code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( _a ): '''simple docstring''' lowerCAmelCase_ = ["""image_processor""", """tokenizer"""] lowerCAmelCase_ = """FlavaImageProcessor""" lowerCAmelCase_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) lowerCamelCase__ = kwargs.pop('''feature_extractor''' ) lowerCamelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = self.image_processor def __call__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCamelCase__ = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if images is not None: lowerCamelCase__ = self.image_processor( __lowerCAmelCase , return_image_mask=__lowerCAmelCase , return_codebook_pixels=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if text is not None and images is not None: encoding.update(__lowerCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer.model_input_names lowerCamelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCamelCase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , ) return self.image_processor_class @property def __lowerCamelCase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowerCAmelCase , ) return self.image_processor
209
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=True, lowerCamelCase=99, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=64, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=16, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=3, lowerCamelCase=4, lowerCamelCase=None, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase=1, ) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = parent _lowercase : Optional[Any] = batch_size _lowercase : Any = seq_length _lowercase : Optional[Any] = is_training _lowercase : Optional[Any] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : List[str] = use_labels _lowercase : str = vocab_size _lowercase : List[str] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : Union[str, Any] = type_vocab_size _lowercase : List[Any] = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : List[str] = num_labels _lowercase : Any = num_choices _lowercase : Tuple = scope _lowercase : Optional[Any] = q_groups _lowercase : List[str] = k_groups _lowercase : Optional[int] = v_groups _lowercase : List[str] = post_attention_groups _lowercase : Union[str, Any] = intermediate_groups _lowercase : int = output_groups def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : Any = None if self.use_input_mask: _lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) _lowercase : Dict = None _lowercase : int = None _lowercase : List[Any] = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : Dict = ids_tensor([self.batch_size], self.num_choices) _lowercase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, q_groups=self.q_groups, k_groups=self.k_groups, v_groups=self.v_groups, post_attention_groups=self.post_attention_groups, intermediate_groups=self.intermediate_groups, output_groups=self.output_groups, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = SqueezeBertModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(lowerCamelCase, lowerCamelCase) _lowercase : Any = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Dict = SqueezeBertForMaskedLM(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForQuestionAnswering(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[Any] = self.num_labels _lowercase : int = SqueezeBertForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Any = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : List[str] = SqueezeBertForTokenClassification(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Union[str, Any] = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = self.num_choices _lowercase : str = SqueezeBertForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : Optional[Any] = model( lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : Dict = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Union[str, Any] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase_ : Optional[int] = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : Tuple = False lowercase_ : List[str] = True lowercase_ : int = False def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : str = SqueezeBertModelTester(self) _lowercase : Dict = ConfigTester(self, config_class=lowerCamelCase, dim=37) def UpperCamelCase ( self) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCamelCase) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = SqueezeBertModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_sentencepiece @require_tokenizers @require_torch class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Union[str, Any] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli') _lowercase : Optional[int] = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]]) _lowercase : List[str] = model(lowerCamelCase)[0] _lowercase : Union[str, Any] = torch.Size((1, 3)) self.assertEqual(output.shape, lowerCamelCase) _lowercase : Tuple = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]]) self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-4))
21
0
"""simple docstring""" import math def A_ ( snake_case_ : int ): '''simple docstring''' UpperCamelCase : str = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(snake_case_ ) def A_ ( snake_case_ : float = 1 / 1_2_3_4_5 ): '''simple docstring''' UpperCamelCase : str = 0 UpperCamelCase : Dict = 0 UpperCamelCase : Dict = 3 while True: UpperCamelCase : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(snake_case_ ): UpperCamelCase : List[str] = int(snake_case_ ) total_partitions += 1 if check_partition_perfect(snake_case_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(snake_case_ ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
