code of `config_class` snake_case_ = inspect.getsource(UpperCAmelCase ) snake_case_ = _re_checkpoint.findall(UpperCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): snake_case_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: snake_case_ = ckpt_name break return checkpoint def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ = get_checkpoint_from_config_class(UpperCAmelCase ) snake_case_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: snake_case_ = '\n'.join(sorted(UpperCAmelCase ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
69
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
0
'''simple docstring''' from collections.abc import Sequence def UpperCamelCase__ ( lowerCAmelCase = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) _lowerCAmelCase = nums[0] for i in range(1 , len(lowerCAmelCase ) ): _lowerCAmelCase = nums[i] _lowerCAmelCase = max(lowerCAmelCase , ans + num , lowerCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user A__ : Optional[Any] =int(input('''Enter number of elements : ''').strip()) A__ : Any =list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
70
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
0
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A ( a_ ,a_ ,a_ ) -> Tuple: # Construct model if openai_config_file == "": __UpperCamelCase : int =OpenAIGPTConfig() else: __UpperCamelCase : Any =OpenAIGPTConfig.from_json_file(a_ ) __UpperCamelCase : Any =OpenAIGPTModel(a_ ) # Load weights from numpy load_tf_weights_in_openai_gpt(a_ ,a_ ,a_ ) # Save pytorch-model __UpperCamelCase : Optional[Any] =pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCamelCase : Optional[Any] =pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() ,a_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) A_ :Optional[int] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
71
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Tuple = -1 _lowerCamelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCamelCase : Union[str, Any] = TextStreamer(__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCamelCase : int = cs.out[:-1] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Tuple = -1 _lowerCamelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) _lowerCamelCase : List[str] = tokenizer.decode(greedy_ids[0] ) _lowerCamelCase : Tuple = TextIteratorStreamer(__lowerCAmelCase ) _lowerCamelCase : Tuple = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _lowerCamelCase : List[Any] = Thread(target=model.generate , kwargs=__lowerCAmelCase ) thread.start() _lowerCamelCase : int = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Tuple = -1 _lowerCamelCase : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = greedy_ids[:, input_ids.shape[1] :] _lowerCamelCase : int = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCamelCase : Any = TextStreamer(__lowerCAmelCase , skip_prompt=__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1_0 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCamelCase : Union[str, Any] = cs.out[:-1] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('''distilgpt2''' ) _lowerCamelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : str = -1 _lowerCamelCase : Any = torch.ones((1, 5) , device=__lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCamelCase : List[Any] = TextStreamer(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) model.generate(__lowerCAmelCase , max_new_tokens=1 , do_sample=__lowerCAmelCase , streamer=__lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCamelCase : Any = cs.out[:-1] # Remove the final "\n" _lowerCamelCase : int = tokenizer(__lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowerCamelCase : Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = -1 _lowerCamelCase : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCAmelCase ) _lowerCamelCase : List[str] = TextIteratorStreamer(__lowerCAmelCase , timeout=0.0_01 ) _lowerCamelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _lowerCamelCase : List[Any] = Thread(target=model.generate , kwargs=__lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text
72
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a =logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[Any] = ['''pixel_values'''] def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PIL.Image.BICUBIC ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_5_5 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,**SCREAMING_SNAKE_CASE__ : int ,): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} __lowerCamelCase : int = get_size_dict(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCamelCase : Any = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name='crop_size') __lowerCamelCase : Optional[int] = do_resize __lowerCamelCase : List[Any] = size __lowerCamelCase : Any = resample __lowerCamelCase : Optional[int] = do_center_crop __lowerCamelCase : Any = crop_size __lowerCamelCase : Optional[int] = do_rescale __lowerCamelCase : int = rescale_factor __lowerCamelCase : str = do_normalize __lowerCamelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PIL.Image.BICUBIC ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Any ,): __lowerCamelCase : List[str] = get_size_dict(SCREAMING_SNAKE_CASE__) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}") return resize( SCREAMING_SNAKE_CASE__ ,size=(size['height'], size['width']) ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : str ,): __lowerCamelCase : List[str] = get_size_dict(SCREAMING_SNAKE_CASE__) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}") return center_crop(SCREAMING_SNAKE_CASE__ ,size=(size['height'], size['width']) ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[int, float] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : int ,): return rescale(SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : str ,): return normalize(SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : ImageInput ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE__ : Dict ,): __lowerCamelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize __lowerCamelCase : int = resample if resample is not None else self.resample __lowerCamelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase : int = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase : Any = image_mean if image_mean is not None else self.image_mean __lowerCamelCase : str = image_std if image_std is not None else self.image_std __lowerCamelCase : Union[str, Any] = size if size is not None else self.size __lowerCamelCase : Any = get_size_dict(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __lowerCamelCase : Dict = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name='crop_size') __lowerCamelCase : List[Any] = make_list_of_images(SCREAMING_SNAKE_CASE__) if not valid_images(SCREAMING_SNAKE_CASE__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. __lowerCamelCase : Union[str, Any] = [to_numpy_array(SCREAMING_SNAKE_CASE__) for image in images] if do_resize: __lowerCamelCase : Any = [self.resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__) for image in images] if do_center_crop: __lowerCamelCase : Dict = [self.center_crop(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__) for image in images] if do_rescale: __lowerCamelCase : Dict = [self.rescale(image=SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__) for image in images] if do_normalize: __lowerCamelCase : Union[str, Any] = [self.normalize(image=SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__) for image in images] __lowerCamelCase : Optional[int] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) for image in images] __lowerCamelCase : Optional[int] = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__)
73
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
0
"""simple docstring""" import qiskit def _snake_case ( snake_case__ : int = 2 ): A = qubits # Using Aer's simulator A = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register A = qiskit.QuantumCircuit(snake_case__ , snake_case__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , snake_case__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , snake_case__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(snake_case__ ) ) , list(range(snake_case__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator A = qiskit.execute(snake_case__ , snake_case__ , shots=1000 ) return job.result().get_counts(snake_case__ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
74
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline a_ : Optional[int] = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def a_ ( __snake_case : Optional[Any] , __snake_case : tuple , __snake_case : Path , __snake_case : List[Any] , __snake_case : str , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : int=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=__snake_case , exist_ok=__snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __snake_case , __snake_case , f=output_path.as_posix() , input_names=__snake_case , output_names=__snake_case , dynamic_axes=__snake_case , do_constant_folding=__snake_case , use_external_data_format=__snake_case , enable_onnx_checker=__snake_case , opset_version=__snake_case , ) else: export( __snake_case , __snake_case , f=output_path.as_posix() , input_names=__snake_case , output_names=__snake_case , dynamic_axes=__snake_case , do_constant_folding=__snake_case , opset_version=__snake_case , ) @torch.no_grad() def a_ ( __snake_case : str , __snake_case : str , __snake_case : int , __snake_case : bool = False ) -> Dict: """simple docstring""" lowerCamelCase_ =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCamelCase_ ='''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowerCamelCase_ ='''cpu''' lowerCamelCase_ =StableDiffusionPipeline.from_pretrained(__snake_case , torch_dtype=__snake_case ).to(__snake_case ) lowerCamelCase_ =Path(__snake_case ) # TEXT ENCODER lowerCamelCase_ =pipeline.text_encoder.config.max_position_embeddings lowerCamelCase_ =pipeline.text_encoder.config.hidden_size lowerCamelCase_ =pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=__snake_case , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__snake_case , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=__snake_case , ) del pipeline.text_encoder # UNET lowerCamelCase_ =pipeline.unet.config.in_channels lowerCamelCase_ =pipeline.unet.config.sample_size lowerCamelCase_ =output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), torch.randn(2 ).to(device=__snake_case , dtype=__snake_case ), torch.randn(2 , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), False, ) , output_path=__snake_case , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=__snake_case , use_external_data_format=__snake_case , ) lowerCamelCase_ =str(unet_path.absolute().as_posix() ) lowerCamelCase_ =os.path.dirname(__snake_case ) lowerCamelCase_ =onnx.load(__snake_case ) # clean up existing tensor files shutil.rmtree(__snake_case ) os.mkdir(__snake_case ) # collate external tensor files into one onnx.save_model( __snake_case , __snake_case , save_as_external_data=__snake_case , all_tensors_to_one_file=__snake_case , location='''weights.pb''' , convert_attribute=__snake_case , ) del pipeline.unet # VAE ENCODER lowerCamelCase_ =pipeline.vae lowerCamelCase_ =vae_encoder.config.in_channels lowerCamelCase_ =vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowerCamelCase_ =lambda __snake_case , __snake_case : vae_encoder.encode(__snake_case , __snake_case )[0].sample() onnx_export( __snake_case , model_args=( torch.randn(1 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__snake_case , ) # VAE DECODER lowerCamelCase_ =pipeline.vae lowerCamelCase_ =vae_decoder.config.latent_channels lowerCamelCase_ =vae_decoder.config.out_channels # forward only through the decoder part lowerCamelCase_ =vae_encoder.decode onnx_export( __snake_case , model_args=( torch.randn(1 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__snake_case , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowerCamelCase_ =pipeline.safety_checker lowerCamelCase_ =safety_checker.config.vision_config.num_channels lowerCamelCase_ =safety_checker.config.vision_config.image_size lowerCamelCase_ =safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , __snake_case , __snake_case , __snake_case , ).to(device=__snake_case , dtype=__snake_case ), torch.randn(1 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=__snake_case , ) del pipeline.safety_checker lowerCamelCase_ =OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) lowerCamelCase_ =pipeline.feature_extractor else: lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=__snake_case , feature_extractor=__snake_case , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(__snake_case ) print('''ONNX pipeline saved to''' , __snake_case ) del pipeline del onnx_pipeline lowerCamelCase_ =OnnxStableDiffusionPipeline.from_pretrained(__snake_case , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": a_ : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") a_ : int = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
75
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset a_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , a : List[Any] ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : List[str] = torchvision.models.resnetaaa(pretrained=a ) SCREAMING_SNAKE_CASE : Any = list(model.children() )[:-2] SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential(*a ) SCREAMING_SNAKE_CASE : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def __UpperCamelCase ( self : Union[str, Any] , a : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.pool(self.model(a ) ) SCREAMING_SNAKE_CASE : int = torch.flatten(a , start_dim=2 ) SCREAMING_SNAKE_CASE : int = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Optional[int] , a : str , a : Tuple , a : int , a : Tuple , a : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [json.loads(a ) for l in open(a )] SCREAMING_SNAKE_CASE : int = os.path.dirname(a ) SCREAMING_SNAKE_CASE : Dict = tokenizer SCREAMING_SNAKE_CASE : Tuple = labels SCREAMING_SNAKE_CASE : int = len(a ) SCREAMING_SNAKE_CASE : Optional[Any] = max_seq_length SCREAMING_SNAKE_CASE : Optional[Any] = transforms def __len__( self : List[str] ) -> List[Any]: """simple docstring""" return len(self.data ) def __getitem__( self : List[str] , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=a ) ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = sentence[0], sentence[1:-1], sentence[-1] SCREAMING_SNAKE_CASE : List[Any] = sentence[: self.max_seq_length] SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(self.n_classes ) SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : List[Any] = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) SCREAMING_SNAKE_CASE : str = self.transforms(a ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = [len(row["sentence"]) for row in batch] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = len(_a), max(_a) SCREAMING_SNAKE_CASE : Any = torch.zeros(_a , _a , dtype=torch.long) SCREAMING_SNAKE_CASE : List[str] = torch.zeros(_a , _a , dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(_a , _a)): SCREAMING_SNAKE_CASE : str = input_row["sentence"] SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : str = torch.stack([row["image"] for row in batch]) SCREAMING_SNAKE_CASE : str = torch.stack([row["label"] for row in batch]) SCREAMING_SNAKE_CASE : Tuple = torch.stack([row["image_start_token"] for row in batch]) SCREAMING_SNAKE_CASE : Optional[int] = torch.stack([row["image_end_token"] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase__ ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase__ ( ): return transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ])
76
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
0
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow _UpperCamelCase : Optional[int] = False class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self , a=3_2 ) -> Any: set_seed(0 ) lowercase__ : int = UNetaDModel(sample_size=a , in_channels=3 , out_channels=3 ) lowercase__ : Tuple = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def _UpperCAmelCase ( self ) -> Any: lowercase__ : str = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowercase__ : Optional[int] = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=a , ) lowercase__ : Dict = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=a , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowercase__ : str = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(a ) for _ in range(4 )] lowercase__ : str = [torch.randn((4, 3, 3_2, 3_2) ).to(a ) for _ in range(4 )] lowercase__ : Any = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(a ) for _ in range(4 )] # train with a DDPM scheduler lowercase__ , lowercase__ : Any = self.get_model_optimizer(resolution=3_2 ) model.train().to(a ) for i in range(4 ): optimizer.zero_grad() lowercase__ : Optional[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase__ : Optional[int] = model(a , timesteps[i] ).sample lowercase__ : List[str] = torch.nn.functional.mse_loss(a , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowercase__ , lowercase__ : Any = self.get_model_optimizer(resolution=3_2 ) model.train().to(a ) for i in range(4 ): optimizer.zero_grad() lowercase__ : str = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase__ : Tuple = model(a , timesteps[i] ).sample lowercase__ : Union[str, Any] = torch.nn.functional.mse_loss(a , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(a , a , atol=1e-5 ) ) self.assertTrue(torch.allclose(a , a , atol=1e-5 ) )
77
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
0
