code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def a__ ( a__ = 10**9 ): """simple docstring""" __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
267
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
0
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class _lowerCamelCase ( _UpperCAmelCase ): @require_torch def snake_case_ (self ) -> Tuple: UpperCamelCase = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " UpperCamelCase = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " UpperCamelCase = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache UpperCamelCase = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(UpperCAmelCase_ ) BertModel.from_pretrained(UpperCAmelCase_ ) BertTokenizer.from_pretrained(UpperCAmelCase_ ) pipeline(task="fill-mask" , model=UpperCAmelCase_ ) # baseline - just load from_pretrained with normal network UpperCamelCase = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed UpperCamelCase = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCamelCase = "1" UpperCamelCase = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def snake_case_ (self ) -> List[str]: UpperCamelCase = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " UpperCamelCase = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " UpperCamelCase = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache UpperCamelCase = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(UpperCAmelCase_ ) BertModel.from_pretrained(UpperCAmelCase_ ) BertTokenizer.from_pretrained(UpperCAmelCase_ ) pipeline(task="fill-mask" , model=UpperCAmelCase_ ) # baseline - just load from_pretrained with normal network UpperCamelCase = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed UpperCamelCase = self.get_env() UpperCamelCase = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def snake_case_ (self ) -> Any: UpperCamelCase = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " UpperCamelCase = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " UpperCamelCase = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network UpperCamelCase = [sys.executable, "-c", "\n".join([load, run] )] # should succeed UpperCamelCase = self.get_env() UpperCamelCase = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # next emulate no network UpperCamelCase = [sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCamelCase = "1" UpperCamelCase = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def snake_case_ (self ) -> int: UpperCamelCase = "\nfrom transformers import pipeline\n " UpperCamelCase = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " UpperCamelCase = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " UpperCamelCase = self.get_env() UpperCamelCase = "1" UpperCamelCase = [sys.executable, "-c", "\n".join([load, mock, run] )] UpperCamelCase = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" , result.stderr.decode().replace("\n" , "" ) , ) @require_torch def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = "\nfrom transformers import AutoModel\n " UpperCamelCase = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network UpperCamelCase = [sys.executable, "-c", "\n".join([load, run] )] # should succeed UpperCamelCase = self.get_env() UpperCamelCase = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCamelCase = "1" UpperCamelCase = subprocess.run(UpperCAmelCase_ , env=UpperCAmelCase_ , check=UpperCAmelCase_ , capture_output=UpperCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() )
153
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
0
"""simple docstring""" def _snake_case ( UpperCamelCase : str ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _snake_case ( UpperCamelCase : Dict ): UpperCAmelCase : List[str] = 0 UpperCAmelCase : Any = len(snake_case__ ) # No of vertices in graph UpperCAmelCase : Tuple = [0] * n UpperCAmelCase : str = [False] * n def dfs(UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : Tuple , UpperCamelCase : str ): UpperCAmelCase : str = True UpperCAmelCase : str = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(snake_case__ , snake_case__ , snake_case__ , id_ ) UpperCAmelCase : Tuple = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge UpperCAmelCase : Optional[Any] = min(low[at] , low[to] ) UpperCAmelCase : int = [] for i in range(snake_case__ ): if not visited[i]: dfs(snake_case__ , -1 , snake_case__ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
109
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __a = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self: Optional[Any] ) -> str: return 12 @property def lowerCAmelCase_ ( self: str ) -> List[Any]: return 12 @property def lowerCAmelCase_ ( self: str ) -> Tuple: return 32 @property def lowerCAmelCase_ ( self: Any ) -> Dict: torch.manual_seed(0 ) snake_case_ :Tuple = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowerCAmelCase_ ( self: int ) -> Optional[int]: snake_case_ :int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCAmelCase_ ( self: Optional[int] ) -> Tuple: torch.manual_seed(0 ) snake_case_ :int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_ ) @property def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]: torch.manual_seed(0 ) snake_case_ :Any = 12 snake_case_ :Dict = 12 snake_case_ :Tuple = { """attention_bias""": True, """cross_attention_dim""": 32, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 32, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case_ :Dict = TransformeraDModel(**UpperCAmelCase_ ) return model def lowerCAmelCase_ ( self: Union[str, Any] ) -> int: snake_case_ :Tuple = """cpu""" snake_case_ :Dict = self.dummy_vqvae snake_case_ :int = self.dummy_text_encoder snake_case_ :List[str] = self.dummy_tokenizer snake_case_ :int = self.dummy_transformer snake_case_ :List[Any] = VQDiffusionScheduler(self.num_embed ) snake_case_ :List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_ ) snake_case_ :List[str] = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) snake_case_ :int = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ :Tuple = """teddy bear playing in the pool""" snake_case_ :Any = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) snake_case_ :Tuple = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""np""" ) snake_case_ :int = output.images snake_case_ :Any = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) snake_case_ :Tuple = pipe( [prompt] , generator=UpperCAmelCase_ , output_type="""np""" , return_dict=UpperCAmelCase_ , num_inference_steps=2 )[0] snake_case_ :List[str] = image[0, -3:, -3:, -1] snake_case_ :int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case_ :List[str] = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case_ :Any = """cpu""" snake_case_ :Optional[int] = self.dummy_vqvae snake_case_ :int = self.dummy_text_encoder snake_case_ :Union[str, Any] = self.dummy_tokenizer snake_case_ :str = self.dummy_transformer snake_case_ :str = VQDiffusionScheduler(self.num_embed ) snake_case_ :List[str] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ :Optional[int] = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) snake_case_ :Union[str, Any] = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ :Optional[Any] = """teddy bear playing in the pool""" snake_case_ :List[str] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) snake_case_ :List[str] = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""np""" ) snake_case_ :Union[str, Any] = output.images snake_case_ :List[Any] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) snake_case_ :str = pipe( [prompt] , generator=UpperCAmelCase_ , output_type="""np""" , return_dict=UpperCAmelCase_ , num_inference_steps=2 )[0] snake_case_ :Optional[int] = image[0, -3:, -3:, -1] snake_case_ :str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case_ :Union[str, Any] = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: int ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self: List[str] ) -> Union[str, Any]: snake_case_ :str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case_ :Optional[int] = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case_ :Optional[int] = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ :int = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) snake_case_ :Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type="""np""" , ) snake_case_ :Dict = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
66
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = s.rsplit(snake_case__, snake_case__ ) return new.join(snake_case__ ) def A__ ( __lowerCamelCase ): return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: SCREAMING_SNAKE_CASE_ = key.replace(F'''{group_key}.''', F'''{group_key}.group.''' ) if "res_path" in key: SCREAMING_SNAKE_CASE_ = key.replace('''res_path.''', '''res_path.path.''' ) if key.endswith('''.w''' ): SCREAMING_SNAKE_CASE_ = rreplace(snake_case__, '''.w''', '''.weight''', 1 ) if key.endswith('''.b''' ): SCREAMING_SNAKE_CASE_ = rreplace(snake_case__, '''.b''', '''.bias''', 1 ) SCREAMING_SNAKE_CASE_ = value.float() return upgrade @torch.no_grad() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=True ): from dall_e import Encoder SCREAMING_SNAKE_CASE_ = Encoder() if os.path.exists(snake_case__ ): SCREAMING_SNAKE_CASE_ = torch.load(snake_case__ ) else: SCREAMING_SNAKE_CASE_ = torch.hub.load_state_dict_from_url(snake_case__ ) if isinstance(snake_case__, snake_case__ ): SCREAMING_SNAKE_CASE_ = ckpt.state_dict() encoder.load_state_dict(snake_case__ ) if config_path is not None: SCREAMING_SNAKE_CASE_ = FlavaImageCodebookConfig.from_pretrained(snake_case__ ) else: SCREAMING_SNAKE_CASE_ = FlavaImageCodebookConfig() SCREAMING_SNAKE_CASE_ = FlavaImageCodebook(snake_case__ ).eval() SCREAMING_SNAKE_CASE_ = encoder.state_dict() SCREAMING_SNAKE_CASE_ = upgrade_state_dict(snake_case__ ) hf_model.load_state_dict(snake_case__ ) SCREAMING_SNAKE_CASE_ = hf_model.state_dict() SCREAMING_SNAKE_CASE_ = count_parameters(snake_case__ ) SCREAMING_SNAKE_CASE_ = count_parameters(snake_case__ ) assert torch.allclose(snake_case__, snake_case__, atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case__ ) else: return hf_state_dict if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __UpperCAmelCase = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
299
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
0
import heapq import sys import numpy as np UpperCAmelCase__ = tuple[int, int] class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] ) ->str: """simple docstring""" a = [] a = set() def __lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" return len(self.elements ) == 0 def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] ) ->Union[str, Any]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(UpperCAmelCase_ ) else: # update # print("update", item) a = [] ((a) , (a)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((a) , (a)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Optional[int] ) ->List[str]: """simple docstring""" if item in self.set: self.set.remove(UpperCAmelCase_ ) a = [] ((a) , (a)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((a) , (a)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def __lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" return self.elements[0][1] def __lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" ((a) , (a)) = heapq.heappop(self.elements ) self.set.remove(UpperCAmelCase_ ) return (priority, item) def _a ( a :Optional[Any] , a :List[str] ) -> Optional[int]: a = np.array(snake_case__ ) a = np.array(snake_case__ ) return np.linalg.norm(a - b ) def _a ( a :List[str] , a :Tuple ) -> Union[str, Any]: return consistent_heuristic(snake_case__ , snake_case__ ) // t def _a ( a :int , a :Union[str, Any] ) -> Optional[Any]: return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _a ( a :Optional[Any] , a :Optional[Any] , a :Union[str, Any] , a :str ) -> Optional[Any]: a = g_function[start] + Wa * heuristics[i](snake_case__ , snake_case__ ) return ans def _a ( a :List[str] , a :List[str] , a :int ) -> Dict: a = np.chararray((n, n) ) for i in range(snake_case__ ): for j in range(snake_case__ ): a = '''*''' for i in range(snake_case__ ): for j in range(snake_case__ ): if (j, (n - 1) - i) in blocks: a = '''#''' a = '''-''' a = back_pointer[goal] while x != start: ((a) , (a)) = x # print(x) a = '''-''' a = back_pointer[x] a = '''-''' for i in range(snake_case__ ): for j in range(snake_case__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) a = back_pointer[goal] while x != start: print(snake_case__ , end=''' ''' ) a = back_pointer[x] print(snake_case__ ) sys.exit() def _a ( a :Union[str, Any] ) -> Optional[int]: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _a ( a :str , a :Optional[Any] , a :Tuple , a :Optional[Any] , a :int , a :Optional[int] , a :Optional[Any] , a :Optional[int] , ) -> Tuple: for itera in range(snake_case__ ): open_list[itera].remove_element(snake_case__ ) # print("s", s) # print("j", j) ((a) , (a)) = s a = (x - 1, y) a = (x + 1, y) a = (x, y + 1) a = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(snake_case__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(snake_case__ ) a = -1 a = float('''inf''' ) if valid(snake_case__ ) and g_function[neighbours] > g_function[s] + 1: a = g_function[s] + 1 a = s if neighbours not in close_list_anchor: open_list[0].put(snake_case__ , key(snake_case__ , 0 , snake_case__ , snake_case__ ) ) if neighbours not in close_list_inad: for var in range(1 , snake_case__ ): if key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) <= Wa * key( snake_case__ , 0 , snake_case__ , snake_case__ ): open_list[j].put( snake_case__ , key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ) def _a ( ) -> int: a = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list UpperCAmelCase__ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCAmelCase__ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] UpperCAmelCase__ = make_common_ground() UpperCAmelCase__ = blocks_blk # hyper parameters UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 UpperCAmelCase__ = 20 UpperCAmelCase__ = 3 # one consistent and two other inconsistent # start and end destination UpperCAmelCase__ = (0, 0) UpperCAmelCase__ = (n - 1, n - 1) UpperCAmelCase__ = 1 def _a ( a :Union[str, Any] , a :Optional[int] , a :int ) -> Any: a = {start: 0, goal: float('''inf''' )} a = {start: -1, goal: -1} a = [] a = set() for i in range(snake_case__ ): open_list.append(PriorityQueue() ) open_list[i].put(snake_case__ , key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ) a = [] a = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , snake_case__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(snake_case__ , snake_case__ , snake_case__ ) else: a , a = open_list[i].top_show() visited.add(snake_case__ ) expand_state( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) close_list_inad.append(snake_case__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(snake_case__ , snake_case__ , snake_case__ ) else: a = open_list[0].top_show() visited.add(snake_case__ ) expand_state( snake_case__ , 0 , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) close_list_anchor.append(snake_case__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(snake_case__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a ( unittest.TestCase ): def UpperCamelCase_ ( self ): lowercase = 'laion/clap-htsat-unfused' lowercase = tempfile.mkdtemp() def UpperCamelCase_ ( self , **_lowerCamelCase ): return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def UpperCamelCase_ ( self , **_lowerCamelCase ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowercase = self.get_tokenizer() lowercase = self.get_feature_extractor() lowercase = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) lowercase = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_ ) def UpperCamelCase_ ( self ): lowercase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowercase = self.get_feature_extractor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowercase = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_ ) def UpperCamelCase_ ( self ): lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) lowercase = floats_list((3, 1_0_0_0) ) lowercase = feature_extractor(UpperCAmelCase_ , return_tensors='np' ) lowercase = processor(audios=UpperCAmelCase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase_ ( self ): lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) lowercase = 'This is a test string' lowercase = processor(text=UpperCAmelCase_ ) lowercase = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self ): lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(UpperCAmelCase_ ) lowercase = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase_ ( self ): lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
220
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _lowercase ( lowercase__ ): if isinstance(snake_case__ , collections.abc.Iterable ): return x return (x, x) @require_flax class __lowercase : def UpperCamelCase__ ( self , A_ , A_ ) ->Dict: '''simple docstring''' pass def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' pass def UpperCamelCase__ ( self ) ->int: '''simple docstring''' pass def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(UpperCAmelCase_ , UpperCAmelCase_ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_=None , **A_ ) ->Any: '''simple docstring''' __lowerCAmelCase : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCAmelCase : int = FlaxVisionTextDualEncoderModel(UpperCAmelCase_ ) __lowerCAmelCase : str = model(input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_=None , **A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Dict = self.get_vision_text_model(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCAmelCase : Union[str, Any] = {'''vision_model''': vision_model, '''text_model''': text_model} __lowerCAmelCase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase_ ) __lowerCAmelCase : Union[str, Any] = model(input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_=None , **A_ ) ->Any: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Any = self.get_vision_text_model(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCAmelCase : Any = {'''vision_model''': vision_model, '''text_model''': text_model} __lowerCAmelCase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase_ ) __lowerCAmelCase : List[Any] = model(input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) __lowerCAmelCase : List[str] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_ ) __lowerCAmelCase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase_ ) __lowerCAmelCase : Any = model(input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) __lowerCAmelCase : int = after_output[0] __lowerCAmelCase : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase_ , 1e-3 ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_=None , **A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Tuple = self.get_vision_text_model(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCAmelCase : str = {'''vision_model''': vision_model, '''text_model''': text_model} __lowerCAmelCase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase_ ) __lowerCAmelCase : Tuple = model( input_ids=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , output_attentions=UpperCAmelCase_ ) __lowerCAmelCase : Tuple = output.vision_model_output.attentions self.assertEqual(len(UpperCAmelCase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase : str = to_atuple(vision_model.config.image_size ) __lowerCAmelCase : Tuple = to_atuple(vision_model.config.patch_size ) __lowerCAmelCase : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase : List[str] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCAmelCase : str = output.text_model_output.attentions self.assertEqual(len(UpperCAmelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->Any: '''simple docstring''' pt_model.to(UpperCAmelCase_ ) pt_model.eval() # prepare inputs __lowerCAmelCase : Optional[Any] = inputs_dict __lowerCAmelCase : Union[str, Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowerCAmelCase : str = pt_model(**UpperCAmelCase_ ).to_tuple() __lowerCAmelCase : int = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCAmelCase_ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase_ ) __lowerCAmelCase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase_ , from_pt=UpperCAmelCase_ ) __lowerCAmelCase : Optional[int] = fx_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCAmelCase_ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase_ ) __lowerCAmelCase : Optional[int] = VisionTextDualEncoderModel.from_pretrained(UpperCAmelCase_ , from_flax=UpperCAmelCase_ ) pt_model_loaded.to(UpperCAmelCase_ ) pt_model_loaded.eval() with torch.no_grad(): __lowerCAmelCase : str = pt_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(UpperCAmelCase_ , pt_output_loaded.numpy() , 4e-2 ) def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->Any: '''simple docstring''' __lowerCAmelCase : int = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderModel(UpperCAmelCase_ ) __lowerCAmelCase : Dict = FlaxVisionTextDualEncoderModel(UpperCAmelCase_ ) __lowerCAmelCase : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase_ ) __lowerCAmelCase : Optional[int] = fx_state self.check_pt_flax_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCAmelCase : Optional[int] = VisionTextDualEncoderModel(UpperCAmelCase_ ) __lowerCAmelCase : List[str] = FlaxVisionTextDualEncoderModel(UpperCAmelCase_ ) __lowerCAmelCase : Optional[int] = load_flax_weights_in_pytorch_model(UpperCAmelCase_ , fx_model.params ) self.check_pt_flax_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCAmelCase_ ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCAmelCase_ ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : int = self.prepare_config_and_inputs() self.check_save_load(**UpperCAmelCase_ ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Dict = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCAmelCase_ ) @is_pt_flax_cross_test def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() __lowerCAmelCase : Tuple = config_inputs_dict.pop('''vision_config''' ) __lowerCAmelCase : Optional[Any] = config_inputs_dict.pop('''text_config''' ) __lowerCAmelCase : str = config_inputs_dict self.check_equivalence_pt_to_flax(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.check_equivalence_flax_to_pt(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @slow def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Optional[int] = self.get_pretrained_model_and_inputs() __lowerCAmelCase : List[Any] = model_a(**UpperCAmelCase_ ) __lowerCAmelCase : Tuple = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCAmelCase_ ) __lowerCAmelCase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase_ ) __lowerCAmelCase : Any = model_a(**UpperCAmelCase_ ) __lowerCAmelCase : str = after_outputs[0] __lowerCAmelCase : Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase_ , 1e-5 ) @require_flax class __lowercase (_UpperCAmelCase , unittest.TestCase ): def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=UpperCAmelCase_ , text_from_pt=UpperCAmelCase_ , ) __lowerCAmelCase : int = 13 __lowerCAmelCase : Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowerCAmelCase : Optional[int] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowerCAmelCase : str = random_attention_mask([batch_size, 4] ) __lowerCAmelCase : str = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCamelCase__ ( self , A_ , A_ ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[Any] = FlaxViTModel(UpperCAmelCase_ ) __lowerCAmelCase : str = FlaxBertModel(UpperCAmelCase_ ) return vision_model, text_model def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : str = FlaxViTModelTester(self ) __lowerCAmelCase : Optional[int] = FlaxBertModelTester(self ) __lowerCAmelCase : Any = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase, __lowerCAmelCase : str = vision_config_and_inputs __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Optional[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __lowercase (_UpperCAmelCase , unittest.TestCase ): def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=UpperCAmelCase_ , text_from_pt=UpperCAmelCase_ , ) __lowerCAmelCase : List[Any] = 13 __lowerCAmelCase : int = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowerCAmelCase : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowerCAmelCase : Dict = random_attention_mask([batch_size, 4] ) __lowerCAmelCase : List[str] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCamelCase__ ( self , A_ , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = FlaxCLIPVisionModel(UpperCAmelCase_ ) __lowerCAmelCase : Dict = FlaxBertModel(UpperCAmelCase_ ) return vision_model, text_model def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[Any] = FlaxCLIPVisionModelTester(self ) __lowerCAmelCase : Any = FlaxBertModelTester(self ) __lowerCAmelCase : Any = clip_model_tester.prepare_config_and_inputs() __lowerCAmelCase : Dict = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase, __lowerCAmelCase : int = vision_config_and_inputs __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : List[str] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __lowercase (unittest.TestCase ): @slow def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : int = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) __lowerCAmelCase : Tuple = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) __lowerCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __lowerCAmelCase : Any = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors='''np''' ) __lowerCAmelCase : Dict = model(**UpperCAmelCase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowerCAmelCase : Tuple = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , UpperCAmelCase_ , atol=1e-3 ) )
275
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _A : List[str] =logging.get_logger(__name__) _A : Tuple ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _A : str ={ '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _A : Dict ={ '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _A : int ={ '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } _A : Optional[int] ={ '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } _A : str ={ '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } _A : Optional[int] ={ '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } _A : List[str] ={ '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } _A : str ={ '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } _A : Dict ={ '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _lowercase ( _UpperCAmelCase ): a = VOCAB_FILES_NAMES a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowercase ( _UpperCAmelCase ): a = VOCAB_FILES_NAMES a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _A : Optional[int] =collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) _A : Union[str, Any] =collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) _A : Optional[Any] =r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_UpperCAmelCase ) class _lowercase : def __call__( self: Union[str, Any] , UpperCamelCase__: int , UpperCamelCase__: Optional[str] = None , UpperCamelCase__: Optional[str] = None , UpperCamelCase__: Union[bool, str] = False , UpperCamelCase__: Union[bool, str] = False , UpperCamelCase__: Optional[int] = None , UpperCamelCase__: Optional[Union[str, TensorType]] = None , UpperCamelCase__: Optional[bool] = None , **UpperCamelCase__: int , ): if titles is None and texts is None: return super().__call__( UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) elif titles is None or texts is None: lowerCamelCase__ : Optional[Any] = titles if texts is None else texts return super().__call__( UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__ : List[str] = titles if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else [titles] lowerCamelCase__ : int = texts if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else [texts] lowerCamelCase__ : str = len(UpperCAmelCase_ ) lowerCamelCase__ : List[str] = questions if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else [questions] * n_passages if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( F'''There should be as many titles than texts but got {len(UpperCAmelCase_ )} titles and {len(UpperCAmelCase_ )} texts.''' ) lowerCamelCase__ : List[str] = super().__call__(UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )["""input_ids"""] lowerCamelCase__ : List[str] = super().__call__(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )["""input_ids"""] lowerCamelCase__ : Optional[int] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ] } if return_attention_mask is not False: lowerCamelCase__ : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase__ : List[Any] = attention_mask return self.pad(UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: BatchEncoding , UpperCamelCase__: DPRReaderOutput , UpperCamelCase__: int = 16 , UpperCamelCase__: int = 64 , UpperCamelCase__: int = 4 , ): lowerCamelCase__ : str = reader_input["""input_ids"""] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = reader_output[:3] lowerCamelCase__ : List[Any] = len(UpperCAmelCase_ ) lowerCamelCase__ : Any = sorted(range(UpperCAmelCase_ ) , reverse=UpperCAmelCase_ , key=relevance_logits.__getitem__ ) lowerCamelCase__ : List[str] = [] for doc_id in sorted_docs: lowerCamelCase__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase__ : str = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase__ : Optional[Any] = sequence_ids.index(self.pad_token_id ) else: lowerCamelCase__ : List[str] = len(UpperCAmelCase_ ) lowerCamelCase__ : str = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase_ , top_spans=UpperCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase_ , start_index=UpperCAmelCase_ , end_index=UpperCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCAmelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase_ ( self: int , UpperCamelCase__: List[int] , UpperCamelCase__: List[int] , UpperCamelCase__: int , UpperCamelCase__: int , ): lowerCamelCase__ : List[Any] = [] for start_index, start_score in enumerate(UpperCAmelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase__ : List[str] = sorted(UpperCAmelCase_ , key=lambda UpperCamelCase__ : x[1] , reverse=UpperCAmelCase_ ) lowerCamelCase__ : Dict = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) lowerCamelCase__ : Optional[int] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCAmelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class _lowercase ( _UpperCAmelCase , _UpperCAmelCase ): a = VOCAB_FILES_NAMES a = READER_PRETRAINED_VOCAB_FILES_MAP a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = READER_PRETRAINED_INIT_CONFIGURATION a = ["input_ids", "attention_mask"]
41
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
def SCREAMING_SNAKE_CASE__ ( __a ): assert isinstance(snake_case__ , snake_case__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: snake_case_ : Optional[int] = f"""The input value of [n={number}] has to be > 0""" raise ValueError(snake_case__ ) else: snake_case_ : Optional[Any] = sylvester(number - 1 ) snake_case_ : Tuple = num - 1 snake_case_ : Dict = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class lowerCamelCase__( unittest.TestCase): def __init__( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any]=7 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=30 , UpperCamelCase_: str=4_00 , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Optional[int]=1 / 2_55 , UpperCamelCase_: int=True , UpperCamelCase_: Optional[Any]=[0.5, 0.5, 0.5] , UpperCamelCase_: Any=[0.5, 0.5, 0.5] , UpperCamelCase_: List[Any]=True , ): __lowerCamelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean __lowerCamelCase = image_std __lowerCamelCase = do_pad def lowerCAmelCase__ ( self: Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any , UpperCamelCase_: Any=False ): if not batched: __lowerCamelCase = image_inputs[0] if isinstance(UpperCAmelCase_ , Image.Image ): __lowerCamelCase, __lowerCamelCase = image.size else: __lowerCamelCase, __lowerCamelCase = image.shape[1], image.shape[2] if w < h: __lowerCamelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCamelCase = self.size["""shortest_edge"""] elif w > h: __lowerCamelCase = self.size["""shortest_edge"""] __lowerCamelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCamelCase = self.size["""shortest_edge"""] __lowerCamelCase = self.size["""shortest_edge"""] else: __lowerCamelCase = [] for image in image_inputs: __lowerCamelCase, __lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCamelCase = max(UpperCAmelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] __lowerCamelCase = max(UpperCAmelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__( _UpperCAmelCase , unittest.TestCase): UpperCAmelCase__ : int = DetrImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = DetrImageProcessingTester(self ) @property def lowerCAmelCase__ ( self: List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_rescale""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """rescale_factor""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_pad""" ) ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) __lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) def lowerCAmelCase__ ( self: List[str] ): pass def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCamelCase, __lowerCamelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase, __lowerCamelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) __lowerCamelCase = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCamelCase, __lowerCamelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values __lowerCamelCase, __lowerCamelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCamelCase, __lowerCamelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values __lowerCamelCase, __lowerCamelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __lowerCamelCase = json.loads(f.read() ) __lowerCamelCase = {"""image_id""": 3_97_69, """annotations""": target} # encode them __lowerCamelCase = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) __lowerCamelCase = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , return_tensors="""pt""" ) # verify pixel values __lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase_ ) __lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area __lowerCamelCase = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase_ ) ) # verify boxes __lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase_ ) __lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id __lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase_ ) ) # verify is_crowd __lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase_ ) ) # verify class_labels __lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase_ ) ) # verify orig_size __lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase_ ) ) # verify size __lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase_ ) ) @slow def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __lowerCamelCase = json.loads(f.read() ) __lowerCamelCase = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} __lowerCamelCase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __lowerCamelCase = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) __lowerCamelCase = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , masks_path=UpperCAmelCase_ , return_tensors="""pt""" ) # verify pixel values __lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCAmelCase_ ) __lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area __lowerCamelCase = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCAmelCase_ ) ) # verify boxes __lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCAmelCase_ ) __lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id __lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCAmelCase_ ) ) # verify is_crowd __lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCAmelCase_ ) ) # verify class_labels __lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCAmelCase_ ) ) # verify masks __lowerCamelCase = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCAmelCase_ ) # verify orig_size __lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCAmelCase_ ) ) # verify size __lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCAmelCase_ ) )