27
"""simple docstring""" def A_ ( snake_case_ : int ): '''simple docstring''' if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
27
1
from __future__ import annotations from collections import deque class __a : def __init__( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(_SCREAMING_SNAKE_CASE ) self.set_fail_transitions() def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" _UpperCAmelCase = 0 for character in keyword: _UpperCAmelCase = self.find_next_state(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _UpperCAmelCase = len(self.adlist ) - 1 else: _UpperCAmelCase = next_state self.adlist[current_state]["output"].append(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> None: """simple docstring""" _UpperCAmelCase = deque() for node in self.adlist[0]["next_states"]: q.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0 while q: _UpperCAmelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.adlist[r]['fail_state'] while ( self.find_next_state(_SCREAMING_SNAKE_CASE , self.adlist[child]['value'] ) is None and state != 0 ): _UpperCAmelCase = self.adlist[state]['fail_state'] _UpperCAmelCase = self.find_next_state( _SCREAMING_SNAKE_CASE , self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: _UpperCAmelCase = 0 _UpperCAmelCase = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> dict[str, list[int]]: """simple docstring""" _UpperCAmelCase = {} # returns a dict with keywords and list of its occurrences _UpperCAmelCase = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): while ( self.find_next_state(_SCREAMING_SNAKE_CASE , string[i] ) is None and current_state != 0 ): _UpperCAmelCase = self.adlist[current_state]['fail_state'] _UpperCAmelCase = self.find_next_state(_SCREAMING_SNAKE_CASE , string[i] ) if next_state is None: _UpperCAmelCase = 0 else: _UpperCAmelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: _UpperCAmelCase = [] result[key].append(i - len(_SCREAMING_SNAKE_CASE ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
329
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , 'snapshots' ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3 assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_SCREAMING_SNAKE_CASE ) == num_samples def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
329
1
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _A : List[str] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = ["pixel_values"] def __init__( self : Optional[int] , A : bool = True , A : Union[int, float] = 1 / 2_5_5 , A : bool = True , A : int = 8 , **A : Any , ) ->None: super().__init__(**A ) lowerCamelCase__ : Optional[int] = do_rescale lowerCamelCase__ : int = rescale_factor lowerCamelCase__ : str = do_pad lowerCamelCase__ : int = pad_size def __lowerCamelCase ( self : List[str] , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Optional[int] ) ->np.ndarray: return rescale(A , scale=A , data_format=A , **A ) def __lowerCamelCase ( self : Tuple , A : np.ndarray , A : int , A : Optional[Union[str, ChannelDimension]] = None ) ->str: lowerCamelCase__ : Any = get_image_size(A ) lowerCamelCase__ : Union[str, Any] = (old_height // size + 1) * size - old_height lowerCamelCase__ : int = (old_width // size + 1) * size - old_width return pad(A , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=A ) def __lowerCamelCase ( self : Union[str, Any] , A : ImageInput , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : Optional[Any] , ) ->Optional[int]: lowerCamelCase__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Tuple = do_pad if do_pad is not None else self.do_pad lowerCamelCase__ : Any = pad_size if pad_size is not None else self.pad_size lowerCamelCase__ : str = make_list_of_images(A ) if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowerCamelCase__ : List[Any] = [to_numpy_array(A ) for image in images] if do_rescale: lowerCamelCase__ : Union[str, Any] = [self.rescale(image=A , scale=A ) for image in images] if do_pad: lowerCamelCase__ : List[Any] = [self.pad(A , size=A ) for image in images] lowerCamelCase__ : Dict = [to_channel_dimension_format(A , A ) for image in images] lowerCamelCase__ : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=A , tensor_type=A )
364
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _A : Any = logging.get_logger(__name__) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" def run_func(UpperCAmelCase ): @wraps(UpperCAmelCase ) def run_in_eager_mode(*UpperCAmelCase , **UpperCAmelCase ): return func(*UpperCAmelCase , **UpperCAmelCase ) @wraps(UpperCAmelCase ) @tf.function(experimental_compile=UpperCAmelCase ) def run_in_graph_mode(*UpperCAmelCase , **UpperCAmelCase ): return func(*UpperCAmelCase , **UpperCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> ["tf.Tensor"]: """simple docstring""" lowerCamelCase__ : List[Any] = random.Random() lowerCamelCase__ : str = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(UpperCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : TensorFlowBenchmarkArguments _UpperCAmelCase : PretrainedConfig _UpperCAmelCase : str = "TensorFlow" @property def __lowerCamelCase ( self : int ) ->Optional[int]: return tf.