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters snake_case_ = logging.get_logger(__name__) def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ): # Recurse if needed if "." in tensor_name: UpperCAmelCase = tensor_name.split('.' ) for split in splits[:-1]: UpperCAmelCase = getattr(lowercase_ , lowercase_ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) UpperCAmelCase = new_module UpperCAmelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) UpperCAmelCase = tensor_name in module._buffers UpperCAmelCase = getattr(lowercase_ , lowercase_ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) UpperCAmelCase = False UpperCAmelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCAmelCase = False UpperCAmelCase = False else: UpperCAmelCase = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) UpperCAmelCase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: UpperCAmelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCAmelCase = old_value.to(lowercase_ ) elif isinstance(lowercase_ , torch.Tensor ): UpperCAmelCase = value.to('cpu' ) if value.dtype == torch.inta: UpperCAmelCase = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: UpperCAmelCase = torch.tensor(lowercase_ , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , lowercase_ ) and fpaa_statistics is None: UpperCAmelCase = new_value.T UpperCAmelCase = old_value.__dict__ if is_abit: UpperCAmelCase = bnb.nn.IntaParams(lowercase_ , requires_grad=lowercase_ , **lowercase_ ).to(lowercase_ ) elif is_abit: UpperCAmelCase = bnb.nn.Paramsabit(lowercase_ , requires_grad=lowercase_ , **lowercase_ ).to(lowercase_ ) UpperCAmelCase = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(lowercase_ ) ) else: if value is None: UpperCAmelCase = old_value.to(lowercase_ ) elif isinstance(lowercase_ , torch.Tensor ): UpperCAmelCase = value.to(lowercase_ ) else: UpperCAmelCase = torch.tensor(lowercase_ , device=lowercase_ ) if is_buffer: UpperCAmelCase = new_value else: UpperCAmelCase = nn.Parameter(lowercase_ , requires_grad=old_value.requires_grad ) UpperCAmelCase = new_value def _lowerCAmelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=False ): for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase = [] current_key_name.append(lowercase_ ) if (isinstance(lowercase_ , nn.Linear ) or isinstance(lowercase_ , lowercase_ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(lowercase_ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase , UpperCAmelCase = module.weight.shape else: UpperCAmelCase = module.in_features UpperCAmelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCAmelCase = bnb.nn.LinearabitLt( lowercase_ , lowercase_ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCAmelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCAmelCase = bnb.nn.Linearabit( lowercase_ , lowercase_ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCAmelCase = True # Store the module class in case we need to transpose the weight later UpperCAmelCase = type(lowercase_ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(lowercase_ ) if len(list(module.children() ) ) > 0: UpperCAmelCase , UpperCAmelCase = _replace_with_bnb_linear( lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_been_replaced=lowercase_ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowerCAmelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ): UpperCAmelCase = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert UpperCAmelCase , UpperCAmelCase = _replace_with_bnb_linear( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _lowerCAmelCase ( *lowercase_ , **lowercase_ ): warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , lowercase_ , ) return replace_with_bnb_linear(*lowercase_ , **lowercase_ ) def _lowerCAmelCase ( *lowercase_ , **lowercase_ ): warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , lowercase_ , ) return set_module_quantized_tensor_to_device(*lowercase_ , **lowercase_ ) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = deepcopy(lowercase_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCAmelCase = find_tied_parameters(lowercase_ ) # For compatibility with Accelerate < 0.18 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase = sum(lowercase_ , [] ) UpperCAmelCase = len(lowercase_ ) > 0 # Check if it is a base model UpperCAmelCase = not hasattr(lowercase_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase = list(model.named_children() ) UpperCAmelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase = set(lowercase_ ) - set(lowercase_ ) UpperCAmelCase = list(set(lowercase_ ) ) + list(lowercase_ ) # remove ".weight" from the keys UpperCAmelCase = ['.weight', '.bias'] UpperCAmelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase = name.replace(lowercase_ , '' ) filtered_module_names.append(lowercase_ ) return filtered_module_names
78
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCamelCase_ = logging.get_logger(__name__) @dataclass class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int] , __UpperCAmelCase : Any=False , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Any=6.0 , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Any=False , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : List[Any]="fp4" , __UpperCAmelCase : List[str]=False , **__UpperCAmelCase : List[str] , ): '''simple docstring''' _A = load_in_abit _A = load_in_abit _A = llm_inta_threshold _A = llm_inta_skip_modules _A = llm_inta_enable_fpaa_cpu_offload _A = llm_inta_has_fpaa_weight _A = bnb_abit_quant_type _A = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _A = torch.floataa elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = getattr(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , torch.dtype ): _A = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def lowerCAmelCase ( self : int ): '''simple docstring''' if not isinstance(self.llm_inta_threshold , __UpperCAmelCase ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , __UpperCAmelCase ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , __UpperCAmelCase ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , __UpperCAmelCase ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , __UpperCAmelCase ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , __UpperCAmelCase ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' return self.load_in_abit or self.load_in_abit def lowerCAmelCase ( self : int ): '''simple docstring''' if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def lowerCAmelCase ( cls : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : str , **__UpperCAmelCase : Dict ): '''simple docstring''' _A = cls(**__UpperCAmelCase ) _A = [] for key, value in kwargs.items(): if hasattr(__UpperCAmelCase , __UpperCAmelCase ): setattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) to_remove.append(__UpperCAmelCase ) for key in to_remove: kwargs.pop(__UpperCAmelCase , __UpperCAmelCase ) if return_unused_kwargs: return config, kwargs else: return config def lowerCAmelCase ( self : int , __UpperCAmelCase : Union[str, os.PathLike] ): '''simple docstring''' with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: _A = self.to_dict() _A = json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + "\n" writer.write(__UpperCAmelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = copy.deepcopy(self.__dict__ ) _A = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self : List[Any] ): '''simple docstring''' return f'''{self.__class__.__name__} {self.to_json_string()}''' def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : bool = True ): '''simple docstring''' if use_diff is True: _A = self.to_diff_dict() else: _A = self.to_dict() return json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + "\n" def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.to_dict() # get the default config dict _A = BitsAndBytesConfig().to_dict() _A = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _A = value return serializable_config_dict
79
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
0
'''simple docstring''' import math import sys def _UpperCamelCase ( __A ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(__A , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def _UpperCamelCase ( __A ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(__A ) for i in range(len(__A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(__A ).is_integer(): UpperCamelCase__ = {} for curr_key in list(__A ): UpperCamelCase__ = lexicon.pop(__A ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def _UpperCamelCase ( __A , __A ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(__A , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(__A ) , __A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__A , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def _UpperCamelCase ( __A ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def _UpperCamelCase ( __A , __A ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(__A ) UpperCamelCase__ = remove_prefix(__A ) UpperCamelCase__ = decompress_data(__A ) write_file_binary(__A , __A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
80
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __A : """simple docstring""" def __init__( self , __A = "cpu" , __A = "openai/clip-vit-large-patch14" ) -> None: a =device a =CLIPTokenizerFast.from_pretrained(__A ) a =[0.48_145_466, 0.4_578_275, 0.40_821_073] a =[0.26_862_954, 0.26_130_258, 0.27_577_711] a =torchvision.transforms.Normalize(self.image_mean , self.image_std ) a =torchvision.transforms.Resize(224 ) a =torchvision.transforms.CenterCrop(224 ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Any: a =self.resize(__A ) a =self.center_crop(__A ) a =self.normalize(__A ) return images def __call__( self , __A=None , __A=None , **__A ) -> Optional[Any]: a =self.tokenizer(text=__A , **__A ) a =self.preprocess_img(__A ) a ={key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __A ( nn.Module ): """simple docstring""" def __init__( self , __A=10 , __A=0.01 , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , __A=False , __A=True , __A="image" , __A=True , __A=False , __A=False , __A=False , ) -> None: super().__init__() a =None a =device if device else get_device() if vqgan: a =vqgan else: a =load_vqgan(self.device , conf_path=__A , ckpt_path=__A ) self.vqgan.eval() if clip: a =clip else: a =CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) a =ProcessorGradientFlow(device=self.device ) a =iterations a =lr a =log a =make_grid a =return_val a =quantize a =self.vqgan.decoder.z_shape def SCREAMING_SNAKE_CASE ( self , __A=None , __A=None , __A=5 , __A=True ) -> List[str]: a =[] if output_path is None: a ='''./animation.gif''' if input_path is None: a =self.save_path a =sorted(glob(input_path + '''/*''' ) ) if not len(__A ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(__A ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) a =total_duration / len(__A ) a =[frame_duration] * len(__A ) if extend_frames: a =1.5 a =3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(__A ) ) imageio.mimsave(__A , __A , duration=__A ) print(f'''gif saved to {output_path}''' ) def SCREAMING_SNAKE_CASE ( self , __A=None , __A=None ) -> Any: if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError a =preprocess(Image.open(__A ) , target_image_size=256 ).to(self.device ) a =preprocess_vqgan(__A ) a , *a =self.vqgan.encode(__A ) return z def SCREAMING_SNAKE_CASE ( self , __A ) -> Union[str, Any]: a =self.latent.detach().requires_grad_() a =base_latent + transform_vector if self.quantize: a , *a =self.vqgan.quantize(__A ) else: a =trans_latent return self.vqgan.decode(__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=None ) -> List[str]: a =self.clip_preprocessor(text=__A , images=__A , return_tensors='''pt''' , padding=__A ) a =self.clip(**__A ) a =clip_outputs.logits_per_image if weights is not None: a =similarity_logits * weights return similarity_logits.sum() def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Any: a =self._get_clip_similarity(pos_prompts['''prompts'''] , __A , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: a =self._get_clip_similarity(neg_prompts['''prompts'''] , __A , weights=neg_prompts['''weights'''] ) else: a =torch.tensor([1] , device=self.device ) a =-torch.log(__A ) + torch.log(__A ) return loss def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Dict: a =torch.randn_like(self.latent , requires_grad=__A , device=self.device ) a =torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() a =self._add_vector(__A ) a =loop_post_process(__A ) a =self._get_CLIP_loss(__A , __A , __A ) print('''CLIP loss''' , __A ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=__A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> str: wandb.init(reinit=__A , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: a =Image.open(__A ) a =image.resize((256, 256) ) wandb.log('''Original Image''' , wandb.Image(__A ) ) def SCREAMING_SNAKE_CASE ( self , __A ) -> int: if not prompts: return [] a =[] a =[] if isinstance(__A , __A ): a =[prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(__A , (tuple, list) ): a =prompt[0] a =float(prompt[1] ) elif ":" in prompt: a , a =prompt.split(''':''' ) a =float(__A ) else: a =prompt a =1.0 processed_prompts.append(__A ) weights.append(__A ) return { "prompts": processed_prompts, "weights": torch.tensor(__A , device=self.device ), } def SCREAMING_SNAKE_CASE ( self , __A , __A=None , __A=None , __A=True , __A=False , __A=True , __A=True , __A=None , ) -> int: if image_path: a =self._get_latent(__A ) else: a =torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__A , __A , __A ) assert pos_prompts, "You must provide at least one positive prompt." a =self.process_prompts(__A ) a =self.process_prompts(__A ) if save_final and save_path is None: a =os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(__A ): os.makedirs(__A ) else: a =save_path + '''_''' + get_timestamp() os.makedirs(__A ) a =save_path a =self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(__A ) ) a =loop_post_process(__A ) for iter, transformed_img in enumerate(self._optimize_CLIP(__A , __A , __A ) ): if show_intermediate: show_pil(__A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'''Image''': wandb.Image(__A )} ) if show_final: show_pil(__A ) if save_final: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}_final.png''' ) )
81
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) A__ = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""BeitFeatureExtractor"""] A__ = ["""BeitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BeitForImageClassification""", """BeitForMaskedImageModeling""", """BeitForSemanticSegmentation""", """BeitModel""", """BeitPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """FlaxBeitForImageClassification""", """FlaxBeitForMaskedImageModeling""", """FlaxBeitModel""", """FlaxBeitPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
82
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
0
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # Initialise PyTorch model _UpperCamelCase : Union[str, Any] = FunnelConfig.from_json_file(UpperCAmelCase_ ) print(f'Building PyTorch model from configuration: {config}' ) _UpperCamelCase : Tuple = FunnelBaseModel(UpperCAmelCase_ ) if base_model else FunnelModel(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": snake_case_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) snake_case_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
83
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
"""simple docstring""" from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE ( A__ ): pass class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> None: lowerCAmelCase_ :Any = data lowerCAmelCase_ :Node | None = None def __iter__( self ) -> Dict: lowerCAmelCase_ :int = self lowerCAmelCase_ :Tuple = [] while node: if node in visited: raise ContainsLoopError visited.append(__A ) yield node.data lowerCAmelCase_ :Tuple = node.next_node @property def __lowerCAmelCase ( self ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __UpperCAmelCase = Node(1) __UpperCAmelCase = Node(2) __UpperCAmelCase = Node(3) __UpperCAmelCase = Node(4) print(root_node.has_loop) # False __UpperCAmelCase = root_node.next_node print(root_node.has_loop) # True __UpperCAmelCase = Node(5) __UpperCAmelCase = Node(6) __UpperCAmelCase = Node(5) __UpperCAmelCase = Node(6) print(root_node.has_loop) # False __UpperCAmelCase = Node(1) print(root_node.has_loop) # False
84
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE : int = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } _SCREAMING_SNAKE_CASE : Dict = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : List[Any] = 1 _SCREAMING_SNAKE_CASE : str = 2 _SCREAMING_SNAKE_CASE : Tuple = 3 _SCREAMING_SNAKE_CASE : Tuple = 4 class _snake_case ( lowercase_ ): lowerCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES lowerCAmelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Optional[int] = "left" def __init__( self , a__ , a__=False , a__=True , a__=False , a__="<s>" , a__="</s>" , a__="<unk>" , a__="<sep>" , a__="<pad>" , a__="<cls>" , a__="<mask>" , a__=["<eop>", "<eod>"] , a__ = None , **a__ , ) -> None: '''simple docstring''' snake_case_ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , additional_special_tokens=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) snake_case_ = 3 snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a__ ) @property def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' return len(self.sp_model ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self , a__ ) -> Tuple: '''simple docstring''' snake_case_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self , a__ ) -> List[Any]: '''simple docstring''' if self.remove_space: snake_case_ = " ".join(inputs.strip().split() ) else: snake_case_ = inputs snake_case_ = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: snake_case_ = unicodedata.normalize("NFKD" , a__ ) snake_case_ = "".join([c for c in outputs if not unicodedata.combining(a__ )] ) if self.do_lower_case: snake_case_ = outputs.lower() return outputs def lowerCAmelCase__ ( self , a__ ) -> List[str]: '''simple docstring''' snake_case_ = self.preprocess_text(a__ ) snake_case_ = self.sp_model.encode(a__ , out_type=a__ ) snake_case_ = [] for piece in pieces: if len(a__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): snake_case_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(a__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ = cur_pieces[1:] else: snake_case_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a__ ) else: new_pieces.append(a__ ) return new_pieces def lowerCAmelCase__ ( self , a__ ) -> Optional[int]: '''simple docstring''' return self.sp_model.PieceToId(a__ ) def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' return self.sp_model.IdToPiece(a__ ) def lowerCAmelCase__ ( self , a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = "".join(a__ ).replace(a__ , " " ).strip() return out_string def lowerCAmelCase__ ( self , a__ , a__ = False , a__ = None , a__ = True , **a__ , ) -> str: '''simple docstring''' snake_case_ = kwargs.pop("use_source_tokenizer" , a__ ) snake_case_ = self.convert_ids_to_tokens(a__ , skip_special_tokens=a__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a__ ) ) snake_case_ = [] sub_texts.append(a__ ) else: current_sub_text.append(a__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens snake_case_ = "".join(a__ ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(a__ ) return clean_text else: return text def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase__ ( self , a__ , a__ = None , a__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is not None: return ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1, 1] return ([0] * len(a__ )) + [1, 1] def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' snake_case_ = [self.sep_token_id] snake_case_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , "wb" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
85
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
0
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class A__ ( _lowerCamelCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = "arrow" , **_SCREAMING_SNAKE_CASE , ): super().__init__( split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = load_from_cache_file __lowerCAmelCase : Any = file_format __lowerCAmelCase : Dict = Spark( df=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , working_dir=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __lowerCamelCase ( self ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) __lowerCAmelCase : Union[str, Any] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_SCREAMING_SNAKE_CASE , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
86
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
0
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : Tuple = ["speech"] def __init__( self : List[str] , *lowercase_ : Optional[Any] , **lowercase_ : str ) -> List[str]: requires_backends(self , ["speech"] ) class snake_case_ ( metaclass=__A ): __A : Any = ["speech"] def __init__( self : Optional[Any] , *lowercase_ : Optional[Any] , **lowercase_ : int ) -> Any: requires_backends(self , ["speech"] )
87