12
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
0
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" with open(UpperCAmelCase_ , encoding="""utf-8""" ) as input_file: __SCREAMING_SNAKE_CASE = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) __SCREAMING_SNAKE_CASE = input_file.read() __SCREAMING_SNAKE_CASE = regexp.search(UpperCAmelCase_ ) return match def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" with open(UpperCAmelCase_ , encoding="""utf-8""" ) as input_file: __SCREAMING_SNAKE_CASE = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) __SCREAMING_SNAKE_CASE = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __SCREAMING_SNAKE_CASE = regexp.finditer(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = Path("""./datasets""" ) __SCREAMING_SNAKE_CASE = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCAmelCase_ ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = Path("""./datasets""" ) __SCREAMING_SNAKE_CASE = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCAmelCase_ ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
267
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
0
"""simple docstring""" from __future__ import annotations import math def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase__ = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCamelCase = [] for num in range(len(snake_case__ ) ): UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case__ ) == n: return list_nums return [] def a__ ( ): """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
153
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class SCREAMING_SNAKE_CASE__ : def __init__( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[int] = {} def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Dict = {} def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' if nodea not in self.connections: self.add_node(UpperCAmelCase_ ) if nodea not in self.connections: self.add_node(UpperCAmelCase_ ) UpperCAmelCase : Dict = probability def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return list(self.connections ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Any = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _snake_case ( UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict ): UpperCAmelCase : str = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : List[Any] = Counter(graph.get_nodes() ) UpperCAmelCase : List[str] = start for _ in range(snake_case__ ): UpperCAmelCase : Union[str, Any] = graph.transition(snake_case__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
109
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers __a = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def A_ ( ): '''simple docstring''' snake_case_ :str = os.path.dirname(os.path.realpath(snake_case__ ) ) snake_case_ :Tuple = os.path.join(snake_case__, """words.txt""" ) snake_case_ :str = """""" with open(snake_case__ ) as f: snake_case_ :int = f.readline() snake_case_ :Optional[Any] = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] snake_case_ :Optional[int] = [ word for word in [sum(ord(snake_case__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(snake_case__ ) if __name__ == "__main__": print(solution())
66
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = BlipImageProcessor() SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) SCREAMING_SNAKE_CASE_ = BlipaProcessor(UpperCAmelCase_ , UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self , **_A ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).tokenizer def _UpperCamelCase ( self , **_A ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor def _UpperCamelCase ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(UpperCAmelCase_ , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = processor(images=UpperCAmelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ = '''lower newer''' SCREAMING_SNAKE_CASE_ = processor(text=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer(UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ = '''lower newer''' SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.batch_decode(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ = '''lower newer''' SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
299
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowercase_ ( _UpperCAmelCase ): '''simple docstring''' __snake_case = "trajectory_transformer" __snake_case = ["past_key_values"] __snake_case = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , __UpperCAmelCase : Optional[Any]=100 , __UpperCAmelCase : Optional[Any]=5 , __UpperCAmelCase : List[str]=1 , __UpperCAmelCase : Optional[Any]=1 , __UpperCAmelCase : Tuple=249 , __UpperCAmelCase : int=6 , __UpperCAmelCase : Optional[Any]=17 , __UpperCAmelCase : Tuple=25 , __UpperCAmelCase : Union[str, Any]=4 , __UpperCAmelCase : int=4 , __UpperCAmelCase : str=128 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[str]=0.0006 , __UpperCAmelCase : Optional[int]=512 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : List[str]=1e-1_2 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Union[str, Any]=50_256 , __UpperCAmelCase : Dict=50_256 , **__UpperCAmelCase : Dict , ) ->Tuple: """simple docstring""" a = vocab_size a = action_weight a = reward_weight a = value_weight a = max_position_embeddings a = block_size a = action_dim a = observation_dim a = transition_dim a = learning_rate a = n_layer a = n_head a = n_embd a = embd_pdrop a = attn_pdrop a = resid_pdrop a = initializer_range a = layer_norm_eps a = kaiming_initializer_range a = use_cache super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) _UpperCamelCase : str = {'facebook/bart-base': BartForConditionalGeneration} _UpperCamelCase : str = {'facebook/bart-base': BartTokenizer} def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=snake_case__ , default=snake_case__ , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=snake_case__ , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=snake_case__ , default=snake_case__ , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=snake_case__ , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=snake_case__ , ) parser.add_argument( '--config_name' , type=snake_case__ , default=snake_case__ , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=snake_case__ , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=snake_case__ , default=snake_case__ , help='Where to store the final ONNX file.' ) lowercase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple , __snake_case : List[Any]="cpu" ): '''simple docstring''' lowercase = model_dict[model_name].from_pretrained(snake_case__ ).to(snake_case__ ) lowercase = tokenizer_dict[model_name].from_pretrained(snake_case__ ) if model_name in ["facebook/bart-base"]: lowercase = 0 lowercase = None lowercase = 0 return huggingface_model, tokenizer def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : int , __snake_case : Tuple , __snake_case : int , __snake_case : str ): '''simple docstring''' model.eval() lowercase = None lowercase = torch.jit.script(BARTBeamSearchGenerator(snake_case__ ) ) with torch.no_grad(): lowercase = 'My friends are cool but they eat too many carbs.' lowercase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors='pt' ).to(model.device ) lowercase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=snake_case__ , max_length=snake_case__ , early_stopping=snake_case__ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case__ , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case__ , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=snake_case__ , ) logger.info('Model exported to {}'.format(snake_case__ ) ) lowercase = remove_dup_initializers(os.path.abspath(snake_case__ ) ) logger.info('Deduplicated and optimized model written to {}'.format(snake_case__ ) ) lowercase = onnxruntime.InferenceSession(snake_case__ ) lowercase = ort_sess.run( snake_case__ , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(snake_case__ ), 'max_length': np.array(snake_case__ ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = parse_args() lowercase = 5 lowercase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowercase = torch.device(args.device ) lowercase , lowercase = load_model_tokenizer(args.model_name_or_path , snake_case__ ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(snake_case__ ) if args.max_length: lowercase = args.max_length if args.num_beams: lowercase = args.num_beams if args.output_file_path: lowercase = args.output_file_path else: lowercase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if __name__ == "__main__": main()
220
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
0
def _lowercase ( lowercase__ ): __lowerCAmelCase : Optional[int] = generate_pascal_triangle(snake_case__ ) for row_idx in range(snake_case__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def _lowercase ( lowercase__ ): if not isinstance(snake_case__ , snake_case__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __lowerCAmelCase : Tuple = [] for current_row_idx in range(snake_case__ ): __lowerCAmelCase : Optional[Any] = populate_current_row(snake_case__ , snake_case__ ) triangle.append(snake_case__ ) return triangle def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : List[Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __lowerCAmelCase, __lowerCAmelCase : Dict = 1, 1 for current_col_idx in range(1 , snake_case__ ): calculate_current_element( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return current_row def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __lowerCAmelCase : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx - 1] __lowerCAmelCase : List[str] = triangle[current_row_idx - 1][current_col_idx] __lowerCAmelCase : Optional[int] = above_to_left_elt + above_to_right_elt def _lowercase ( lowercase__ ): if not isinstance(snake_case__ , snake_case__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __lowerCAmelCase : Optional[Any] = [[1]] for row_index in range(1 , snake_case__ ): __lowerCAmelCase : Tuple = [0] + result[-1] + [0] __lowerCAmelCase : Union[str, Any] = row_index + 1 # Calculate the number of distinct elements in a row __lowerCAmelCase : Union[str, Any] = sum(divmod(snake_case__ , 2 ) ) __lowerCAmelCase : Optional[int] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __lowerCAmelCase : Dict = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __lowerCAmelCase : Optional[int] = row_first_half + row_second_half result.append(snake_case__ ) return result def _lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase__ , lowercase__ ) -> None: __lowerCAmelCase : Dict = f"""{func.__name__}({value})""" __lowerCAmelCase : Optional[int] = timeit(f"""__main__.{call}""" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case__ , snake_case__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
275
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
0
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _A : str =logging.getLogger(__name__) @dataclass class _lowercase ( _UpperCAmelCase ): a = field( default=0.0 , metadata={"""help""": """The label smoothing epsilon to apply (if not zero)."""} ) a = field(default=_UpperCAmelCase , metadata={"""help""": """Whether to SortishSamler or not."""} ) a = field( default=_UpperCAmelCase , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) a = field(default=_UpperCAmelCase , metadata={"""help""": """whether to use adafactor"""} ) a = field( default=_UpperCAmelCase , metadata={"""help""": """Encoder layer dropout probability. Goes into model.config."""} ) a = field( default=_UpperCAmelCase , metadata={"""help""": """Decoder layer dropout probability. Goes into model.config."""} ) a = field(default=_UpperCAmelCase , metadata={"""help""": """Dropout probability. Goes into model.config."""} ) a = field( default=_UpperCAmelCase , metadata={"""help""": """Attention dropout probability. Goes into model.config."""} ) a = field( default="""linear""" , metadata={"""help""": F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
41
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase ): __magic_name__: int = "nllb-moe" __magic_name__: Any = ["past_key_values"] __magic_name__: Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , _A : List[Any]=128112 , _A : Any=1024 , _A : Dict=12 , _A : int=4096 , _A : Any=16 , _A : str=12 , _A : Any=4096 , _A : Union[str, Any]=16 , _A : Dict=0.0_5 , _A : Union[str, Any]=0.0_5 , _A : Union[str, Any]=True , _A : str=True , _A : str="relu" , _A : Optional[Any]=1024 , _A : Any=0.1 , _A : List[Any]=0.1 , _A : int=0.0 , _A : str=0.0_2 , _A : Any=2 , _A : List[str]=True , _A : Any=False , _A : Optional[Any]="float32" , _A : Dict=False , _A : str=128 , _A : Dict=64 , _A : int=4 , _A : str=4 , _A : List[Any]=0.0_0_1 , _A : int=0.0_0_1 , _A : Tuple="all" , _A : Union[str, Any]=False , _A : str=False , _A : Tuple=1.0 , _A : List[Any]=0.2 , _A : str=1 , _A : List[Any]=0 , _A : List[str]=2 , _A : Optional[int]=False , **_A : List[str] , ) -> str: """simple docstring""" snake_case_ : Union[str, Any] = vocab_size snake_case_ : Optional[int] = max_position_embeddings snake_case_ : Union[str, Any] = d_model snake_case_ : Dict = encoder_ffn_dim snake_case_ : str = encoder_layers snake_case_ : List[str] = encoder_attention_heads snake_case_ : List[str] = decoder_ffn_dim snake_case_ : Any = decoder_layers snake_case_ : str = decoder_attention_heads snake_case_ : int = dropout snake_case_ : Tuple = attention_dropout snake_case_ : List[str] = activation_dropout snake_case_ : Tuple = activation_function snake_case_ : Any = init_std snake_case_ : Dict = encoder_layerdrop snake_case_ : List[str] = decoder_layerdrop snake_case_ : List[str] = use_cache snake_case_ : Dict = encoder_layers snake_case_ : str = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ : List[Any] = router_z_loss_coef snake_case_ : Any = router_aux_loss_coef snake_case_ : List[str] = decoder_sparse_step snake_case_ : List[str] = encoder_sparse_step snake_case_ : int = num_experts snake_case_ : List[str] = expert_capacity snake_case_ : Dict = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}""" ) snake_case_ : Union[str, Any] = router_dtype snake_case_ : Optional[Any] = router_ignore_padding_tokens snake_case_ : int = batch_prioritized_routing snake_case_ : str = second_expert_policy snake_case_ : Optional[Any] = normalize_router_prob_before_dropping snake_case_ : Union[str, Any] = moe_eval_capacity_token_fraction snake_case_ : Optional[int] = moe_token_dropout snake_case_ : Optional[int] = output_router_logits super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , )
327
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
0
def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' if len(snake_case__ ) <= 1: return lst __lowerCamelCase = 1 while i < len(snake_case__ ): if lst[i - 1] <= lst[i]: i += 1 else: __lowerCamelCase, __lowerCamelCase = lst[i], lst[i - 1] i -= 1 if i == 0: __lowerCamelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
12
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase : Union[str, Any] = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
267
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
0
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _lowerCamelCase : UpperCAmelCase_ = 42 # [batch_size x 3] UpperCAmelCase_ = 42 # [batch_size x 3] UpperCAmelCase_ = 42 # [batch_size x 3] UpperCAmelCase_ = 42 # [batch_size x 3] UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 def snake_case_ (self ) -> Union[str, Any]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def snake_case_ (self ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def snake_case_ (self ) -> str: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def snake_case_ (self ) -> str: UpperCamelCase = torch.arange(self.height * self.width ) UpperCamelCase = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def snake_case_ (self ) -> str: UpperCamelCase , *UpperCamelCase = self.shape UpperCamelCase = int(np.prod(UpperCAmelCase_ ) ) UpperCamelCase = self.get_image_coords() UpperCamelCase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCamelCase = self.get_camera_rays(UpperCAmelCase_ ) UpperCamelCase = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def snake_case_ (self , __a ) -> List[str]: UpperCamelCase , *UpperCamelCase , UpperCamelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCamelCase = coords.view(UpperCAmelCase_ , -1 , 2 ) UpperCamelCase = self.resolution() UpperCamelCase = self.fov() UpperCamelCase = (flat.float() / (res - 1)) * 2 - 1 UpperCamelCase = fracs * torch.tan(fov / 2 ) UpperCamelCase = fracs.view(UpperCAmelCase_ , -1 , 2 ) UpperCamelCase = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) UpperCamelCase = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) UpperCamelCase = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def snake_case_ (self , __a , __a ) -> Union[str, Any]: assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): UpperCamelCase = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCamelCase = -z * 4 UpperCamelCase = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) UpperCamelCase = np.cross(snake_case__ , snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(snake_case__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(snake_case__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(snake_case__ , axis=0 ) ).float() , width=snake_case__ , height=snake_case__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(snake_case__ )) , )
153
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
0
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _snake_case ( UpperCamelCase : List[str] ): return EnvironmentCommand() def _snake_case ( UpperCamelCase : str ): return EnvironmentCommand(args.accelerate_config_file ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): @staticmethod def SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCAmelCase_ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCAmelCase_ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCAmelCase_ ) def __init__( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Dict = accelerate_config_file def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """not installed""" if is_safetensors_available(): import safetensors UpperCAmelCase : Dict = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors UpperCAmelCase : List[str] = F"{safetensors.__version__} but is ignored because of PyTorch version too old." UpperCAmelCase : Tuple = """not installed""" UpperCAmelCase : List[str] = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCAmelCase : str = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCAmelCase : Union[str, Any] = ( """\n""".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else F"\t{accelerate_config}" ) UpperCAmelCase : Optional[Any] = """not installed""" UpperCAmelCase : Optional[Any] = """NA""" if is_torch_available(): import torch UpperCAmelCase : List[Any] = torch.__version__ UpperCAmelCase : List[str] = torch.cuda.is_available() UpperCAmelCase : Any = """not installed""" UpperCAmelCase : Optional[Any] = """NA""" if is_tf_available(): import tensorflow as tf UpperCAmelCase : Union[str, Any] = tf.__version__ try: # deprecated in v2.1 UpperCAmelCase : Union[str, Any] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCAmelCase : Any = bool(tf.config.list_physical_devices("""GPU""" ) ) UpperCAmelCase : Dict = """not installed""" UpperCAmelCase : Optional[int] = """not installed""" UpperCAmelCase : List[Any] = """not installed""" UpperCAmelCase : str = """NA""" if is_flax_available(): import flax import jax import jaxlib UpperCAmelCase : Optional[Any] = flax.__version__ UpperCAmelCase : List[Any] = jax.__version__ UpperCAmelCase : Optional[Any] = jaxlib.__version__ UpperCAmelCase : List[Any] = jax.lib.xla_bridge.get_backend().platform UpperCAmelCase : Union[str, Any] = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F"{safetensors_version}", """Accelerate version""": F"{accelerate_version}", """Accelerate config""": F"{accelerate_config_str}", """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """Tensorflow version (GPU?)""": F"{tf_version} ({tf_cuda_available})", """Flax version (CPU?/GPU?/TPU?)""": F"{flax_version} ({jax_backend})", """Jax version""": F"{jax_version}", """JaxLib version""": F"{jaxlib_version}", """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCAmelCase_ ) ) return info @staticmethod def SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
109
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
0
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __a = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __a = logging.get_logger(__name__) class lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' _A : Optional[Any] = "maskformer" _A : Union[str, Any] = {"hidden_size": "mask_feature_size"} _A : Any = ["resnet", "swin"] _A : List[Any] = ["detr"] def __init__( self: Optional[int] , snake_case: int = 256 , snake_case: int = 256 , snake_case: float = 0.1 , snake_case: bool = False , snake_case: Optional[Dict] = None , snake_case: Optional[Dict] = None , snake_case: float = 0.0_2 , snake_case: float = 1.0 , snake_case: float = 1.0 , snake_case: float = 1.0 , snake_case: float = 2_0.0 , snake_case: Optional[bool] = None , **snake_case: Optional[int] , ) -> int: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k snake_case_ :Union[str, Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ :Tuple = backbone_config.pop("""model_type""" ) snake_case_ :List[Any] = CONFIG_MAPPING[backbone_model_type] snake_case_ :Optional[int] = config_class.from_dict(UpperCAmelCase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 snake_case_ :Union[str, Any] = DetrConfig() else: # verify that the decoder is supported snake_case_ :Union[str, Any] = ( decoder_config.pop("""model_type""" ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {','.join(self.decoders_supported )}""" ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ :List[str] = CONFIG_MAPPING[decoder_type] snake_case_ :str = config_class.from_dict(UpperCAmelCase_ ) snake_case_ :Dict = backbone_config snake_case_ :Any = decoder_config # main feature dimension for the model snake_case_ :Dict = fpn_feature_size snake_case_ :Optional[Any] = mask_feature_size # initializer snake_case_ :Any = init_std snake_case_ :Optional[Any] = init_xavier_std # Hungarian matcher && loss snake_case_ :List[Any] = cross_entropy_weight snake_case_ :Any = dice_weight snake_case_ :Tuple = mask_weight snake_case_ :Optional[Any] = use_auxiliary_loss snake_case_ :Tuple = no_object_weight snake_case_ :int = output_auxiliary_logits snake_case_ :List[Any] = self.decoder_config.encoder_attention_heads snake_case_ :str = self.decoder_config.num_hidden_layers super().__init__(**UpperCAmelCase_ ) @classmethod def lowerCAmelCase_ ( cls: Union[str, Any] , snake_case: PretrainedConfig , snake_case: PretrainedConfig , **snake_case: Optional[Any] ) -> str: return cls( backbone_config=UpperCAmelCase_ , decoder_config=UpperCAmelCase_ , **UpperCAmelCase_ , ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case_ :Tuple = copy.deepcopy(self.__dict__ ) snake_case_ :Tuple = self.backbone_config.to_dict() snake_case_ :List[str] = self.decoder_config.to_dict() snake_case_ :Optional[int] = self.__class__.model_type return output
66
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } SCREAMING_SNAKE_CASE_ = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , x.transpose() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , transpose(UpperCAmelCase_ ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , transpose(UpperCAmelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , transpose(UpperCAmelCase_ ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , transpose(UpperCAmelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , np.asarray(transpose(UpperCAmelCase_ ) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , np.asarray(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , np.reshape(UpperCAmelCase_ , (4, 3) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , np.reshape(UpperCAmelCase_ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , reshape(UpperCAmelCase_ , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , reshape(UpperCAmelCase_ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , reshape(UpperCAmelCase_ , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , reshape(UpperCAmelCase_ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , np.asarray(reshape(UpperCAmelCase_ , (4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , np.asarray(reshape(UpperCAmelCase_ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , np.squeeze(UpperCAmelCase_ ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , np.squeeze(UpperCAmelCase_ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , squeeze(UpperCAmelCase_ ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , squeeze(UpperCAmelCase_ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , squeeze(UpperCAmelCase_ ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , squeeze(UpperCAmelCase_ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , np.asarray(squeeze(UpperCAmelCase_ ) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , np.asarray(squeeze(UpperCAmelCase_ , axis=2 ) ) ) ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , np.expand_dims(UpperCAmelCase_ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , expand_dims(UpperCAmelCase_ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , expand_dims(UpperCAmelCase_ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , np.asarray(expand_dims(UpperCAmelCase_ , axis=1 ) ) ) )
299
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
0
def _a ( a :Union[str, Any] , a :List[Any] , a :Tuple ) -> float: a = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _a ( ) -> str: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
0
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class a ( unittest.TestCase ): def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = 3 lowercase = 2_5_0 lowercase = ids_tensor((batch_size, length) , UpperCAmelCase_ ) lowercase = torch.ones((batch_size, length) , device=UpperCAmelCase_ , dtype=torch.float ) / length return input_ids, scores def UpperCamelCase_ ( self ): lowercase , lowercase = self._get_tensors(5 ) lowercase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowercase , lowercase = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowercase , lowercase = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase_ ( self ): lowercase = MaxLengthCriteria(max_length=1_0 ) lowercase , lowercase = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowercase , lowercase = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowercase , lowercase = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase_ ( self ): lowercase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowercase , lowercase = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowercase , lowercase = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowercase , lowercase = self._get_tensors(1_0 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowercase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def UpperCamelCase_ ( self ): lowercase , lowercase = self._get_tensors(5 ) lowercase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowercase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase_ ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(UpperCAmelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) lowercase = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(UpperCAmelCase_ ) , 1 )
220
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"tokenizer_file": "tokenizer.json"} _UpperCamelCase = { "tokenizer_file": { "bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json", "bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json", }, } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = ["input_ids", "attention_mask"] _UpperCamelCase = None def __init__( self , A_=None , A_=None , A_=None , A_="<unk>" , A_="<s>" , A_="</s>" , A_="<pad>" , A_=False , A_=False , **A_ , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) __lowerCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase_ ) != add_prefix_space: __lowerCAmelCase : int = getattr(UpperCAmelCase_ , pre_tok_state.pop('''type''' ) ) __lowerCAmelCase : Optional[int] = add_prefix_space __lowerCAmelCase : Optional[Any] = pre_tok_class(**UpperCAmelCase_ ) __lowerCAmelCase : Dict = add_prefix_space def UpperCamelCase__ ( self , *A_ , **A_ ) ->Any: '''simple docstring''' __lowerCAmelCase : Tuple = kwargs.get('''is_split_into_words''' , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase__ ( self , *A_ , **A_ ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Dict = kwargs.get('''is_split_into_words''' , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase__ ( self , A_ , A_ = None ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Any = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase__ ( self , A_ ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: __lowerCAmelCase : Tuple = input_ids[-self.model_max_length :] return input_ids
275
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class _lowercase : def __init__( self: Union[str, Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int=13 , UpperCamelCase__: Optional[int]=7 , UpperCamelCase__: List[str]=False , UpperCamelCase__: str=True , UpperCamelCase__: Union[str, Any]=False , UpperCamelCase__: Optional[Any]=True , UpperCamelCase__: Optional[int]=33 , UpperCamelCase__: Tuple=32 , UpperCamelCase__: List[Any]=5 , UpperCamelCase__: Union[str, Any]=4 , UpperCamelCase__: Any=37 , UpperCamelCase__: Optional[Any]="gelu" , UpperCamelCase__: Dict=0.1 , UpperCamelCase__: List[Any]=0.1 , UpperCamelCase__: Dict=512 , UpperCamelCase__: int=16 , UpperCamelCase__: Optional[Any]=2 , UpperCamelCase__: Optional[Any]=0.02 , UpperCamelCase__: Tuple=3 , UpperCamelCase__: Union[str, Any]=4 , UpperCamelCase__: str=None , ): lowerCamelCase__ : Optional[int] = parent lowerCamelCase__ : Dict = batch_size lowerCamelCase__ : Tuple = seq_length lowerCamelCase__ : Any = is_training lowerCamelCase__ : Dict = use_input_mask lowerCamelCase__ : List[Any] = use_token_type_ids lowerCamelCase__ : Dict = use_labels lowerCamelCase__ : str = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Tuple = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : Dict = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : List[str] = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : Optional[int] = type_sequence_label_size lowerCamelCase__ : Optional[Any] = initializer_range lowerCamelCase__ : Optional[int] = num_labels lowerCamelCase__ : List[str] = num_choices lowerCamelCase__ : Dict = scope def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Tuple = None if self.use_input_mask: lowerCamelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : List[str] = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : Dict = None if self.use_labels: lowerCamelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self: List[Any] ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self: Dict , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple , UpperCamelCase__: Dict ): lowerCamelCase__ : Dict = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase__ : Tuple = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase_ ) lowerCamelCase__ : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: List[str] , UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Any ): lowerCamelCase__ : List[Any] = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase__ : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: int , UpperCamelCase__: List[str] , UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Dict ): lowerCamelCase__ : Optional[Any] = self.num_labels lowerCamelCase__ : Optional[Any] = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase__ : Any = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Dict = config_and_inputs lowerCamelCase__ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a = False a = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) a = () a = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) a = True def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Tuple = EsmModelTester(self ) lowerCamelCase__ : List[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: int ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Optional[int] = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowerCamelCase_ ( self: int ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[int] = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase__ : Optional[int] = EsmEmbeddings(config=UpperCAmelCase_ ) lowerCamelCase__ : List[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowerCamelCase__ : Optional[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowerCamelCase__ : List[Any] = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase__ : List[str] = EsmEmbeddings(config=UpperCAmelCase_ ) lowerCamelCase__ : Dict = torch.empty(2 , 4 , 30 ) lowerCamelCase__ : Optional[Any] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowerCamelCase__ : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowerCamelCase__ : str = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCamelCase_ ( self: Union[str, Any] ): pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCamelCase_ ( self: Dict ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase_ ( self: Any ): pass @require_torch class _lowercase ( _UpperCAmelCase ): @slow def lowerCamelCase_ ( self: Optional[Any] ): with torch.no_grad(): lowerCamelCase__ : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() lowerCamelCase__ : Optional[int] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase__ : List[str] = model(UpperCAmelCase_ )[0] lowerCamelCase__ : Any = 33 lowerCamelCase__ : List[Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) lowerCamelCase__ : str = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self: Dict ): with torch.no_grad(): lowerCamelCase__ : str = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() lowerCamelCase__ : Optional[int] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase__ : Dict = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. lowerCamelCase__ : Dict = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) )