__version__ def __lowerCamelCase ( self : Optional[int] , A : str , A : int , A : int ) ->float: # initialize GPU on separate process lowerCamelCase__ : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : int = self._prepare_inference_func(A , A , A ) return self._measure_speed(_inference ) def __lowerCamelCase ( self : str , A : str , A : int , A : int ) ->float: lowerCamelCase__ : Optional[int] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : List[Any] = self._prepare_train_func(A , A , A ) return self._measure_speed(_train ) def __lowerCamelCase ( self : int , A : str , A : int , A : int ) ->[Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A ) lowerCamelCase__ : int = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : str = self._prepare_inference_func(A , A , A ) return self._measure_memory(_inference ) def __lowerCamelCase ( self : List[str] , A : str , A : int , A : int ) ->[Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A ) lowerCamelCase__ : List[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : str = self._prepare_train_func(A , A , A ) return self._measure_memory(_train ) def __lowerCamelCase ( self : Dict , A : str , A : int , A : int ) ->Callable[[], None]: lowerCamelCase__ : Tuple = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowerCamelCase__ : Tuple = ( hasattr(A , '''architectures''' ) and isinstance(config.architectures , A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : Any = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : List[Any] = __import__('''transformers''' , fromlist=[model_class] ) lowerCamelCase__ : int = getattr(A , A ) lowerCamelCase__ : int = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowerCamelCase__ : Union[str, Any] = TF_MODEL_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : Tuple = config.vocab_size if hasattr(A , '''vocab_size''' ) else config.encoder.vocab_size lowerCamelCase__ : Optional[Any] = random_input_ids(A , A , A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(A , decoder_input_ids=A , training=A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(A , training=A ) lowerCamelCase__ : int = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __lowerCamelCase ( self : List[str] , A : str , A : int , A : int ) ->Callable[[], None]: lowerCamelCase__ : Tuple = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowerCamelCase__ : Optional[int] = ( hasattr(A , '''architectures''' ) and isinstance(config.architectures , A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : Any = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : List[str] = __import__('''transformers''' , fromlist=[model_class] ) lowerCamelCase__ : Optional[int] = getattr(A , A ) lowerCamelCase__ : Optional[Any] = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowerCamelCase__ : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : Optional[int] = config.vocab_size if hasattr(A , '''vocab_size''' ) else config.encoder.vocab_size lowerCamelCase__ : Dict = random_input_ids(A , A , A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCamelCase__ : int = model(A , decoder_input_ids=A , labels=A , training=A )[0] lowerCamelCase__ : List[Any] = tf.gradients(A , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCamelCase__ : Optional[int] = model(A , labels=A , training=A )[0] lowerCamelCase__ : List[str] = tf.gradients(A , model.trainable_variables ) return gradients lowerCamelCase__ : Tuple = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __lowerCamelCase ( self : Tuple , A : Any ) ->float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(A , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCamelCase__ : Optional[Any] = timeit.repeat( A , repeat=self.args.repeat , number=1_0 , ) return min(A ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def __lowerCamelCase ( self : List[Any] , A : Callable[[], None] ) ->[Memory, MemorySummary]: logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) lowerCamelCase__ : Union[str, Any] = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) lowerCamelCase__ : Union[str, Any] = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() lowerCamelCase__ : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCamelCase__ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(A ) lowerCamelCase__ : List[Any] = meminfo.used lowerCamelCase__ : Union[str, Any] = Memory(A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) lowerCamelCase__ : Tuple = None else: lowerCamelCase__ : Dict = measure_peak_memory_cpu(A ) lowerCamelCase__ : Optional[Any] = Memory(A ) if isinstance(A , A ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCamelCase__ : Union[str, Any] = stop_memory_tracing(A ) if memory is None: lowerCamelCase__ : Dict = summary.total else: lowerCamelCase__ : Optional[int] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
265
0
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _lowerCamelCase ( lowercase : str = "" ) -> dict[str, float]: _a = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" _a = BeautifulSoup(requests.get(lowercase ).text , "html.parser" ) _a = soup.find_all("td" , attrs="titleColumn" ) _a = soup.find_all("td" , class_="ratingColumn imdbRating" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowercase , lowercase ) } def _lowerCamelCase ( lowercase : str = "IMDb_Top_250_Movies.csv" ) -> None: _a = get_imdb_top_aaa_movies() with open(lowercase , "w" , newline="" ) as out_file: _a = csv.writer(lowercase ) writer.writerow(["Movie title", "IMDb rating"] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