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __lowerCAmelCase : Dict = ['gpt2'] __lowerCAmelCase : Optional[Any] = 'gpt2' if is_tf_available(): class UpperCAmelCase_ ( tf.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] ) -> Any: """simple docstring""" super().__init__() __magic_name__ = tokenizer __magic_name__ = AutoConfig.from_pretrained(UpperCamelCase__ ) __magic_name__ = TFGPTaLMHeadModel.from_config(UpperCamelCase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def _lowercase ( self : List[str] , UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.tokenizer(UpperCamelCase__ ) __magic_name__ = tokenized["""input_ids"""].to_tensor() __magic_name__ = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __magic_name__ = self.model(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ )["""logits"""] return outputs @require_tf @require_keras_nlp class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : Dict ) -> Optional[Any]: """simple docstring""" super().setUp() __magic_name__ = [GPTaTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __magic_name__ = [TFGPTaTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __magic_name__ = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] __magic_name__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowercase ( self : Any ) -> str: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __magic_name__ = tokenizer([test_inputs] , return_tensors="""tf""" ) __magic_name__ = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __magic_name__ = python_outputs[key].numpy() __magic_name__ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase__ , tf.intaa ) == tf_outputs_values ) ) @slow def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __magic_name__ = tf.function(UpperCamelCase__ ) for test_inputs in self.test_sentences: __magic_name__ = tf.constant(UpperCamelCase__ ) __magic_name__ = compiled_tokenizer(UpperCamelCase__ ) __magic_name__ = tf_tokenizer(UpperCamelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowercase ( self : Dict ) -> List[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __magic_name__ = ModelToSave(tokenizer=UpperCamelCase__ ) __magic_name__ = tf.convert_to_tensor([self.test_sentences[0]] ) __magic_name__ = model.serving(UpperCamelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __magic_name__ = Path(UpperCamelCase__ ) / """saved.model""" tf.saved_model.save(UpperCamelCase__ , UpperCamelCase__ , signatures={"""serving_default""": model.serving} ) __magic_name__ = tf.saved_model.load(UpperCamelCase__ ) __magic_name__ = loaded_model.signatures["""serving_default"""](UpperCamelCase__ )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __magic_name__ = tf.convert_to_tensor([self.test_sentences[0]] ) __magic_name__ = tf_tokenizer(UpperCamelCase__ ) # Build model with some sample inputs __magic_name__ = tf_tokenizer.get_config() __magic_name__ = TFGPTaTokenizer.from_config(UpperCamelCase__ ) __magic_name__ = model_from_config(UpperCamelCase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _lowercase ( self : Dict ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run __magic_name__ = 12_3123 for max_length in [3, 5, 1024]: __magic_name__ = tf.convert_to_tensor([self.test_sentences[0]] ) __magic_name__ = tf_tokenizer(UpperCamelCase__ , max_length=UpperCamelCase__ ) __magic_name__ = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
88
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
89
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
from __future__ import annotations from collections.abc import Iterator from typing import Any class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = data __lowerCamelCase = None class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = None def __iter__( self ) -> Iterator[Any]: '''simple docstring''' __lowerCamelCase = self.head while self.head: yield node.data __lowerCamelCase = node.next if node == self.head: break def __len__( self ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ) -> List[str]: '''simple docstring''' return "->".join(str(lowerCamelCase__ ) for item in iter(self ) ) def lowercase_ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' self.insert_nth(len(self ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' self.insert_nth(0 , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) __lowerCamelCase = Node(lowerCamelCase__ ) if self.head is None: __lowerCamelCase = new_node # first node points itself __lowerCamelCase = __lowerCamelCase = new_node elif index == 0: # insert at head __lowerCamelCase = self.head __lowerCamelCase = __lowerCamelCase = new_node else: __lowerCamelCase = self.head for _ in range(index - 1 ): __lowerCamelCase = temp.next __lowerCamelCase = temp.next __lowerCamelCase = new_node if index == len(self ) - 1: # insert at tail __lowerCamelCase = new_node def lowercase_ ( self ) -> List[str]: '''simple docstring''' return self.delete_nth(0 ) def lowercase_ ( self ) -> Any: '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def lowercase_ ( self , lowerCamelCase__ = 0 ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) __lowerCamelCase = self.head if self.head == self.tail: # just one node __lowerCamelCase = __lowerCamelCase = None elif index == 0: # delete head node __lowerCamelCase = self.tail.next.next __lowerCamelCase = self.head.next else: __lowerCamelCase = self.head for _ in range(index - 1 ): __lowerCamelCase = temp.next __lowerCamelCase = temp.next __lowerCamelCase = temp.next.next if index == len(self ) - 1: # delete at tail __lowerCamelCase = temp return delete_node.data def lowercase_ ( self ) -> bool: '''simple docstring''' return len(self ) == 0 def lowerCamelCase_ ( ) -> None: """simple docstring""" __lowerCamelCase = CircularLinkedList() assert len(UpperCamelCase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase__ ) == i circular_linked_list.insert_nth(UpperCamelCase__ , i + 1 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
90
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
0
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : Dict = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] SCREAMING_SNAKE_CASE_ : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE_ : List[Any] = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] SCREAMING_SNAKE_CASE_ : List[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] SCREAMING_SNAKE_CASE_ : str = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_))
91
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase__ = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] ): return (preds == labels).mean() @dataclass class a__ : _a : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _a : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _a : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _a : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class a__ : _a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _a : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) _a : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _a : bool = field( default=snake_case__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _a ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , SCREAMING_SNAKE_CASE_ ) # Set seed set_seed(training_args.seed ) try: __lowerCAmelCase = processors[data_args.task_name]() __lowerCAmelCase = processor.get_labels() __lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , ) # Get datasets __lowerCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __lowerCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(SCREAMING_SNAKE_CASE_ : EvalPrediction ) -> Dict: __lowerCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE_ , p.label_ids )} # Data collator __lowerCAmelCase = DataCollatorWithPadding(SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __lowerCAmelCase = Trainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , compute_metrics=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) writer.write("%s = %s\n" % (key, value) ) results.update(SCREAMING_SNAKE_CASE_ ) return results def _a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
92
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase : Tuple = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
93
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , ): a :Union[str, Any] = parent a :List[Any] = batch_size a :Any = num_channels a :Optional[int] = image_size a :Union[str, Any] = min_resolution a :Optional[Any] = max_resolution a :Tuple = do_resize a :int = size if size is not None else {'''height''': 18, '''width''': 20} a :str = do_thumbnail a :List[Any] = do_align_axis a :Tuple = do_pad a :str = do_normalize a :Dict = image_mean a :Any = image_std def SCREAMING_SNAKE_CASE__ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ): a :str = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) a :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order a :List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def SCREAMING_SNAKE_CASE__ ( self ): pass @is_flaky() def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing a :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input a :Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a :Union[str, Any] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing a :Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input a :Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a :int = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing a :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input a :Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched a :Tuple = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
94
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
0
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging UpperCAmelCase : Tuple = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Optional[Any] = CLIPConfig _lowercase : List[Any] = ["""CLIPEncoderLayer"""] def __init__( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ ) a__ : List[str] =CLIPVisionModelWithProjection(config.vision_config ) a__ : List[str] =nn.Linear(config.vision_config.projection_dim , 1 ) a__ : Optional[Any] =nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=0.5 , lowerCAmelCase__=0.5 ) -> List[str]: '''simple docstring''' a__ : str =self.vision_model(lowerCAmelCase__ )[0] a__ : Union[str, Any] =self.p_head(lowerCAmelCase__ ) a__ : Optional[Any] =nsfw_detected.flatten() a__ : Any =nsfw_detected > p_threshold a__ : List[Any] =nsfw_detected.tolist() if any(lowerCAmelCase__ ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(lowerCAmelCase__ ): if nsfw_detected_: a__ : List[str] =np.zeros(images[idx].shape ) a__ : List[Any] =self.w_head(lowerCAmelCase__ ) a__ : List[str] =watermark_detected.flatten() a__ : Dict =watermark_detected > w_threshold a__ : Optional[int] =watermark_detected.tolist() if any(lowerCAmelCase__ ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(lowerCAmelCase__ ): if watermark_detected_: a__ : Union[str, Any] =np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
95
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
0
"""simple docstring""" import string import numpy def _snake_case ( lowercase__ , lowercase__ ): return b if a == 0 else greatest_common_divisor(b % a , lowercase__ ) class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowerCamelCase__ = numpy.vectorize(lambda lowercase : x % 36 ) lowerCamelCase__ = numpy.vectorize(lowercase ) def __init__( self , lowercase ): _lowerCamelCase : Optional[int] = self.modulus(lowercase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _lowerCamelCase : Dict = encrypt_key.shape[0] def A_ ( self , lowercase ): return self.key_string.index(lowercase ) def A_ ( self , lowercase ): return self.key_string[round(lowercase )] def A_ ( self ): _lowerCamelCase : Optional[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCamelCase : Dict = det % len(self.key_string ) _lowerCamelCase : List[Any] = len(self.key_string ) if greatest_common_divisor(lowercase , len(self.key_string ) ) != 1: _lowerCamelCase : List[Any] = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : int = [char for char in text.upper() if char in self.key_string] _lowerCamelCase : Optional[int] = chars[-1] while len(lowercase ) % self.break_key != 0: chars.append(lowercase ) return "".join(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : List[Any] = self.process_text(text.upper() ) _lowerCamelCase : Dict = '' for i in range(0 , len(lowercase ) - self.break_key + 1 , self.break_key ): _lowerCamelCase : Dict = text[i : i + self.break_key] _lowerCamelCase : Any = [self.replace_letters(lowercase ) for char in batch] _lowerCamelCase : Optional[Any] = numpy.array([vec] ).T _lowerCamelCase : int = self.modulus(self.encrypt_key.dot(lowercase ) ).T.tolist()[ 0 ] _lowerCamelCase : Tuple = ''.join( self.replace_digits(lowercase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def A_ ( self ): _lowerCamelCase : Tuple = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCamelCase : Dict = det % len(self.key_string ) _lowerCamelCase : Tuple = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _lowerCamelCase : Optional[int] = i break _lowerCamelCase : Any = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(lowercase ) ) def A_ ( self , lowercase ): _lowerCamelCase : Any = self.make_decrypt_key() _lowerCamelCase : List[Any] = self.process_text(text.upper() ) _lowerCamelCase : Any = '' for i in range(0 , len(lowercase ) - self.break_key + 1 , self.break_key ): _lowerCamelCase : Optional[Any] = text[i : i + self.break_key] _lowerCamelCase : Optional[Any] = [self.replace_letters(lowercase ) for char in batch] _lowerCamelCase : Union[str, Any] = numpy.array([vec] ).T _lowerCamelCase : List[Any] = self.modulus(decrypt_key.dot(lowercase ) ).T.tolist()[0] _lowerCamelCase : Tuple = ''.join( self.replace_digits(lowercase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _snake_case ( ): _lowerCamelCase : Optional[int] = int(input('Enter the order of the encryption key: ' ) ) _lowerCamelCase : str = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(lowercase__ ): _lowerCamelCase : str = [int(lowercase__ ) for x in input().split()] hill_matrix.append(lowercase__ ) _lowerCamelCase : Optional[int] = HillCipher(numpy.array(lowercase__ ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) _lowerCamelCase : str = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": _lowerCamelCase : Dict = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(lowercase__ ) ) elif option == "2": _lowerCamelCase : Any = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
96
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version __snake_case = logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') __snake_case = { '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization __snake_case = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } __snake_case = sorted(arg_to_scheduler.keys()) __snake_case = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class lowercase ( pl.LightningModule ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_="base" , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(UpperCamelCase_ ) UpperCamelCase__ :Any = 0 UpperCamelCase__ :str = Path(self.hparams.output_dir ) UpperCamelCase__ :List[str] = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCamelCase__ :Optional[int] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=UpperCamelCase_ , **UpperCamelCase_ , ) else: UpperCamelCase__ :PretrainedConfig = config UpperCamelCase__ :int = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(self.config , UpperCamelCase_ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , UpperCamelCase_ , getattr(self.hparams , UpperCamelCase_ ) ) if tokenizer is None: UpperCamelCase__ :Dict = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCamelCase_ , ) else: UpperCamelCase__ :PreTrainedTokenizer = tokenizer UpperCamelCase__ :Optional[int] = MODEL_MODES[mode] if model is None: UpperCamelCase__ :str = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCamelCase_ , ) else: UpperCamelCase__ :List[Any] = model def lowerCAmelCase__ ( self , *UpperCamelCase_ , **UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = self.model_type.from_pretrained(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = arg_to_scheduler[self.hparams.lr_scheduler] UpperCamelCase__ :Dict = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCamelCase__ :Any = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.model UpperCamelCase__ :Optional[Any] = ['''bias''', '''LayerNorm.weight'''] UpperCamelCase__ :Optional[Any] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: UpperCamelCase__ :List[str] = Adafactor( UpperCamelCase_ , lr=self.hparams.learning_rate , scale_parameter=UpperCamelCase_ , relative_step=UpperCamelCase_ ) else: UpperCamelCase__ :int = AdamW( UpperCamelCase_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCamelCase__ :str = optimizer UpperCamelCase__ :int = self.get_lr_scheduler() return [optimizer], [scheduler] def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' return self.validation_step(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return self.validation_end(UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCamelCase__ :List[str] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if stage == "test": UpperCamelCase__ :Union[str, Any] = len(self.test_dataloader().dataset ) else: UpperCamelCase__ :List[Any] = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = len(self.train_dataloader().dataset ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False ): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' return self.train_loader def lowerCAmelCase__ ( self ): '''simple docstring''' return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( UpperCamelCase_ , list(filter(UpperCamelCase_ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.output_dir.joinpath('''best_tfmr''' ) UpperCamelCase__ :int = self.step_count self.model.save_pretrained(UpperCamelCase_ ) self.tokenizer.save_pretrained(UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' parser.add_argument( '''--model_name_or_path''' , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=UpperCamelCase_ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=UpperCamelCase_ , type=UpperCamelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(UpperCamelCase_ ).parent / '''test_run''' / '''cache''' ) , type=UpperCamelCase_ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=UpperCamelCase_ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=UpperCamelCase_ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=UpperCamelCase_ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=UpperCamelCase_ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5e-5 , type=UpperCamelCase_ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=UpperCamelCase_ , metavar=UpperCamelCase_ , type=UpperCamelCase_ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=UpperCamelCase_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=UpperCamelCase_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=UpperCamelCase_ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=UpperCamelCase_ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=UpperCamelCase_ ) parser.add_argument('''--train_batch_size''' , default=32 , type=UpperCamelCase_ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=UpperCamelCase_ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowercase ( pl.Callback ): """simple docstring""" def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowercase ( pl.Callback ): """simple docstring""" def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(UpperCamelCase_ ) class lowercase ( pl.Callback ): """simple docstring""" def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = trainer.lr_schedulers[0]['''scheduler'''] UpperCamelCase__ :Dict = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) UpperCamelCase__ :Dict = trainer.callback_metrics # Log results for key in sorted(UpperCamelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(UpperCamelCase_ , str(metrics[key] ) ) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' rank_zero_info('''***** Test results *****''' ) UpperCamelCase__ :int = trainer.callback_metrics # Log and save results to file UpperCamelCase__ :Any = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(UpperCamelCase_ , '''w''' ) as writer: for key in sorted(UpperCamelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(UpperCamelCase_ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(UpperCamelCase_ , str(metrics[key] ) ) ) def a ( __a , __a ) -> None: '''simple docstring''' parser.add_argument( '''--output_dir''' , default=str(Path(__a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=__a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=__a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=__a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=__a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=__a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=__a , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(__a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=__a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def a ( __a , __a , __a=None , __a=True , __a=[] , __a=None , __a=None , **__a , ) -> str: '''simple docstring''' pl.seed_everything(args.seed ) # init model UpperCamelCase__ :Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__a ) # add custom checkpoints if checkpoint_callback is None: UpperCamelCase__ :Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__a ) if logging_callback is None: UpperCamelCase__ :str = LoggingCallback() UpperCamelCase__ :Optional[Any] = {} if args.fpaa: UpperCamelCase__ :List[Any] = 16 if args.gpus > 1: UpperCamelCase__ :Union[str, Any] = '''auto''' UpperCamelCase__ :Optional[Any] = '''ddp''' UpperCamelCase__ :List[str] = args.accumulate_grad_batches UpperCamelCase__ :Dict = None UpperCamelCase__ :Optional[Any] = '''auto''' UpperCamelCase__ :List[str] = pl.Trainer.from_argparse_args( __a , weights_summary=__a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__a , val_check_interval=1 , num_sanity_val_steps=2 , **__a , ) if args.do_train: trainer.fit(__a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