41
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: int __magic_name__: Node | None = None __magic_name__: Node | None = None def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : int = Node(1 ) snake_case_ : List[str] = Node(2 ) snake_case_ : Optional[int] = Node(3 ) snake_case_ : Any = Node(4 ) snake_case_ : Any = Node(5 ) return tree def SCREAMING_SNAKE_CASE__ ( __a ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE__ ( __a ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE__ ( __a ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE__ ( __a ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[Any] = [] if root is None: return output snake_case_ : Optional[int] = deque([root] ) while process_queue: snake_case_ : str = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : str = [] def populate_output(__a , __a ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case__ , snake_case__ ) return output def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : List[Any] = [] def populate_output(__a , __a ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case__ , snake_case__ ) return output def SCREAMING_SNAKE_CASE__ ( __a ): if root is None: return [] snake_case_ : Optional[int] = [] snake_case_ : List[str] = 0 snake_case_ : Tuple = height(snake_case__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case__ , snake_case__ ) ) snake_case_ : Dict = 1 else: output.append(get_nodes_from_right_to_left(snake_case__ , snake_case__ ) ) snake_case_ : List[Any] = 0 return output def SCREAMING_SNAKE_CASE__ ( ): # Main function for testing. snake_case_ : Tuple = make_tree() print(f"""In-order Traversal: {inorder(snake_case__ )}""" ) print(f"""Pre-order Traversal: {preorder(snake_case__ )}""" ) print(f"""Post-order Traversal: {postorder(snake_case__ )}""" , '\n' ) print(f"""Height of Tree: {height(snake_case__ )}""" , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(snake_case__ ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(snake_case__ ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(snake_case__ , level=snake_case__ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] ): '''simple docstring''' if len(snake_case__ ) != len(snake_case__ ): raise ValueError("""String lengths must match!""" ) __lowerCamelCase = 0 for chara, chara in zip(snake_case__ , snake_case__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
12
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
0
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCAmelCase : int = logging.getLogger(__name__) def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = np.argmax(snake_case__ , axis=1 ) return np.sum(outputs == labels ) def a__ ( a__ ): """simple docstring""" with open(snake_case__ , encoding="""utf_8""" ) as f: __SCREAMING_SNAKE_CASE = csv.reader(snake_case__ ) __SCREAMING_SNAKE_CASE = [] next(snake_case__ ) # skip the first line for line in tqdm(snake_case__ ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( a__ , a__ , a__ , a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = [] for dataset in encoded_datasets: __SCREAMING_SNAKE_CASE = len(snake_case__ ) __SCREAMING_SNAKE_CASE = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __SCREAMING_SNAKE_CASE = np.zeros((n_batch, 2) , dtype=np.intaa ) __SCREAMING_SNAKE_CASE = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) __SCREAMING_SNAKE_CASE = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(snake_case__ ): __SCREAMING_SNAKE_CASE = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __SCREAMING_SNAKE_CASE = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __SCREAMING_SNAKE_CASE = with_conta __SCREAMING_SNAKE_CASE = with_conta __SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 __SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 __SCREAMING_SNAKE_CASE = with_conta __SCREAMING_SNAKE_CASE = with_conta __SCREAMING_SNAKE_CASE = mc_label __SCREAMING_SNAKE_CASE = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(snake_case__ ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=snake_case__ , default="""openai-gpt""" , help="""pretrained model name""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" , default=snake_case__ , type=snake_case__ , required=snake_case__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=snake_case__ , default="""""" ) parser.add_argument("""--eval_dataset""" , type=snake_case__ , default="""""" ) parser.add_argument("""--seed""" , type=snake_case__ , default=42 ) parser.add_argument("""--num_train_epochs""" , type=snake_case__ , default=3 ) parser.add_argument("""--train_batch_size""" , type=snake_case__ , default=8 ) parser.add_argument("""--eval_batch_size""" , type=snake_case__ , default=16 ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=snake_case__ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , type=snake_case__ , default=1 ) parser.add_argument( """--max_steps""" , default=-1 , type=snake_case__ , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=snake_case__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=snake_case__ , default=6.2_5E-5 ) parser.add_argument("""--warmup_steps""" , default=0 , type=snake_case__ , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" , type=snake_case__ , default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" , type=snake_case__ , default=0.01 ) parser.add_argument("""--lm_coef""" , type=snake_case__ , default=0.9 ) parser.add_argument("""--n_valid""" , type=snake_case__ , default=3_74 ) parser.add_argument("""--server_ip""" , type=snake_case__ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=snake_case__ , default="""""" , help="""Can be used for distant debugging.""" ) __SCREAMING_SNAKE_CASE = parser.parse_args() print(snake_case__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) __SCREAMING_SNAKE_CASE = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(snake_case__ , snake_case__ ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __SCREAMING_SNAKE_CASE = ["""_start_""", """_delimiter_""", """_classify_"""] __SCREAMING_SNAKE_CASE = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(snake_case__ ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(snake_case__ ) __SCREAMING_SNAKE_CASE = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(snake_case__ ) ) model.to(snake_case__ ) # Load and encode the datasets def tokenize_and_encode(a__ ): if isinstance(snake_case__ , snake_case__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(snake_case__ ) ) elif isinstance(snake_case__ , snake_case__ ): return obj return [tokenize_and_encode(snake_case__ ) for o in obj] logger.info("""Encoding dataset...""" ) __SCREAMING_SNAKE_CASE = load_rocstories_dataset(args.train_dataset ) __SCREAMING_SNAKE_CASE = load_rocstories_dataset(args.eval_dataset ) __SCREAMING_SNAKE_CASE = (train_dataset, eval_dataset) __SCREAMING_SNAKE_CASE = tokenize_and_encode(snake_case__ ) # Compute the max input length for the Transformer __SCREAMING_SNAKE_CASE = model.config.n_positions // 2 - 2 __SCREAMING_SNAKE_CASE = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __SCREAMING_SNAKE_CASE = min(snake_case__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __SCREAMING_SNAKE_CASE = pre_process_datasets(snake_case__ , snake_case__ , snake_case__ , *snake_case__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tensor_datasets[0], tensor_datasets[1] __SCREAMING_SNAKE_CASE = TensorDataset(*snake_case__ ) __SCREAMING_SNAKE_CASE = RandomSampler(snake_case__ ) __SCREAMING_SNAKE_CASE = DataLoader(snake_case__ , sampler=snake_case__ , batch_size=args.train_batch_size ) __SCREAMING_SNAKE_CASE = TensorDataset(*snake_case__ ) __SCREAMING_SNAKE_CASE = SequentialSampler(snake_case__ ) __SCREAMING_SNAKE_CASE = DataLoader(snake_case__ , sampler=snake_case__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __SCREAMING_SNAKE_CASE = args.max_steps __SCREAMING_SNAKE_CASE = args.max_steps // (len(snake_case__ ) // args.gradient_accumulation_steps) + 1 else: __SCREAMING_SNAKE_CASE = len(snake_case__ ) // args.gradient_accumulation_steps * args.num_train_epochs __SCREAMING_SNAKE_CASE = list(model.named_parameters() ) __SCREAMING_SNAKE_CASE = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] __SCREAMING_SNAKE_CASE = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] __SCREAMING_SNAKE_CASE = AdamW(snake_case__ , lr=args.learning_rate , eps=args.adam_epsilon ) __SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( snake_case__ , num_warmup_steps=args.warmup_steps , num_training_steps=snake_case__ ) if args.do_train: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = tqdm(snake_case__ , desc="""Training""" ) for step, batch in enumerate(snake_case__ ): __SCREAMING_SNAKE_CASE = tuple(t.to(snake_case__ ) for t in batch ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = batch __SCREAMING_SNAKE_CASE = model(snake_case__ , mc_token_ids=snake_case__ , lm_labels=snake_case__ , mc_labels=snake_case__ ) __SCREAMING_SNAKE_CASE = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __SCREAMING_SNAKE_CASE = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __SCREAMING_SNAKE_CASE = """Training loss: {:.2e} lr: {:.2e}""".format(snake_case__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __SCREAMING_SNAKE_CASE = model.module if hasattr(snake_case__ , """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , snake_case__ ) __SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , snake_case__ ) torch.save(model_to_save.state_dict() , snake_case__ ) model_to_save.config.to_json_file(snake_case__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __SCREAMING_SNAKE_CASE = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __SCREAMING_SNAKE_CASE = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(snake_case__ ) if args.do_eval: model.eval() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0 for batch in tqdm(snake_case__ , desc="""Evaluating""" ): __SCREAMING_SNAKE_CASE = tuple(t.to(snake_case__ ) for t in batch ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = batch with torch.no_grad(): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model( snake_case__ , mc_token_ids=snake_case__ , lm_labels=snake_case__ , mc_labels=snake_case__ ) __SCREAMING_SNAKE_CASE = mc_logits.detach().cpu().numpy() __SCREAMING_SNAKE_CASE = mc_labels.to("""cpu""" ).numpy() __SCREAMING_SNAKE_CASE = accuracy(snake_case__ , snake_case__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __SCREAMING_SNAKE_CASE = eval_loss / nb_eval_steps __SCREAMING_SNAKE_CASE = eval_accuracy / nb_eval_examples __SCREAMING_SNAKE_CASE = tr_loss / nb_tr_steps if args.do_train else None __SCREAMING_SNAKE_CASE = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} __SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , """eval_results.txt""" ) with open(snake_case__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , snake_case__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
267
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
0
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCamelCase = load_dataset("glue" , "mrpc" ) def tokenize_function(_SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( snake_case__ , padding="longest" , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors="pt" , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets["train"] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) UpperCamelCase = DataLoader( tokenized_datasets["validation"] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , snake_case__ ) == "1": UpperCamelCase = 2 # Initialize accelerator UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["lr"] UpperCamelCase = int(config["num_epochs"] ) UpperCamelCase = int(config["seed"] ) UpperCamelCase = int(config["batch_size"] ) UpperCamelCase = evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case__ ) def inner_training_loop(_SCREAMING_SNAKE_CASE ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case__ ) UpperCamelCase , UpperCamelCase = get_dataloaders(snake_case__ , snake_case__ ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=100 , num_training_steps=(len(snake_case__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase = model(**snake_case__ ) UpperCamelCase = outputs.loss accelerator.backward(snake_case__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**snake_case__ ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , snake_case__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ): """simple docstring""" UpperCamelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=snake_case__ , default=snake_case__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
153
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = PriorTransformer __lowerCAmelCase : Optional[int] = "hidden_states" @property def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] = 4 UpperCAmelCase : Optional[int] = 8 UpperCAmelCase : Union[str, Any] = 7 UpperCAmelCase : List[Any] = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = floats_tensor((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(UpperCAmelCase_ ) UpperCAmelCase : List[str] = 4 UpperCAmelCase : int = 8 UpperCAmelCase : Union[str, Any] = 7 UpperCAmelCase : List[str] = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) UpperCAmelCase : List[str] = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return (4, 8) @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return (4, 8) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } UpperCAmelCase : str = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : str = PriorTransformer.from_pretrained( """hf-internal-testing/prior-dummy""" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCAmelCase_ ) UpperCAmelCase : Dict = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : str = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase : Tuple = self.model_class(**UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase : List[str] = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" ) UpperCAmelCase : Optional[int] = model.to(UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , """set_default_attn_processor""" ): model.set_default_attn_processor() UpperCAmelCase : int = self.get_dummy_seed_input() with torch.no_grad(): UpperCAmelCase : str = model(**UpperCAmelCase_ )[0] UpperCAmelCase : Dict = output[0, :5].flatten().cpu() print(UpperCAmelCase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. UpperCAmelCase : Optional[int] = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-2 ) ) @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=77 , _SCREAMING_SNAKE_CASE=0 ) -> List[Any]: '''simple docstring''' torch.manual_seed(UpperCAmelCase_ ) UpperCAmelCase : List[str] = batch_size UpperCAmelCase : List[str] = embedding_dim UpperCAmelCase : Tuple = num_embeddings UpperCAmelCase : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(UpperCAmelCase_ ) UpperCAmelCase : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCAmelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Any = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" ) model.to(UpperCAmelCase_ ) UpperCAmelCase : List[str] = self.get_dummy_seed_input(seed=UpperCAmelCase_ ) with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**UpperCAmelCase_ )[0] assert list(sample.shape ) == [1, 768] UpperCAmelCase : Dict = sample[0, :8].flatten().cpu() print(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = torch.tensor(UpperCAmelCase_ ) assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 )
109
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
0
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A_ ( _lowercase = 3 ): '''simple docstring''' if isinstance(snake_case__, snake_case__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(snake_case__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) snake_case_ :str = QuantumRegister(snake_case__, """qr""" ) snake_case_ :List[Any] = ClassicalRegister(snake_case__, """cr""" ) snake_case_ :List[str] = QuantumCircuit(snake_case__, snake_case__ ) snake_case_ :str = number_of_qubits for i in range(snake_case__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(snake_case__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j), snake_case__, snake_case__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(snake_case__, number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(snake_case__, snake_case__ ) # simulate with 10000 shots snake_case_ :List[str] = Aer.get_backend("""qasm_simulator""" ) snake_case_ :Dict = execute(snake_case__, snake_case__, shots=10000 ) return job.result().get_counts(snake_case__ ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
66
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if isinstance(snake_case__, snake_case__ ): SCREAMING_SNAKE_CASE_ = np.full((len(snake_case__ ), sequence_length, 2), snake_case__ ) else: SCREAMING_SNAKE_CASE_ = np.full((len(snake_case__ ), sequence_length), snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__, snake_case__ ): SCREAMING_SNAKE_CASE_ = tensor[:sequence_length] else: SCREAMING_SNAKE_CASE_ = tensor[:sequence_length] else: if isinstance(snake_case__, snake_case__ ): SCREAMING_SNAKE_CASE_ = tensor[:sequence_length] else: SCREAMING_SNAKE_CASE_ = tensor[:sequence_length] return out_tensor.tolist() def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True SCREAMING_SNAKE_CASE_ = unicodedata.category(snake_case__ ) if cat.startswith('''P''' ): return True return False @dataclass class UpperCamelCase__ ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =True UpperCAmelCase_ =None UpperCAmelCase_ =None UpperCAmelCase_ =-100 UpperCAmelCase_ ="pt" def _UpperCamelCase ( self , _A ) -> int: import torch SCREAMING_SNAKE_CASE_ = '''label''' if '''label''' in features[0].keys() else '''labels''' SCREAMING_SNAKE_CASE_ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None SCREAMING_SNAKE_CASE_ = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch SCREAMING_SNAKE_CASE_ = torch.tensor(batch['''entity_ids'''] ).shape[1] SCREAMING_SNAKE_CASE_ = self.tokenizer.padding_side if padding_side == "right": SCREAMING_SNAKE_CASE_ = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: SCREAMING_SNAKE_CASE_ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] SCREAMING_SNAKE_CASE_ = [feature['''ner_tags'''] for feature in features] SCREAMING_SNAKE_CASE_ = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ = [feature['''original_entity_spans'''] for feature in features] SCREAMING_SNAKE_CASE_ = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
299
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
0
from scipy.stats import spearmanr import datasets UpperCAmelCase__ = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" UpperCAmelCase__ = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n" UpperCAmelCase__ = R"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any]=False ) ->Union[str, Any]: """simple docstring""" a = spearmanr(UpperCAmelCase_ , UpperCAmelCase_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
0
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a : def __init__( self , _lowerCamelCase , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=2 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=9_9 , _lowerCamelCase=3_6 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=1_6 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=6 , _lowerCamelCase=6 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , _lowerCamelCase=1_0_0_0 , ): lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = patch_size lowercase = text_seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = coordinate_size lowercase = shape_size lowercase = num_labels lowercase = num_choices lowercase = scope lowercase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase = text_seq_length lowercase = (image_size // patch_size) ** 2 + 1 lowercase = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self ): lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowercase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase = bbox[i, j, 3] lowercase = bbox[i, j, 1] lowercase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase = bbox[i, j, 2] lowercase = bbox[i, j, 0] lowercase = t lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.text_seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowercase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = LayoutLMvaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() # text + image lowercase = model(UpperCAmelCase_ , pixel_values=UpperCAmelCase_ ) lowercase = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowercase = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowercase = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowercase = model(UpperCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowercase = model(pixel_values=UpperCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = self.num_labels lowercase = LayoutLMvaForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = self.num_labels lowercase = LayoutLMvaForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = LayoutLMvaForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase = model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class a ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ): UpperCAmelCase_ : int =False UpperCAmelCase_ : Union[str, Any] =False UpperCAmelCase_ : Tuple =False UpperCAmelCase_ : Tuple =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase_ : List[str] =( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return True def UpperCamelCase_ ( self ): lowercase = LayoutLMvaModelTester(self ) lowercase = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=3_7 ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): lowercase = copy.deepcopy(UpperCAmelCase_ ) if model_class in get_values(UpperCAmelCase_ ): lowercase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCAmelCase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase_ ): lowercase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) elif model_class in get_values(UpperCAmelCase_ ): lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) elif model_class in [ *get_values(UpperCAmelCase_ ), ]: lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) elif model_class in [ *get_values(UpperCAmelCase_ ), ]: lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase_ , ) return inputs_dict def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) @slow def UpperCamelCase_ ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = LayoutLMvaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class a ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self ): return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_ ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): lowercase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(UpperCAmelCase_ ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase_ ) lowercase = torch.tensor([[1, 2]] ) lowercase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowercase = model( input_ids=input_ids.to(UpperCAmelCase_ ) , bbox=bbox.to(UpperCAmelCase_ ) , pixel_values=pixel_values.to(UpperCAmelCase_ ) , ) # verify the logits lowercase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_ ) lowercase = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) )
220
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
0
def _lowercase ( lowercase__ ): if num <= 0: raise ValueError('''Input must be a positive integer''' ) __lowerCAmelCase : Dict = [True] * (num + 1) __lowerCAmelCase : List[Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case__ ): __lowerCAmelCase : Optional[int] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
275
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
0
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _A : Dict =logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class _lowercase ( _UpperCAmelCase ): def __init__( self: Tuple , *UpperCamelCase__: str , **UpperCamelCase__: Optional[int] ): super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) self.check_model_type(UpperCAmelCase_ ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: Tuple=None , UpperCamelCase__: Dict=None , UpperCamelCase__: Optional[Any]=None , **UpperCamelCase__: Optional[int] ): lowerCamelCase__ , lowerCamelCase__ : List[str] = {}, {} if padding is not None: lowerCamelCase__ : str = padding if truncation is not None: lowerCamelCase__ : str = truncation if top_k is not None: lowerCamelCase__ : List[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self: List[str] , UpperCamelCase__: Union["Image.Image", str] , UpperCamelCase__: str = None , **UpperCamelCase__: str ): if isinstance(UpperCAmelCase_ , (Image.Image, str) ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase__ : Tuple = {"""image""": image, """question""": question} else: lowerCamelCase__ : List[Any] = image lowerCamelCase__ : Any = super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ ) return results def lowerCamelCase_ ( self: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: List[Any]=False , UpperCamelCase__: Optional[Any]=False ): lowerCamelCase__ : Union[str, Any] = load_image(inputs["""image"""] ) lowerCamelCase__ : List[str] = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ ) lowerCamelCase__ : Optional[int] = self.image_processor(images=UpperCAmelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCAmelCase_ ) return model_inputs def lowerCamelCase_ ( self: str , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : Optional[Any] = self.model(**UpperCAmelCase_ ) return model_outputs def lowerCamelCase_ ( self: Any , UpperCamelCase__: int , UpperCamelCase__: Any=5 ): if top_k > self.model.config.num_labels: lowerCamelCase__ : int = self.model.config.num_labels if self.framework == "pt": lowerCamelCase__ : List[str] = model_outputs.logits.sigmoid()[0] lowerCamelCase__ , lowerCamelCase__ : str = probs.topk(UpperCAmelCase_ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) lowerCamelCase__ : str = scores.tolist() lowerCamelCase__ : Optional[int] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase_ , UpperCAmelCase_ )]
41
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
0
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=5_12, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def SCREAMING_SNAKE_CASE__ ( __a ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
327
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar('T') def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return (position - 1) // 2 def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return (2 * position) + 1 def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return (2 * position) + 2 class lowerCamelCase__( Generic[T]): def __init__( self: List[str] ): __lowerCamelCase = [] __lowerCamelCase = {} __lowerCamelCase = 0 def __len__( self: List[Any] ): return self.elements def __repr__( self: List[Any] ): return str(self.heap ) def lowerCAmelCase__ ( self: Optional[Any] ): return self.elements == 0 def lowerCAmelCase__ ( self: Any , UpperCamelCase_: T , UpperCamelCase_: int ): self.heap.append((elem, weight) ) __lowerCamelCase = self.elements self.elements += 1 self._bubble_up(UpperCAmelCase_ ) def lowerCAmelCase__ ( self: str ): if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __lowerCamelCase, __lowerCamelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __lowerCamelCase, __lowerCamelCase = self.heap[0] self._bubble_down(UpperCAmelCase_ ) return elem def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: T , UpperCamelCase_: int ): __lowerCamelCase = self.position_map[elem] __lowerCamelCase = (elem, weight) if position > 0: __lowerCamelCase = get_parent_position(UpperCAmelCase_ ) __lowerCamelCase, __lowerCamelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(UpperCAmelCase_ ) else: self._bubble_down(UpperCAmelCase_ ) else: self._bubble_down(UpperCAmelCase_ ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: T ): __lowerCamelCase = self.position_map[elem] if curr_pos == 0: return None __lowerCamelCase = get_parent_position(UpperCAmelCase_ ) __lowerCamelCase, __lowerCamelCase = self.heap[curr_pos] __lowerCamelCase, __lowerCamelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(UpperCAmelCase_ , UpperCAmelCase_ ) return self._bubble_up(UpperCAmelCase_ ) return None def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: T ): __lowerCamelCase = self.position_map[elem] __lowerCamelCase, __lowerCamelCase = self.heap[curr_pos] __lowerCamelCase = get_child_left_position(UpperCAmelCase_ ) __lowerCamelCase = get_child_right_position(UpperCAmelCase_ ) if child_left_position < self.elements and child_right_position < self.elements: __lowerCamelCase, __lowerCamelCase = self.heap[child_left_position] __lowerCamelCase, __lowerCamelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(UpperCAmelCase_ , UpperCAmelCase_ ) return self._bubble_down(UpperCAmelCase_ ) if child_left_position < self.elements: __lowerCamelCase, __lowerCamelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(UpperCAmelCase_ , UpperCAmelCase_ ) return self._bubble_down(UpperCAmelCase_ ) else: return None if child_right_position < self.elements: __lowerCamelCase, __lowerCamelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(UpperCAmelCase_ , UpperCAmelCase_ ) return self._bubble_down(UpperCAmelCase_ ) return None def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: int ): __lowerCamelCase = self.heap[nodea_pos][0] __lowerCamelCase = self.heap[nodea_pos][0] __lowerCamelCase, __lowerCamelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __lowerCamelCase = nodea_pos __lowerCamelCase = nodea_pos class lowerCamelCase__( Generic[T]): def __init__( self: Optional[Any] ): __lowerCamelCase = {} __lowerCamelCase = 0 def __repr__( self: Union[str, Any] ): return str(self.connections ) def __len__( self: Tuple ): return self.nodes def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: T ): if node not in self.connections: __lowerCamelCase = {} self.nodes += 1 def lowerCAmelCase__ ( self: Any , UpperCamelCase_: T , UpperCamelCase_: T , UpperCamelCase_: int ): self.add_node(UpperCAmelCase_ ) self.add_node(UpperCAmelCase_ ) __lowerCamelCase = weight __lowerCamelCase = weight def lowerCamelCase__ ( A__ : Any , ): '''simple docstring''' __lowerCamelCase = {node: maxsize for node in graph.connections} __lowerCamelCase = {node: None for node in graph.connections} __lowerCamelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(snake_case__ , snake_case__ ) if priority_queue.is_empty(): return dist, parent # initialization __lowerCamelCase = priority_queue.extract_min() __lowerCamelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowerCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(snake_case__ , dist[neighbour] ) __lowerCamelCase = node # running prim's algorithm while not priority_queue.is_empty(): __lowerCamelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowerCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(snake_case__ , dist[neighbour] ) __lowerCamelCase = node return dist, parent
12
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCAmelCase : List[str] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase__ ( cls : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def UpperCAmelCase__ ( cls : List[Any] ) -> List[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def UpperCAmelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(f'{USER}/test-model-flax' ) __SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) __SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=f'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_ , repo_id="""test-model-flax""" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(f'{USER}/test-model-flax' ) __SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) __SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=f'{key} not identical' ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) __SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) __SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=f'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( UpperCAmelCase_ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) __SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) __SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=f'{key} not identical' ) def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) __SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: __SCREAMING_SNAKE_CASE = False return models_are_equal @require_flax class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) __SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) with self.assertRaises(UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertTrue(check_models_equal(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) __SCREAMING_SNAKE_CASE = FlaxBertModel(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , max_shard_size="""10KB""" ) with self.assertRaises(UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertTrue(check_models_equal(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = """bert""" __SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = """bert""" __SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ )
267
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowerCamelCase ( _UpperCAmelCase ): UpperCAmelCase_ = "dandelin/vilt-b32-finetuned-vqa" UpperCAmelCase_ = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) UpperCAmelCase_ = "image_qa" UpperCAmelCase_ = AutoProcessor UpperCAmelCase_ = AutoModelForVisualQuestionAnswering UpperCAmelCase_ = ["image", "text"] UpperCAmelCase_ = ["text"] def __init__(self , *__a , **__a ) -> List[Any]: requires_backends(self , ["vision"] ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def snake_case_ (self , __a , __a ) -> Optional[Any]: return self.pre_processor(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors="pt" ) def snake_case_ (self , __a ) -> Optional[Any]: with torch.no_grad(): return self.model(**UpperCAmelCase_ ).logits def snake_case_ (self , __a ) -> Union[str, Any]: UpperCamelCase = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