63
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Dict ) -> Any: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : int = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any ) -> Any: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Optional[int] ) -> Union[str, Any]: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : List[Any] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Optional[int] , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Tuple=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : int , __a : List[Any] , __a : Union[str, Any] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Union[str, Any] , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : int ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
63
1
import math import tensorflow as tf from packaging import version def __snake_case ( _UpperCAmelCase ): __a = tf.convert_to_tensor(_UpperCAmelCase ) __a = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __snake_case ( _UpperCAmelCase ): __a = tf.convert_to_tensor(_UpperCAmelCase ) __a = tf.cast(math.pi , x.dtype ) __a = tf.cast(0.04_47_15 , x.dtype ) __a = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(_UpperCAmelCase , 3 )) )) return x * cdf def __snake_case ( _UpperCAmelCase ): __a = tf.convert_to_tensor(_UpperCAmelCase ) return x * tf.tanh(tf.math.softplus(_UpperCAmelCase ) ) def __snake_case ( _UpperCAmelCase ): __a = tf.convert_to_tensor(_UpperCAmelCase ) __a = tf.cast(0.04_47_15 , x.dtype ) __a = tf.cast(0.79_78_84_56_08 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __snake_case ( _UpperCAmelCase ): __a = tf.convert_to_tensor(_UpperCAmelCase ) __a = tf.cast(1.7_02 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __snake_case ( _UpperCAmelCase ): return tf.clip_by_value(_gelu(_UpperCAmelCase ) , -10 , 10 ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase=-1 ): __a , __a = tf.split(_UpperCAmelCase , 2 , axis=_UpperCAmelCase ) return a * tf.math.sigmoid(_UpperCAmelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __snake_case ( _UpperCAmelCase ): return tf.keras.activations.gelu(_UpperCAmelCase , approximate=_UpperCAmelCase ) __snake_case :Optional[int] = tf.keras.activations.gelu __snake_case :List[str] = approximate_gelu_wrap else: __snake_case :str = _gelu __snake_case :Optional[int] = _gelu_new __snake_case :List[str] = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __snake_case ( _UpperCAmelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
131
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return base * power(_UpperCAmelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') __snake_case :List[Any] = int(input('''Enter the base: ''').strip()) __snake_case :Dict = int(input('''Enter the exponent: ''').strip()) __snake_case :int = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __snake_case :Optional[Any] = 1 / result print(f'{base} to the power of {exponent} is {result}')
131
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase_ = 25_0004 lowercase_ = 25_0020 @require_sentencepiece @require_tokenizers class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = MBartTokenizer A_ : Tuple = MBartTokenizerFast A_ : Optional[int] = True A_ : Union[str, Any] = True def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __A = MBartTokenizer(_lowerCamelCase, keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = MBartTokenizer(_lowerCamelCase, keep_accents=_lowerCamelCase ) __A = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ), [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]], ) __A = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ], ) __A = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ], ) __A = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ], ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __A = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __A = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase, **_lowerCamelCase ) __A = self.tokenizer_class.from_pretrained(_lowerCamelCase, **_lowerCamelCase ) __A = tempfile.mkdtemp() __A = tokenizer_r.save_pretrained(_lowerCamelCase ) __A = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __A = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowerCamelCase, _lowerCamelCase ) # Checks everything loads correctly in the same way __A = tokenizer_r.from_pretrained(_lowerCamelCase ) __A = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase, _lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=True __A = tempfile.mkdtemp() __A = tokenizer_r.save_pretrained(_lowerCamelCase, legacy_format=_lowerCamelCase ) __A = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCamelCase, _lowerCamelCase ) # Checks everything loads correctly in the same way __A = tokenizer_r.from_pretrained(_lowerCamelCase ) __A = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase, _lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=False __A = tempfile.mkdtemp() __A = tokenizer_r.save_pretrained(_lowerCamelCase, legacy_format=_lowerCamelCase ) __A = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __A = tokenizer_r.from_pretrained(_lowerCamelCase ) __A = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase, _lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = "facebook/mbart-large-en-ro" A_ : int = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] A_ : Optional[int] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] A_ : Tuple = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE] @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] ): '''simple docstring''' __A = MBartTokenizer.from_pretrained( cls.checkpoint_name, src_lang='''en_XX''', tgt_lang='''ro_RO''' ) __A = 1 return cls def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''], 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''], 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''], 25_00_20 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' self.assertIn(_lowerCamelCase, self.tokenizer.all_special_ids ) __A = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __A = self.tokenizer.decode(_lowerCamelCase, skip_special_tokens=_lowerCamelCase ) __A = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase, _lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token, _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0], _lowerCamelCase ) __A = 10 __A = self.tokenizer(_lowerCamelCase, max_length=_lowerCamelCase, truncation=_lowerCamelCase ).input_ids[0] self.assertEqual(ids[-2], 2 ) self.assertEqual(ids[-1], _lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ), _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ), [25_00_26, 25_00_01] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = tempfile.mkdtemp() __A = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowerCamelCase ) __A = MBartTokenizer.from_pretrained(_lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, _lowerCamelCase ) @require_torch def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=_lowerCamelCase, return_tensors='''pt''' ) __A = shift_tokens_right(batch['''labels'''], self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=_lowerCamelCase, truncation=_lowerCamelCase, max_length=len(self.expected_src_tokens ), return_tensors='''pt''', ) __A = shift_tokens_right(batch['''labels'''], self.tokenizer.pad_token_id ) self.assertIsInstance(_lowerCamelCase, _lowerCamelCase ) self.assertEqual((2, 14), batch.input_ids.shape ) self.assertEqual((2, 14), batch.attention_mask.shape ) __A = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, _lowerCamelCase ) self.assertEqual(2, batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, EN_CODE] ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = self.tokenizer(self.src_text, padding=_lowerCamelCase, truncation=_lowerCamelCase, max_length=3, return_tensors='''pt''' ) __A = self.tokenizer( text_target=self.tgt_text, padding=_lowerCamelCase, truncation=_lowerCamelCase, max_length=10, return_tensors='''pt''' ) __A = targets['''input_ids'''] __A = shift_tokens_right(_lowerCamelCase, self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 10 ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = self.tokenizer._build_translation_inputs( '''A test''', return_tensors='''pt''', src_lang='''en_XX''', tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_lowerCamelCase ), { # A, test, EOS, en_XX '''input_ids''': [[62, 30_34, 2, 25_00_04]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, }, )
266
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str], _lowerCamelCase : Optional[Any], _lowerCamelCase : Union[str, Any]=13, _lowerCamelCase : Any=3, _lowerCamelCase : Optional[int]=2_24, _lowerCamelCase : str=30, _lowerCamelCase : Dict=4_00, _lowerCamelCase : Union[str, Any]=True, _lowerCamelCase : Any=None, _lowerCamelCase : Optional[Any]=True, _lowerCamelCase : Any=[0.5, 0.5, 0.5], _lowerCamelCase : List[str]=[0.5, 0.5, 0.5], ): '''simple docstring''' __A = size if size is not None else {'''height''': 18, '''width''': 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_normalize __A = image_mean __A = image_std def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : str = ViTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = EfficientFormerImageProcessorTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase, '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''size''' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' # Initialize image_processor __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_proc_tester, equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, Image.Image ) # Test not batched input __A = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched __A = image_processor(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' # Initialize image_processor __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_proc_tester, equal_resolution=_lowerCamelCase, numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, np.ndarray ) # Test not batched input __A = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched __A = image_processor(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' # Initialize image_processor __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_proc_tester, equal_resolution=_lowerCamelCase, torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, torch.Tensor ) # Test not batched input __A = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched __A = image_processor(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), )
266