97
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
0
"""simple docstring""" from functools import lru_cache @lru_cache def a_ ( lowerCamelCase ): if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
98
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
0
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowercase : Optional[int] = True except ImportError: lowercase : int = False try: from torch.hub import _get_torch_home lowercase : List[Any] = _get_torch_home() except ImportError: lowercase : Optional[int] = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) lowercase : List[str] = os.path.join(torch_cache_home, """transformers""") lowercase : List[str] = """https://cdn.huggingface.co""" lowercase : int = """https://s3.amazonaws.com/models.huggingface.co/bert""" lowercase : int = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) lowercase : List[Any] = os.path.join(PATH, """config.yaml""") lowercase : List[str] = os.path.join(PATH, """attributes.txt""") lowercase : Optional[Any] = os.path.join(PATH, """objects.txt""") lowercase : Tuple = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) lowercase : int = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) lowercase : Optional[Any] = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) lowercase : Tuple = """pytorch_model.bin""" lowercase : int = """config.yaml""" def A_ ( A__=OBJECTS , A__=ATTRIBUTES ) -> Union[str, Any]: a__ : Dict = [] with open(A__ ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) a__ : Optional[int] = [] with open(A__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def A_ ( A__ ) -> Union[str, Any]: a__ : Optional[Any] = OrderedDict() with open(A__ , 'rb' ) as f: a__ : List[str] = pkl.load(A__ )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): a__ : Tuple = ckp.pop(A__ ) if isinstance(A__ , np.ndarray ): a__ : str = torch.tensor(A__ ) else: assert isinstance(A__ , torch.tensor ), type(A__ ) a__ : Optional[int] = v return r class A__ : """simple docstring""" __A : Optional[Any] = {} def __init__( self , lowercase , lowercase = "root" , lowercase=0) -> Union[str, Any]: '''simple docstring''' a__ : List[str] = name a__ : Optional[Any] = level a__ : Tuple = {} for k, v in dictionary.items(): if v is None: raise ValueError() a__ : Dict = copy.deepcopy(lowercase) a__ : Any = copy.deepcopy(lowercase) if isinstance(lowercase , lowercase): a__ : Tuple = Config(lowercase , name=lowercase , level=level + 1) a__ : Dict = v setattr(self , lowercase , lowercase) a__ : List[Any] = d def __repr__( self) -> Optional[int]: '''simple docstring''' return str(list((self._pointer.keys()))) def __setattr__( self , lowercase , lowercase) -> Optional[int]: '''simple docstring''' a__ : str = val a__ : Tuple = val a__ : int = key.split('.') a__ : Tuple = len(lowercase) - 1 a__ : int = self._pointer if len(lowercase) > 1: for i, l in enumerate(lowercase): if hasattr(self , lowercase) and isinstance(getattr(self , lowercase) , lowercase): setattr(getattr(self , lowercase) , '.'.join(levels[i:]) , lowercase) if l == last_level: a__ : List[str] = val else: a__ : Tuple = pointer[l] def __lowercase ( self) -> Tuple: '''simple docstring''' return self._pointer def __lowercase ( self , lowercase , lowercase) -> str: '''simple docstring''' with open(F'{file_name}' , 'w') as stream: dump(lowercase , lowercase) def __lowercase ( self , lowercase , lowercase) -> Optional[int]: '''simple docstring''' with open(F'{file_name}' , 'w') as stream: json.dump(lowercase , lowercase) @staticmethod def __lowercase ( lowercase) -> Optional[int]: '''simple docstring''' with open(lowercase) as stream: a__ : Tuple = load(lowercase , Loader=lowercase) return data def __str__( self) -> Tuple: '''simple docstring''' a__ : Optional[int] = ' ' if self._name != "root": a__ : Any = F'{t * (self._level-1)}{self._name}:\n' else: a__ : Dict = '' a__ : Tuple = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(lowercase , lowercase): r += F'{t * (self._level)}{v}\n' self._level += 1 else: r += F'{t * (self._level)}{k}: {v} ({type(lowercase).__name__})\n' a__ : Tuple = level return r[:-1] @classmethod def __lowercase ( cls , lowercase , **lowercase) -> Tuple: '''simple docstring''' a__ , a__ : Optional[Any] = cls.get_config_dict(lowercase , **lowercase) return cls(lowercase) @classmethod def __lowercase ( cls , lowercase , **lowercase) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = kwargs.pop('cache_dir' , lowercase) a__ : Tuple = kwargs.pop('force_download' , lowercase) a__ : str = kwargs.pop('resume_download' , lowercase) a__ : Tuple = kwargs.pop('proxies' , lowercase) a__ : List[str] = kwargs.pop('local_files_only' , lowercase) if os.path.isdir(lowercase): a__ : int = os.path.join(lowercase , lowercase) elif os.path.isfile(lowercase) or is_remote_url(lowercase): a__ : Union[str, Any] = pretrained_model_name_or_path else: a__ : Tuple = hf_bucket_url(lowercase , filename=lowercase , use_cdn=lowercase) try: # Load from URL or cache if already cached a__ : Optional[Any] = cached_path( lowercase , cache_dir=lowercase , force_download=lowercase , proxies=lowercase , resume_download=lowercase , local_files_only=lowercase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError a__ : Optional[int] = Config.load_yaml(lowercase) except EnvironmentError: a__ : List[str] = 'Can\'t load config for' raise EnvironmentError(lowercase) if resolved_config_file == config_file: print('loading configuration file from path') else: print('loading configuration file cache') return Config.load_yaml(lowercase), kwargs def A_ ( A__ ) -> Union[str, Any]: a__ : str = torch.load('dump.pt' , map_location=in_tensor.device ) a__ : Optional[Any] = in_tensor.numpy() a__ : List[Any] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(A__ , A__ , rtol=0.01 , atol=0.1 ), ( F'{sum([1 for x in np.isclose(A__ , A__ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %' " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def A_ ( A__ ) -> str: a__ : Dict = urlparse(A__ ) return parsed.scheme in ("http", "https") def A_ ( A__ , A__ , A__=True ) -> str: a__ : int = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX a__ : Any = '/' not in model_id if legacy_format: return F'{endpoint}/{model_id}-{filename}' else: return F'{endpoint}/{model_id}/{filename}' def A_ ( A__ , A__ , A__=None , A__=0 , A__=None , ) -> Union[str, Any]: a__ : int = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(A__ , A__ ): ua += "; " + "; ".join('{}/{}'.format(A__ , A__ ) for k, v in user_agent.items() ) elif isinstance(A__ , A__ ): ua += "; " + user_agent a__ : Dict = {'user-agent': ua} if resume_size > 0: a__ : Optional[Any] = 'bytes=%d-' % (resume_size,) a__ : Any = requests.get(A__ , stream=A__ , proxies=A__ , headers=A__ ) if response.status_code == 416: # Range not satisfiable return a__ : List[Any] = response.headers.get('Content-Length' ) a__ : Optional[Any] = resume_size + int(A__ ) if content_length is not None else None a__ : Any = tqdm( unit='B' , unit_scale=A__ , total=A__ , initial=A__ , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(A__ ) ) temp_file.write(A__ ) progress.close() def A_ ( A__ , A__=None , A__=False , A__=None , A__=10 , A__=False , A__=None , A__=False , ) -> List[str]: if cache_dir is None: a__ : str = TRANSFORMERS_CACHE if isinstance(A__ , A__ ): a__ : Dict = str(A__ ) os.makedirs(A__ , exist_ok=A__ ) a__ : Union[str, Any] = None if not local_files_only: try: a__ : Union[str, Any] = requests.head(A__ , allow_redirects=A__ , proxies=A__ , timeout=A__ ) if response.status_code == 200: a__ : Union[str, Any] = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass a__ : Optional[Any] = url_to_filename(A__ , A__ ) # get cache path to put the file a__ : str = os.path.join(A__ , A__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(A__ ): return cache_path else: a__ : List[Any] = [ file for file in fnmatch.filter(os.listdir(A__ ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(A__ ) > 0: return os.path.join(A__ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(A__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. a__ : str = cache_path + '.lock' with FileLock(A__ ): # If the download just completed while the lock was activated. if os.path.exists(A__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: a__ : Any = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(A__ , 'a+b' ) as f: yield f a__ : Optional[Any] = _resumable_file_manager if os.path.exists(A__ ): a__ : str = os.stat(A__ ).st_size else: a__ : str = 0 else: a__ : List[Any] = partial(tempfile.NamedTemporaryFile , dir=A__ , delete=A__ ) a__ : Optional[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , A__ , temp_file.name , ) http_get( A__ , A__ , proxies=A__ , resume_size=A__ , user_agent=A__ , ) os.replace(temp_file.name , A__ ) a__ : Dict = {'url': url, 'etag': etag} a__ : str = cache_path + '.json' with open(A__ , 'w' ) as meta_file: json.dump(A__ , A__ ) return cache_path def A_ ( A__ , A__=None ) -> Union[str, Any]: a__ : int = url.encode('utf-8' ) a__ : str = shaaaa(A__ ) a__ : Union[str, Any] = url_hash.hexdigest() if etag: a__ : Optional[Any] = etag.encode('utf-8' ) a__ : Tuple = shaaaa(A__ ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def A_ ( A__ , A__=None , A__=False , A__=None , A__=False , A__=None , A__=False , A__=False , A__=False , ) -> Any: if cache_dir is None: a__ : Tuple = TRANSFORMERS_CACHE if isinstance(A__ , A__ ): a__ : Optional[Any] = str(A__ ) if isinstance(A__ , A__ ): a__ : Optional[int] = str(A__ ) if is_remote_url(A__ ): # URL, so get it from the cache (downloading if necessary) a__ : Any = get_from_cache( A__ , cache_dir=A__ , force_download=A__ , proxies=A__ , resume_download=A__ , user_agent=A__ , local_files_only=A__ , ) elif os.path.exists(A__ ): # File, and it exists. a__ : Tuple = url_or_filename elif urlparse(A__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(A__ ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(A__ ) ) if extract_compressed_file: if not is_zipfile(A__ ) and not tarfile.is_tarfile(A__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" a__ , a__ : List[Any] = os.path.split(A__ ) a__ : Dict = output_file.replace('.' , '-' ) + '-extracted' a__ : Union[str, Any] = os.path.join(A__ , A__ ) if os.path.isdir(A__ ) and os.listdir(A__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions a__ : List[Any] = output_path + '.lock' with FileLock(A__ ): shutil.rmtree(A__ , ignore_errors=A__ ) os.makedirs(A__ ) if is_zipfile(A__ ): with ZipFile(A__ , 'r' ) as zip_file: zip_file.extractall(A__ ) zip_file.close() elif tarfile.is_tarfile(A__ ): a__ : List[Any] = tarfile.open(A__ ) tar_file.extractall(A__ ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(A__ ) ) return output_path_extracted return output_path def A_ ( A__ , A__="," ) -> Union[str, Any]: assert isinstance(A__ , A__ ) if os.path.isfile(A__ ): with open(A__ ) as f: a__ : List[Any] = eval(f.read() ) else: a__ : Optional[Any] = requests.get(A__ ) try: a__ : str = requests.json() except Exception: a__ : str = req.content.decode() assert data is not None, "could not connect" try: a__ : Tuple = eval(A__ ) except Exception: a__ : List[Any] = data.split('\n' ) req.close() return data def A_ ( A__ ) -> List[str]: a__ : str = requests.get(A__ ) a__ : str = np.array(Image.open(BytesIO(response.content ) ) ) return img def A_ ( A__ ) -> Any: a__ : List[str] = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(A__ ) with open(A__ , 'rb' ) as stream: a__ : Tuple = pkl.load(A__ ) a__ : Optional[Any] = weights.pop('model' ) a__ : int = {} for k, v in model.items(): a__ : List[str] = torch.from_numpy(A__ ) if "running_var" in k: a__ : str = torch.tensor([0] ) a__ : List[Any] = k.replace('running_var' , 'num_batches_tracked' ) a__ : int = zero return new def A_ ( ) -> List[Any]: print(F'{os.path.abspath(os.path.join(A__ , os.pardir ) )}/demo.ipynb' ) def A_ ( A__ , A__="RGB" ) -> List[Any]: assert isinstance(A__ , A__ ) if os.path.isfile(A__ ): a__ : Any = cva.imread(A__ ) else: a__ : Dict = get_image_from_url(A__ ) assert img is not None, F'could not connect to: {im}' a__ : Dict = cva.cvtColor(A__ , cva.COLOR_BGR2RGB ) if input_format == "RGB": a__ : Optional[int] = img[:, :, ::-1] return img def A_ ( A__ , A__=1 ) -> Tuple: return (images[i : i + batch] for i in range(0 , len(A__ ) , A__ ))
99
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
0
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __magic_name__ = logging.get_logger(__name__) @add_end_docstrings( __a , R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def snake_case_ ( self , lowerCAmelCase__): if self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": __SCREAMING_SNAKE_CASE = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__) else: raise ValueError("""Unsupported framework""") return masked_index def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.get_masked_index(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = np.prod(masked_index.shape) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def snake_case_ ( self , lowerCAmelCase__): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__): if return_tensors is None: __SCREAMING_SNAKE_CASE = self.framework __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__) self.ensure_exactly_one_mask_token(lowerCAmelCase__) return model_inputs def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.model(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model_inputs["""input_ids"""] return model_outputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=5 , lowerCAmelCase__=None): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __SCREAMING_SNAKE_CASE = target_ids.shape[0] __SCREAMING_SNAKE_CASE = model_outputs["""input_ids"""][0] __SCREAMING_SNAKE_CASE = model_outputs["""logits"""] if self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] __SCREAMING_SNAKE_CASE = outputs.numpy() __SCREAMING_SNAKE_CASE = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE = stable_softmax(lowerCAmelCase__ , axis=-1) if target_ids is not None: __SCREAMING_SNAKE_CASE = tf.gather_nd(tf.squeeze(lowerCAmelCase__ , 0) , target_ids.reshape(-1 , 1)) __SCREAMING_SNAKE_CASE = tf.expand_dims(lowerCAmelCase__ , 0) __SCREAMING_SNAKE_CASE = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = topk.values.numpy(), topk.indices.numpy() else: __SCREAMING_SNAKE_CASE = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample __SCREAMING_SNAKE_CASE = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1) if target_ids is not None: __SCREAMING_SNAKE_CASE = probs[..., target_ids] __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = probs.topk(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())): __SCREAMING_SNAKE_CASE = [] for v, p in zip(_values , _predictions): # Copy is important since we're going to modify this array in place __SCREAMING_SNAKE_CASE = input_ids.numpy().copy() if target_ids is not None: __SCREAMING_SNAKE_CASE = target_ids[p].tolist() __SCREAMING_SNAKE_CASE = p # Filter padding out: __SCREAMING_SNAKE_CASE = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __SCREAMING_SNAKE_CASE = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p]), """sequence""": sequence} row.append(lowerCAmelCase__) result.append(lowerCAmelCase__) if single_mask: return result[0] return result def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [targets] try: __SCREAMING_SNAKE_CASE = self.tokenizer.get_vocab() except Exception: __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = [] for target in targets: __SCREAMING_SNAKE_CASE = vocab.get(lowerCAmelCase__ , lowerCAmelCase__) if id_ is None: __SCREAMING_SNAKE_CASE = self.tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , max_length=1 , truncation=lowerCAmelCase__ , )["""input_ids"""] if len(lowerCAmelCase__) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""") continue __SCREAMING_SNAKE_CASE = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.") target_ids.append(id_) __SCREAMING_SNAKE_CASE = list(set(lowerCAmelCase__)) if len(lowerCAmelCase__) == 0: raise ValueError("""At least one target must be provided when passed.""") __SCREAMING_SNAKE_CASE = np.array(lowerCAmelCase__) return target_ids def snake_case_ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None): __SCREAMING_SNAKE_CASE = {} if targets is not None: __SCREAMING_SNAKE_CASE = self.get_target_ids(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = target_ids if top_k is not None: __SCREAMING_SNAKE_CASE = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""") return {}, {}, postprocess_params def __call__( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = super().__call__(lowerCAmelCase__ , **lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) and len(lowerCAmelCase__) == 1: return outputs[0] return outputs
100
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase__ :List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Union[str, Any] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowercase__ :List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
101
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Any = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : List[str] = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __lowercase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowercase = tokenizer('''Hello there''' ,return_tensors='''np''' ).input_ids __lowercase = tokenizer('''Hi I am''' ,return_tensors='''np''' ).input_ids __lowercase = shift_tokens_right(lowercase__ ,model.config.pad_token_id ,model.config.decoder_start_token_id ) __lowercase = model(lowercase__ ,decoder_input_ids=lowercase__ ).logits __lowercase = optax.softmax_cross_entropy(lowercase__ ,onehot(lowercase__ ,logits.shape[-1] ) ).mean() __lowercase = -(labels.shape[-1] * loss.item()) __lowercase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