153
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
109
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Any = MvpTokenizer _A : Optional[Any] = MvpTokenizerFast _A : Dict = True _A : Any = filter_roberta_detectors def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: super().setUp() snake_case_ :List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case_ :List[str] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) snake_case_ :List[str] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case_ :Dict = {"""unk_token""": """<unk>"""} snake_case_ :Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCAmelCase_ ( self: Optional[int] , **snake_case: Optional[Any] ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowerCAmelCase_ ( self: Dict , **snake_case: Optional[Any] ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowerCAmelCase_ ( self: str , snake_case: List[str] ) -> Optional[Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase_ ( self: int ) -> List[str]: return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCAmelCase_ ( self: str ) -> str: return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCAmelCase_ ( self: Optional[int] ) -> List[str]: snake_case_ :int = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] snake_case_ :Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ :str = tokenizer(UpperCAmelCase_ , max_length=len(UpperCAmelCase_ ) , padding=UpperCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) snake_case_ :Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Test that special tokens are reset @require_torch def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case_ :Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ :str = tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , UpperCAmelCase_ ) self.assertIn("""attention_mask""" , UpperCAmelCase_ ) self.assertNotIn("""labels""" , UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" , UpperCAmelCase_ ) @require_torch def lowerCAmelCase_ ( self: Optional[int] ) -> str: snake_case_ :str = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ :Tuple = tokenizer(text_target=UpperCAmelCase_ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ :Dict = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def lowerCAmelCase_ ( self: str ) -> Dict: snake_case_ :List[str] = ["""A long paragraph for summarization."""] snake_case_ :Tuple = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ :int = tokenizer(UpperCAmelCase_ , text_target=UpperCAmelCase_ , return_tensors="""pt""" ) snake_case_ :Dict = inputs["""input_ids"""] snake_case_ :Union[str, Any] = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCAmelCase_ ( self: List[str] ) -> List[Any]: pass def lowerCAmelCase_ ( self: str ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case_ :Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ :List[Any] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ :int = """A, <mask> AllenNLP sentence.""" snake_case_ :Dict = tokenizer_r.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ ) snake_case_ :List[str] = tokenizer_p.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) snake_case_ :str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) snake_case_ :Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
66
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =None def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = os.path.join(UpperCAmelCase_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class.from_json_file(UpperCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = feat_extract_first.save_pretrained(UpperCAmelCase_ )[0] check_json_file_has_correct_format(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class.from_pretrained(UpperCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class() self.assertIsNotNone(UpperCAmelCase_ )
299
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
0
from __future__ import annotations import math def _a ( a :Dict ) -> list[int]: if num <= 0: a = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(snake_case__ ) a = [True] * (num + 1) a = [] a = 2 a = int(math.sqrt(snake_case__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(snake_case__ ) # Set multiples of start be False for i in range(start * start , num + 1 , snake_case__ ): if sieve[i] is True: a = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(snake_case__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : Union[str, Any] ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
220
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : str = 1 __lowerCAmelCase : Optional[Any] = 3 __lowerCAmelCase : Any = (32, 32) __lowerCAmelCase : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase_ ) return image @property def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase : int = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCAmelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(UpperCAmelCase_ ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : Optional[int] = self.dummy_cond_unet_upscale __lowerCAmelCase : Any = DDPMScheduler() __lowerCAmelCase : int = DDIMScheduler(prediction_type='''v_prediction''' ) __lowerCAmelCase : str = self.dummy_vae __lowerCAmelCase : List[str] = self.dummy_text_encoder __lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCAmelCase : List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase : List[str] = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __lowerCAmelCase : Union[str, Any] = StableDiffusionUpscalePipeline( unet=UpperCAmelCase_ , low_res_scheduler=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , max_noise_level=350 , ) __lowerCAmelCase : int = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __lowerCAmelCase : Union[str, Any] = '''A painting of a squirrel eating a burger''' __lowerCAmelCase : Optional[int] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) __lowerCAmelCase : Any = sd_pipe( [prompt] , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __lowerCAmelCase : Optional[Any] = output.images __lowerCAmelCase : Union[str, Any] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) __lowerCAmelCase : Optional[int] = sd_pipe( [prompt] , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCAmelCase_ , )[0] __lowerCAmelCase : int = image[0, -3:, -3:, -1] __lowerCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] __lowerCAmelCase : Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __lowerCAmelCase : List[Any] = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : List[Any] = self.dummy_cond_unet_upscale __lowerCAmelCase : Optional[Any] = DDPMScheduler() __lowerCAmelCase : List[Any] = DDIMScheduler(prediction_type='''v_prediction''' ) __lowerCAmelCase : Any = self.dummy_vae __lowerCAmelCase : Tuple = self.dummy_text_encoder __lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCAmelCase : Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase : Optional[Any] = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __lowerCAmelCase : List[str] = StableDiffusionUpscalePipeline( unet=UpperCAmelCase_ , low_res_scheduler=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , max_noise_level=350 , ) __lowerCAmelCase : str = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __lowerCAmelCase : Dict = '''A painting of a squirrel eating a burger''' __lowerCAmelCase : Optional[int] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __lowerCAmelCase : Dict = output.images assert image.shape[0] == 2 __lowerCAmelCase : Optional[int] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) __lowerCAmelCase : List[Any] = sd_pipe( [prompt] , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __lowerCAmelCase : Any = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : str = self.dummy_cond_unet_upscale __lowerCAmelCase : List[Any] = DDPMScheduler() __lowerCAmelCase : str = DDIMScheduler(prediction_type='''v_prediction''' ) __lowerCAmelCase : List[str] = self.dummy_vae __lowerCAmelCase : Any = self.dummy_text_encoder __lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCAmelCase : Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase : int = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __lowerCAmelCase : Optional[int] = unet.half() __lowerCAmelCase : Optional[int] = text_encoder.half() # make sure here that pndm scheduler skips prk __lowerCAmelCase : Dict = StableDiffusionUpscalePipeline( unet=UpperCAmelCase_ , low_res_scheduler=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , max_noise_level=350 , ) __lowerCAmelCase : str = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __lowerCAmelCase : str = '''A painting of a squirrel eating a burger''' __lowerCAmelCase : List[Any] = torch.manual_seed(0 ) __lowerCAmelCase : str = sd_pipe( [prompt] , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='''np''' , ).images __lowerCAmelCase : Any = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __lowerCAmelCase : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) __lowerCAmelCase : Any = '''stabilityai/stable-diffusion-x4-upscaler''' __lowerCAmelCase : List[Any] = StableDiffusionUpscalePipeline.from_pretrained(UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() __lowerCAmelCase : int = '''a cat sitting on a park bench''' __lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __lowerCAmelCase : List[str] = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type='''np''' , ) __lowerCAmelCase : Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __lowerCAmelCase : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) __lowerCAmelCase : Optional[int] = '''stabilityai/stable-diffusion-x4-upscaler''' __lowerCAmelCase : List[str] = StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() __lowerCAmelCase : Optional[int] = '''a cat sitting on a park bench''' __lowerCAmelCase : List[str] = torch.manual_seed(0 ) __lowerCAmelCase : List[str] = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type='''np''' , ) __lowerCAmelCase : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def UpperCamelCase__ ( self ) ->str: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCAmelCase : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __lowerCAmelCase : Dict = '''stabilityai/stable-diffusion-x4-upscaler''' __lowerCAmelCase : Tuple = StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCAmelCase : Any = '''a cat sitting on a park bench''' __lowerCAmelCase : List[Any] = torch.manual_seed(0 ) __lowerCAmelCase : str = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , output_type='''np''' , ) __lowerCAmelCase : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
275
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: if not numbers: return 0 if not isinstance(snake_case__ , (list, tuple) ) or not all( isinstance(snake_case__ , snake_case__ ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) lowerCamelCase__ : str = numbers[0] for i in range(1 , len(snake_case__ ) ): # update the maximum and minimum subarray products lowerCamelCase__ : List[str] = numbers[i] if number < 0: lowerCamelCase__ , lowerCamelCase__ : List[Any] = min_till_now, max_till_now lowerCamelCase__ : List[str] = max(snake_case__ , max_till_now * number ) lowerCamelCase__ : Union[str, Any] = min(snake_case__ , min_till_now * number ) # update the maximum product found till now lowerCamelCase__ : List[str] = max(snake_case__ , snake_case__ ) return max_prod
41
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
from manim import * class SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase ): def UpperCAmelCase_ ( self : str ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : List[str] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) snake_case_ : Optional[int] = [mem.copy() for i in range(6 )] snake_case_ : Any = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ : Dict = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ : int = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ : Any = Text('CPU' , font_size=24 ) snake_case_ : List[Any] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) snake_case_ : List[str] = [mem.copy() for i in range(1 )] snake_case_ : int = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ : Optional[Any] = Text('GPU' , font_size=24 ) snake_case_ : Any = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.align_to(UpperCAmelCase_ , UpperCAmelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(UpperCAmelCase_ ) snake_case_ : Union[str, Any] = [mem.copy() for i in range(6 )] snake_case_ : Tuple = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ : Optional[Any] = Text('Model' , font_size=24 ) snake_case_ : Optional[int] = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(UpperCAmelCase_ , run_time=1 ) , Create(UpperCAmelCase_ , run_time=1 ) , Create(UpperCAmelCase_ , run_time=1 ) , ) snake_case_ : List[Any] = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.""" , font_size=24 , ) snake_case_ : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=2.5 ) , Write(UpperCAmelCase_ ) , Write(UpperCAmelCase_ ) ) self.add(UpperCAmelCase_ ) snake_case_ : List[str] = [] snake_case_ : List[Any] = [] snake_case_ : Dict = [] for i, rect in enumerate(UpperCAmelCase_ ): snake_case_ : List[str] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.7 ) cpu_target.move_to(UpperCAmelCase_ ) cpu_target.generate_target() snake_case_ : List[str] = 0.4_6 / 4 snake_case_ : List[Any] = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=UpperCAmelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=UpperCAmelCase_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=UpperCAmelCase_ , buff=0.0 ) cpu_targs.append(UpperCAmelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(UpperCAmelCase_ ) ) second_animations.append(MoveToTarget(UpperCAmelCase_ , run_time=1.5 ) ) self.play(*UpperCAmelCase_ ) self.play(*UpperCAmelCase_ ) self.wait()
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
from __future__ import annotations def lowerCamelCase__ ( A__ : Dict , A__ : Any , A__ : List[str] ): '''simple docstring''' if len(snake_case__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(snake_case__ ) or left < -len(snake_case__ ) or right >= len(snake_case__ ) or right < -len(snake_case__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __lowerCamelCase = (left + right) >> 1 # the middle __lowerCamelCase = find_max(snake_case__ , snake_case__ , snake_case__ ) # find max in range[left, mid] __lowerCamelCase = find_max(snake_case__ , mid + 1 , snake_case__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
12
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" lowerCAmelCase__ = ["audio_values", "audio_mask"] def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Any=2_048 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : Optional[int]=[16, 16] , __SCREAMING_SNAKE_CASE : Any=128 , __SCREAMING_SNAKE_CASE : List[str]=44_100 , __SCREAMING_SNAKE_CASE : Any=86 , __SCREAMING_SNAKE_CASE : List[str]=2_048 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Dict: """simple docstring""" super().__init__( feature_size=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , padding_value=UpperCAmelCase_ , **UpperCAmelCase_ , ) __SCREAMING_SNAKE_CASE = spectrogram_length __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1] __SCREAMING_SNAKE_CASE = n_fft __SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase_ , min_frequency=0.0 , max_frequency=22_050.0 , sampling_rate=UpperCAmelCase_ , norm="""slaney""" , mel_scale="""slaney""" , ).T def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : np.array ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = spectrogram( UpperCAmelCase_ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) __SCREAMING_SNAKE_CASE = log_spec[:, :-1] __SCREAMING_SNAKE_CASE = log_spec - 20.0 __SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> List[str]: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __SCREAMING_SNAKE_CASE = isinstance(UpperCAmelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(UpperCAmelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase_ , np.ndarray ): __SCREAMING_SNAKE_CASE = np.asarray(UpperCAmelCase_ , dtype=np.floataa ) elif isinstance(UpperCAmelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __SCREAMING_SNAKE_CASE = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE = [np.asarray(UpperCAmelCase_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __SCREAMING_SNAKE_CASE = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __SCREAMING_SNAKE_CASE = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __SCREAMING_SNAKE_CASE = np.array(UpperCAmelCase_ ).astype(np.floataa ) # convert into correct format for padding __SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __SCREAMING_SNAKE_CASE = np.ones([len(UpperCAmelCase_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value for i in range(len(UpperCAmelCase_ ) ): __SCREAMING_SNAKE_CASE = audio_features[i] __SCREAMING_SNAKE_CASE = feature # return as BatchFeature if return_attention_mask: __SCREAMING_SNAKE_CASE = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: __SCREAMING_SNAKE_CASE = {"""audio_values""": padded_audio_features} __SCREAMING_SNAKE_CASE = BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ ) return encoded_inputs
267
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
153
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A: Optional[int] = logging.get_logger(__name__) A: Tuple = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): __lowerCAmelCase : str = "vivit" def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=[2, 16, 16] , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu_fast" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-06 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> int: '''simple docstring''' UpperCAmelCase : str = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : str = initializer_range UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = image_size UpperCAmelCase : Dict = num_frames UpperCAmelCase : List[Any] = tubelet_size UpperCAmelCase : int = num_channels UpperCAmelCase : Optional[Any] = qkv_bias super().__init__(**UpperCAmelCase_ )
109
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' _A : List[str] = "donut-swin" _A : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: List[Any] , snake_case: List[str]=224 , snake_case: List[Any]=4 , snake_case: int=3 , snake_case: Any=96 , snake_case: Optional[Any]=[2, 2, 6, 2] , snake_case: Dict=[3, 6, 12, 24] , snake_case: List[Any]=7 , snake_case: List[str]=4.0 , snake_case: Optional[Any]=True , snake_case: List[str]=0.0 , snake_case: Dict=0.0 , snake_case: str=0.1 , snake_case: List[str]="gelu" , snake_case: Tuple=False , snake_case: Union[str, Any]=0.0_2 , snake_case: List[str]=1E-5 , **snake_case: List[Any] , ) -> Union[str, Any]: super().__init__(**UpperCAmelCase_ ) snake_case_ :Any = image_size snake_case_ :List[Any] = patch_size snake_case_ :Any = num_channels snake_case_ :Dict = embed_dim snake_case_ :Dict = depths snake_case_ :str = len(UpperCAmelCase_ ) snake_case_ :Optional[int] = num_heads snake_case_ :List[Any] = window_size snake_case_ :str = mlp_ratio snake_case_ :int = qkv_bias snake_case_ :Dict = hidden_dropout_prob snake_case_ :Optional[Any] = attention_probs_dropout_prob snake_case_ :Optional[int] = drop_path_rate snake_case_ :List[str] = hidden_act snake_case_ :List[Any] = use_absolute_embeddings snake_case_ :Dict = layer_norm_eps snake_case_ :Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ :int = int(embed_dim * 2 ** (len(UpperCAmelCase_ ) - 1) )
66
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
299
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCAmelCase : def __init__( self: List[str] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def UpperCamelCase ( UpperCAmelCase_: int , UpperCAmelCase_: List[str] ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) _SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): _SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.padding() _SCREAMING_SNAKE_CASE = self.split_blocks() for block in self.blocks: _SCREAMING_SNAKE_CASE = self.expand_block(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.h for i in range(0 , 80 ): if 0 <= i < 20: _SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d) _SCREAMING_SNAKE_CASE = 0x5a_827_999 elif 20 <= i < 40: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0x6e_d9e_ba1 elif 40 <= i < 60: _SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d) _SCREAMING_SNAKE_CASE = 0x8f_1bb_cdc elif 60 <= i < 80: _SCREAMING_SNAKE_CASE = b ^ c ^ d _SCREAMING_SNAKE_CASE = 0xca_62c_1d6 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) _SCREAMING_SNAKE_CASE = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = b"""Test String""" assert SHAaHash(snake_case__ ).final_hash() == hashlib.shaa(snake_case__ ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument("""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = f.read() else: _SCREAMING_SNAKE_CASE = bytes(snake_case__ ,"""utf-8""" ) print(SHAaHash(snake_case__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
306
0
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase__ = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
0
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class a : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) lowercase = img lowercase = img.shape[1] lowercase = img.shape[0] lowercase = dst_width lowercase = dst_height lowercase = self.src_w / self.dst_w lowercase = self.src_h / self.dst_h lowercase = lowercase = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_5_5 ) def UpperCamelCase_ ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): lowercase = self.img[self.get_y(UpperCAmelCase_ )][self.get_x(UpperCAmelCase_ )] def UpperCamelCase_ ( self , _lowerCamelCase ): return int(self.ratio_x * x ) def UpperCamelCase_ ( self , _lowerCamelCase ): return int(self.ratio_y * y ) if __name__ == "__main__": _UpperCamelCase, _UpperCamelCase : Optional[Any] = 8_0_0, 6_0_0 _UpperCamelCase : str = imread('image_data/lena.jpg', 1) _UpperCamelCase : List[str] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
220
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __UpperCAmelCase : def __init__( self: Any , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: str=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: Tuple=99 , UpperCAmelCase_: Optional[Any]=32 , UpperCAmelCase_: Optional[int]=2 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Tuple=37 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: str=512 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: str=0.02 , UpperCAmelCase_: int=False , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: Optional[Any]="None" , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Any=4 , UpperCAmelCase_: Optional[int]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = position_biased_input _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str , UpperCAmelCase_: str , UpperCAmelCase_: Any , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __snake_case : Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __snake_case : Dict = False __snake_case : Optional[Any] = False def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
306
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCamelCase = TypeVar("T") class __lowercase (Generic[T] ): def __init__( self , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = data __lowerCAmelCase : Any = None def __str__( self ) ->Union[str, Any]: '''simple docstring''' return f"""{self.data}""" class __lowercase (Generic[T] ): def __init__( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = None def __iter__( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.top while node: yield node.data __lowerCAmelCase : Tuple = node.next def __str__( self ) ->List[str]: '''simple docstring''' return "->".join([str(UpperCAmelCase_ ) for item in self] ) def __len__( self ) ->Optional[int]: '''simple docstring''' return len(tuple(iter(self ) ) ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' return self.top is None def UpperCamelCase__ ( self , A_ ) ->Dict: '''simple docstring''' __lowerCAmelCase : Optional[Any] = Node(UpperCAmelCase_ ) if not self.is_empty(): __lowerCAmelCase : str = self.top __lowerCAmelCase : str = node def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , UpperCAmelCase_ ) __lowerCAmelCase : List[str] = self.top __lowerCAmelCase : Optional[Any] = self.top.next return pop_node.data def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Optional[Any] = None if __name__ == "__main__": from doctest import testmod testmod()
275
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _A : Any =re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex _A : Dict =10 _A : Tuple =256 def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Optional[MinHash]: if len(snake_case__ ) < MIN_NUM_TOKENS: return None lowerCamelCase__ : Any = MinHash(num_perm=snake_case__ ) for token in set(snake_case__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Set[str]: return {t for t in NON_ALPHA.split(snake_case__ ) if len(t.strip() ) > 0} class _lowercase : def __init__( self: Optional[Any] , *, UpperCamelCase__: float = 0.85 , ): lowerCamelCase__ : Dict = duplication_jaccard_threshold lowerCamelCase__ : Union[str, Any] = NUM_PERM lowerCamelCase__ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCamelCase__ : int = defaultdict(UpperCAmelCase_ ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: Tuple , UpperCamelCase__: MinHash ): lowerCamelCase__ : List[str] = self._index.query(UpperCAmelCase_ ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(UpperCAmelCase_ , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(UpperCAmelCase_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(UpperCAmelCase_ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : List[str] = [] for base, duplicates in self._duplicate_clusters.items(): lowerCamelCase__ : List[Any] = [base] + list(UpperCAmelCase_ ) # reformat the cluster to be a list of dict lowerCamelCase__ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(UpperCAmelCase_ ) return duplicate_clusters def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : Optional[Any] = self.get_duplicate_clusters() with open(UpperCAmelCase_ , """w""" ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> List[str]: lowerCamelCase__ , lowerCamelCase__ : Dict = element lowerCamelCase__ : int = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(snake_case__ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCamelCase__ : List[str] = DuplicationIndex(duplication_jaccard_threshold=snake_case__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(snake_case__ ) ) , max_queue_size=100 ) ): di.add(snake_case__ , snake_case__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> float: lowerCamelCase__ : List[Any] = get_tokens(snake_case__ ) lowerCamelCase__ : Optional[int] = get_tokens(snake_case__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _A : str =None def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> str: lowerCamelCase__ : List[Any] = [] for elementa in cluster: lowerCamelCase__ : List[str] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: lowerCamelCase__ : Optional[Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(snake_case__ , snake_case__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCamelCase__ : Dict = 1 extremes.append(snake_case__ ) return extremes def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[Any]: global _shared_dataset lowerCamelCase__ : Optional[int] = dataset lowerCamelCase__ : str = [] lowerCamelCase__ : List[str] = partial(_find_cluster_extremes_shared , jaccard_threshold=snake_case__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( snake_case__ , snake_case__ , ) , total=len(snake_case__ ) , ): extremes_list.append(snake_case__ ) return extremes_list def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: lowerCamelCase__ : Tuple = make_duplicate_clusters(snake_case__ , snake_case__ ) lowerCamelCase__ : Any = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} lowerCamelCase__ : Optional[Any] = {} lowerCamelCase__ : List[str] = find_extremes(snake_case__ , snake_case__ , snake_case__ ) for extremes in extremes_clusters: for element in extremes: lowerCamelCase__ : Any = element lowerCamelCase__ : Optional[Any] = duplicate_indices - set(extreme_dict.keys() ) lowerCamelCase__ : int = dataset.filter(lambda UpperCamelCase , UpperCamelCase : idx not in remove_indices , with_indices=snake_case__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCamelCase__ : Tuple = element["""base_index"""] in extreme_dict if element["is_extreme"]: lowerCamelCase__ : Optional[Any] = extreme_dict[element["""base_index"""]]["""copies"""] print(f'''Original dataset size: {len(snake_case__ )}''' ) print(f'''Number of duplicate clusters: {len(snake_case__ )}''' ) print(f'''Files in duplicate cluster: {len(snake_case__ )}''' ) print(f'''Unique files in duplicate cluster: {len(snake_case__ )}''' ) print(f'''Filtered dataset size: {len(snake_case__ )}''' ) return ds_filter, duplicate_clusters
41
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __lowerCamelCase ( ) -> tuple[list[int], int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [randint(-10_00 ,10_00 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-50_00 ,50_00 ) return (arr, r) UpperCamelCase = make_dataset() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(snake_case__ ,3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __lowerCamelCase ( ) -> tuple[float, float]: """simple docstring""" _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) _SCREAMING_SNAKE_CASE = repeat(setup=snake_case__ ,stmt=snake_case__ ,repeat=5 ,number=1_00_00 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
306
0
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase ): def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" snake_case_ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase_ , 'embed_dim' ) ) self.parent.assertTrue(hasattr(UpperCAmelCase_ , 'num_heads' ) ) class SCREAMING_SNAKE_CASE_ : def __init__( self : str , _A : Tuple , _A : Union[str, Any]=13 , _A : List[str]=64 , _A : Any=3 , _A : Optional[Any]=[16, 48, 96] , _A : Union[str, Any]=[1, 3, 6] , _A : str=[1, 2, 10] , _A : int=[7, 3, 3] , _A : Optional[int]=[4, 2, 2] , _A : str=[2, 1, 1] , _A : List[str]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : Optional[int]=[0.0, 0.0, 0.0] , _A : List[Any]=0.0_2 , _A : Tuple=1E-12 , _A : Optional[Any]=True , _A : Optional[int]=True , _A : Optional[Any]=2 , ) -> Union[str, Any]: """simple docstring""" snake_case_ : Tuple = parent snake_case_ : int = batch_size snake_case_ : int = image_size snake_case_ : Tuple = patch_sizes snake_case_ : int = patch_stride snake_case_ : Optional[int] = patch_padding snake_case_ : Tuple = is_training snake_case_ : Optional[Any] = use_labels snake_case_ : Optional[Any] = num_labels snake_case_ : List[str] = num_channels snake_case_ : Dict = embed_dim snake_case_ : str = num_heads snake_case_ : Any = stride_kv snake_case_ : Tuple = depth snake_case_ : List[str] = cls_token snake_case_ : Tuple = attention_drop_rate snake_case_ : Dict = initializer_range snake_case_ : List[str] = layer_norm_eps def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" snake_case_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ : Tuple = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : str ) -> Any: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : Optional[int] , _A : List[str] , _A : str , _A : int ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = CvtModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ : str = model(UpperCAmelCase_ ) snake_case_ : Dict = (self.image_size, self.image_size) snake_case_ ,snake_case_ : Any = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case_ : Dict = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case_ : List[str] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCAmelCase_ ( self : List[Any] , _A : str , _A : List[Any] , _A : Tuple ) -> Optional[Any]: """simple docstring""" snake_case_ : Any = self.num_labels snake_case_ : Tuple = CvtForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ : Any = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = self.prepare_config_and_inputs() snake_case_ ,snake_case_ ,snake_case_ : Optional[int] = config_and_inputs snake_case_ : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __magic_name__: Dict = (CvtModel, CvtForImageClassification) if is_torch_available() else () __magic_name__: Dict = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) __magic_name__: Dict = False __magic_name__: Optional[int] = False __magic_name__: Optional[Any] = False __magic_name__: Any = False __magic_name__: Any = False def UpperCAmelCase_ ( self : Any ) -> Any: """simple docstring""" snake_case_ : Dict = CvtModelTester(self ) snake_case_ : Dict = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def UpperCAmelCase_ ( self : Dict ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" return @unittest.skip(reason='Cvt does not output attentions' ) def UpperCAmelCase_ ( self : Any ) -> Dict: """simple docstring""" pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def UpperCAmelCase_ ( self : Tuple ) -> Any: """simple docstring""" pass def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: """simple docstring""" snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Union[str, Any] = model_class(UpperCAmelCase_ ) snake_case_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : int = [*signature.parameters.keys()] snake_case_ : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def UpperCAmelCase_ ( self : int ) -> Tuple: """simple docstring""" snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: """simple docstring""" def check_hidden_states_output(_A : Optional[int] , _A : List[Any] , _A : List[Any] ): snake_case_ : str = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): snake_case_ : str = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case_ : Optional[Any] = outputs.hidden_states snake_case_ : Dict = len(self.model_tester.depth ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[int] = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ : Optional[int] = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: """simple docstring""" snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : str = CvtModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCAmelCase_ ( self : Dict ) -> int: """simple docstring""" snake_case_ : Tuple = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase_ ) snake_case_ : str = self.default_image_processor snake_case_ : str = prepare_img() snake_case_ : Union[str, Any] = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ : Dict = model(**UpperCAmelCase_ ) # verify the logits snake_case_ : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) snake_case_ : List[str] = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