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowercase_ = R""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `\" / \"`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `\" // \"`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `\"train\"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `\"compressed\"`) The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and `\"compressed\"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a \"dummy\" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(UpperCAmelCase ) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = 'rag' _UpperCamelCase : Union[str, Any] = True def __init__( self : List[Any] , a : Tuple=None , a : Optional[Any]=True , a : Optional[Any]=None , a : Tuple=None , a : Optional[Any]=None , a : Any=None , a : Any=None , a : Optional[int]=" / " , a : Union[str, Any]=" // " , a : Union[str, Any]=5 , a : int=300 , a : Tuple=768 , a : Optional[Any]=8 , a : Any="wiki_dpr" , a : Optional[int]="train" , a : List[Any]="compressed" , a : Union[str, Any]=None , a : Dict=None , a : int=False , a : str=False , a : Union[str, Any]=0.0 , a : Optional[int]=True , a : Optional[Any]=False , a : Any=False , a : Any=False , a : str=True , a : Union[str, Any]=None , **a : str , )-> Optional[Any]: """simple docstring""" super().__init__( bos_token_id=a , pad_token_id=a , eos_token_id=a , decoder_start_token_id=a , forced_eos_token_id=a , is_encoder_decoder=a , prefix=a , vocab_size=a , **a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__ = kwargs.pop('question_encoder' ) lowercase__ = question_encoder_config.pop('model_type' ) lowercase__ = kwargs.pop('generator' ) lowercase__ = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig lowercase__ = AutoConfig.for_model(a , **a ) lowercase__ = AutoConfig.for_model(a , **a ) lowercase__ = reduce_loss lowercase__ = label_smoothing lowercase__ = exclude_bos_score lowercase__ = do_marginalize lowercase__ = title_sep lowercase__ = doc_sep lowercase__ = n_docs lowercase__ = max_combined_length lowercase__ = dataset lowercase__ = dataset_split lowercase__ = index_name lowercase__ = retrieval_vector_size lowercase__ = retrieval_batch_size lowercase__ = passages_path lowercase__ = index_path lowercase__ = use_dummy_dataset lowercase__ = output_retrieved lowercase__ = do_deduplication lowercase__ = use_cache if self.forced_eos_token_id is None: lowercase__ = getattr(self.generator , 'forced_eos_token_id' , a ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , a : PretrainedConfig , a : PretrainedConfig , **a : Union[str, Any] )-> PretrainedConfig: """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[int]: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.question_encoder.to_dict() lowercase__ = self.generator.to_dict() lowercase__ = self.__class__.model_type return output
269
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(_SCREAMING_SNAKE_CASE , exponent // 2 , _SCREAMING_SNAKE_CASE ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_SCREAMING_SNAKE_CASE , exponent - 1 , _SCREAMING_SNAKE_CASE )) % modulo_value def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 1777 , _SCREAMING_SNAKE_CASE = 1855 , _SCREAMING_SNAKE_CASE = 8 ) -> int: lowercase__ = base for _ in range(1 , _SCREAMING_SNAKE_CASE ): lowercase__ = _modexpt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
269
1
from manim import * class lowercase__ ( _UpperCAmelCase ): def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase__ = [mem.copy() for i in range(6 )] lowerCAmelCase__ = [mem.copy() for i in range(6 )] lowerCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ = VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ = Text("CPU" , font_size=24 ) lowerCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCAmelCase ) lowerCAmelCase__ = [mem.copy() for i in range(4 )] lowerCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ = Text("GPU" , font_size=24 ) lowerCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCAmelCase ) lowerCAmelCase__ = [mem.copy() for i in range(6 )] lowerCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ = Text("Model" , font_size=24 ) lowerCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCAmelCase ) lowerCAmelCase__ = [] for i, rect in enumerate(__UpperCAmelCase ): rect.set_stroke(__UpperCAmelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowerCAmelCase__ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__UpperCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__UpperCAmelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__UpperCAmelCase , buff=0.0 ) self.add(__UpperCAmelCase ) cpu_targs.append(__UpperCAmelCase ) lowerCAmelCase__ = [mem.copy() for i in range(6 )] lowerCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ = Text("Loaded Checkpoint" , font_size=24 ) lowerCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , aligned_edge=__UpperCAmelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowerCAmelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase__ = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowerCAmelCase__ = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase ) , Write(__UpperCAmelCase ) ) self.play(Write(__UpperCAmelCase , run_time=1 ) , Create(__UpperCAmelCase , run_time=1 ) ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i, rect in enumerate(__UpperCAmelCase ): lowerCAmelCase__ = fill.copy().set_fill(__UpperCAmelCase , opacity=0.7 ) target.move_to(__UpperCAmelCase ) first_animations.append(GrowFromCenter(__UpperCAmelCase , run_time=1 ) ) lowerCAmelCase__ = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__UpperCAmelCase , run_time=1.5 ) ) self.play(*__UpperCAmelCase ) self.play(*__UpperCAmelCase ) self.wait()
340