104
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast a : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __UpperCamelCase ( datasets.BuilderConfig ): lowerCamelCase : int =1_0000 lowerCamelCase : Optional[List[str]] =None lowerCamelCase : Optional[datasets.Features] =None class __UpperCamelCase ( datasets.ArrowBasedBuilder ): lowerCamelCase : Union[str, Any] =ParquetConfig def __a ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __a ( self , lowerCAmelCase__ ) -> Tuple: if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) a : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): a : List[Any] = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a : Tuple = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] a : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a : str = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(lowerCAmelCase__ ): with open(lowerCAmelCase__ , "rb" ) as f: a : Optional[Any] = datasets.Features.from_arrow_schema(pq.read_schema(lowerCAmelCase__ ) ) break splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def __a ( self , lowerCAmelCase__ ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example a : Union[str, Any] = table_cast(lowerCAmelCase__ , self.info.features.arrow_schema ) return pa_table def __a ( self , lowerCAmelCase__ ) -> int: a : int = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): with open(lowerCAmelCase__ , "rb" ) as f: a : List[Any] = pq.ParquetFile(lowerCAmelCase__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): a : Union[str, Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
105
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = torch.nn.Linear(2 , 4 ) lowerCAmelCase__ : List[str] = torch.optim.AdamW(model.parameters() , lr=1.0 ) lowerCAmelCase__ : Tuple = torch.optim.lr_scheduler.OneCycleLR(A_ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) lowerCAmelCase__ : Optional[Any] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) lowerCAmelCase__ : int = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __SCREAMING_SNAKE_CASE ( A_ ): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Union[str, Any] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(A_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" @require_cuda def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : List[str] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowercase_ ): lowerCAmelCase__ : Dict = Accelerator(cpu=lowercase_ ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Union[str, Any] = Accelerator() lowerCAmelCase__ : Optional[Any] = GradientState() assert state.num_steps == 1 lowerCAmelCase__ : int = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowerCAmelCase__ : str = False assert state.sync_gradients is False GradientState._reset_state() def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Dict = Accelerator() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = create_components() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : int = accelerator.prepare(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : str = Accelerator() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = create_components() accelerator.prepare(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __lowerCAmelCase ( self : Optional[Any] ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowercase_ : Optional[Any] ,**lowercase_ : Optional[Any] ): pass with patch('''torch.cuda.set_device''' ,lowercase_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): lowerCAmelCase__ : Union[str, Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) ,'''cuda:64''' ) def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : str = Accelerator() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = create_components() accelerator.prepare(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) lowerCAmelCase__ : int = get_signature(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase_ ) # make sure random weights don't match load_random_weights(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) < 1E-3 ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = Accelerator() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = create_components() accelerator.prepare(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) lowerCAmelCase__ : Any = get_signature(lowercase_ ) # saving hook def save_config(lowercase_ : str ,lowercase_ : List[Any] ,lowercase_ : Optional[int] ): lowerCAmelCase__ : str = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(lowercase_ ,'''data.json''' ) ,'''w''' ) as f: json.dump(lowercase_ ,lowercase_ ) # loading hook def load_config(lowercase_ : Optional[Any] ,lowercase_ : str ): with open(os.path.join(lowercase_ ,'''data.json''' ) ,'''r''' ) as f: lowerCAmelCase__ : Dict = json.load(lowercase_ ) lowerCAmelCase__ : Any = config['''class_name'''] lowerCAmelCase__ : Optional[int] = accelerator.register_save_state_pre_hook(lowercase_ ) lowerCAmelCase__ : Optional[Any] = accelerator.register_load_state_pre_hook(lowercase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase_ ) # make sure random weights don't match with hooks load_random_weights(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded lowerCAmelCase__ : List[str] = '''random''' # make sure loaded weights match with hooks accelerator.load_state(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase_ ) # make sure random weights don't match with hooks removed load_random_weights(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded lowerCAmelCase__ : str = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(lowercase_ ) self.assertTrue(abs(model_signature - get_signature(lowercase_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : Union[str, Any] = Accelerator() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = create_components() lowerCAmelCase__ : List[str] = None # This should work lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = accelerator.prepare( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) self.assertTrue(dummy_obj is None ) def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Optional[Any] = Accelerator() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Dict = create_components() lowerCAmelCase__ : Optional[Any] = [1, 2, 3] # This should work lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = accelerator.prepare( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) self.assertEqual( getattr(lowercase_ ,'''_is_accelerate_prepared''' ,lowercase_ ) ,lowercase_ ,'''Dummy object should have `_is_accelerate_prepared` set to `True`''' ,) self.assertEqual( getattr(lowercase_ ,'''_is_accelerate_prepared''' ,lowercase_ ) ,lowercase_ ,'''Model is missing `_is_accelerator_prepared` or is set to `False`''' ,) self.assertEqual( getattr(lowercase_ ,'''_is_accelerate_prepared''' ,lowercase_ ) ,lowercase_ ,'''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' ,) self.assertEqual( getattr(lowercase_ ,'''_is_accelerate_prepared''' ,lowercase_ ) ,lowercase_ ,'''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' ,) self.assertEqual( getattr(lowercase_ ,'''_is_accelerate_prepared''' ,lowercase_ ) ,lowercase_ ,'''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' ,) self.assertEqual( getattr(lowercase_ ,'''_is_accelerate_prepared''' ,lowercase_ ) ,lowercase_ ,'''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' ,) @slow @require_bnb def __lowerCAmelCase ( self : List[Any] ): from transformers import AutoModelForCausalLM lowerCAmelCase__ : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,load_in_abit=lowercase_ ,device_map={'''''': 0} ,) lowerCAmelCase__ : Union[str, Any] = Accelerator() # This should work lowerCAmelCase__ : Optional[int] = accelerator.prepare(lowercase_ ) @slow @require_bnb def __lowerCAmelCase ( self : int ): from transformers import AutoModelForCausalLM lowerCAmelCase__ : Tuple = Accelerator() with init_empty_weights(): lowerCAmelCase__ : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,) model.tie_weights() lowerCAmelCase__ : List[Any] = infer_auto_device_map(lowercase_ ) lowerCAmelCase__ : int = '''cpu''' lowerCAmelCase__ : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,device_map=lowercase_ ,load_in_abit=lowercase_ ,llm_inta_enable_fpaa_cpu_offload=lowercase_ ) # This should not work and get value error with self.assertRaises(lowercase_ ): lowerCAmelCase__ : Any = accelerator.prepare(lowercase_ ) @slow @require_bnb @require_multi_gpu def __lowerCAmelCase ( self : Optional[Any] ): from transformers import AutoModelForCausalLM lowerCAmelCase__ : List[Any] = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): lowerCAmelCase__ : Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,) model.tie_weights() lowerCAmelCase__ : Any = infer_auto_device_map(lowercase_ ) lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,load_in_abit=lowercase_ ,device_map=lowercase_ ,) lowerCAmelCase__ : Tuple = Accelerator() # This should not work and get value error with self.assertRaises(lowercase_ ): lowerCAmelCase__ : List[str] = accelerator.prepare(lowercase_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __lowerCAmelCase ( self : Tuple ): from transformers import AutoModelForCausalLM with init_empty_weights(): lowerCAmelCase__ : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,) lowerCAmelCase__ : Optional[int] = infer_auto_device_map(lowercase_ ) lowerCAmelCase__ : int = 1 lowerCAmelCase__ : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' ,load_in_abit=lowercase_ ,device_map=lowercase_ ,) lowerCAmelCase__ : List[Any] = Accelerator() # This should work lowerCAmelCase__ : List[str] = accelerator.prepare(lowercase_ ) @require_cuda def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Dict = torch.nn.Linear(1_0 ,1_0 ) lowerCAmelCase__ : List[Any] = torch.optim.SGD(model.parameters() ,lr=0.01 ) lowerCAmelCase__ : str = Accelerator(cpu=lowercase_ ) lowerCAmelCase__ : Optional[int] = accelerator.prepare(lowercase_ )
106
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __lowerCAmelCase : List[str] = pd.read_csv('sample_data.csv', header=None) __lowerCAmelCase : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column __lowerCAmelCase : Union[str, Any] = df.iloc[:, 1:2] __lowerCAmelCase : Tuple = actual_data.values.reshape(len_data, 1) __lowerCAmelCase : Dict = MinMaxScaler().fit_transform(actual_data) __lowerCAmelCase : Union[str, Any] = 10 __lowerCAmelCase : Optional[Any] = 5 __lowerCAmelCase : List[Any] = 20 __lowerCAmelCase : Optional[Any] = len_data - periods * look_back __lowerCAmelCase : List[str] = actual_data[:division] __lowerCAmelCase : Tuple = actual_data[division - look_back :] __lowerCAmelCase , __lowerCAmelCase : List[str] = [], [] __lowerCAmelCase , __lowerCAmelCase : List[Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __lowerCAmelCase : Tuple = np.array(train_x) __lowerCAmelCase : Any = np.array(test_x) __lowerCAmelCase : Dict = np.array([list(i.ravel()) for i in train_y]) __lowerCAmelCase : str = np.array([list(i.ravel()) for i in test_y]) __lowerCAmelCase : Union[str, Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') __lowerCAmelCase : List[str] = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) __lowerCAmelCase : Union[str, Any] = model.predict(x_test)
107
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
0
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A: List[Any] = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE ( cls ) -> Any: '''simple docstring''' UpperCAmelCase : str = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def SCREAMING_SNAKE_CASE ( cls ) -> Dict: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Dict = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) UpperCAmelCase : List[Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase : Union[str, Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id="""test-model-flax""" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F"{key} not identical" ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) UpperCAmelCase : List[str] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCAmelCase : str = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCAmelCase : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F"{key} not identical" ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Dict ): UpperCAmelCase : Any = True UpperCAmelCase : Dict = flatten_dict(modela.params ) UpperCAmelCase : int = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase : Tuple = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCAmelCase : int = FlaxBertModel(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[int] = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Dict = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCAmelCase : Tuple = FlaxBertModel(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size="""10KB""" ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : int = """bert""" UpperCAmelCase : Union[str, Any] = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple = """bert""" UpperCAmelCase : Dict = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
109
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _snake_case ( UpperCamelCase : Union[str, Any] ): UpperCAmelCase : List[str] = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCAmelCase : Optional[Any] = FileLock(str(tmpdir / """foo.lock""" ) ) UpperCAmelCase : List[Any] = 0.01 with locka.acquire(): with pytest.raises(snake_case__ ): UpperCAmelCase : Tuple = time.time() locka.acquire(snake_case__ ) assert time.time() - _start > timeout def _snake_case ( UpperCamelCase : List[Any] ): UpperCAmelCase : Optional[int] = """a""" * 1000 + """.lock""" UpperCAmelCase : List[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(snake_case__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase : Optional[Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case__ ): locka.acquire(0 )
109
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=99 , _A=32 , _A=5 , _A=4 , _A=37 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=16 , _A=2 , _A=0.02 , _A=4 , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_attention_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_choices def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCamelCase__ ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = FlaxDistilBertModelTester(self ) @slow def _UpperCamelCase ( self ) -> int: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class_name.from_pretrained('''distilbert-base-uncased''' ) SCREAMING_SNAKE_CASE_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) SCREAMING_SNAKE_CASE_ = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE_ = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
299
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _a ( *a :Union[str, Any] ) -> List[str]: if not isinstance(snake_case__ , snake_case__ ): a = list(snake_case__ ) for i in range(len(snake_case__ ) ): a = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _a ( a :int ) -> bool: a = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(snake_case__ , snake_case__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _a ( a :Dict = None , a :int = 128 ) -> Optional[Any]: if function is None: return functools.partial(snake_case__ , starting_batch_size=snake_case__ ) a = starting_batch_size def decorator(*a :Tuple , **a :Union[str, Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() a = list(inspect.signature(snake_case__ ).parameters.keys() ) # Guard against user error if len(snake_case__ ) < (len(snake_case__ ) + 1): a = ''', '''.join([F"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F"""Batch size was passed into `{function.__name__}` as the first argument when called.""" F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(snake_case__ , *snake_case__ , **snake_case__ ) except Exception as e: if should_reduce_batch_size(snake_case__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class a ( _UpperCAmelCase ): UpperCAmelCase_ : str ="microsoft/speecht5_tts" UpperCAmelCase_ : List[str] =( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) UpperCAmelCase_ : Optional[int] ="text_reader" UpperCAmelCase_ : List[str] =SpeechTaProcessor UpperCAmelCase_ : Union[str, Any] =SpeechTaForTextToSpeech UpperCAmelCase_ : Tuple =SpeechTaHifiGan UpperCAmelCase_ : List[Any] =["text"] UpperCAmelCase_ : Dict =["audio"] def UpperCamelCase_ ( self ): if self.post_processor is None: lowercase = 'microsoft/speecht5_hifigan' super().setup() def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None ): lowercase = self.pre_processor(text=UpperCAmelCase_ , return_tensors='pt' , truncation=UpperCAmelCase_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) lowercase = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) lowercase = torch.tensor(embeddings_dataset[7_3_0_5]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase_ ( self , _lowerCamelCase ): with torch.no_grad(): return self.model.generate_speech(**UpperCAmelCase_ ) def UpperCamelCase_ ( self , _lowerCamelCase ): with torch.no_grad(): return self.post_processor(UpperCAmelCase_ ).cpu().detach()
220
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"vocab_file": "spiece.model"} _UpperCamelCase = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class __lowercase (_UpperCAmelCase ): def __init__( self , A_ , A_=False , A_=True , A_=False , A_="<s>" , A_="</s>" , A_="<unk>" , A_="<sep>" , A_="<pad>" , A_="<cls>" , A_="<mask>" , A_=["<eop>", "<eod>"] , A_ = None , **A_ , ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token __lowerCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) __lowerCAmelCase : Union[str, Any] = 3 __lowerCAmelCase : Optional[Any] = do_lower_case __lowerCAmelCase : Any = remove_space __lowerCAmelCase : int = keep_accents __lowerCAmelCase : Any = vocab_file __lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) __lowerCAmelCase : Tuple = jieba __lowerCAmelCase : str = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' return len(self.sp_model ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.__dict__.copy() __lowerCAmelCase : Union[str, Any] = None return state def __setstate__( self , A_ ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCAmelCase : List[str] = {} __lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self , A_ ) ->List[str]: '''simple docstring''' if self.remove_space: __lowerCAmelCase : int = ''' '''.join(inputs.strip().split() ) else: __lowerCAmelCase : Union[str, Any] = inputs __lowerCAmelCase : List[str] = outputs.replace('''``''' , '''\"''' ).replace('''\'\'''' , '''\"''' ) if not self.keep_accents: __lowerCAmelCase : Dict = unicodedata.normalize('''NFKD''' , UpperCAmelCase_ ) __lowerCAmelCase : int = ''''''.join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: __lowerCAmelCase : Union[str, Any] = outputs.lower() return outputs def UpperCamelCase__ ( self , A_ ) ->Dict: '''simple docstring''' __lowerCAmelCase : str = self.preprocess_text(UpperCAmelCase_ ) __lowerCAmelCase : Optional[int] = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) __lowerCAmelCase : List[Any] = [] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __lowerCAmelCase : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowerCAmelCase : str = cur_pieces[1:] else: __lowerCAmelCase : List[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def UpperCamelCase__ ( self , A_ ) ->int: '''simple docstring''' return self.sp_model.PieceToId(UpperCAmelCase_ ) def UpperCamelCase__ ( self , A_ ) ->Any: '''simple docstring''' return self.sp_model.IdToPiece(UpperCAmelCase_ ) def UpperCamelCase__ ( self , A_ ) ->Any: '''simple docstring''' __lowerCAmelCase : str = ''''''.join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , ''' ''' ).strip() return out_string def UpperCamelCase__ ( self , A_ , A_ = None ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Any = [self.sep_token_id] __lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase__ ( self , A_ , A_ = None , A_ = False ) ->Dict: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] return ([0] * len(UpperCAmelCase_ )) + [1, 1] def UpperCamelCase__ ( self , A_ , A_ = None ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : int = [self.sep_token_id] __lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase__ ( self , A_ , A_ = None ) ->Union[str, Any]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase : Any = os.path.join( UpperCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , '''wb''' ) as fi: __lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,) def UpperCamelCase__ ( self , *A_ , **A_ ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = super()._decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) __lowerCAmelCase : str = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