327
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , **UpperCAmelCase_: Optional[Any] ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(UpperCAmelCase_ ) def UpperCamelCase ( self: str , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: Optional[Any] , UpperCAmelCase_: Tuple , *UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Tuple=None , **UpperCAmelCase_: Any ): '''simple docstring''' return super().__call__(UpperCAmelCase_ , *UpperCAmelCase_ , num_workers=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=64 , UpperCAmelCase_: int = 0 , UpperCAmelCase_: float = 512 / 1_500 , UpperCAmelCase_: Optional[int] = 32 , UpperCAmelCase_: Optional[int] = 1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_image(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor.size["""longest_edge"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): _SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(UpperCAmelCase_ , device=self.device ) _SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _SCREAMING_SNAKE_CASE = image_embeddings _SCREAMING_SNAKE_CASE = grid_points.shape[1] _SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] _SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] _SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase ( self: Any , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Optional[Any]=0.88 , UpperCAmelCase_: Dict=0.95 , UpperCAmelCase_: Tuple=0 , UpperCAmelCase_: str=1 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_inputs.pop("""input_boxes""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""original_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _SCREAMING_SNAKE_CASE = model_outputs["""pred_masks"""] _SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , binarize=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model_outputs["""iou_scores"""] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase ( self: Any , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Any=0.7 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {} if output_rle_mask: _SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: _SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
306
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = '▁' UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} UpperCAmelCase_ = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } UpperCAmelCase_ = { 'facebook/mbart-large-50-one-to-many-mmt': 1_024, } # fmt: off UpperCAmelCase_ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class lowerCamelCase__( _UpperCAmelCase): UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Dict = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: Any=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: List[str]="</s>" , UpperCamelCase_: Dict="<s>" , UpperCamelCase_: List[str]="<unk>" , UpperCamelCase_: str="<pad>" , UpperCamelCase_: Union[str, Any]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: str , ): __lowerCamelCase = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs __lowerCamelCase = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase_ ) ) __lowerCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCamelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCamelCase = 1 __lowerCamelCase = len(self.sp_model ) __lowerCamelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCAmelCase_ ) } __lowerCamelCase = {v: k for k, v in self.lang_code_to_id.items()} __lowerCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowerCamelCase = src_lang if src_lang is not None else """en_XX""" __lowerCamelCase = self.lang_code_to_id[self._src_lang] __lowerCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase__ ( self: int ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCAmelCase__ ( self: List[str] ): return self._src_lang @src_lang.setter def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: str ): __lowerCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self: int ): __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self: str , UpperCamelCase_: Dict ): __lowerCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str ): return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: str ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCamelCase = self.sp_model.PieceToId(UpperCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str ): __lowerCamelCase = [] __lowerCamelCase = """""" __lowerCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token __lowerCamelCase = True __lowerCamelCase = [] else: current_sub_tokens.append(UpperCAmelCase_ ) __lowerCamelCase = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) __lowerCamelCase = [1] * len(self.prefix_tokens ) __lowerCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCAmelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCAmelCase_ )) + ([0] * len(UpperCAmelCase_ )) + suffix_ones def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] , UpperCamelCase_: Optional[str] , **UpperCamelCase_: List[str] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __lowerCamelCase = src_lang __lowerCamelCase = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) __lowerCamelCase = self.convert_tokens_to_ids(UpperCAmelCase_ ) __lowerCamelCase = tgt_lang_id return inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: str = "en_XX" , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "ro_RO" , **UpperCamelCase_: Optional[Any] , ): __lowerCamelCase = src_lang __lowerCamelCase = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase__ ( self: List[str] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.lang_code_to_id[src_lang] __lowerCamelCase = [self.cur_lang_code_id] __lowerCamelCase = [self.eos_token_id] def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: str ): __lowerCamelCase = self.lang_code_to_id[tgt_lang] __lowerCamelCase = [self.cur_lang_code_id] __lowerCamelCase = [self.eos_token_id]
12
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) else: _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ProphetNetForConditionalGeneration.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) _SCREAMING_SNAKE_CASE = ["""key_proj""", """value_proj""", """query_proj"""] _SCREAMING_SNAKE_CASE = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if attributes[0] == "lm_head": _SCREAMING_SNAKE_CASE = prophet _SCREAMING_SNAKE_CASE = prophet_old else: _SCREAMING_SNAKE_CASE = prophet.prophetnet _SCREAMING_SNAKE_CASE = prophet_old.model _SCREAMING_SNAKE_CASE = False for attribute in attributes: if attribute in mapping: _SCREAMING_SNAKE_CASE = mapping[attribute] if not hasattr(snake_case__ ,snake_case__ ) and len(snake_case__ ) > 0: _SCREAMING_SNAKE_CASE = attribute elif hasattr(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.weight logger.info(F'{attribute} is initialized.' ) _SCREAMING_SNAKE_CASE = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _SCREAMING_SNAKE_CASE = old_model.bias logger.info(F'{attribute} is initialized' ) _SCREAMING_SNAKE_CASE = True break elif attribute in special_keys and hasattr(snake_case__ ,"""in_proj_weight""" ): _SCREAMING_SNAKE_CASE = old_model.in_proj_weight.shape[0] // 3 _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _SCREAMING_SNAKE_CASE = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _SCREAMING_SNAKE_CASE = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _SCREAMING_SNAKE_CASE = True break if attribute.isdigit(): _SCREAMING_SNAKE_CASE = model[int(snake_case__ )] _SCREAMING_SNAKE_CASE = old_model[int(snake_case__ )] else: _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if old_attribute == "": _SCREAMING_SNAKE_CASE = old_model else: if not hasattr(snake_case__ ,snake_case__ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _SCREAMING_SNAKE_CASE = getattr(snake_case__ ,snake_case__ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase__ ( nn.Module ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = jnp.floataa def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[str] , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hidden_states.shape __SCREAMING_SNAKE_CASE = jax.image.resize( UpperCAmelCase_ , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) __SCREAMING_SNAKE_CASE = self.conv(UpperCAmelCase_ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = jnp.floataa def UpperCAmelCase__ ( self : str ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.conv(UpperCAmelCase_ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = None lowerCAmelCase__ = 0.0 lowerCAmelCase__ = None lowerCAmelCase__ = jnp.floataa def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Conv( UpperCAmelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __SCREAMING_SNAKE_CASE = nn.Dense(UpperCAmelCase_ , dtype=self.dtype ) __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob ) __SCREAMING_SNAKE_CASE = nn.Conv( UpperCAmelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __SCREAMING_SNAKE_CASE = None if use_nin_shortcut: __SCREAMING_SNAKE_CASE = nn.Conv( UpperCAmelCase_ , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]=True ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = self.norma(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = nn.swish(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = self.conva(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(UpperCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase_ , 1 ) , 1 ) __SCREAMING_SNAKE_CASE = hidden_states + temb __SCREAMING_SNAKE_CASE = self.norma(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = nn.swish(UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = self.dropout(UpperCAmelCase_ , UpperCAmelCase_ ) __SCREAMING_SNAKE_CASE = self.conva(UpperCAmelCase_ ) if self.conv_shortcut is not None: __SCREAMING_SNAKE_CASE = self.conv_shortcut(UpperCAmelCase_ ) return hidden_states + residual
267
from __future__ import annotations def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _SCREAMING_SNAKE_CASE = i + 1 else: _SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
306
0
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase__ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class _lowerCamelCase ( unittest.TestCase ): @classmethod def snake_case_ (cls ) -> Union[str, Any]: UpperCamelCase = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def snake_case_ (cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def snake_case_ (self ) -> str: UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained(F"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ , repo_id="test-config" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained(F"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def snake_case_ (self ) -> Dict: UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase_ , repo_id="valid_org/test-config-org" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def snake_case_ (self ) -> Tuple: CustomConfig.register_for_auto_class() UpperCamelCase = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) UpperCamelCase = AutoConfig.from_pretrained(F"{USER}/test-dynamic-config" , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> Optional[int]: UpperCamelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCamelCase = c.n_embd + 1 # int UpperCamelCase = c.resid_pdrop + 1.0 # float UpperCamelCase = not c.scale_attn_weights # bool UpperCamelCase = c.summary_type + "foo" # str c.update_from_string( F"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(UpperCAmelCase_ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(UpperCAmelCase_ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(UpperCAmelCase_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(UpperCAmelCase_ , c.summary_type , "mismatch for key: summary_type" ) def snake_case_ (self ) -> str: UpperCamelCase = PretrainedConfig() UpperCamelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) UpperCamelCase = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase_ , UpperCAmelCase_ )] if len(UpperCAmelCase_ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F" {', '.join(UpperCAmelCase_ )}." ) def snake_case_ (self ) -> Optional[int]: with self.assertRaises(UpperCAmelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(UpperCAmelCase_ ) def snake_case_ (self ) -> Any: UpperCamelCase = mock.Mock() UpperCamelCase = 5_00 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_ ) as mock_head: UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ (self ) -> Any: UpperCamelCase = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def snake_case_ (self ) -> Any: UpperCamelCase = AutoConfig.from_pretrained("bert-base-cased" ) UpperCamelCase = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase_ ) UpperCamelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase_ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCamelCase = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCamelCase = ["config.42.0.0.json"] UpperCamelCase = 7_68 configuration.save_pretrained(UpperCAmelCase_ ) shutil.move(os.path.join(UpperCAmelCase_ , "config.4.0.0.json" ) , os.path.join(UpperCAmelCase_ , "config.42.0.0.json" ) ) UpperCamelCase = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def snake_case_ (self ) -> int: UpperCamelCase = "hf-internal-testing/test-two-configs" import transformers as new_transformers UpperCamelCase = "v4.0.0" UpperCamelCase , UpperCamelCase = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase_ , return_unused_kwargs=UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCamelCase = "v3.0.0" UpperCamelCase = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
153
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = '''MobileNetV1Config''' # Base docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = [1, 1_024, 7, 7] # Image classification docstring UpperCamelCase = '''google/mobilenet_v1_1.0_224''' UpperCamelCase = '''tabby, tabby cat''' UpperCamelCase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = {} if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = model.mobilenet_va else: _SCREAMING_SNAKE_CASE = model _SCREAMING_SNAKE_CASE = """MobilenetV1/Conv2d_0/""" _SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean _SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = i * 2 _SCREAMING_SNAKE_CASE = backbone.layer[pt_index] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var _SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] _SCREAMING_SNAKE_CASE = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _SCREAMING_SNAKE_CASE = pointer.convolution.weight _SCREAMING_SNAKE_CASE = pointer.normalization.bias _SCREAMING_SNAKE_CASE = pointer.normalization.weight _SCREAMING_SNAKE_CASE = pointer.normalization.running_mean _SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _SCREAMING_SNAKE_CASE = model.classifier.weight _SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _SCREAMING_SNAKE_CASE = tf.train.list_variables(snake_case__ ) _SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _SCREAMING_SNAKE_CASE = tf.train.load_variable(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map _SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(snake_case__ ,snake_case__ ,snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: _SCREAMING_SNAKE_CASE = np.transpose(snake_case__ ,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ ,snake_case__ ) tf_weights.pop(name + """/RMSProp""" ,snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" ,snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" ,snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = features.shape[-2:] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.stride _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: _SCREAMING_SNAKE_CASE = max(kernel_height - stride_height ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) ,0 ) if in_width % stride_width == 0: _SCREAMING_SNAKE_CASE = max(kernel_width - stride_width ,0 ) else: _SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) ,0 ) _SCREAMING_SNAKE_CASE = pad_along_width // 2 _SCREAMING_SNAKE_CASE = pad_along_width - pad_left _SCREAMING_SNAKE_CASE = pad_along_height // 2 _SCREAMING_SNAKE_CASE = pad_along_height - pad_top _SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ ,snake_case__ ,"""constant""" ,0.0 ) class __UpperCAmelCase (nn.Module ): def __init__( self: Optional[Any] , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: Optional[int] = 1 , UpperCAmelCase_: bool = False , UpperCAmelCase_: Optional[bool] = True , UpperCAmelCase_: Optional[bool or str] = True , ): '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _SCREAMING_SNAKE_CASE = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: _SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: _SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: _SCREAMING_SNAKE_CASE = config.hidden_act else: _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' if self.config.tf_padding: _SCREAMING_SNAKE_CASE = apply_tf_padding(UpperCAmelCase_ , self.convolution ) _SCREAMING_SNAKE_CASE = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: _SCREAMING_SNAKE_CASE = self.normalization(UpperCAmelCase_ ) if self.activation is not None: _SCREAMING_SNAKE_CASE = self.activation(UpperCAmelCase_ ) return features class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = MobileNetVaConfig __snake_case : Any = load_tf_weights_in_mobilenet_va __snake_case : Any = "mobilenet_v1" __snake_case : List[Any] = "pixel_values" __snake_case : Any = False def UpperCamelCase ( self: str , UpperCAmelCase_: Union[nn.Linear, nn.Convad] ): '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Any , UpperCAmelCase_: MobileNetVaConfig , UpperCAmelCase_: bool = True ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) _SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) _SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): _SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 _SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) _SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _SCREAMING_SNAKE_CASE = self.conv_stem(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _SCREAMING_SNAKE_CASE = layer_module(UpperCAmelCase_ ) if output_hidden_states: _SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) _SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: _SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: _SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,_UpperCAmelCase ,) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Dict , UpperCAmelCase_: MobileNetVaConfig ): '''simple docstring''' super().__init__(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = config.num_labels _SCREAMING_SNAKE_CASE = MobileNetVaModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[torch.Tensor] = None , UpperCAmelCase_: Optional[bool] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict _SCREAMING_SNAKE_CASE = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] _SCREAMING_SNAKE_CASE = self.classifier(self.dropout(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _SCREAMING_SNAKE_CASE = """single_label_classification""" else: _SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": _SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: _SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _SCREAMING_SNAKE_CASE = CrossEntropyLoss() _SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() _SCREAMING_SNAKE_CASE = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: _SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
306
0
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A: Optional[int] = logging.get_logger(__name__) A: Tuple = {"vocab_file": "vocab.txt"} A: List[str] = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } A: int = { "openbmb/cpm-ant-10b": 1_0_2_4, } def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : List[str] = collections.OrderedDict() with open(snake_case__ , """r""" , encoding="""utf-8""" ) as reader: UpperCAmelCase : Tuple = reader.readlines() for index, token in enumerate(snake_case__ ): UpperCAmelCase : Tuple = token.rstrip("""\n""" ) UpperCAmelCase : List[Any] = index return vocab class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE=200 ) -> Dict: '''simple docstring''' UpperCAmelCase : Union[str, Any] = vocab UpperCAmelCase : int = unk_token UpperCAmelCase : Union[str, Any] = max_input_chars_per_word def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict = list(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > self.max_input_chars_per_word: return [self.unk_token] UpperCAmelCase : Dict = 0 UpperCAmelCase : List[Any] = [] while start < len(UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = len(UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = None while start < end: UpperCAmelCase : Tuple = """""".join(chars[start:end] ) if substr in self.vocab: UpperCAmelCase : int = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = end return sub_tokens class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): __lowerCAmelCase : Dict = VOCAB_FILES_NAMES __lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Any = ["input_ids", "attention_mask"] __lowerCAmelCase : str = False def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<d>" , _SCREAMING_SNAKE_CASE="</d>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="</n>" , _SCREAMING_SNAKE_CASE="</_>" , _SCREAMING_SNAKE_CASE="left" , **_SCREAMING_SNAKE_CASE , ) -> Tuple: '''simple docstring''' requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=UpperCAmelCase_ , eod_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , line_token=UpperCAmelCase_ , space_token=UpperCAmelCase_ , padding_side=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCAmelCase : str = bod_token UpperCAmelCase : str = eod_token UpperCAmelCase : Optional[Any] = load_vocab(UpperCAmelCase_ ) UpperCAmelCase : Any = self.encoder[space_token] UpperCAmelCase : Dict = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCAmelCase : str = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _SCREAMING_SNAKE_CASE : x[1] ) ) UpperCAmelCase : int = {v: k for k, v in self.encoder.items()} UpperCAmelCase : Tuple = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' return self.encoder[self.bod_token] @property def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' return self.encoder[self.eod_token] @property def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' return self.encoder["\n"] @property def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : int = [] for x in jieba.cut(UpperCAmelCase_ , cut_all=UpperCAmelCase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCAmelCase_ ) ) return output_tokens def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = [i for i in token_ids if i >= 0] UpperCAmelCase : Optional[Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCAmelCase_ , **UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' return token in self.encoder def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return "".join(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return self.decoder.get(UpperCAmelCase_ , self.unk_token ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> str: '''simple docstring''' if os.path.isdir(UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: UpperCAmelCase : Any = (filename_prefix + """-""" if filename_prefix else """""") + save_directory UpperCAmelCase : Dict = 0 if " " in self.encoder: UpperCAmelCase : Any = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: UpperCAmelCase : Optional[Any] = self.encoder["""\n"""] del self.encoder["\n"] UpperCAmelCase : List[str] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _SCREAMING_SNAKE_CASE : x[1] ) ) with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." """ Please check that the vocabulary is not corrupted!""" ) UpperCAmelCase : Optional[Any] = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> str: '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[Any]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) return [1] + ([0] * len(UpperCAmelCase_ ))
109
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
0
"""simple docstring""" from __future__ import annotations def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Dict = 0 snake_case_ :int = len(snake_case__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: snake_case_ :str = i + 1 else: snake_case_ :Optional[int] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
66
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length, 2) ,snake_case__ ) else: _SCREAMING_SNAKE_CASE = np.full((len(snake_case__ ), sequence_length) ,snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: if isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = tensor[:sequence_length] else: _SCREAMING_SNAKE_CASE = tensor[:sequence_length] return out_tensor.tolist() def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _SCREAMING_SNAKE_CASE = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : PreTrainedTokenizerBase __snake_case : Union[bool, str, PaddingStrategy] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : int = -100 __snake_case : str = "pt" def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' import torch _SCREAMING_SNAKE_CASE = """label""" if """label""" in features[0].keys() else """labels""" _SCREAMING_SNAKE_CASE = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch _SCREAMING_SNAKE_CASE = torch.tensor(batch["""entity_ids"""] ).shape[1] _SCREAMING_SNAKE_CASE = self.tokenizer.padding_side if padding_side == "right": _SCREAMING_SNAKE_CASE = [ list(UpperCAmelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) for label in labels ] else: _SCREAMING_SNAKE_CASE = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase_ )) + list(UpperCAmelCase_ ) for label in labels ] _SCREAMING_SNAKE_CASE = [feature["""ner_tags"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , -1 , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [feature["""original_entity_spans"""] for feature in features] _SCREAMING_SNAKE_CASE = padding_tensor(UpperCAmelCase_ , (-1, -1) , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {k: torch.tensor(UpperCAmelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
0
def A__ ( __lowerCamelCase = 1_00 ): SCREAMING_SNAKE_CASE_ = n * (n + 1) * (2 * n + 1) / 6 SCREAMING_SNAKE_CASE_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
299
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(snake_case__ ).transpose(1 ,2 ).contiguous().view(-1 ,snake_case__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(snake_case__ ).view(-1 ,snake_case__ ).contiguous().transpose(0 ,1 ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = weights[0][0][0] _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) _SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # lsh weights + output _SCREAMING_SNAKE_CASE = weights[0][1] if len(snake_case__ ) < 4: set_layer_weights_in_torch_lsh(snake_case__ ,torch_block.attention ,snake_case__ ) else: set_layer_weights_in_torch_local(snake_case__ ,torch_block.attention ,snake_case__ ) # intermediate weighs _SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case__ ) == 4: _SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # intermediate dense _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) # intermediate out _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) _SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds _SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(snake_case__ ) ,) if isinstance(weights[3] ,snake_case__ ): _SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' _SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(snake_case__ ) ) _SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case__ ,snake_case__ ,snake_case__ ) # output layer norm _SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(snake_case__ ) ,torch.tensor(snake_case__ ) ,) # output embeddings _SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) _SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(snake_case__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(snake_case__ ) ,) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) _SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(snake_case__ ) with open(snake_case__ ,"""rb""" ) as f: _SCREAMING_SNAKE_CASE = pickle.load(snake_case__ )["""weights"""] set_model_weights_in_torch(snake_case__ ,snake_case__ ,config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : str=13 , __UpperCAmelCase : Optional[int]=30 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Any=5 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Optional[Any]=37 , __UpperCAmelCase : Tuple="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Union[str, Any]=10 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : List[str]=2 , ) ->Any: """simple docstring""" a = parent a = batch_size a = image_size a = patch_size a = num_channels a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = type_sequence_label_size a = initializer_range a = scope a = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a = (image_size // patch_size) ** 2 a = num_patches + 1 def __lowerCAmelCase ( self : int ) ->Optional[Any]: """simple docstring""" a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" a = ViTModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() a = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int ) ->Optional[Any]: """simple docstring""" a = ViTForMaskedImageModeling(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() a = model(UpperCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images a = 1 a = ViTForMaskedImageModeling(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a = model(UpperCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Any ) ->Optional[Any]: """simple docstring""" a = self.type_sequence_label_size a = ViTForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() a = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a = 1 a = ViTForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) __snake_case = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) __snake_case = True __snake_case = False __snake_case = False __snake_case = False def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" a = ViTModelTester(self ) a = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : int ) ->str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __lowerCAmelCase ( self : str ) ->Union[str, Any]: """simple docstring""" pass def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(UpperCAmelCase_ ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def __lowerCAmelCase ( self : Any ) ->Any: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def __lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = ViTModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _a ( ) -> Tuple: a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" a = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(UpperCAmelCase_ ) a = self.default_image_processor a = prepare_img() a = image_processor(images=UpperCAmelCase_ , return_tensors='''pt''' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): a = model(**UpperCAmelCase_ ) # verify the logits a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) a = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" a = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(UpperCAmelCase_ ) a = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=480 ) a = prepare_img() a = image_processor(images=UpperCAmelCase_ , return_tensors='''pt''' ) a = inputs.pixel_values.to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): a = model(UpperCAmelCase_ , interpolate_pos_encoding=UpperCAmelCase_ ) # verify the logits a = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_ ) a = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" a = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' ) a = self.default_image_processor a = prepare_img() a = image_processor(images=UpperCAmelCase_ , return_tensors='''pt''' ) a = inputs.pixel_values.to(UpperCAmelCase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): a = model(UpperCAmelCase_ )
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
0
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
220
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : def __init__( self: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int=13 , UpperCAmelCase_: Optional[int]=7 , UpperCAmelCase_: List[str]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Union[str, Any]=False , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]=33 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Any=37 , UpperCAmelCase_: Optional[Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: Dict=512 , UpperCAmelCase_: int=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=0.02 , UpperCAmelCase_: Tuple=3 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: str=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = EsmForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = False __snake_case : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = () __snake_case : Dict = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) __snake_case : int = True def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = EsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: int ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _SCREAMING_SNAKE_CASE = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _SCREAMING_SNAKE_CASE = create_position_ids_from_input_ids(UpperCAmelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()[0] _SCREAMING_SNAKE_CASE = EsmEmbeddings(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.empty(2 , 4 , 30 ) _SCREAMING_SNAKE_CASE = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _SCREAMING_SNAKE_CASE = torch.as_tensor([expected_single_positions, expected_single_positions] ) _SCREAMING_SNAKE_CASE = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' pass @require_torch class __UpperCAmelCase (_UpperCAmelCase ): @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def UpperCamelCase ( self: Dict ): '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _SCREAMING_SNAKE_CASE = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class __lowercase (_UpperCAmelCase ): def __init__( self , **A_ ) ->Optional[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase_ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , A_ , **A_ ) ->int: '''simple docstring''' return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase__ ( self , **A_ ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = {} if "candidate_labels" in kwargs: __lowerCAmelCase : Optional[int] = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __lowerCAmelCase : Dict = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCamelCase__ ( self , A_ , A_=None , A_="This is a photo of {}." ) ->str: '''simple docstring''' __lowerCAmelCase : Optional[Any] = load_image(UpperCAmelCase_ ) __lowerCAmelCase : Tuple = self.image_processor(images=[image] , return_tensors=self.framework ) __lowerCAmelCase : List[str] = candidate_labels __lowerCAmelCase : Any = [hypothesis_template.format(UpperCAmelCase_ ) for x in candidate_labels] __lowerCAmelCase : List[Any] = self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework , padding=UpperCAmelCase_ ) __lowerCAmelCase : str = [text_inputs] return inputs def UpperCamelCase__ ( self , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : int = model_inputs.pop('''candidate_labels''' ) __lowerCAmelCase : Any = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = text_inputs[0] else: # Batching case. __lowerCAmelCase : Union[str, Any] = text_inputs[0][0] __lowerCAmelCase : Optional[int] = self.model(**UpperCAmelCase_ , **UpperCAmelCase_ ) __lowerCAmelCase : Dict = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCamelCase__ ( self , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Tuple = model_outputs.pop('''candidate_labels''' ) __lowerCAmelCase : int = model_outputs['''logits'''][0] if self.framework == "pt": __lowerCAmelCase : int = logits.softmax(dim=-1 ).squeeze(-1 ) __lowerCAmelCase : Union[str, Any] = probs.tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __lowerCAmelCase : List[Any] = [scores] elif self.framework == "tf": __lowerCAmelCase : str = stable_softmax(UpperCAmelCase_ , axis=-1 ) __lowerCAmelCase : List[Any] = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __lowerCAmelCase : List[str] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase_ , UpperCAmelCase_ ) , key=lambda A_ : -x[0] ) ] return result