275
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> bool: lowerCamelCase__ : Any = len(snake_case__ ) lowerCamelCase__ : Union[str, Any] = len(snake_case__ ) lowerCamelCase__ : List[Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] lowerCamelCase__ : int = True for i in range(snake_case__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase__ : Tuple = True if a[i].islower(): lowerCamelCase__ : Tuple = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
41
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
0
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( __a , __a ): if len(snake_case__ ) != 2 or len(a[0] ) != 2 or len(snake_case__ ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) snake_case_ : List[Any] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( __a , __a ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case__ ) ) ] def SCREAMING_SNAKE_CASE__ ( __a , __a ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case__ ) ) ] def SCREAMING_SNAKE_CASE__ ( __a ): if len(snake_case__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) snake_case_ : Optional[Any] = len(snake_case__ ) snake_case_ : List[str] = matrix_length // 2 snake_case_ : Union[str, Any] = [[a[i][j] for j in range(snake_case__ , snake_case__ )] for i in range(snake_case__ )] snake_case_ : Optional[Any] = [ [a[i][j] for j in range(snake_case__ , snake_case__ )] for i in range(snake_case__ , snake_case__ ) ] snake_case_ : int = [[a[i][j] for j in range(snake_case__ )] for i in range(snake_case__ )] snake_case_ : Union[str, Any] = [[a[i][j] for j in range(snake_case__ )] for i in range(snake_case__ , snake_case__ )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( __a ): return len(snake_case__ ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( __a ): print('\n'.join(str(snake_case__ ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( __a , __a ): if matrix_dimensions(snake_case__ ) == (2, 2): return default_matrix_multiplication(snake_case__ , snake_case__ ) snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : Union[str, Any] = split_matrix(snake_case__ ) snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : List[str] = split_matrix(snake_case__ ) snake_case_ : Optional[Any] = actual_strassen(snake_case__ , matrix_subtraction(snake_case__ , snake_case__ ) ) snake_case_ : Union[str, Any] = actual_strassen(matrix_addition(snake_case__ , snake_case__ ) , snake_case__ ) snake_case_ : Optional[int] = actual_strassen(matrix_addition(snake_case__ , snake_case__ ) , snake_case__ ) snake_case_ : List[Any] = actual_strassen(snake_case__ , matrix_subtraction(snake_case__ , snake_case__ ) ) snake_case_ : Tuple = actual_strassen(matrix_addition(snake_case__ , snake_case__ ) , matrix_addition(snake_case__ , snake_case__ ) ) snake_case_ : Optional[Any] = actual_strassen(matrix_subtraction(snake_case__ , snake_case__ ) , matrix_addition(snake_case__ , snake_case__ ) ) snake_case_ : List[Any] = actual_strassen(matrix_subtraction(snake_case__ , snake_case__ ) , matrix_addition(snake_case__ , snake_case__ ) ) snake_case_ : Union[str, Any] = matrix_addition(matrix_subtraction(matrix_addition(snake_case__ , snake_case__ ) , snake_case__ ) , snake_case__ ) snake_case_ : str = matrix_addition(snake_case__ , snake_case__ ) snake_case_ : Tuple = matrix_addition(snake_case__ , snake_case__ ) snake_case_ : List[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(snake_case__ , snake_case__ ) , snake_case__ ) , snake_case__ ) # construct the new matrix from our 4 quadrants snake_case_ : int = [] for i in range(len(snake_case__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(snake_case__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( __a , __a ): if matrix_dimensions(snake_case__ )[1] != matrix_dimensions(snake_case__ )[0]: snake_case_ : Tuple = ( 'Unable to multiply these matrices, please check the dimensions.\n' f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(snake_case__ ) snake_case_ : Union[str, Any] = matrix_dimensions(snake_case__ ) snake_case_ : Dict = matrix_dimensions(snake_case__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case_ : List[Any] = max(*snake_case__ , *snake_case__ ) snake_case_ : int = int(math.pow(2 , math.ceil(math.loga(snake_case__ ) ) ) ) snake_case_ : Optional[Any] = matrixa snake_case_ : str = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , snake_case__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case_ : Any = actual_strassen(snake_case__ , snake_case__ ) # Removing the additional zeros for i in range(0 , snake_case__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _SCREAMING_SNAKE_CASE = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _SCREAMING_SNAKE_CASE = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
327
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = 0 @slow def lowerCAmelCase__ ( self: List[str] ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCAmelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCAmelCase_ ) , 0 ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) # Check that tokenizer_type ≠ model_type __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCAmelCase__ ( self: Optional[int] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(UpperCAmelCase_ , """vocab.txt""" ) ) __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="""bert""" , use_fast=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(UpperCAmelCase_ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(UpperCAmelCase_ , """merges.txt""" ) ) __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="""gpt2""" , use_fast=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) @require_tokenizers def lowerCAmelCase__ ( self: Any ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(UpperCAmelCase_ , """vocab.txt""" ) ) __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="""bert""" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(UpperCAmelCase_ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(UpperCAmelCase_ , """merges.txt""" ) ) __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ , tokenizer_type="""gpt2""" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase__ ( self: int ): with pytest.raises(UpperCAmelCase_ ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def lowerCAmelCase__ ( self: int ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __lowerCamelCase = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCAmelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCAmelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_12 ) @require_tokenizers def lowerCAmelCase__ ( self: List[str] ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCAmelCase_ , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): __lowerCamelCase = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = TOKENIZER_MAPPING.values() __lowerCamelCase = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCAmelCase_ ) @require_tokenizers def lowerCAmelCase__ ( self: Any ): self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , UpperCAmelCase_ ) @require_tokenizers def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=UpperCAmelCase_ ) __lowerCamelCase = """Hello, world. How are you?""" __lowerCamelCase = tokenizer.tokenize(UpperCAmelCase_ ) self.assertEqual("""[UNK]""" , tokens[0] ) __lowerCamelCase = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=UpperCAmelCase_ ) __lowerCamelCase = tokenizer.tokenize(UpperCAmelCase_ ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_12 ) self.assertEqual(tokenizer.vocab_size , 3_00_00 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = get_tokenizer_config("""bert-base-cased""" ) __lowerCamelCase = config.pop("""_commit_hash""" , UpperCAmelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCAmelCase_ , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. __lowerCamelCase = get_tokenizer_config(UpperCAmelCase_ ) self.assertDictEqual(UpperCAmelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) __lowerCamelCase = get_tokenizer_config(UpperCAmelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def lowerCAmelCase__ ( self: Dict ): try: AutoConfig.register("""custom""" , UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) __lowerCamelCase = CustomTokenizer.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCAmelCase__ ( self: Any ): try: AutoConfig.register("""custom""" , UpperCAmelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoTokenizer.register(UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase = BertTokenizerFast.from_pretrained(UpperCAmelCase_ ) bert_tokenizer.save_pretrained(UpperCAmelCase_ ) __lowerCamelCase = CustomTokenizerFast.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCAmelCase__ ( self: Dict ): with self.assertRaises(UpperCAmelCase_ ): __lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): __lowerCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ ) __lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __lowerCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase_ ) __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def lowerCAmelCase__ ( self: Dict ): class lowerCamelCase__( _UpperCAmelCase): UpperCAmelCase__ : Tuple = False class lowerCamelCase__( _UpperCAmelCase): UpperCAmelCase__ : Optional[int] = NewTokenizer UpperCAmelCase__ : Optional[Any] = False try: AutoConfig.register("""custom""" , UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , fast_tokenizer_class=UpperCAmelCase_ ) # If remote code is not set, the default is to use local __lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) __lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __lowerCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) __lowerCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __lowerCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) __lowerCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __lowerCamelCase = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase__ ( self: Any ): with self.assertRaisesRegex( UpperCAmelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): __lowerCamelCase = AutoTokenizer.from_pretrained("""bert-base""" ) def lowerCAmelCase__ ( self: Tuple ): with self.assertRaisesRegex( UpperCAmelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase_ , revision="""aaaaaa""" ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
12
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
'''simple docstring''' from collections.abc import Sequence def a__ ( a__ = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __SCREAMING_SNAKE_CASE = nums[0] for i in range(1 , len(snake_case__ ) ): __SCREAMING_SNAKE_CASE = nums[i] __SCREAMING_SNAKE_CASE = max(snake_case__ , ans + num , snake_case__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase : Optional[int] = int(input('Enter number of elements : ').strip()) UpperCAmelCase : List[str] = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
267
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
0
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", "stage2.cls_token") ) return token def a__ ( ): """simple docstring""" UpperCamelCase = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = "imagenet-1k-id2label.json" UpperCamelCase = 1_000 UpperCamelCase = "huggingface/label-files" UpperCamelCase = num_labels UpperCamelCase = json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type="dataset" ) ) , "r" ) ) UpperCamelCase = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = UpperCamelCase = CvtConfig(num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": UpperCamelCase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": UpperCamelCase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCamelCase = [2, 2, 20] UpperCamelCase = [3, 12, 16] UpperCamelCase = [192, 768, 1_024] UpperCamelCase = CvtForImageClassification(snake_case__ ) UpperCamelCase = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) UpperCamelCase = image_size UpperCamelCase = torch.load(snake_case__ , map_location=torch.device("cpu" ) ) UpperCamelCase = OrderedDict() UpperCamelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCamelCase = list_of_state_dict + cls_token(snake_case__ ) UpperCamelCase = list_of_state_dict + embeddings(snake_case__ ) for cnt in range(config.depth[idx] ): UpperCamelCase = list_of_state_dict + attention(snake_case__ , snake_case__ ) UpperCamelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(snake_case__ ) for i in range(len(snake_case__ ) ): UpperCamelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
153
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
0
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __lowerCAmelCase : List[Any] = VQModel __lowerCAmelCase : Tuple = "sample" @property def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=(32, 32) ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] = 4 UpperCAmelCase : Any = 3 UpperCAmelCase : Any = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) return {"sample": image} @property def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[str] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } UpperCAmelCase : List[str] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : str = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase_ ) UpperCAmelCase : int = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : str = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(UpperCAmelCase_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) UpperCAmelCase : Optional[Any] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) UpperCAmelCase : int = image.to(UpperCAmelCase_ ) with torch.no_grad(): UpperCAmelCase : str = model(UpperCAmelCase_ ).sample UpperCAmelCase : Dict = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase : Dict = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) )
109
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
0
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' _A : Union[str, Any] = ["vqvae"] def __init__( self: Optional[int] , snake_case: AutoencoderKL , snake_case: UNetaDConditionModel , snake_case: Mel , snake_case: Union[DDIMScheduler, DDPMScheduler] , ) -> Union[str, Any]: super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , mel=UpperCAmelCase_ , vqvae=UpperCAmelCase_ ) def lowerCAmelCase_ ( self: List[Any] ) -> int: return 50 if isinstance(self.scheduler , UpperCAmelCase_ ) else 1_000 @torch.no_grad() def __call__( self: str , snake_case: int = 1 , snake_case: str = None , snake_case: np.ndarray = None , snake_case: int = 0 , snake_case: int = 0 , snake_case: int = None , snake_case: torch.Generator = None , snake_case: float = 0 , snake_case: float = 0 , snake_case: torch.Generator = None , snake_case: float = 0 , snake_case: torch.Tensor = None , snake_case: torch.Tensor = None , snake_case: Union[str, Any]=True , ) -> Optional[Any]: snake_case_ :Tuple = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase_ ) snake_case_ :List[str] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: snake_case_ :Union[str, Any] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: snake_case_ :Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCAmelCase_ , device=self.device , ) snake_case_ :Any = noise snake_case_ :Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ :Any = self.mel.audio_slice_to_image(UpperCAmelCase_ ) snake_case_ :int = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) snake_case_ :int = (input_image / 255) * 2 - 1 snake_case_ :int = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: snake_case_ :Dict = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase_ , 0 ) ).latent_dist.sample( generator=UpperCAmelCase_ )[0] snake_case_ :List[str] = self.vqvae.config.scaling_factor * input_images if start_step > 0: snake_case_ :Dict = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler.timesteps[start_step - 1] ) snake_case_ :List[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) snake_case_ :Any = int(mask_start_secs * pixels_per_second ) snake_case_ :Optional[int] = int(mask_end_secs * pixels_per_second ) snake_case_ :Dict = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , UpperCAmelCase_ ): snake_case_ :Union[str, Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )["""sample"""] else: snake_case_ :Optional[int] = self.unet(UpperCAmelCase_ , UpperCAmelCase_ )["""sample"""] if isinstance(self.scheduler , UpperCAmelCase_ ): snake_case_ :List[str] = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , )["""prev_sample"""] else: snake_case_ :str = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ , )["""prev_sample"""] if mask is not None: if mask_start > 0: snake_case_ :Tuple = mask[:, step, :, :mask_start] if mask_end > 0: snake_case_ :Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance snake_case_ :Optional[int] = 1 / self.vqvae.config.scaling_factor * images snake_case_ :int = self.vqvae.decode(UpperCAmelCase_ )["""sample"""] snake_case_ :List[str] = (images / 2 + 0.5).clamp(0 , 1 ) snake_case_ :str = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() snake_case_ :int = (images * 255).round().astype("""uint8""" ) snake_case_ :Optional[Any] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase_ , mode="""RGB""" ).convert("""L""" ) for _ in images) ) snake_case_ :str = [self.mel.image_to_audio(UpperCAmelCase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(UpperCAmelCase_ ) ) @torch.no_grad() def lowerCAmelCase_ ( self: str , snake_case: List[Image.Image] , snake_case: int = 50 ) -> Tuple: assert isinstance(self.scheduler , UpperCAmelCase_ ) self.scheduler.set_timesteps(UpperCAmelCase_ ) snake_case_ :Union[str, Any] = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) snake_case_ :Dict = (sample / 255) * 2 - 1 snake_case_ :Optional[int] = torch.Tensor(UpperCAmelCase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): snake_case_ :Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps snake_case_ :Any = self.scheduler.alphas_cumprod[t] snake_case_ :Tuple = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) snake_case_ :Dict = 1 - alpha_prod_t snake_case_ :Union[str, Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_ )["""sample"""] snake_case_ :Any = (1 - alpha_prod_t_prev) ** 0.5 * model_output snake_case_ :Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) snake_case_ :Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def lowerCAmelCase_ ( snake_case: torch.Tensor , snake_case: torch.Tensor , snake_case: float ) -> Optional[int]: snake_case_ :Optional[int] = acos(torch.dot(torch.flatten(UpperCAmelCase_ ) , torch.flatten(UpperCAmelCase_ ) ) / torch.norm(UpperCAmelCase_ ) / torch.norm(UpperCAmelCase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(UpperCAmelCase_ ) + sin(alpha * theta ) * xa / sin(UpperCAmelCase_ )