275
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
0
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy _A : Tuple =logging.get_logger(__name__) _A : Any ={ '''artists_file''': '''artists.json''', '''lyrics_file''': '''lyrics.json''', '''genres_file''': '''genres.json''', } _A : Tuple ={ '''artists_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''', }, '''genres_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''', }, '''lyrics_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''', }, } _A : Any ={ '''jukebox''': 512, } class _lowercase ( _UpperCAmelCase ): a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_LYRIC_TOKENS_SIZES a = ["input_ids", "attention_mask"] def __init__( self: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Any , UpperCamelCase__: Tuple , UpperCamelCase__: Any=["v3", "v2", "v2"] , UpperCamelCase__: Dict=512 , UpperCamelCase__: Any=5 , UpperCamelCase__: Optional[Any]="<|endoftext|>" , **UpperCamelCase__: Optional[int] , ): lowerCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else unk_token super().__init__( unk_token=UpperCAmelCase_ , n_genres=UpperCAmelCase_ , version=UpperCAmelCase_ , max_n_lyric_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__ : Any = version lowerCamelCase__ : str = max_n_lyric_tokens lowerCamelCase__ : Optional[Any] = n_genres with open(UpperCAmelCase_ , encoding="""utf-8""" ) as vocab_handle: lowerCamelCase__ : Union[str, Any] = json.load(UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding="""utf-8""" ) as vocab_handle: lowerCamelCase__ : Tuple = json.load(UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding="""utf-8""" ) as vocab_handle: lowerCamelCase__ : Tuple = json.load(UpperCAmelCase_ ) lowerCamelCase__ : Optional[int] = R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: lowerCamelCase__ : Dict = oov.replace(R"""\-'""" , R"""\-+'""" ) lowerCamelCase__ : List[str] = regex.compile(UpperCAmelCase_ ) lowerCamelCase__ : Tuple = {v: k for k, v in self.artists_encoder.items()} lowerCamelCase__ : int = {v: k for k, v in self.genres_encoder.items()} lowerCamelCase__ : str = {v: k for k, v in self.lyrics_encoder.items()} @property def lowerCamelCase_ ( self: str ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def lowerCamelCase_ ( self: List[Any] ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: int , UpperCamelCase__: Any , UpperCamelCase__: int ): lowerCamelCase__ : str = [self.artists_encoder.get(UpperCAmelCase_ , 0 ) for artist in list_artists] for genres in range(len(UpperCAmelCase_ ) ): lowerCamelCase__ : int = [self.genres_encoder.get(UpperCAmelCase_ , 0 ) for genre in list_genres[genres]] lowerCamelCase__ : Optional[Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) lowerCamelCase__ : Dict = [[self.lyrics_encoder.get(UpperCAmelCase_ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: int ): return list(UpperCAmelCase_ ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] , UpperCamelCase__: List[str] , **UpperCamelCase__: Any ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = self.prepare_for_tokenization(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase__ : Dict = self._tokenize(UpperCAmelCase_ ) return artist, genre, lyrics def lowerCamelCase_ ( self: Any , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": lowerCamelCase__ : str = artists[idx].lower() lowerCamelCase__ : Dict = [genres[idx].lower()] else: lowerCamelCase__ : int = self._normalize(artists[idx] ) + """.v2""" lowerCamelCase__ : Union[str, Any] = [ self._normalize(UpperCAmelCase_ ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": lowerCamelCase__ : int = regex.compile(R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) lowerCamelCase__ : Tuple = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" lowerCamelCase__ : Any = {vocab[index]: index + 1 for index in range(len(UpperCAmelCase_ ) )} lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Any = len(UpperCAmelCase_ ) + 1 lowerCamelCase__ : Optional[Any] = self.vocab lowerCamelCase__ : List[str] = {v: k for k, v in self.vocab.items()} lowerCamelCase__ : int = """""" else: lowerCamelCase__ : Optional[int] = regex.compile(R"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) lowerCamelCase__ : str = self._run_strip_accents(UpperCAmelCase_ ) lowerCamelCase__ : Union[str, Any] = lyrics.replace("""\\""" , """\n""" ) lowerCamelCase__ : Union[str, Any] = self.out_of_vocab.sub("""""" , UpperCAmelCase_ ), [], [] return artists, genres, lyrics def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Optional[int] ): lowerCamelCase__ : Tuple = unicodedata.normalize("""NFD""" , UpperCAmelCase_ ) lowerCamelCase__ : List[Any] = [] for char in text: lowerCamelCase__ : int = unicodedata.category(UpperCAmelCase_ ) if cat == "Mn": continue output.append(UpperCAmelCase_ ) return "".join(UpperCAmelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase__: str ): lowerCamelCase__ : Optional[Any] = ( [chr(UpperCAmelCase_ ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(UpperCAmelCase_ ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(UpperCAmelCase_ ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) lowerCamelCase__ : Union[str, Any] = frozenset(UpperCAmelCase_ ) lowerCamelCase__ : Any = re.compile(R"""_+""" ) lowerCamelCase__ : Tuple = """""".join([c if c in accepted else """_""" for c in text.lower()] ) lowerCamelCase__ : str = pattern.sub("""_""" , UpperCAmelCase_ ).strip("""_""" ) return text def lowerCamelCase_ ( self: Any , UpperCamelCase__: List[str] ): return " ".join(UpperCAmelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[Union[str, TensorType]] = None , UpperCamelCase__: bool = False ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase__ : Dict = TensorType(UpperCAmelCase_ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf lowerCamelCase__ : str = tf.constant lowerCamelCase__ : str = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch lowerCamelCase__ : str = torch.tensor lowerCamelCase__ : Union[str, Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 lowerCamelCase__ : int = jnp.array lowerCamelCase__ : List[Any] = _is_jax else: lowerCamelCase__ : Any = np.asarray lowerCamelCase__ : Union[str, Any] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: lowerCamelCase__ : Tuple = [inputs] if not is_tensor(UpperCAmelCase_ ): lowerCamelCase__ : List[Any] = as_tensor(UpperCAmelCase_ ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self: Dict , UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: str="" , UpperCamelCase__: Optional[Any]="pt" ): lowerCamelCase__ : List[Any] = [0, 0, 0] lowerCamelCase__ : Optional[Any] = [artist] * len(self.version ) lowerCamelCase__ : str = [genres] * len(self.version ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = self.tokenize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self._convert_token_to_id(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase__ : int = [-INFINITY] * len(full_tokens[-1] ) lowerCamelCase__ : List[str] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=UpperCAmelCase_ ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[str] = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : Optional[int] = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=UpperCAmelCase_ ) ) lowerCamelCase__ : int = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=UpperCAmelCase_ ) ) lowerCamelCase__ : Union[str, Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=UpperCAmelCase_ ) ) return (artists_file, genres_file, lyrics_file) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : Tuple = self.artists_decoder.get(UpperCAmelCase_ ) lowerCamelCase__ : Tuple = [self.genres_decoder.get(UpperCAmelCase_ ) for genre in genres_index] lowerCamelCase__ : Optional[Any] = [self.lyrics_decoder.get(UpperCAmelCase_ ) for character in lyric_index] return artist, genres, lyrics
41
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class SCREAMING_SNAKE_CASE_ : def __init__( self : Any , _A : int , _A : Optional[int]=13 , _A : str=7 , _A : int=True , _A : List[str]=True , _A : Dict=True , _A : Any=True , _A : Tuple=99 , _A : Optional[Any]=32 , _A : Optional[int]=2 , _A : Tuple=4 , _A : Tuple=37 , _A : Union[str, Any]="gelu" , _A : List[str]=0.1 , _A : int=0.1 , _A : str=512 , _A : Union[str, Any]=16 , _A : List[Any]=2 , _A : str=0.0_2 , _A : int=False , _A : Union[str, Any]=True , _A : Optional[Any]="None" , _A : Optional[int]=3 , _A : Any=4 , _A : Optional[int]=None , ) -> Optional[Any]: """simple docstring""" snake_case_ : Any = parent snake_case_ : Any = batch_size snake_case_ : Optional[Any] = seq_length snake_case_ : List[str] = is_training snake_case_ : List[str] = use_input_mask snake_case_ : List[str] = use_token_type_ids snake_case_ : Optional[Any] = use_labels snake_case_ : Optional[Any] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : List[str] = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : Any = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : int = type_vocab_size snake_case_ : Any = type_sequence_label_size snake_case_ : Any = initializer_range snake_case_ : Tuple = num_labels snake_case_ : str = num_choices snake_case_ : Optional[Any] = relative_attention snake_case_ : Tuple = position_biased_input snake_case_ : int = pos_att_type snake_case_ : str = scope def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" snake_case_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[int] = None if self.use_input_mask: snake_case_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Union[str, Any] = None if self.use_token_type_ids: snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = None snake_case_ : str = None snake_case_ : Dict = None if self.use_labels: snake_case_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : int = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : Optional[Any] , _A : int , _A : Optional[Any] , _A : str , _A : int , _A : List[str] , _A : List[str] , _A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" snake_case_ : int = TFDebertaVaModel(config=UpperCAmelCase_ ) snake_case_ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case_ : Union[str, Any] = [input_ids, input_mask] snake_case_ : Tuple = model(UpperCAmelCase_ ) snake_case_ : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Tuple , _A : Optional[int] , _A : List[str] , _A : Tuple , _A : int , _A : Optional[Any] , _A : str , _A : Union[str, Any] ) -> int: """simple docstring""" snake_case_ : Any = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) snake_case_ : List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case_ : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Any , _A : Any , _A : List[str] , _A : Dict , _A : List[str] , _A : str , _A : int , _A : int ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.num_labels snake_case_ : Union[str, Any] = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) snake_case_ : List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case_ : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Optional[int] , _A : List[Any] , _A : Any , _A : List[Any] , _A : Any ) -> Dict: """simple docstring""" snake_case_ : List[str] = self.num_labels snake_case_ : Union[str, Any] = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) snake_case_ : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case_ : Union[str, Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : Any , _A : Optional[Any] , _A : Tuple , _A : Union[str, Any] , _A : str , _A : str , _A : Any , _A : Dict ) -> List[str]: """simple docstring""" snake_case_ : Dict = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) snake_case_ : List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } snake_case_ : Union[str, Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: """simple docstring""" snake_case_ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) : Any = config_and_inputs snake_case_ : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __magic_name__: int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __magic_name__: Union[str, Any] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __magic_name__: Dict = False __magic_name__: Optional[Any] = False def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = TFDebertaVaModelTester(self ) snake_case_ : int = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: """simple docstring""" snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCAmelCase_ ( self : Any ) -> int: """simple docstring""" snake_case_ : Optional[int] = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ : str = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) snake_case_ : str = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) snake_case_ : Optional[Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case_ : Union[str, Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] snake_case_ : Union[str, Any] = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
import string def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __lowerCamelCase = """""" for symbol in message: if symbol in string.ascii_uppercase: __lowerCamelCase = string.ascii_uppercase.find(snake_case__ ) __lowerCamelCase = num - key if num < 0: __lowerCamelCase = num + len(string.ascii_uppercase ) __lowerCamelCase = translated + string.ascii_uppercase[num] else: __lowerCamelCase = translated + symbol print(f'Decryption using Key #{key}: {translated}' ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = input("""Encrypted message: """ ) __lowerCamelCase = message.upper() decrypt(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
12
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = ["input_ids", "attention_mask"] __snake_case : Dict = NllbTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self: Tuple , UpperCAmelCase_: str=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Tuple="<s>" , UpperCAmelCase_: str="</s>" , UpperCAmelCase_: Union[str, Any]="</s>" , UpperCAmelCase_: int="<s>" , UpperCAmelCase_: Union[str, Any]="<unk>" , UpperCAmelCase_: Union[str, Any]="<pad>" , UpperCAmelCase_: str="<mask>" , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int=None , UpperCAmelCase_: str=False , **UpperCAmelCase_: int , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token _SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = False if not self.vocab_file else True _SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn""" _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) _SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase ( self: int , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[int] , UpperCAmelCase_: Optional[List[int]] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] , UpperCAmelCase_: Optional[str] , **UpperCAmelCase_: Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: str = "eng_Latn" , UpperCAmelCase_: Optional[List[str]] = None , UpperCAmelCase_: str = "fra_Latn" , **UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = src_lang _SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: _SCREAMING_SNAKE_CASE = [self.cur_lang_code] _SCREAMING_SNAKE_CASE = [self.eos_token_id] _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) _SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) _SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
306
0
'''simple docstring''' def a__ ( a__ = 2_00 ): """simple docstring""" __SCREAMING_SNAKE_CASE = [1, 2, 5, 10, 20, 50, 1_00, 2_00] __SCREAMING_SNAKE_CASE = [0] * (pence + 1) __SCREAMING_SNAKE_CASE = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(snake_case__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
267
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = y_points[i] for i in range(2 ,snake_case__ ): for j in range(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
0
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): UpperCamelCase = F"Expected string as input, found {type(snake_case__ )}" raise ValueError(snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): UpperCamelCase = F"Expected boolean as use_pascal parameter, found {type(snake_case__ )}" raise ValueError(snake_case__ ) UpperCamelCase = input_str.split("_" ) UpperCamelCase = 0 if use_pascal else 1 UpperCamelCase = words[start_index:] UpperCamelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCamelCase = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
153
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def a_ ( _A ) -> int: """simple docstring""" snake_case__ = filter(lambda _A : p.requires_grad , model.parameters() ) snake_case__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params __UpperCamelCase : Any = logging.getLogger(__name__) def a_ ( _A , _A ) -> Dict: """simple docstring""" if metric == "rouge2": snake_case__ = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": snake_case__ = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": snake_case__ = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) snake_case__ = ModelCheckpoint( dirpath=_A , filename=_A , monitor=f'''val_{metric}''' , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def a_ ( _A , _A ) -> Optional[Any]: """simple docstring""" return EarlyStopping( monitor=f'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=_A , verbose=_A , ) class __SCREAMING_SNAKE_CASE( pl.Callback ): def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: List[Any] ) -> Union[str, Any]: snake_case__ = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(UpperCamelCase ) @rank_zero_only def lowerCAmelCase_ ( self: str , UpperCamelCase: pl.Trainer , UpperCamelCase: pl.LightningModule , UpperCamelCase: str , UpperCamelCase: str=True ) -> None: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) snake_case__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results snake_case__ = Path(pl_module.hparams.output_dir ) if type_path == "test": snake_case__ = od / 'test_results.txt' snake_case__ = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. snake_case__ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' snake_case__ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=UpperCamelCase ) generations_file.parent.mkdir(exist_ok=UpperCamelCase ) with open(UpperCamelCase , 'a+' ) as writer: for key in sorted(UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue snake_case__ = metrics[key] if isinstance(UpperCamelCase , torch.Tensor ): snake_case__ = val.item() snake_case__ = F'''{key}: {val:.6f}\n''' writer.write(UpperCamelCase ) if not save_generations: return if "preds" in metrics: snake_case__ = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(UpperCamelCase ) @rank_zero_only def lowerCAmelCase_ ( self: int , UpperCamelCase: List[str] , UpperCamelCase: int ) -> Optional[Any]: try: snake_case__ = pl_module.model.model.num_parameters() except AttributeError: snake_case__ = pl_module.model.num_parameters() snake_case__ = count_trainable_parameters(UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def lowerCAmelCase_ ( self: int , UpperCamelCase: pl.Trainer , UpperCamelCase: pl.LightningModule ) -> List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(UpperCamelCase , UpperCamelCase , 'test' ) @rank_zero_only def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: pl.Trainer , UpperCamelCase: Tuple ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
307
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
import os import numpy import onnx def a_ ( _A , _A ) -> List[Any]: """simple docstring""" snake_case__ = a.name snake_case__ = b.name snake_case__ = '' snake_case__ = '' snake_case__ = a == b snake_case__ = name_a snake_case__ = name_b return res def a_ ( _A , _A , _A ) -> Any: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_A , _A ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _A , _A ) _graph_replace_input_with(node_proto.attribute[1].g , _A , _A ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _A , _A ) def a_ ( _A , _A , _A ) -> int: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_A , _A , _A ) def a_ ( _A , _A , _A ) -> Optional[int]: """simple docstring""" snake_case__ = list(model.graph.initializer ) snake_case__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case__ = inits[i].name snake_case__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _A , _A ) def a_ ( _A ) -> Tuple: """simple docstring""" snake_case__ = os.path.dirname(_A ) snake_case__ = os.path.basename(_A ) snake_case__ = onnx.load(os.path.join(_A , _A ) ) snake_case__ = list(model.graph.initializer ) snake_case__ = set() snake_case__ = {} snake_case__ = [] snake_case__ = 0 for i in range(len(_A ) ): if i in dup_set: continue for j in range(i + 1 , len(_A ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_A ) dup_set.add(_A ) snake_case__ = inits[j].data_type snake_case__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , _A ) total_reduced_size += mem_size snake_case__ = inits[i].name snake_case__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(_A ) else: snake_case__ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case__ = sorted(_A ) _remove_dup_initializers_from_model(_A , _A , _A ) snake_case__ = 'optimized_' + model_file_name snake_case__ = os.path.join(_A , _A ) onnx.save(_A , _A ) return new_model
307
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["pixel_values"] def __init__( self: List[Any] , UpperCamelCase: bool = True , UpperCamelCase: Optional[Dict[str, int]] = None , UpperCamelCase: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase: bool = True , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[int, float] = 1 / 2_55 , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , **UpperCamelCase: Optional[int] , ) -> None: super().__init__(**UpperCamelCase ) snake_case__ = size if size is not None else {'shortest_edge': 2_56} snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_resize snake_case__ = size snake_case__ = resample snake_case__ = do_center_crop snake_case__ = crop_size snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_normalize snake_case__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case__ = get_resize_output_image_size(UpperCamelCase , size=size['shortest_edge'] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: List[Any] , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase ) return center_crop(UpperCamelCase , size=(size['height'], size['width']) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: np.ndarray , UpperCamelCase: float , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict ) -> np.ndarray: return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Any , ) -> np.ndarray: return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: ImageInput , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: PILImageResampling = None , UpperCamelCase: bool = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[float] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[str, TensorType]] = None , UpperCamelCase: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase: Any , ) -> Optional[Any]: snake_case__ = do_resize if do_resize is not None else self.do_resize snake_case__ = size if size is not None else self.size snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = resample if resample is not None else self.resample snake_case__ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ = crop_size if crop_size is not None else self.crop_size snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_rescale if do_rescale is not None else self.do_rescale snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ = do_normalize if do_normalize is not None else self.do_normalize snake_case__ = image_mean if image_mean is not None else self.image_mean snake_case__ = image_std if image_std is not None else self.image_std snake_case__ = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case__ = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: snake_case__ = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: snake_case__ = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: snake_case__ = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] snake_case__ = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] snake_case__ = {'pixel_values': images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
307
1
from math import factorial __UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def a_ ( _A ) -> int: """simple docstring""" if not isinstance(_A , _A ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_A ) ) def a_ ( _A = 60 , _A = 1000000 ) -> int: """simple docstring""" if not isinstance(_A , _A ) or not isinstance(_A , _A ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length snake_case__ = 0 # the cached sizes of the previous chains snake_case__ = {} for start_chain_element in range(1 , _A ): # The temporary set will contain the elements of the chain snake_case__ = set() snake_case__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. snake_case__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_A ) chain_set_length += 1 snake_case__ = digit_factorial_sum(_A ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] snake_case__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
307
import random from typing import Any def a_ ( _A ) -> list[Any]: """simple docstring""" for _ in range(len(_A ) ): snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ , snake_case__ = data[b], data[a] return data if __name__ == "__main__": __UpperCamelCase : Dict = [0, 1, 2, 3, 4, 5, 6, 7] __UpperCamelCase : Any = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
307
1
def a_ ( ) -> int: """simple docstring""" return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(_A , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
307
class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE: def __init__( self: List[str] ) -> Union[str, Any]: snake_case__ = [ [], [], [], ] def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: int ) -> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(UpperCamelCase ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowerCAmelCase_ ( self: List[Any] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self: Union[str, Any] ) -> str: return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __SCREAMING_SNAKE_CASE: def __init__( self: Union[str, Any] ) -> Any: snake_case__ = [] def lowerCAmelCase_ ( self: str , UpperCamelCase: int ) -> None: if len(self.queue ) == 1_00: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: snake_case__ = min(self.queue ) self.queue.remove(UpperCamelCase ) return data def __str__( self: Optional[Any] ) -> str: return str(self.queue ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
307
1
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __UpperCamelCase : int = get_tests_dir("""fixtures/dummy-config.json""") class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: Any ) -> int: snake_case__ = 0 def lowerCAmelCase_ ( self: str ) -> int: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def lowerCAmelCase_ ( self: Any ) -> Tuple: snake_case__ = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> int: snake_case__ = AutoConfig.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Dict: snake_case__ = AutoConfig.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Optional[Any]: snake_case__ = AutoConfig.for_model('roberta' ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. snake_case__ = os.path.join(UpperCamelCase , 'fake-roberta' ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) with open(os.path.join(UpperCamelCase , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) snake_case__ = AutoConfig.from_pretrained(UpperCamelCase ) self.assertEqual(type(UpperCamelCase ) , UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> Dict: try: AutoConfig.register('custom' , UpperCamelCase ) # Wrong model type will raise an error with self.assertRaises(UpperCamelCase ): AutoConfig.register('model' , UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase ): AutoConfig.register('bert' , UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case__ = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase ) snake_case__ = AutoConfig.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCAmelCase_ ( self: Dict ) -> Tuple: with self.assertRaisesRegex( UpperCamelCase , 'bert-base is not a local folder and is not a valid model identifier' ): snake_case__ = AutoConfig.from_pretrained('bert-base' ) def lowerCAmelCase_ ( self: Any ) -> Optional[Any]: with self.assertRaisesRegex( UpperCamelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): snake_case__ = AutoConfig.from_pretrained(UpperCamelCase , revision='aaaaaa' ) def lowerCAmelCase_ ( self: List[str] ) -> Tuple: with self.assertRaisesRegex( UpperCamelCase , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): snake_case__ = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase ): snake_case__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase ): snake_case__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=UpperCamelCase ) snake_case__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=UpperCamelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase ) snake_case__ = AutoConfig.from_pretrained(UpperCamelCase , trust_remote_code=UpperCamelCase ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def lowerCAmelCase_ ( self: Optional[int] ) -> Tuple: class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "new-model" try: AutoConfig.register('new-model' , UpperCamelCase ) # If remote code is not set, the default is to use local snake_case__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. snake_case__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=UpperCamelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub snake_case__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=UpperCamelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
307
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["image_processor", "tokenizer"] _UpperCAmelCase = "LayoutLMv2ImageProcessor" _UpperCAmelCase = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self: int , UpperCamelCase: Optional[int]=None , UpperCamelCase: Optional[Any]=None , **UpperCamelCase: Union[str, Any] ) -> int: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) snake_case__ = kwargs.pop('feature_extractor' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCamelCase: Union[List[List[int]], List[List[List[int]]]] = None , UpperCamelCase: Optional[Union[List[int], List[List[int]]]] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[bool, str, PaddingStrategy] = False , UpperCamelCase: Union[bool, str, TruncationStrategy] = None , UpperCamelCase: Optional[int] = None , UpperCamelCase: int = 0 , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[str, TensorType]] = None , **UpperCamelCase: Any , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor snake_case__ = self.image_processor(images=UpperCamelCase , return_tensors=UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case__ = features['words'] snake_case__ = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # add pixel values snake_case__ = features.pop('pixel_values' ) if return_overflowing_tokens is True: snake_case__ = self.get_overflowing_images(UpperCamelCase , encoded_inputs['overflow_to_sample_mapping'] ) snake_case__ = images return encoded_inputs def lowerCAmelCase_ ( self: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Any ) -> Tuple: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCamelCase )} and {len(UpperCamelCase )}''' ) return images_with_overflow def lowerCAmelCase_ ( self: Dict , *UpperCamelCase: Dict , **UpperCamelCase: Optional[int] ) -> List[Any]: return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , *UpperCamelCase: Optional[Any] , **UpperCamelCase: int ) -> Optional[Any]: return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCAmelCase_ ( self: str ) -> List[Any]: return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCAmelCase_ ( self: Any ) -> List[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self: Optional[int] ) -> Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase , ) return self.image_processor
307