66
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __UpperCAmelCase = trt.Logger(trt.Logger.WARNING) __UpperCAmelCase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __UpperCAmelCase = logging.getLogger(__name__) __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=3_84, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=1_28, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) __UpperCAmelCase = parser.parse_args() if args.tokenizer_name: __UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) __UpperCAmelCase = args.per_device_eval_batch_size __UpperCAmelCase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __UpperCAmelCase = True __UpperCAmelCase = "temp_engine/bert-fp32.engine" if args.fpaa: __UpperCAmelCase = "temp_engine/bert-fp16.engine" if args.inta: __UpperCAmelCase = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") __UpperCAmelCase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __UpperCAmelCase = [network.get_input(i) for i in range(network.num_inputs)] __UpperCAmelCase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __UpperCAmelCase = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __UpperCAmelCase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __UpperCAmelCase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = np.asarray(inputs['''input_ids'''], dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = np.asarray(inputs['''attention_mask'''], dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = np.asarray(inputs['''token_type_ids'''], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), snake_case__ ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), snake_case__ ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), snake_case__ ) # start time SCREAMING_SNAKE_CASE_ = time.time() # Run inference context.execute_async( bindings=[int(snake_case__ ) for d_inp in d_inputs] + [int(snake_case__ ), int(snake_case__ )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(snake_case__, snake_case__, snake_case__ ) cuda.memcpy_dtoh_async(snake_case__, snake_case__, snake_case__ ) # Synchronize the stream and take time stream.synchronize() # end time SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = end_time - start_time SCREAMING_SNAKE_CASE_ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __UpperCAmelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCAmelCase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __UpperCAmelCase = raw_datasets["validation"].column_names __UpperCAmelCase = "question" if "question" in column_names else column_names[0] __UpperCAmelCase = "context" if "context" in column_names else column_names[1] __UpperCAmelCase = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __UpperCAmelCase = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __UpperCAmelCase = min(args.max_seq_length, tokenizer.model_max_length) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. SCREAMING_SNAKE_CASE_ = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='''only_second''' if pad_on_right else '''only_first''', max_length=snake_case__, stride=args.doc_stride, return_overflowing_tokens=snake_case__, return_offsets_mapping=snake_case__, padding='''max_length''', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. SCREAMING_SNAKE_CASE_ = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. SCREAMING_SNAKE_CASE_ = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). SCREAMING_SNAKE_CASE_ = tokenized_examples.sequence_ids(snake_case__ ) SCREAMING_SNAKE_CASE_ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. SCREAMING_SNAKE_CASE_ = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. SCREAMING_SNAKE_CASE_ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples __UpperCAmelCase = raw_datasets["validation"] # Validation Feature Creation __UpperCAmelCase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) __UpperCAmelCase = default_data_collator __UpperCAmelCase = eval_dataset.remove_columns(["example_id", "offset_mapping"]) __UpperCAmelCase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase="eval" ): SCREAMING_SNAKE_CASE_ = postprocess_qa_predictions( examples=snake_case__, features=snake_case__, predictions=snake_case__, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=snake_case__, ) # Format the result to the format the metric expects. if args.version_2_with_negative: SCREAMING_SNAKE_CASE_ = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: SCREAMING_SNAKE_CASE_ = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] SCREAMING_SNAKE_CASE_ = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=snake_case__, label_ids=snake_case__ ) __UpperCAmelCase = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def A__ ( __lowerCamelCase ): return trt.volume(engine.get_binding_shape(snake_case__ ) ) * engine.get_binding_dtype(snake_case__ ).itemsize # Allocate device memory for inputs and outputs. __UpperCAmelCase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __UpperCAmelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __UpperCAmelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __UpperCAmelCase = cuda.mem_alloc(h_outputa.nbytes) __UpperCAmelCase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __UpperCAmelCase = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(F""" Num examples = {len(eval_dataset)}""") logger.info(F""" Batch size = {args.per_device_eval_batch_size}""") __UpperCAmelCase = 0.0 __UpperCAmelCase = 0 __UpperCAmelCase = timeit.default_timer() __UpperCAmelCase = None for step, batch in enumerate(eval_dataloader): __UpperCAmelCase , __UpperCAmelCase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __UpperCAmelCase , __UpperCAmelCase = outputs __UpperCAmelCase = torch.tensor(start_logits) __UpperCAmelCase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __UpperCAmelCase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) __UpperCAmelCase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) __UpperCAmelCase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __UpperCAmelCase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: __UpperCAmelCase = nested_truncate(all_preds, len(eval_dataset)) __UpperCAmelCase = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 10_00 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 10_00)) logger.info("Total Number of Inference = %d", niter) __UpperCAmelCase = post_processing_function(eval_examples, eval_dataset, all_preds) __UpperCAmelCase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"""Evaluation metrics: {eval_metric}""")
299
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class lowercase_ ( _UpperCAmelCase ): '''simple docstring''' __snake_case = CustomTokenizer pass
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
0
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = [randint(-10_00 , 10_00 ) for i in range(10 )] lowercase = randint(-50_00 , 50_00 ) return (arr, r) _UpperCamelCase : Tuple = make_dataset() def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' for triplet in permutations(snake_case__ , 3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : Optional[int] ): '''simple docstring''' arr.sort() lowercase = len(snake_case__ ) for i in range(n - 1 ): lowercase , lowercase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' lowercase = '\ntriplet_sum1(*dataset)\n' lowercase = '\ntriplet_sum2(*dataset)\n' lowercase = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=1_00_00 ) lowercase = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() _UpperCamelCase : Union[str, Any] = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
220
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __lowercase : def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=[1, 16, 4, 4] , A_=None , ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = parent __lowerCAmelCase : List[Any] = batch_size __lowerCAmelCase : Any = image_size __lowerCAmelCase : str = patch_size __lowerCAmelCase : Tuple = num_channels __lowerCAmelCase : Dict = is_training __lowerCAmelCase : Optional[Any] = use_labels __lowerCAmelCase : List[Any] = hidden_size __lowerCAmelCase : int = num_hidden_layers __lowerCAmelCase : int = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : Any = hidden_act __lowerCAmelCase : Union[str, Any] = hidden_dropout_prob __lowerCAmelCase : Tuple = attention_probs_dropout_prob __lowerCAmelCase : int = type_sequence_label_size __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : List[Any] = scope __lowerCAmelCase : List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __lowerCAmelCase : str = (self.image_size // 32) ** 2 __lowerCAmelCase : List[str] = num_patches + 1 def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : Optional[int] = None if self.use_labels: __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Dict = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase_ , ) def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : str = ViTHybridModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __lowerCAmelCase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : List[str] = self.type_sequence_label_size __lowerCAmelCase : List[Any] = ViTHybridForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __lowerCAmelCase : str = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : str = self.prepare_config_and_inputs() __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Tuple = config_and_inputs __lowerCAmelCase : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () _UpperCamelCase = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = ViTHybridModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' pass def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : str = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Optional[Any] = model_class(UpperCAmelCase_ ) __lowerCAmelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : List[Any] = [*signature.parameters.keys()] __lowerCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Optional[int] = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: __lowerCAmelCase : Dict = model_class(config=UpperCAmelCase_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __lowerCAmelCase : Optional[Any] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def UpperCamelCase__ ( self ) ->str: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : List[str] = ViTHybridModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _lowercase ( ): __lowerCAmelCase : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Dict = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase_ ) __lowerCAmelCase : str = self.default_image_processor __lowerCAmelCase : Tuple = prepare_img() __lowerCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase_ , return_tensors='''pt''' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): __lowerCAmelCase : Tuple = model(**UpperCAmelCase_ ) # verify the logits __lowerCAmelCase : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) __lowerCAmelCase : Optional[Any] = torch.tensor([-1.9_090, -0.4_993, -0.2_389] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) ) @slow @require_accelerate def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) __lowerCAmelCase : List[str] = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) __lowerCAmelCase : Dict = prepare_img() __lowerCAmelCase : int = image_processor(images=UpperCAmelCase_ , return_tensors='''pt''' ) __lowerCAmelCase : Union[str, Any] = model(**UpperCAmelCase_ ) __lowerCAmelCase : Tuple = outputs.logits # model predicts one of the 1000 ImageNet classes __lowerCAmelCase : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
275
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
0
'''simple docstring''' from collections.abc import Callable import numpy as np def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> np.array: lowerCamelCase__ : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) lowerCamelCase__ : Optional[Any] = np.zeros((n + 1,) ) lowerCamelCase__ : List[str] = ya lowerCamelCase__ : Optional[Any] = xa for k in range(snake_case__ ): lowerCamelCase__ : List[Any] = y[k] + step_size * ode_func(snake_case__ , y[k] ) lowerCamelCase__ : str = y[k] + ( (step_size / 2) * (ode_func(snake_case__ , y[k] ) + ode_func(x + step_size , snake_case__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
41
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
import qiskit def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[Any] = qiskit.Aer.get_backend('aer_simulator' ) snake_case_ : List[Any] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator snake_case_ : Union[str, Any] = qiskit.execute(snake_case__ , snake_case__ , shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case__ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = half_adder(1, 1) print(F'''Half Adder Output Qubit Counts: {counts}''')
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCamelCase__( _UpperCAmelCase): def __init__( self: str , UpperCamelCase_: pyspark.sql.DataFrame , UpperCamelCase_: Optional[NamedSplit] = None , UpperCamelCase_: Optional[Features] = None , UpperCamelCase_: bool = True , UpperCamelCase_: str = None , UpperCamelCase_: bool = False , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , UpperCamelCase_: str = "arrow" , **UpperCamelCase_: Dict , ): super().__init__( split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , **UpperCAmelCase_ , ) __lowerCamelCase = load_from_cache_file __lowerCamelCase = file_format __lowerCamelCase = Spark( df=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , working_dir=UpperCAmelCase_ , **UpperCAmelCase_ , ) def lowerCAmelCase__ ( self: Optional[Any] ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) __lowerCamelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCAmelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
12
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
0
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union UpperCAmelCase : int = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$') @total_ordering @dataclass class lowerCAmelCase__ : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = _str_to_version_tuple(self.version_str ) def __repr__( self : int ) -> Optional[int]: """simple docstring""" return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" return self.major, self.minor, self.patch def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return Version(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return other raise TypeError(f'{other} (type {type(UpperCAmelCase_ )}) cannot be compared to version.' ) def __eq__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Any ) -> Any: """simple docstring""" try: __SCREAMING_SNAKE_CASE = self._validate_operand(UpperCAmelCase_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self._validate_operand(UpperCAmelCase_ ) return self.tuple < other.tuple def __hash__( self : Optional[int] ) -> List[str]: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def UpperCAmelCase__ ( cls : str , __SCREAMING_SNAKE_CASE : Dict ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return self.version_str def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = _VERSION_REG.match(snake_case__ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(snake_case__ ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def a__ ( a__ ): """simple docstring""" return ".".join(str(snake_case__ ) for v in version_tuple )
267
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" UpperCamelCase = "backbone." if is_semantic else "" UpperCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", "beit.embeddings.cls_token"), (F"{prefix}patch_embed.proj.weight", "beit.embeddings.patch_embeddings.projection.weight"), (F"{prefix}patch_embed.proj.bias", "beit.embeddings.patch_embeddings.projection.bias"), (F"{prefix}pos_embed", "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" for i in range(config.num_hidden_layers ): UpperCamelCase = "backbone." if is_semantic else "" # queries, keys and values UpperCamelCase = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) UpperCamelCase = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) UpperCamelCase = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) UpperCamelCase = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase = q_bias UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCamelCase = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) UpperCamelCase = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) UpperCamelCase = gamma_a UpperCamelCase = gamma_a def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = dct.pop(snake_case__ ) UpperCamelCase = val def a__ ( ): """simple docstring""" UpperCamelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" UpperCamelCase = False if "rvlcdip" in checkpoint_url else True UpperCamelCase = BeitConfig(use_absolute_position_embeddings=snake_case__ , use_mask_token=snake_case__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCamelCase = 1_024 UpperCamelCase = 4_096 UpperCamelCase = 24 UpperCamelCase = 16 # labels if "rvlcdip" in checkpoint_url: UpperCamelCase = 16 UpperCamelCase = "huggingface/label-files" UpperCamelCase = "rvlcdip-id2label.json" UpperCamelCase = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="dataset" ) , "r" ) ) UpperCamelCase = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case__ , map_location="cpu" )["model"] UpperCamelCase = create_rename_keys(snake_case__ , has_lm_head=snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , snake_case__ , has_lm_head=snake_case__ ) # load HuggingFace model UpperCamelCase = BeitForMaskedImageModeling(snake_case__ ) if has_lm_head else BeitForImageClassification(snake_case__ ) model.eval() model.load_state_dict(snake_case__ ) # Check outputs on an image UpperCamelCase = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=snake_case__ ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=snake_case__ , return_tensors="pt" ) UpperCamelCase = encoding["pixel_values"] UpperCamelCase = model(snake_case__ ) UpperCamelCase = outputs.logits # verify logits UpperCamelCase = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(snake_case__ ), "Shape of logits not as expected" Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: if has_lm_head: UpperCamelCase = "dit-base" if "base" in checkpoint_url else "dit-large" else: UpperCamelCase = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=snake_case__ , ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=snake_case__ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCAmelCase__ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
153
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
"""simple docstring""" def _snake_case ( UpperCamelCase : Optional[int] ): UpperCAmelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _snake_case ( UpperCamelCase : Optional[int] = 5000 ): UpperCAmelCase : str = [(i * (3 * i - 1)) // 2 for i in range(1 , snake_case__ )] for i, pentagonal_i in enumerate(snake_case__ ): for j in range(snake_case__ , len(snake_case__ ) ): UpperCAmelCase : str = pentagonal_nums[j] UpperCAmelCase : Tuple = pentagonal_i + pentagonal_j UpperCAmelCase : int = pentagonal_j - pentagonal_i if is_pentagonal(snake_case__ ) and is_pentagonal(snake_case__ ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
109