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: List[Any] ) -> List[str]: snake_case__ = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } snake_case__ = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(UpperCamelCase ) , UpperCamelCase ) def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: snake_case__ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(UpperCamelCase ) , x.transpose() ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(UpperCamelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCAmelCase_ ( self: Union[str, Any] ) -> Tuple: snake_case__ = np.random.randn(3 , 4 ) snake_case__ = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase ) , transpose(UpperCamelCase ).numpy() ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) snake_case__ = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase , axes=(1, 2, 0) ) , transpose(UpperCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self: Optional[int] ) -> int: snake_case__ = np.random.randn(3 , 4 ) snake_case__ = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase ) , transpose(UpperCamelCase ).numpy() ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) snake_case__ = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase , axes=(1, 2, 0) ) , transpose(UpperCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self: Any ) -> Optional[int]: snake_case__ = np.random.randn(3 , 4 ) snake_case__ = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase ) , np.asarray(transpose(UpperCamelCase ) ) ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) snake_case__ = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(transpose(UpperCamelCase , axes=(1, 2, 0) ) , np.asarray(transpose(UpperCamelCase , axes=(1, 2, 0) ) ) ) ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: snake_case__ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (4, 3) ) , np.reshape(UpperCamelCase , (4, 3) ) ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (12, 5) ) , np.reshape(UpperCamelCase , (12, 5) ) ) ) @require_torch def lowerCAmelCase_ ( self: str ) -> int: snake_case__ = np.random.randn(3 , 4 ) snake_case__ = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (4, 3) ) , reshape(UpperCamelCase , (4, 3) ).numpy() ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) snake_case__ = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (12, 5) ) , reshape(UpperCamelCase , (12, 5) ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[Any]: snake_case__ = np.random.randn(3 , 4 ) snake_case__ = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (4, 3) ) , reshape(UpperCamelCase , (4, 3) ).numpy() ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) snake_case__ = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (12, 5) ) , reshape(UpperCamelCase , (12, 5) ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[Any]: snake_case__ = np.random.randn(3 , 4 ) snake_case__ = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (4, 3) ) , np.asarray(reshape(UpperCamelCase , (4, 3) ) ) ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) snake_case__ = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(reshape(UpperCamelCase , (12, 5) ) , np.asarray(reshape(UpperCamelCase , (12, 5) ) ) ) ) def lowerCAmelCase_ ( self: int ) -> Tuple: snake_case__ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ) , np.squeeze(UpperCamelCase ) ) ) snake_case__ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase , axis=2 ) , np.squeeze(UpperCamelCase , axis=2 ) ) ) @require_torch def lowerCAmelCase_ ( self: Tuple ) -> List[Any]: snake_case__ = np.random.randn(1 , 3 , 4 ) snake_case__ = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ) , squeeze(UpperCamelCase ).numpy() ) ) snake_case__ = np.random.randn(1 , 4 , 1 , 5 ) snake_case__ = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase , axis=2 ) , squeeze(UpperCamelCase , axis=2 ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self: Optional[int] ) -> Tuple: snake_case__ = np.random.randn(1 , 3 , 4 ) snake_case__ = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ) , squeeze(UpperCamelCase ).numpy() ) ) snake_case__ = np.random.randn(1 , 4 , 1 , 5 ) snake_case__ = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase , axis=2 ) , squeeze(UpperCamelCase , axis=2 ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[int]: snake_case__ = np.random.randn(1 , 3 , 4 ) snake_case__ = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase ) , np.asarray(squeeze(UpperCamelCase ) ) ) ) snake_case__ = np.random.randn(1 , 4 , 1 , 5 ) snake_case__ = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(squeeze(UpperCamelCase , axis=2 ) , np.asarray(squeeze(UpperCamelCase , axis=2 ) ) ) ) def lowerCAmelCase_ ( self: List[Any] ) -> Optional[int]: snake_case__ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase , axis=1 ) , np.expand_dims(UpperCamelCase , axis=1 ) ) ) @require_torch def lowerCAmelCase_ ( self: int ) -> Tuple: snake_case__ = np.random.randn(3 , 4 ) snake_case__ = torch.tensor(UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase , axis=1 ) , expand_dims(UpperCamelCase , axis=1 ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: snake_case__ = np.random.randn(3 , 4 ) snake_case__ = tf.constant(UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase , axis=1 ) , expand_dims(UpperCamelCase , axis=1 ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self: int ) -> str: snake_case__ = np.random.randn(3 , 4 ) snake_case__ = jnp.array(UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase , axis=1 ) , np.asarray(expand_dims(UpperCamelCase , axis=1 ) ) ) )
307
def a_ ( _A = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , _A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
307
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : int = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
import os def a_ ( ) -> Optional[Any]: """simple docstring""" snake_case__ = os.path.join(os.path.dirname(_A ) , 'num.txt' ) with open(_A ) as file_hand: return str(sum(int(_A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
307
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def a_ ( _A , _A ) -> List[Any]: """simple docstring""" snake_case__ = np.argmax(_A , axis=1 ) return np.sum(outputs == labels ) def a_ ( _A ) -> int: """simple docstring""" with open(_A , encoding='utf_8' ) as f: snake_case__ = csv.reader(_A ) snake_case__ = [] next(_A ) # skip the first line for line in tqdm(_A ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a_ ( _A , _A , _A , _A , _A , _A ) -> List[Any]: """simple docstring""" snake_case__ = [] for dataset in encoded_datasets: snake_case__ = len(_A ) snake_case__ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) snake_case__ = np.zeros((n_batch, 2) , dtype=np.intaa ) snake_case__ = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) snake_case__ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_A ): snake_case__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] snake_case__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] snake_case__ = with_conta snake_case__ = with_conta snake_case__ = len(_A ) - 1 snake_case__ = len(_A ) - 1 snake_case__ = with_conta snake_case__ = with_conta snake_case__ = mc_label snake_case__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_A ) for t in all_inputs ) ) return tensor_datasets def a_ ( ) -> Optional[int]: """simple docstring""" snake_case__ = argparse.ArgumentParser() parser.add_argument('--model_name' , type=_A , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=_A , type=_A , required=_A , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=_A , default='' ) parser.add_argument('--eval_dataset' , type=_A , default='' ) parser.add_argument('--seed' , type=_A , default=42 ) parser.add_argument('--num_train_epochs' , type=_A , default=3 ) parser.add_argument('--train_batch_size' , type=_A , default=8 ) parser.add_argument('--eval_batch_size' , type=_A , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=_A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=_A , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=_A , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=_A , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=_A , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=_A , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=_A , default=0.01 ) parser.add_argument('--lm_coef' , type=_A , default=0.9 ) parser.add_argument('--n_valid' , type=_A , default=374 ) parser.add_argument('--server_ip' , type=_A , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_A , default='' , help='Can be used for distant debugging.' ) snake_case__ = parser.parse_args() print(_A ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_A ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) snake_case__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) snake_case__ = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(_A , _A ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset snake_case__ = ['_start_', '_delimiter_', '_classify_'] snake_case__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_A ) snake_case__ = tokenizer.convert_tokens_to_ids(_A ) snake_case__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_A ) ) model.to(_A ) # Load and encode the datasets def tokenize_and_encode(_A ): if isinstance(_A , _A ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_A ) ) elif isinstance(_A , _A ): return obj return [tokenize_and_encode(_A ) for o in obj] logger.info('Encoding dataset...' ) snake_case__ = load_rocstories_dataset(args.train_dataset ) snake_case__ = load_rocstories_dataset(args.eval_dataset ) snake_case__ = (train_dataset, eval_dataset) snake_case__ = tokenize_and_encode(_A ) # Compute the max input length for the Transformer snake_case__ = model.config.n_positions // 2 - 2 snake_case__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) snake_case__ = min(_A , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders snake_case__ = pre_process_datasets(_A , _A , _A , *_A ) snake_case__ , snake_case__ = tensor_datasets[0], tensor_datasets[1] snake_case__ = TensorDataset(*_A ) snake_case__ = RandomSampler(_A ) snake_case__ = DataLoader(_A , sampler=_A , batch_size=args.train_batch_size ) snake_case__ = TensorDataset(*_A ) snake_case__ = SequentialSampler(_A ) snake_case__ = DataLoader(_A , sampler=_A , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: snake_case__ = args.max_steps snake_case__ = args.max_steps // (len(_A ) // args.gradient_accumulation_steps) + 1 else: snake_case__ = len(_A ) // args.gradient_accumulation_steps * args.num_train_epochs snake_case__ = list(model.named_parameters() ) snake_case__ = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] snake_case__ = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] snake_case__ = AdamW(_A , lr=args.learning_rate , eps=args.adam_epsilon ) snake_case__ = get_linear_schedule_with_warmup( _A , num_warmup_steps=args.warmup_steps , num_training_steps=_A ) if args.do_train: snake_case__ , snake_case__ , snake_case__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): snake_case__ = 0 snake_case__ = 0 snake_case__ = tqdm(_A , desc='Training' ) for step, batch in enumerate(_A ): snake_case__ = tuple(t.to(_A ) for t in batch ) snake_case__ , snake_case__ , snake_case__ , snake_case__ = batch snake_case__ = model(_A , mc_token_ids=_A , lm_labels=_A , mc_labels=_A ) snake_case__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() snake_case__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 snake_case__ = 'Training loss: {:.2e} lr: {:.2e}'.format(_A , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer snake_case__ = model.module if hasattr(_A , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` snake_case__ = os.path.join(args.output_dir , _A ) snake_case__ = os.path.join(args.output_dir , _A ) torch.save(model_to_save.state_dict() , _A ) model_to_save.config.to_json_file(_A ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned snake_case__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) snake_case__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_A ) if args.do_eval: model.eval() snake_case__ , snake_case__ = 0, 0 snake_case__ , snake_case__ = 0, 0 for batch in tqdm(_A , desc='Evaluating' ): snake_case__ = tuple(t.to(_A ) for t in batch ) snake_case__ , snake_case__ , snake_case__ , snake_case__ = batch with torch.no_grad(): snake_case__ , snake_case__ , snake_case__ , snake_case__ = model( _A , mc_token_ids=_A , lm_labels=_A , mc_labels=_A ) snake_case__ = mc_logits.detach().cpu().numpy() snake_case__ = mc_labels.to('cpu' ).numpy() snake_case__ = accuracy(_A , _A ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 snake_case__ = eval_loss / nb_eval_steps snake_case__ = eval_accuracy / nb_eval_examples snake_case__ = tr_loss / nb_tr_steps if args.do_train else None snake_case__ = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} snake_case__ = os.path.join(args.output_dir , 'eval_results.txt' ) with open(_A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _A , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
307
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __SCREAMING_SNAKE_CASE( ctypes.Structure ): # _fields is a specific attr expected by ctypes _UpperCAmelCase = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def a_ ( ) -> Any: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def a_ ( ) -> Tuple: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def a_ ( ) -> str: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
307
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "gptj" _UpperCAmelCase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self: int , UpperCamelCase: Optional[Any]=5_04_00 , UpperCamelCase: List[Any]=20_48 , UpperCamelCase: List[Any]=40_96 , UpperCamelCase: Optional[int]=28 , UpperCamelCase: Any=16 , UpperCamelCase: Any=64 , UpperCamelCase: Tuple=None , UpperCamelCase: Dict="gelu_new" , UpperCamelCase: str=0.0 , UpperCamelCase: Optional[Any]=0.0 , UpperCamelCase: int=0.0 , UpperCamelCase: Tuple=1e-5 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: List[Any]=True , UpperCamelCase: Optional[Any]=5_02_56 , UpperCamelCase: Optional[int]=5_02_56 , UpperCamelCase: Any=False , **UpperCamelCase: Dict , ) -> int: snake_case__ = vocab_size snake_case__ = n_positions snake_case__ = n_embd snake_case__ = n_layer snake_case__ = n_head snake_case__ = n_inner snake_case__ = rotary_dim snake_case__ = activation_function snake_case__ = resid_pdrop snake_case__ = embd_pdrop snake_case__ = attn_pdrop snake_case__ = layer_norm_epsilon snake_case__ = initializer_range snake_case__ = use_cache snake_case__ = bos_token_id snake_case__ = eos_token_id super().__init__( bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , tie_word_embeddings=UpperCamelCase , **UpperCamelCase ) class __SCREAMING_SNAKE_CASE( a_ ): def __init__( self: List[Any] , UpperCamelCase: PretrainedConfig , UpperCamelCase: str = "default" , UpperCamelCase: List[PatchingSpec] = None , UpperCamelCase: bool = False , ) -> Any: super().__init__(UpperCamelCase , task=UpperCamelCase , patching_specs=UpperCamelCase , use_past=UpperCamelCase ) if not getattr(self._config , 'pad_token_id' , UpperCamelCase ): # TODO: how to do that better? snake_case__ = 0 @property def lowerCAmelCase_ ( self: Optional[int] ) -> Mapping[str, Mapping[int, str]]: snake_case__ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase , direction='inputs' ) snake_case__ = {0: 'batch', 1: 'past_sequence + sequence'} else: snake_case__ = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowerCAmelCase_ ( self: List[str] ) -> int: return self._config.n_layer @property def lowerCAmelCase_ ( self: Optional[Any] ) -> int: return self._config.n_head def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: PreTrainedTokenizer , UpperCamelCase: int = -1 , UpperCamelCase: int = -1 , UpperCamelCase: bool = False , UpperCamelCase: Optional[TensorType] = None , ) -> Mapping[str, Any]: snake_case__ = super(UpperCamelCase , self ).generate_dummy_inputs( UpperCamelCase , batch_size=UpperCamelCase , seq_length=UpperCamelCase , is_pair=UpperCamelCase , framework=UpperCamelCase ) # We need to order the input in the way they appears in the forward() snake_case__ = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch snake_case__ , snake_case__ = common_inputs['input_ids'].shape # Not using the same length for past_key_values snake_case__ = seqlen + 2 snake_case__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case__ = [ (torch.zeros(UpperCamelCase ), torch.zeros(UpperCamelCase )) for _ in range(self.num_layers ) ] snake_case__ = common_inputs['attention_mask'] if self.use_past: snake_case__ = ordered_inputs['attention_mask'].dtype snake_case__ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(UpperCamelCase , UpperCamelCase , dtype=UpperCamelCase )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase_ ( self: Union[str, Any] ) -> int: return 13
307
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Any = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } __UpperCamelCase : Optional[Any] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def a_ ( _A , _A=1 , _A=256 ) -> str: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def a_ ( _A ) -> int: """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def a_ ( _A , _A ) -> int: """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def a_ ( _A , _A , _A , _A=True ) -> List[str]: """simple docstring""" os.makedirs(_A , exist_ok=_A ) snake_case__ = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) snake_case__ = read_json(os.path.join(_A , 'params.json' ) ) snake_case__ = NUM_SHARDS[model_size] snake_case__ = params['n_layers'] snake_case__ = params['n_heads'] snake_case__ = n_heads // num_shards snake_case__ = params['dim'] snake_case__ = dim // n_heads snake_case__ = 10000.0 snake_case__ = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case__ = params['n_kv_heads'] # for GQA / MQA snake_case__ = n_heads_per_shard // num_key_value_heads snake_case__ = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case__ = n_heads snake_case__ = n_heads_per_shard snake_case__ = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case__ = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded snake_case__ = [ torch.load(os.path.join(_A , f'''consolidated.{i:02d}.pth''' ) , map_location='cpu' ) for i in range(_A ) ] snake_case__ = 0 snake_case__ = {'weight_map': {}} for layer_i in range(_A ): snake_case__ = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case__ = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) snake_case__ = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = inv_freq for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) snake_case__ = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: snake_case__ = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs snake_case__ = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) snake_case__ = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 snake_case__ = params['multiple_of'] if 'multiple_of' in params else 256 snake_case__ = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) snake_case__ = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def a_ ( _A , _A ) -> Tuple: """simple docstring""" # Initialize the tokenizer based on the `spm` model snake_case__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case__ = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def a_ ( ) -> str: """simple docstring""" snake_case__ = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) snake_case__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case__ = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
307
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = BertTokenizer _UpperCAmelCase = BertTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = filter_non_english def lowerCAmelCase_ ( self: Any ) -> List[Any]: super().setUp() snake_case__ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCAmelCase_ ( self: str , UpperCamelCase: Union[str, Any] ) -> Union[str, Any]: snake_case__ = 'UNwant\u00E9d,running' snake_case__ = 'unwanted, running' return input_text, output_text def lowerCAmelCase_ ( self: Tuple ) -> Optional[Any]: snake_case__ = self.tokenizer_class(self.vocab_file ) snake_case__ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(UpperCamelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [9, 6, 7, 12, 10, 11] ) def lowerCAmelCase_ ( self: Any ) -> Dict: if not self.test_rust_tokenizer: return snake_case__ = self.get_tokenizer() snake_case__ = self.get_rust_tokenizer() snake_case__ = 'UNwant\u00E9d,running' snake_case__ = tokenizer.tokenize(UpperCamelCase ) snake_case__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) snake_case__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) snake_case__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) snake_case__ = self.get_rust_tokenizer() snake_case__ = tokenizer.encode(UpperCamelCase ) snake_case__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # With lower casing snake_case__ = self.get_tokenizer(do_lower_case=UpperCamelCase ) snake_case__ = self.get_rust_tokenizer(do_lower_case=UpperCamelCase ) snake_case__ = 'UNwant\u00E9d,running' snake_case__ = tokenizer.tokenize(UpperCamelCase ) snake_case__ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) snake_case__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) snake_case__ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) snake_case__ = self.get_rust_tokenizer() snake_case__ = tokenizer.encode(UpperCamelCase ) snake_case__ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def lowerCAmelCase_ ( self: List[str] ) -> List[str]: snake_case__ = BasicTokenizer(do_lower_case=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase_ ( self: List[Any] ) -> Any: snake_case__ = BasicTokenizer(do_lower_case=UpperCamelCase , strip_accents=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def lowerCAmelCase_ ( self: Tuple ) -> List[str]: snake_case__ = BasicTokenizer(do_lower_case=UpperCamelCase , strip_accents=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase_ ( self: List[str] ) -> Optional[Any]: snake_case__ = BasicTokenizer(do_lower_case=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase_ ( self: Any ) -> str: snake_case__ = BasicTokenizer(do_lower_case=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = BasicTokenizer(do_lower_case=UpperCamelCase , strip_accents=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase_ ( self: Any ) -> int: snake_case__ = BasicTokenizer(do_lower_case=UpperCamelCase , strip_accents=UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase_ ( self: List[Any] ) -> Tuple: snake_case__ = BasicTokenizer(do_lower_case=UpperCamelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def lowerCAmelCase_ ( self: Optional[int] ) -> Dict: snake_case__ = BasicTokenizer() snake_case__ = 'a\n\'ll !!to?\'d of, can\'t.' snake_case__ = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(UpperCamelCase ) , UpperCamelCase ) def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: snake_case__ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case__ = {} for i, token in enumerate(UpperCamelCase ): snake_case__ = i snake_case__ = WordpieceTokenizer(vocab=UpperCamelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def lowerCAmelCase_ ( self: Dict ) -> Optional[int]: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def lowerCAmelCase_ ( self: Any ) -> Any: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def lowerCAmelCase_ ( self: str ) -> Any: snake_case__ = self.get_tokenizer() snake_case__ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCamelCase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(UpperCamelCase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def lowerCAmelCase_ ( self: str ) -> int: snake_case__ = self.tokenizer_class.from_pretrained('bert-base-uncased' ) snake_case__ = tokenizer.encode('sequence builders' , add_special_tokens=UpperCamelCase ) snake_case__ = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCamelCase ) snake_case__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) snake_case__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def lowerCAmelCase_ ( self: Any ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case__ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) snake_case__ = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' snake_case__ = tokenizer_r.encode_plus( UpperCamelCase , return_attention_mask=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_offsets_mapping=UpperCamelCase , add_special_tokens=UpperCamelCase , ) snake_case__ = tokenizer_r.do_lower_case if hasattr(UpperCamelCase , 'do_lower_case' ) else False snake_case__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: snake_case__ = ['的', '人', '有'] snake_case__ = ''.join(UpperCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case__ = True snake_case__ = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) snake_case__ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) snake_case__ = tokenizer_p.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) snake_case__ = tokenizer_r.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) snake_case__ = tokenizer_r.convert_ids_to_tokens(UpperCamelCase ) snake_case__ = tokenizer_p.convert_ids_to_tokens(UpperCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCamelCase , UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) snake_case__ = False snake_case__ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) snake_case__ = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) snake_case__ = tokenizer_r.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) snake_case__ = tokenizer_p.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) snake_case__ = tokenizer_r.convert_ids_to_tokens(UpperCamelCase ) snake_case__ = tokenizer_p.convert_ids_to_tokens(UpperCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". snake_case__ = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(UpperCamelCase ) ] self.assertListEqual(UpperCamelCase , UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase )
307
import os import string import sys __UpperCamelCase : List[Any] = 1 << 8 __UpperCamelCase : Union[str, Any] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __UpperCamelCase : Optional[Any] = KEYMAP["""up"""] __UpperCamelCase : Tuple = KEYMAP["""left"""] if sys.platform == "win32": __UpperCamelCase : List[Any] = [] __UpperCamelCase : int = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __UpperCamelCase : List[str] = ord(str(i)) def a_ ( ) -> Optional[int]: """simple docstring""" if os.name == "nt": import msvcrt snake_case__ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke snake_case__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case__ = chr(KEYMAP['esc'] ) except KeyError: snake_case__ = cha[1] else: snake_case__ = ch.decode(_A ) else: snake_case__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case__ = sys.stdin.fileno() snake_case__ = termios.tcgetattr(_A ) try: tty.setraw(_A ) snake_case__ = sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: snake_case__ = get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: snake_case__ = get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]: snake_case__ = 'ZinengTang/tvlt-base' snake_case__ = tempfile.mkdtemp() def lowerCAmelCase_ ( self: Any , **UpperCamelCase: List[str] ) -> Tuple: return TvltImageProcessor.from_pretrained(self.checkpoint , **UpperCamelCase ) def lowerCAmelCase_ ( self: int , **UpperCamelCase: Optional[Any] ) -> Tuple: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **UpperCamelCase ) def lowerCAmelCase_ ( self: str ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self: int ) -> Union[str, Any]: snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=UpperCamelCase , feature_extractor=UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , UpperCamelCase ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def lowerCAmelCase_ ( self: Dict ) -> Dict: snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=UpperCamelCase , feature_extractor=UpperCamelCase ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(UpperCamelCase , return_tensors='np' ) snake_case__ = processor(audio=UpperCamelCase , return_tensors='np' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase_ ( self: Dict ) -> Any: snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=UpperCamelCase , feature_extractor=UpperCamelCase ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(UpperCamelCase , return_tensors='np' ) snake_case__ = processor(images=UpperCamelCase , return_tensors='np' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase_ ( self: str ) -> int: snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=UpperCamelCase , feature_extractor=UpperCamelCase ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask'] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def lowerCAmelCase_ ( self: List[Any] ) -> Optional[int]: snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=UpperCamelCase , feature_extractor=UpperCamelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' , )
307
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "gptsan-japanese" _UpperCAmelCase = [ "past_key_values", ] _UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Optional[Any] , UpperCamelCase: List[str]=3_60_00 , UpperCamelCase: List[str]=12_80 , UpperCamelCase: List[Any]=10_24 , UpperCamelCase: Any=81_92 , UpperCamelCase: Dict=40_96 , UpperCamelCase: Optional[int]=1_28 , UpperCamelCase: Any=10 , UpperCamelCase: List[Any]=0 , UpperCamelCase: Dict=16 , UpperCamelCase: Tuple=16 , UpperCamelCase: Union[str, Any]=1_28 , UpperCamelCase: List[Any]=0.0 , UpperCamelCase: Union[str, Any]=1e-5 , UpperCamelCase: int=False , UpperCamelCase: Optional[int]=0.0 , UpperCamelCase: Dict="float32" , UpperCamelCase: Any=False , UpperCamelCase: Dict=False , UpperCamelCase: List[str]=False , UpperCamelCase: Union[str, Any]=0.002 , UpperCamelCase: int=False , UpperCamelCase: str=True , UpperCamelCase: Dict=3_59_98 , UpperCamelCase: Optional[Any]=3_59_95 , UpperCamelCase: Optional[Any]=3_59_99 , **UpperCamelCase: Optional[int] , ) -> Optional[int]: snake_case__ = vocab_size snake_case__ = max_position_embeddings snake_case__ = d_model snake_case__ = d_ff snake_case__ = d_ext snake_case__ = d_spout snake_case__ = num_switch_layers snake_case__ = num_ext_layers snake_case__ = num_switch_layers + num_ext_layers snake_case__ = num_heads snake_case__ = num_experts snake_case__ = expert_capacity snake_case__ = dropout_rate snake_case__ = layer_norm_epsilon snake_case__ = router_bias snake_case__ = router_jitter_noise snake_case__ = router_dtype snake_case__ = router_ignore_padding_tokens snake_case__ = output_hidden_states snake_case__ = output_attentions snake_case__ = initializer_factor snake_case__ = output_router_logits snake_case__ = use_cache super().__init__( separator_token_id=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase , )
307
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __UpperCamelCase : Any = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __UpperCamelCase : Union[str, Any] = concatenate_datasets __UpperCamelCase : Optional[Any] = DownloadConfig __UpperCamelCase : str = DownloadManager __UpperCamelCase : List[str] = DownloadMode __UpperCamelCase : Optional[Any] = DownloadConfig __UpperCamelCase : Any = DownloadMode __UpperCamelCase : List[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCamelCase : int = 299792458 # Symbols __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = symbols("""ct x y z""") def a_ ( _A ) -> float: """simple docstring""" if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def a_ ( _A ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(_A ) ** 2 ) def a_ ( _A ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(_A ), -gamma(_A ) * beta(_A ), 0, 0], [-gamma(_A ) * beta(_A ), gamma(_A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a_ ( _A , _A = None ) -> np.ndarray: """simple docstring""" # Ensure event is not empty if event is None: snake_case__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCamelCase : List[Any] = transform(29979245) print("""Example of four vector: """) print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __UpperCamelCase : List[Any] = {ct: c, x: 1, y: 1, z: 1} __UpperCamelCase : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
307
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCamelCase : Optional[int] = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : Any = { """yjernite/retribert-base-uncased""": 512, } __UpperCamelCase : Optional[Any] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = RetriBertTokenizer _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self: Tuple , UpperCamelCase: str=None , UpperCamelCase: List[Any]=None , UpperCamelCase: List[Any]=True , UpperCamelCase: List[Any]="[UNK]" , UpperCamelCase: Tuple="[SEP]" , UpperCamelCase: List[str]="[PAD]" , UpperCamelCase: Optional[int]="[CLS]" , UpperCamelCase: Union[str, Any]="[MASK]" , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Any=None , **UpperCamelCase: List[str] , ) -> Tuple: super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) snake_case__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): snake_case__ = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) snake_case__ = do_lower_case snake_case__ = strip_accents snake_case__ = tokenize_chinese_chars snake_case__ = normalizer_class(**UpperCamelCase ) snake_case__ = do_lower_case def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: List[Any]=None ) -> List[Any]: snake_case__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self: int , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ) -> Tuple[str]: snake_case__ = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
307
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCamelCase : Any = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "char" _UpperCAmelCase = "bpe" _UpperCAmelCase = "wp" __UpperCamelCase : str = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["image_processor", "char_tokenizer"] _UpperCAmelCase = "ViTImageProcessor" _UpperCAmelCase = "MgpstrTokenizer" def __init__( self: str , UpperCamelCase: Optional[Any]=None , UpperCamelCase: List[str]=None , **UpperCamelCase: Tuple ) -> List[Any]: snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) snake_case__ = kwargs.pop('feature_extractor' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) snake_case__ = tokenizer snake_case__ = AutoTokenizer.from_pretrained('gpt2' ) snake_case__ = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self: str , UpperCamelCase: Union[str, Any]=None , UpperCamelCase: str=None , UpperCamelCase: List[str]=None , **UpperCamelCase: List[Any] ) -> Union[str, Any]: if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: snake_case__ = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None: snake_case__ = self.char_tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['input_ids'] return inputs def lowerCAmelCase_ ( self: Any , UpperCamelCase: List[Any] ) -> Union[str, Any]: snake_case__ , snake_case__ , snake_case__ = sequences snake_case__ = char_preds.size(0 ) snake_case__ , snake_case__ = self._decode_helper(UpperCamelCase , 'char' ) snake_case__ , snake_case__ = self._decode_helper(UpperCamelCase , 'bpe' ) snake_case__ , snake_case__ = self._decode_helper(UpperCamelCase , 'wp' ) snake_case__ = [] snake_case__ = [] for i in range(UpperCamelCase ): snake_case__ = [char_scores[i], bpe_scores[i], wp_scores[i]] snake_case__ = [char_strs[i], bpe_strs[i], wp_strs[i]] snake_case__ = scores.index(max(UpperCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) snake_case__ = {} snake_case__ = final_strs snake_case__ = final_scores snake_case__ = char_strs snake_case__ = bpe_strs snake_case__ = wp_strs return out def lowerCAmelCase_ ( self: int , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] ) -> str: if format == DecodeType.CHARACTER: snake_case__ = self.char_decode snake_case__ = 1 snake_case__ = '[s]' elif format == DecodeType.BPE: snake_case__ = self.bpe_decode snake_case__ = 2 snake_case__ = '#' elif format == DecodeType.WORDPIECE: snake_case__ = self.wp_decode snake_case__ = 1_02 snake_case__ = '[SEP]' else: raise ValueError(F'''Format {format} is not supported.''' ) snake_case__ , snake_case__ = [], [] snake_case__ = pred_logits.size(0 ) snake_case__ = pred_logits.size(1 ) snake_case__ , snake_case__ = pred_logits.topk(1 , dim=-1 , largest=UpperCamelCase , sorted=UpperCamelCase ) snake_case__ = preds_index.view(-1 , UpperCamelCase )[:, 1:] snake_case__ = decoder(UpperCamelCase ) snake_case__ , snake_case__ = torch.nn.functional.softmax(UpperCamelCase , dim=2 ).max(dim=2 ) snake_case__ = preds_max_prob[:, 1:] for index in range(UpperCamelCase ): snake_case__ = preds_str[index].find(UpperCamelCase ) snake_case__ = preds_str[index][:pred_eos] snake_case__ = preds_index[index].cpu().tolist() snake_case__ = pred_index.index(UpperCamelCase ) if eos_token in pred_index else -1 snake_case__ = preds_max_prob[index][: pred_eos_index + 1] snake_case__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCamelCase ) conf_scores.append(UpperCamelCase ) return dec_strs, conf_scores def lowerCAmelCase_ ( self: Dict , UpperCamelCase: Any ) -> int: snake_case__ = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(UpperCamelCase )] return decode_strs def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Dict ) -> List[str]: return self.bpe_tokenizer.batch_decode(UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: str ) -> List[str]: snake_case__ = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(UpperCamelCase )] return decode_strs
307
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : int = {"""vocab_file""": """spiece.model"""} __UpperCamelCase : Any = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Tuple = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } __UpperCamelCase : Optional[Any] = """▁""" class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any]="</s>" , UpperCamelCase: Tuple="<unk>" , UpperCamelCase: Optional[int]="<pad>" , UpperCamelCase: List[str]=1_00 , UpperCamelCase: Dict=None , UpperCamelCase: Optional[Dict[str, Any]] = None , UpperCamelCase: Tuple=True , **UpperCamelCase: Dict , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case__ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case__ = len(set(filter(lambda UpperCamelCase : bool('extra_id' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) snake_case__ = legacy snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCamelCase , **UpperCamelCase , ) snake_case__ = vocab_file snake_case__ = extra_ids snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: List[Any] ) -> Any: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: snake_case__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , UpperCamelCase , ) return max_model_length @property def lowerCAmelCase_ ( self: Tuple ) -> List[str]: return self.sp_model.get_piece_size() + self._extra_ids def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: snake_case__ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase )) + [1] return ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: return list( set(filter(lambda UpperCamelCase : bool(re.search(R'<extra_id_\d+>' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple: return [self._convert_token_to_id(UpperCamelCase ) for token in self.get_sentinel_tokens()] def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: List[int] ) -> List[int]: if len(UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCAmelCase_ ( self: str , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) if token_ids_a is None: return token_ids_a else: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self: Union[str, Any] ) -> List[str]: snake_case__ = self.__dict__.copy() snake_case__ = None return state def __setstate__( self: Optional[int] , UpperCamelCase: int ) -> List[str]: snake_case__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self: str , UpperCamelCase: "TextInput" , **UpperCamelCase: Dict ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: snake_case__ = SPIECE_UNDERLINE + text.replace(UpperCamelCase , ' ' ) return super().tokenize(UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , **UpperCamelCase: str ) -> str: if not self.legacy: snake_case__ = text.startswith(UpperCamelCase ) if is_first: snake_case__ = text[1:] snake_case__ = self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(UpperCamelCase ): snake_case__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[int] ) -> Dict: if token.startswith('<extra_id_' ): snake_case__ = re.match(R'<extra_id_(\d+)>' , UpperCamelCase ) snake_case__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCamelCase ) def lowerCAmelCase_ ( self: Dict , UpperCamelCase: str ) -> Tuple: if index < self.sp_model.get_piece_size(): snake_case__ = self.sp_model.IdToPiece(UpperCamelCase ) else: snake_case__ = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Any ) -> Dict: snake_case__ = [] snake_case__ = '' snake_case__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase ) + token snake_case__ = True snake_case__ = [] else: current_sub_tokens.append(UpperCamelCase ) snake_case__ = False out_string += self.sp_model.decode(UpperCamelCase ) return out_string.strip() def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , 'wb' ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,)
307
1
def a_ ( _A , _A ) -> Any: """simple docstring""" # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case__ = (boundary[1] - boundary[0]) / steps snake_case__ = boundary[0] snake_case__ = boundary[1] snake_case__ = make_points(_A , _A , _A ) snake_case__ = 0.0 y += (h / 2.0) * f(_A ) for i in x_i: # print(i) y += h * f(_A ) y += (h / 2.0) * f(_A ) return y def a_ ( _A , _A , _A ) -> Dict: """simple docstring""" snake_case__ = a + h while x < (b - h): yield x snake_case__ = x + h def a_ ( _A ) -> Optional[Any]: # enter your function here """simple docstring""" snake_case__ = (x - 0) * (x - 0) return y def a_ ( ) -> str: """simple docstring""" snake_case__ = 0.0 # Lower bound of integration snake_case__ = 1.0 # Upper bound of integration snake_case__ = 10.0 # define number of steps or resolution snake_case__ = [a, b] # define boundary of integration snake_case__ = method_a(_A , _A ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
307
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __SCREAMING_SNAKE_CASE: def __init__( self: int , UpperCamelCase: List[str] , UpperCamelCase: str=13 , UpperCamelCase: int=7 , UpperCamelCase: Any=True , UpperCamelCase: Dict=True , UpperCamelCase: Dict=False , UpperCamelCase: Optional[int]=True , UpperCamelCase: Dict=99 , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: Union[str, Any]=4 , UpperCamelCase: List[str]=37 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Union[str, Any]=5_12 , UpperCamelCase: str=16 , UpperCamelCase: int=2 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: Dict=4 , UpperCamelCase: List[str]=None , ) -> List[str]: snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Any , UpperCamelCase: List[Any] , UpperCamelCase: str ) -> Dict: snake_case__ = LlamaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) snake_case__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , ) -> str: snake_case__ = True snake_case__ = LlamaModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , ) snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: int , UpperCamelCase: Optional[Any] , ) -> Any: snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: List[str] , ) -> Union[str, Any]: snake_case__ = True snake_case__ = True snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # first forward pass snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , use_cache=UpperCamelCase , ) snake_case__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] # select random slice snake_case__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( a_ , a_ , a_ , unittest.TestCase ): _UpperCAmelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCAmelCase = (LlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = LlamaModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ = type self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'single_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: Dict ) -> int: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'multi_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self: Dict ) -> Any: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[Any] ) -> List[str]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ids_tensor([1, 10] , config.vocab_size ) snake_case__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = LlamaModel(UpperCamelCase ) original_model.to(UpperCamelCase ) original_model.eval() snake_case__ = original_model(UpperCamelCase ).last_hidden_state snake_case__ = original_model(UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = {'type': scaling_type, 'factor': 10.0} snake_case__ = LlamaModel(UpperCamelCase ) scaled_model.to(UpperCamelCase ) scaled_model.eval() snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: int ) -> List[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) snake_case__ = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off snake_case__ = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: snake_case__ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' snake_case__ = 'Simply put, the theory of relativity states that ' snake_case__ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) snake_case__ = tokenizer.encode(UpperCamelCase , return_tensors='pt' ) snake_case__ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=UpperCamelCase ) # greedy generation outputs snake_case__ = model.generate(UpperCamelCase , max_new_tokens=64 , top_p=UpperCamelCase , temperature=1 , do_sample=UpperCamelCase ) snake_case__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
307
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def a_ ( _A ) -> bool: """simple docstring""" snake_case__ = int(number**0.5 ) return number == sq * sq def a_ ( _A , _A , _A , _A , _A , _A ) -> tuple[int, int]: """simple docstring""" snake_case__ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den snake_case__ = x_den * y_den * z_den snake_case__ = gcd(_A , _A ) top //= hcf bottom //= hcf return top, bottom def a_ ( _A = 35 ) -> int: """simple docstring""" snake_case__ = set() snake_case__ = 42 snake_case__ = Fraction(0 ) snake_case__ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 snake_case__ = x_num * y_den + x_den * y_num snake_case__ = x_den * y_den snake_case__ = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case__ = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=2 snake_case__ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) snake_case__ = x_den * x_den * y_den * y_den if is_sq(_A ) and is_sq(_A ): snake_case__ = int(sqrt(_A ) ) snake_case__ = int(sqrt(_A ) ) snake_case__ = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case__ = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=-1 snake_case__ = x_num * y_num snake_case__ = x_den * y_num + x_num * y_den snake_case__ = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case__ = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) # n=2 snake_case__ = x_num * x_num * y_num * y_num snake_case__ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_A ) and is_sq(_A ): snake_case__ = int(sqrt(_A ) ) snake_case__ = int(sqrt(_A ) ) snake_case__ = gcd(_A , _A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case__ = add_three( _A , _A , _A , _A , _A , _A ) unique_s.add(_A ) for num, den in unique_s: total += Fraction(_A , _A ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
307
from math import isclose, sqrt def a_ ( _A , _A , _A ) -> tuple[float, float, float]: """simple docstring""" snake_case__ = point_y / 4 / point_x snake_case__ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case__ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case__ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case__ = outgoing_gradient**2 + 4 snake_case__ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case__ = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case__ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case__ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case__ = x_minus if isclose(_A , _A ) else x_plus snake_case__ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( _A = 1.4 , _A = -9.6 ) -> int: """simple docstring""" snake_case__ = 0 snake_case__ = first_x_coord snake_case__ = first_y_coord snake_case__ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case__ , snake_case__ , snake_case__ = next_point(_A , _A , _A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
307
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Any = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "align_text_model" def __init__( self: Union[str, Any] , UpperCamelCase: Optional[Any]=3_05_22 , UpperCamelCase: str=7_68 , UpperCamelCase: int=12 , UpperCamelCase: str=12 , UpperCamelCase: Union[str, Any]=30_72 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: int=0.1 , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: List[Any]=5_12 , UpperCamelCase: int=2 , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: Dict=1e-12 , UpperCamelCase: List[str]=0 , UpperCamelCase: Optional[int]="absolute" , UpperCamelCase: List[str]=True , **UpperCamelCase: Dict , ) -> List[str]: super().__init__(**UpperCamelCase ) snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = hidden_act snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = position_embedding_type snake_case__ = use_cache snake_case__ = pad_token_id @classmethod def lowerCAmelCase_ ( cls: Tuple , UpperCamelCase: Union[str, os.PathLike] , **UpperCamelCase: Any ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase ) snake_case__ , snake_case__ = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": snake_case__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "align_vision_model" def __init__( self: Optional[Any] , UpperCamelCase: int = 3 , UpperCamelCase: int = 6_00 , UpperCamelCase: float = 2.0 , UpperCamelCase: float = 3.1 , UpperCamelCase: int = 8 , UpperCamelCase: List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase: List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , UpperCamelCase: List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , UpperCamelCase: List[int] = [] , UpperCamelCase: List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase: List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase: List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase: float = 0.25 , UpperCamelCase: str = "swish" , UpperCamelCase: int = 25_60 , UpperCamelCase: str = "mean" , UpperCamelCase: float = 0.02 , UpperCamelCase: float = 0.001 , UpperCamelCase: float = 0.99 , UpperCamelCase: float = 0.2 , **UpperCamelCase: Any , ) -> Optional[Any]: super().__init__(**UpperCamelCase ) snake_case__ = num_channels snake_case__ = image_size snake_case__ = width_coefficient snake_case__ = depth_coefficient snake_case__ = depth_divisor snake_case__ = kernel_sizes snake_case__ = in_channels snake_case__ = out_channels snake_case__ = depthwise_padding snake_case__ = strides snake_case__ = num_block_repeats snake_case__ = expand_ratios snake_case__ = squeeze_expansion_ratio snake_case__ = hidden_act snake_case__ = hidden_dim snake_case__ = pooling_type snake_case__ = initializer_range snake_case__ = batch_norm_eps snake_case__ = batch_norm_momentum snake_case__ = drop_connect_rate snake_case__ = sum(UpperCamelCase ) * 4 @classmethod def lowerCAmelCase_ ( cls: str , UpperCamelCase: Union[str, os.PathLike] , **UpperCamelCase: List[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase ) snake_case__ , snake_case__ = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": snake_case__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "align" _UpperCAmelCase = True def __init__( self: Optional[Any] , UpperCamelCase: Optional[int]=None , UpperCamelCase: Dict=None , UpperCamelCase: Optional[Any]=6_40 , UpperCamelCase: List[str]=1.0 , UpperCamelCase: int=0.02 , **UpperCamelCase: Tuple , ) -> Any: super().__init__(**UpperCamelCase ) if text_config is None: snake_case__ = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: snake_case__ = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) snake_case__ = AlignTextConfig(**UpperCamelCase ) snake_case__ = AlignVisionConfig(**UpperCamelCase ) snake_case__ = projection_dim snake_case__ = temperature_init_value snake_case__ = initializer_range @classmethod def lowerCAmelCase_ ( cls: Optional[int] , UpperCamelCase: AlignTextConfig , UpperCamelCase: AlignVisionConfig , **UpperCamelCase: Union[str, Any] ) -> Union[str, Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[int]: snake_case__ = copy.deepcopy(self.__dict__ ) snake_case__ = self.text_config.to_dict() snake_case__ = self.vision_config.to_dict() snake_case__ = self.__class__.model_type return output
307
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __SCREAMING_SNAKE_CASE( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self: Any , UpperCamelCase: Optional[int]=None , **UpperCamelCase: Union[str, Any] ) -> int: super().__init__(features=UpperCamelCase ) snake_case__ = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCAmelCase_ ( self: Any , UpperCamelCase: Any ) -> List[str]: import torch if isinstance(UpperCamelCase , UpperCamelCase ) and column: if all( isinstance(UpperCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase ) return column def lowerCAmelCase_ ( self: str , UpperCamelCase: Dict ) -> Union[str, Any]: import torch if isinstance(UpperCamelCase , (str, bytes, type(UpperCamelCase )) ): return value elif isinstance(UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ = {} if isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case__ = {'dtype': torch.intaa} elif isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase , PIL.Image.Image ): snake_case__ = np.asarray(UpperCamelCase ) return torch.tensor(UpperCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: str ) -> Any: import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase , '__array__' ) and not isinstance(UpperCamelCase , torch.Tensor ): snake_case__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) elif isinstance(UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: dict ) -> List[str]: return map_nested(self._recursive_tensorize , UpperCamelCase , map_list=UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_row(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_row(UpperCamelCase ) return self.recursive_tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: pa.Table ) -> "torch.Tensor": snake_case__ = self.numpy_arrow_extractor().extract_column(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_column(UpperCamelCase , pa_table.column_names[0] ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) snake_case__ = self._consolidate(UpperCamelCase ) return column def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_batch(UpperCamelCase ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) for column_name in batch: snake_case__ = self._consolidate(batch[column_name] ) return batch
307
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : str = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "informer" _UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self: Tuple , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[int] = None , UpperCamelCase: str = "student_t" , UpperCamelCase: str = "nll" , UpperCamelCase: int = 1 , UpperCamelCase: List[int] = None , UpperCamelCase: Optional[Union[str, bool]] = "mean" , UpperCamelCase: int = 0 , UpperCamelCase: int = 0 , UpperCamelCase: int = 0 , UpperCamelCase: int = 0 , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: int = 64 , UpperCamelCase: int = 32 , UpperCamelCase: int = 32 , UpperCamelCase: int = 2 , UpperCamelCase: int = 2 , UpperCamelCase: int = 2 , UpperCamelCase: int = 2 , UpperCamelCase: bool = True , UpperCamelCase: str = "gelu" , UpperCamelCase: float = 0.05 , UpperCamelCase: float = 0.1 , UpperCamelCase: float = 0.1 , UpperCamelCase: float = 0.1 , UpperCamelCase: float = 0.1 , UpperCamelCase: int = 1_00 , UpperCamelCase: float = 0.02 , UpperCamelCase: int=True , UpperCamelCase: str = "prob" , UpperCamelCase: int = 5 , UpperCamelCase: bool = True , **UpperCamelCase: Optional[int] , ) -> Union[str, Any]: # time series specific configuration snake_case__ = prediction_length snake_case__ = context_length or prediction_length snake_case__ = distribution_output snake_case__ = loss snake_case__ = input_size snake_case__ = num_time_features snake_case__ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case__ = scaling snake_case__ = num_dynamic_real_features snake_case__ = num_static_real_features snake_case__ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) snake_case__ = cardinality else: snake_case__ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) snake_case__ = embedding_dimension else: snake_case__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case__ = num_parallel_samples # Transformer architecture configuration snake_case__ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case__ = d_model snake_case__ = encoder_attention_heads snake_case__ = decoder_attention_heads snake_case__ = encoder_ffn_dim snake_case__ = decoder_ffn_dim snake_case__ = encoder_layers snake_case__ = decoder_layers snake_case__ = dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = encoder_layerdrop snake_case__ = decoder_layerdrop snake_case__ = activation_function snake_case__ = init_std snake_case__ = use_cache # Informer snake_case__ = attention_type snake_case__ = sampling_factor snake_case__ = distil super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) @property def lowerCAmelCase_ ( self: Optional[Any] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
307
import doctest from collections import deque import numpy as np class __SCREAMING_SNAKE_CASE: def __init__( self: Dict ) -> None: snake_case__ = [2, 1, 2, -1] snake_case__ = [1, 2, 3, 4] def lowerCAmelCase_ ( self: List[str] ) -> list[float]: snake_case__ = len(self.first_signal ) snake_case__ = len(self.second_signal ) snake_case__ = max(UpperCamelCase , UpperCamelCase ) # create a zero matrix of max_length x max_length snake_case__ = [[0] * max_length for i in range(UpperCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase ): snake_case__ = deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase ) for j, item in enumerate(UpperCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal snake_case__ = np.matmul(np.transpose(UpperCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
307
1
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = KandinskyVaaPipeline _UpperCAmelCase = [ "image_embeds", "negative_image_embeds", ] _UpperCAmelCase = ["image_embeds", "negative_image_embeds"] _UpperCAmelCase = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCAmelCase = False @property def lowerCAmelCase_ ( self: List[str] ) -> int: return 32 @property def lowerCAmelCase_ ( self: List[str] ) -> List[Any]: return 32 @property def lowerCAmelCase_ ( self: Dict ) -> Union[str, Any]: return self.time_input_dim @property def lowerCAmelCase_ ( self: str ) -> Dict: return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self: str ) -> int: return 1_00 @property def lowerCAmelCase_ ( self: Any ) -> Dict: torch.manual_seed(0 ) snake_case__ = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case__ = UNetaDConditionModel(**UpperCamelCase ) return model @property def lowerCAmelCase_ ( self: List[Any] ) -> List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase_ ( self: Tuple ) -> List[Any]: torch.manual_seed(0 ) snake_case__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase_ ( self: Optional[int] ) -> Union[str, Any]: snake_case__ = self.dummy_unet snake_case__ = self.dummy_movq snake_case__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCamelCase , ) snake_case__ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[Any] , UpperCamelCase: int=0 ) -> Union[str, Any]: snake_case__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) snake_case__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase ) if str(UpperCamelCase ).startswith('mps' ): snake_case__ = torch.manual_seed(UpperCamelCase ) else: snake_case__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def lowerCAmelCase_ ( self: Tuple ) -> List[str]: snake_case__ = 'cpu' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**UpperCamelCase ) snake_case__ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) snake_case__ = output.images snake_case__ = pipe( **self.get_dummy_inputs(UpperCamelCase ) , return_dict=UpperCamelCase , )[0] snake_case__ = image[0, -3:, -3:, -1] snake_case__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ = np.array( [0.6_237_976, 1.0, 0.36_441_332, 1.0, 0.70_639_634, 0.29_877_186, 0.85_652_125, 0.5_216_843, 0.54_454_046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: Any ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self: List[Any] ) -> Optional[int]: snake_case__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) snake_case__ = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) snake_case__ = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) snake_case__ = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = 'red cat, 4k photo' snake_case__ = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ , snake_case__ = pipe_prior( UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() snake_case__ = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ = pipeline( image_embeds=UpperCamelCase , negative_image_embeds=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=1_00 , output_type='np' , ) snake_case__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
307
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( _A , _A=0.999 , _A="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case__ = [] for i in range(_A ): snake_case__ = i / num_diffusion_timesteps snake_case__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE( a_ , a_ ): _UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase = 2 @register_to_config def __init__( self: Dict , UpperCamelCase: int = 10_00 , UpperCamelCase: float = 0.00_085 , UpperCamelCase: float = 0.012 , UpperCamelCase: str = "linear" , UpperCamelCase: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase: str = "epsilon" , UpperCamelCase: Optional[bool] = False , UpperCamelCase: Optional[bool] = False , UpperCamelCase: float = 1.0 , UpperCamelCase: str = "linspace" , UpperCamelCase: int = 0 , ) -> str: if trained_betas is not None: snake_case__ = torch.tensor(UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case__ = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='cosine' ) elif beta_schedule == "exp": snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case__ = 1.0 - self.betas snake_case__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) snake_case__ = use_karras_sigmas def lowerCAmelCase_ ( self: str , UpperCamelCase: int , UpperCamelCase: Optional[int]=None ) -> str: if schedule_timesteps is None: snake_case__ = self.timesteps snake_case__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case__ = 1 if len(UpperCamelCase ) > 1 else 0 else: snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep snake_case__ = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: snake_case__ = self.index_for_timestep(UpperCamelCase ) snake_case__ = self.sigmas[step_index] snake_case__ = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int , UpperCamelCase: Union[str, torch.device] = None , UpperCamelCase: Optional[int] = None , ) -> str: snake_case__ = num_inference_steps snake_case__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase , dtype=UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(UpperCamelCase , 0 , -step_ratio )).round().copy().astype(UpperCamelCase ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case__ = np.log(UpperCamelCase ) snake_case__ = np.interp(UpperCamelCase , np.arange(0 , len(UpperCamelCase ) ) , UpperCamelCase ) if self.config.use_karras_sigmas: snake_case__ = self._convert_to_karras(in_sigmas=UpperCamelCase , num_inference_steps=self.num_inference_steps ) snake_case__ = np.array([self._sigma_to_t(UpperCamelCase , UpperCamelCase ) for sigma in sigmas] ) snake_case__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case__ = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase ) snake_case__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case__ = torch.from_numpy(UpperCamelCase ) snake_case__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase ).startswith('mps' ): # mps does not support float64 snake_case__ = timesteps.to(UpperCamelCase , dtype=torch.floataa ) else: snake_case__ = timesteps.to(device=UpperCamelCase ) # empty dt and derivative snake_case__ = None snake_case__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case__ = defaultdict(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Dict ) -> Tuple: # get log sigma snake_case__ = np.log(UpperCamelCase ) # get distribution snake_case__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case__ = low_idx + 1 snake_case__ = log_sigmas[low_idx] snake_case__ = log_sigmas[high_idx] # interpolate sigmas snake_case__ = (low - log_sigma) / (low - high) snake_case__ = np.clip(UpperCamelCase , 0 , 1 ) # transform interpolation to time range snake_case__ = (1 - w) * low_idx + w * high_idx snake_case__ = t.reshape(sigma.shape ) return t def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Dict ) -> torch.FloatTensor: snake_case__ = in_sigmas[-1].item() snake_case__ = in_sigmas[0].item() snake_case__ = 7.0 # 7.0 is the value used in the paper snake_case__ = np.linspace(0 , 1 , UpperCamelCase ) snake_case__ = sigma_min ** (1 / rho) snake_case__ = sigma_max ** (1 / rho) snake_case__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: return self.dt is None def lowerCAmelCase_ ( self: int , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: Union[float, torch.FloatTensor] , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]: snake_case__ = self.index_for_timestep(UpperCamelCase ) # advance index counter by 1 snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case__ = self.sigmas[step_index] snake_case__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case__ = self.sigmas[step_index - 1] snake_case__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case__ = 0 snake_case__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case__ = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case__ = sigma_next - sigma_hat # store for 2nd order step snake_case__ = derivative snake_case__ = dt snake_case__ = sample else: # 2. 2nd order / Heun's method snake_case__ = (sample - pred_original_sample) / sigma_next snake_case__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case__ = self.dt snake_case__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase ): # mps does not support float64 snake_case__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case__ = self.timesteps.to(original_samples.device ) snake_case__ = timesteps.to(original_samples.device ) snake_case__ = [self.index_for_timestep(UpperCamelCase , UpperCamelCase ) for t in timesteps] snake_case__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case__ = sigma.unsqueeze(-1 ) snake_case__ = original_samples + noise * sigma return noisy_samples def __len__( self: List[Any] ) -> Union[str, Any]: return self.config.num_train_timesteps
307
1
def a_ ( _A ) -> list: """simple docstring""" if len(_A ) < 2: return collection def circle_sort_util(_A , _A , _A ) -> bool: snake_case__ = False if low == high: return swapped snake_case__ = low snake_case__ = high while left < right: if collection[left] > collection[right]: snake_case__ , snake_case__ = ( collection[right], collection[left], ) snake_case__ = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: snake_case__ , snake_case__ = ( collection[right + 1], collection[left], ) snake_case__ = True snake_case__ = low + int((high - low) / 2 ) snake_case__ = circle_sort_util(_A , _A , _A ) snake_case__ = circle_sort_util(_A , mid + 1 , _A ) return swapped or left_swap or right_swap snake_case__ = True while is_not_sorted is True: snake_case__ = circle_sort_util(_A , 0 , len(_A ) - 1 ) return collection if __name__ == "__main__": __UpperCamelCase : int = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : List[str] = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
307
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "mctct" def __init__( self: Tuple , UpperCamelCase: str=80_65 , UpperCamelCase: Optional[int]=15_36 , UpperCamelCase: Union[str, Any]=36 , UpperCamelCase: Optional[int]=61_44 , UpperCamelCase: Any=4 , UpperCamelCase: List[Any]=3_84 , UpperCamelCase: Optional[Any]=9_20 , UpperCamelCase: Any=1e-5 , UpperCamelCase: Optional[int]=0.3 , UpperCamelCase: str="relu" , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: str=0.3 , UpperCamelCase: Dict=0.3 , UpperCamelCase: str=1 , UpperCamelCase: Optional[Any]=0 , UpperCamelCase: Dict=2 , UpperCamelCase: Any=1 , UpperCamelCase: List[Any]=0.3 , UpperCamelCase: List[str]=1 , UpperCamelCase: List[Any]=(7,) , UpperCamelCase: Optional[int]=(3,) , UpperCamelCase: Union[str, Any]=80 , UpperCamelCase: List[Any]=1 , UpperCamelCase: Optional[Any]=None , UpperCamelCase: List[str]="sum" , UpperCamelCase: Dict=False , **UpperCamelCase: Dict , ) -> Optional[Any]: super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase ) snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = intermediate_size snake_case__ = num_attention_heads snake_case__ = attention_head_dim snake_case__ = max_position_embeddings snake_case__ = layer_norm_eps snake_case__ = layerdrop snake_case__ = hidden_act snake_case__ = initializer_range snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = pad_token_id snake_case__ = bos_token_id snake_case__ = eos_token_id snake_case__ = conv_glu_dim snake_case__ = conv_dropout snake_case__ = num_conv_layers snake_case__ = input_feat_per_channel snake_case__ = input_channels snake_case__ = conv_channels snake_case__ = ctc_loss_reduction snake_case__ = ctc_zero_infinity # prevents config testing fail with exporting to json snake_case__ = list(UpperCamelCase ) snake_case__ = list(UpperCamelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
307
def a_ ( _A , _A ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
307
1