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {"vocab_file": "spm_char.model"} __a = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } __a = { "microsoft/speecht5_asr": 10_24, "microsoft/speecht5_tts": 10_24, "microsoft/speecht5_vc": 10_24, } class lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' _A : Union[str, Any] = VOCAB_FILES_NAMES _A : Dict = PRETRAINED_VOCAB_FILES_MAP _A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Tuple = ["input_ids", "attention_mask"] def __init__( self: List[Any] , snake_case: Optional[int] , snake_case: List[str]="<s>" , snake_case: Dict="</s>" , snake_case: str="<unk>" , snake_case: Optional[Any]="<pad>" , snake_case: Optional[Dict[str, Any]] = None , **snake_case: Tuple , ) -> Tuple: snake_case_ :str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) snake_case_ :Union[str, Any] = vocab_file snake_case_ :Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def lowerCAmelCase_ ( self: int ) -> List[str]: return self.sp_model.get_piece_size() def lowerCAmelCase_ ( self: Dict ) -> Tuple: snake_case_ :Any = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Any ) -> int: snake_case_ :Optional[int] = self.__dict__.copy() snake_case_ :str = None return state def __setstate__( self: Union[str, Any] , snake_case: Tuple ) -> Optional[int]: snake_case_ :List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ :Optional[int] = {} snake_case_ :Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self: Optional[int] , snake_case: str ) -> List[Any]: return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) def lowerCAmelCase_ ( self: Optional[int] , snake_case: str ) -> Any: return self.sp_model.piece_to_id(UpperCAmelCase_ ) def lowerCAmelCase_ ( self: List[Any] , snake_case: Tuple ) -> str: snake_case_ :Union[str, Any] = self.sp_model.IdToPiece(UpperCAmelCase_ ) return token def lowerCAmelCase_ ( self: Any , snake_case: Dict ) -> int: snake_case_ :List[str] = [] snake_case_ :Dict = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase_ ) + token snake_case_ :str = [] else: current_sub_tokens.append(UpperCAmelCase_ ) out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def lowerCAmelCase_ ( self: Any , snake_case: Optional[Any] , snake_case: List[str]=None ) -> str: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self: int , snake_case: List[int] , snake_case: Optional[List[int]] = None , snake_case: bool = False ) -> List[str]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) snake_case_ :Union[str, Any] = [1] if token_ids_a is None: return ([0] * len(UpperCAmelCase_ )) + suffix_ones return ([0] * len(UpperCAmelCase_ )) + ([0] * len(UpperCAmelCase_ )) + suffix_ones def lowerCAmelCase_ ( self: List[Any] , snake_case: str , snake_case: Optional[str] = None ) -> str: if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ :Any = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: snake_case_ :Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
66
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase="attention" ): SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) SCREAMING_SNAKE_CASE_ = k_tmp.reshape(k_tmp.shape[0], k_tmp.shape[1] * k_tmp.shape[2] ) SCREAMING_SNAKE_CASE_ = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) SCREAMING_SNAKE_CASE_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1], o_tmp.shape[2] ) SCREAMING_SNAKE_CASE_ = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) SCREAMING_SNAKE_CASE_ = q_tmp.reshape(q_tmp.shape[0], q_tmp.shape[1] * q_tmp.shape[2] ) SCREAMING_SNAKE_CASE_ = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) SCREAMING_SNAKE_CASE_ = v_tmp.reshape(v_tmp.shape[0], v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): if split_mlp_wi: SCREAMING_SNAKE_CASE_ = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] SCREAMING_SNAKE_CASE_ = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] SCREAMING_SNAKE_CASE_ = (wi_a, wi_a) else: SCREAMING_SNAKE_CASE_ = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] SCREAMING_SNAKE_CASE_ = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def A__ ( __lowerCamelCase, *, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): SCREAMING_SNAKE_CASE_ = traverse_util.flatten_dict(variables['''target'''] ) SCREAMING_SNAKE_CASE_ = {'''/'''.join(snake_case__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi SCREAMING_SNAKE_CASE_ = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''', snake_case__ ) SCREAMING_SNAKE_CASE_ = collections.OrderedDict() # Shared embeddings. SCREAMING_SNAKE_CASE_ = old['''token_embedder/embedding'''] # Encoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE_ = tax_layer_norm_lookup(snake_case__, snake_case__, '''encoder''', '''pre_attention_layer_norm''' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = tax_attention_lookup(snake_case__, snake_case__, '''encoder''', '''attention''' ) SCREAMING_SNAKE_CASE_ = layer_norm SCREAMING_SNAKE_CASE_ = k.T SCREAMING_SNAKE_CASE_ = o.T SCREAMING_SNAKE_CASE_ = q.T SCREAMING_SNAKE_CASE_ = v.T # Block i, layer 1 (MLP). SCREAMING_SNAKE_CASE_ = tax_layer_norm_lookup(snake_case__, snake_case__, '''encoder''', '''pre_mlp_layer_norm''' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = tax_mlp_lookup(snake_case__, snake_case__, '''encoder''', snake_case__ ) SCREAMING_SNAKE_CASE_ = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE_ = wi[0].T SCREAMING_SNAKE_CASE_ = wi[1].T else: SCREAMING_SNAKE_CASE_ = wi.T SCREAMING_SNAKE_CASE_ = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE_ = tax_relpos_bias_lookup( snake_case__, snake_case__, '''encoder''' ).T SCREAMING_SNAKE_CASE_ = old['''encoder/encoder_norm/scale'''] if not scalable_attention: SCREAMING_SNAKE_CASE_ = tax_relpos_bias_lookup( snake_case__, 0, '''encoder''' ).T SCREAMING_SNAKE_CASE_ = tax_relpos_bias_lookup( snake_case__, 0, '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE_ = tax_layer_norm_lookup(snake_case__, snake_case__, '''decoder''', '''pre_self_attention_layer_norm''' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = tax_attention_lookup(snake_case__, snake_case__, '''decoder''', '''self_attention''' ) SCREAMING_SNAKE_CASE_ = layer_norm SCREAMING_SNAKE_CASE_ = k.T SCREAMING_SNAKE_CASE_ = o.T SCREAMING_SNAKE_CASE_ = q.T SCREAMING_SNAKE_CASE_ = v.T # Block i, layer 1 (Cross Attention). SCREAMING_SNAKE_CASE_ = tax_layer_norm_lookup(snake_case__, snake_case__, '''decoder''', '''pre_cross_attention_layer_norm''' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = tax_attention_lookup(snake_case__, snake_case__, '''decoder''', '''encoder_decoder_attention''' ) SCREAMING_SNAKE_CASE_ = layer_norm SCREAMING_SNAKE_CASE_ = k.T SCREAMING_SNAKE_CASE_ = o.T SCREAMING_SNAKE_CASE_ = q.T SCREAMING_SNAKE_CASE_ = v.T # Block i, layer 2 (MLP). SCREAMING_SNAKE_CASE_ = tax_layer_norm_lookup(snake_case__, snake_case__, '''decoder''', '''pre_mlp_layer_norm''' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = tax_mlp_lookup(snake_case__, snake_case__, '''decoder''', snake_case__ ) SCREAMING_SNAKE_CASE_ = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE_ = wi[0].T SCREAMING_SNAKE_CASE_ = wi[1].T else: SCREAMING_SNAKE_CASE_ = wi.T SCREAMING_SNAKE_CASE_ = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE_ = tax_relpos_bias_lookup(snake_case__, snake_case__, '''decoder''' ).T SCREAMING_SNAKE_CASE_ = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: SCREAMING_SNAKE_CASE_ = old['''decoder/logits_dense/kernel'''].T return new def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE_ = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE_ = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) SCREAMING_SNAKE_CASE_ = state_dict['''shared.weight'''] return state_dict def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = checkpoints.load_tax_checkpoint(snake_case__ ) SCREAMING_SNAKE_CASE_ = convert_tax_to_pytorch( snake_case__, num_layers=config.num_layers, is_encoder_only=snake_case__, scalable_attention=snake_case__ ) SCREAMING_SNAKE_CASE_ = make_state_dict(snake_case__, snake_case__ ) model.load_state_dict(snake_case__, strict=snake_case__ ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False, __lowerCamelCase = False, ): SCREAMING_SNAKE_CASE_ = MTaConfig.from_json_file(snake_case__ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: SCREAMING_SNAKE_CASE_ = UMTaEncoderModel(snake_case__ ) else: SCREAMING_SNAKE_CASE_ = UMTaForConditionalGeneration(snake_case__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(snake_case__ ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case__ ) print('''Done''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
299
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
0
def _a ( a :Union[str, Any] ) -> list[int]: a = len(snake_case__ ) for i in range(snake_case__ ): for j in range(i + 1 , snake_case__ ): if numbers[j] < numbers[i]: a , a = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( __snake_case : Any , __snake_case : Optional[int] , __snake_case : Optional[Any]=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f'{torch_layer} layer.weight does not match' lowercase = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'{torch_layer} layer.bias does not match' lowercase = nn.Parameter(snake_case__ ) def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : Union[str, Any] , __snake_case : str ): '''simple docstring''' lowercase = np.asarray(weights[0] ) lowercase = np.asarray(weights[1] ) lowercase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(snake_case__ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(snake_case__ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case__ ) , ) set_param( torch_layer.output.dense , torch.tensor(snake_case__ ).view(-1 , snake_case__ ).contiguous().transpose(0 , 1 ) , ) def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' lowercase = np.asarray(weights[0] ) lowercase = np.asarray(weights[1] ) lowercase = np.asarray(weights[2] ) lowercase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(snake_case__ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(snake_case__ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(snake_case__ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case__ ) , ) set_param( torch_layer.output.dense , torch.tensor(snake_case__ ).view(-1 , snake_case__ ).contiguous().transpose(0 , 1 ) , ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[Any] ): '''simple docstring''' lowercase = weights[0][0][0] lowercase = np.asarray(layer_norm_a[0] ) lowercase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(snake_case__ ) , torch.tensor(snake_case__ ) , ) # lsh weights + output lowercase = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ , torch_block.attention , snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ , torch_block.attention , snake_case__ ) # intermediate weighs lowercase = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: lowercase = intermediate_weights[2] # layernorm 2 lowercase = np.asarray(intermediate_weights[0][0] ) lowercase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(snake_case__ ) , torch.tensor(snake_case__ ) , ) # intermediate dense lowercase = np.asarray(intermediate_weights[1][0] ) lowercase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(snake_case__ ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case__ ) , ) # intermediate out lowercase = np.asarray(intermediate_weights[4][0] ) lowercase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(snake_case__ ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case__ ) , ) def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : Any , __snake_case : Tuple ): '''simple docstring''' lowercase = torch_model.reformer # word embeds lowercase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(snake_case__ ) , ) if isinstance(weights[3] , snake_case__ ): lowercase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowercase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'{position_embeddings[emb_idx]} emb does not match' lowercase = nn.Parameter(torch.tensor(snake_case__ ) ) lowercase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowercase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ , snake_case__ , snake_case__ ) # output layer norm lowercase = np.asarray(weights[7][0] ) lowercase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(snake_case__ ) , torch.tensor(snake_case__ ) , ) # output embeddings lowercase = np.asarray(weights[9][0] ) lowercase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(snake_case__ ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case__ ) , ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] ): '''simple docstring''' lowercase = ReformerConfig.from_json_file(snake_case__ ) print(f'Building PyTorch model from configuration: {config}' ) lowercase = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ , 'rb' ) as f: lowercase = pickle.load(snake_case__ )['weights'] set_model_weights_in_torch(snake_case__ , snake_case__ , config.hidden_size ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , snake_case__ ) if __name__ == "__main__": _UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase : Tuple = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
220
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
0
import random def _lowercase ( lowercase__ ): __lowerCAmelCase : Optional[int] = num - 1 __lowerCAmelCase : Any = 0 while s % 2 == 0: __lowerCAmelCase : Any = s // 2 t += 1 for _ in range(5 ): __lowerCAmelCase : Optional[int] = random.randrange(2 , num - 1 ) __lowerCAmelCase : Tuple = pow(snake_case__ , snake_case__ , snake_case__ ) if v != 1: __lowerCAmelCase : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: __lowerCAmelCase : List[str] = i + 1 __lowerCAmelCase : Optional[int] = (v**2) % num return True def _lowercase ( lowercase__ ): if num < 2: return False __lowerCAmelCase : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def _lowercase ( lowercase__ = 1_0_2_4 ): while True: __lowerCAmelCase : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": _UpperCamelCase = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
275
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
0
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _A : str =logging.get_logger(__name__) logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: if "xprophetnet" in prophetnet_checkpoint_path: lowerCamelCase__ : Optional[int] = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) lowerCamelCase__ , lowerCamelCase__ : int = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ , output_loading_info=snake_case__ ) else: lowerCamelCase__ : Dict = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ , output_loading_info=snake_case__ ) lowerCamelCase__ : str = ["""key_proj""", """value_proj""", """query_proj"""] lowerCamelCase__ : str = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowerCamelCase__ : Union[str, Any] = key.split(""".""" ) if attributes[0] == "lm_head": lowerCamelCase__ : List[Any] = prophet lowerCamelCase__ : Optional[int] = prophet_old else: lowerCamelCase__ : Optional[int] = prophet.prophetnet lowerCamelCase__ : Any = prophet_old.model lowerCamelCase__ : List[str] = False for attribute in attributes: if attribute in mapping: lowerCamelCase__ : List[str] = mapping[attribute] if not hasattr(snake_case__ , snake_case__ ) and len(snake_case__ ) > 0: lowerCamelCase__ : int = attribute elif hasattr(snake_case__ , snake_case__ ): lowerCamelCase__ : int = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowerCamelCase__ : Any = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowerCamelCase__ : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowerCamelCase__ : Optional[Any] = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowerCamelCase__ : Optional[int] = True break elif attribute in special_keys and hasattr(snake_case__ , """in_proj_weight""" ): lowerCamelCase__ : List[Any] = old_model.in_proj_weight.shape[0] // 3 lowerCamelCase__ : Tuple = getattr(snake_case__ , snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowerCamelCase__ : List[str] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowerCamelCase__ : List[str] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowerCamelCase__ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowerCamelCase__ : Any = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowerCamelCase__ : List[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowerCamelCase__ : List[Any] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowerCamelCase__ : Tuple = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowerCamelCase__ : Any = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowerCamelCase__ : Optional[Any] = True break if attribute.isdigit(): lowerCamelCase__ : Tuple = model[int(snake_case__ )] lowerCamelCase__ : Optional[int] = old_model[int(snake_case__ )] else: lowerCamelCase__ : Any = getattr(snake_case__ , snake_case__ ) if old_attribute == "": lowerCamelCase__ : Any = old_model else: if not hasattr(snake_case__ , snake_case__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowerCamelCase__ : Optional[int] = getattr(snake_case__ , snake_case__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": _A : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _A : Union[str, Any] =parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
41
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase , unittest.TestCase ): __magic_name__: Optional[int] = BlenderbotSmallTokenizer __magic_name__: List[Any] = False def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" super().setUp() snake_case_ : str = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] snake_case_ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) snake_case_ : str = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] snake_case_ : List[str] = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} snake_case_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) def UpperCAmelCase_ ( self : str , **_A : Any ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCAmelCase_ ( self : List[Any] , _A : Union[str, Any] ) -> int: """simple docstring""" snake_case_ : Any = 'adapt act apte' snake_case_ : Any = 'adapt act apte' return input_text, output_text def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Dict = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ : Dict = 'adapt act apte' snake_case_ : List[Any] = ['adapt', 'act', 'ap@@', 'te'] snake_case_ : List[str] = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ : Optional[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] snake_case_ : Tuple = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case_ : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] snake_case_ : Tuple = 'I am a small frog.' snake_case_ : List[Any] = tok([src_text] , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )['input_ids'] snake_case_ : Optional[int] = tok.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCAmelCase_ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) snake_case_ : List[str] = 'I am a small frog .' snake_case_ : Dict = '.' snake_case_ : Tuple = tok(UpperCAmelCase_ )['input_ids'] snake_case_ : List[Any] = tok(UpperCAmelCase_ )['input_ids'] assert encoded[-1] == encoded_dot[0]
327
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
0
def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' if number > 0: raise ValueError("""input must be a negative integer""" ) __lowerCamelCase = len(bin(snake_case__ )[3:] ) __lowerCamelCase = bin(abs(snake_case__ ) - (1 << binary_number_length) )[3:] __lowerCamelCase = ( ( """1""" + """0""" * (binary_number_length - len(snake_case__ )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
12
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0