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): lowerCAmelCase__ : Tuple = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): lowerCAmelCase__ : List[Any] = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase__ : Tuple = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowerCAmelCase__ : List[str] = key.replace(f'patch_embed{idx}' , f'patch_embeddings.{int(_a )-1}' ) if "norm" in key: lowerCAmelCase__ : Union[str, Any] = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase__ : Any = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] lowerCAmelCase__ : Any = key.replace(f'layer_norm{idx}' , f'layer_norm.{int(_a )-1}' ) if "layer_norm1" in key: lowerCAmelCase__ : Tuple = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: lowerCAmelCase__ : int = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase__ : Optional[Any] = key[key.find('''block''' ) + len('''block''' )] lowerCAmelCase__ : Any = key.replace(f'block{idx}' , f'block.{int(_a )-1}' ) if "attn.q" in key: lowerCAmelCase__ : Optional[Any] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: lowerCAmelCase__ : Dict = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: lowerCAmelCase__ : Tuple = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: lowerCAmelCase__ : str = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: lowerCAmelCase__ : List[str] = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: lowerCAmelCase__ : List[str] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: lowerCAmelCase__ : str = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) lowerCAmelCase__ : Any = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase__ : Tuple = key[key.find('''linear_c''' ) + len('''linear_c''' )] lowerCAmelCase__ : int = key.replace(f'linear_c{idx}' , f'linear_c.{int(_a )-1}' ) if "bot_conv" in key: lowerCAmelCase__ : Tuple = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: lowerCAmelCase__ : int = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: lowerCAmelCase__ : int = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: lowerCAmelCase__ : Tuple = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: lowerCAmelCase__ : Union[str, Any] = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: lowerCAmelCase__ : Any = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: lowerCAmelCase__ : Any = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): lowerCAmelCase__ : int = key.replace('''module.last_layer_depth''' , '''head.head''' ) lowerCAmelCase__ : Dict = value return new_state_dict def lowerCamelCase_ ( _a , _a ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase__ : Any = state_dict.pop(f'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) lowerCAmelCase__ : Any = state_dict.pop(f'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase__ : Tuple = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase__ : List[Any] = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase__ : Dict = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase__ : List[Any] = kv_bias[config.hidden_sizes[i] :] def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : int = Image.open(requests.get(_a , stream=_a ).raw ) return image @torch.no_grad() def lowerCamelCase_ ( _a , _a , _a=False , _a=None ): """simple docstring""" lowerCAmelCase__ : List[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase__ : Optional[int] = GLPNImageProcessor() # prepare image lowerCAmelCase__ : Any = prepare_img() lowerCAmelCase__ : Optional[int] = image_processor(images=_a , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict lowerCAmelCase__ : List[Any] = torch.load(_a , map_location=torch.device('''cpu''' ) ) # rename keys lowerCAmelCase__ : Dict = rename_keys(_a ) # key and value matrices need special treatment read_in_k_v(_a , _a ) # create HuggingFace model and load state dict lowerCAmelCase__ : Optional[Any] = GLPNForDepthEstimation(_a ) model.load_state_dict(_a ) model.eval() # forward pass lowerCAmelCase__ : str = model(_a ) lowerCAmelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase__ : Optional[int] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: lowerCAmelCase__ : Optional[Any] = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f'Unknown model name: {model_name}' ) lowerCAmelCase__ : Any = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _a , atol=1e-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(_a , _a ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_a , ) image_processor.push_to_hub( repo_path_or_name=Path(_a , _a ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_a , ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) lowerCamelCase = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
353
def lowerCamelCase_ ( _a = 4_000_000 ): """simple docstring""" lowerCAmelCase__ : str = [] lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_a ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = b, a + b return sum(_a ) if __name__ == "__main__": print(f'''{solution() = }''')
211
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self ): A : Optional[int] = 1 A : Tuple = 3 A : Any = (32, 32) A : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(lowerCamelCase__ ) return image @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) A : Tuple = UNetaDConditionModel( block_out_channels=(32, 32, 64), layers_per_block=2, sample_size=32, in_channels=7, out_channels=4, down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D"""), up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D"""), cross_attention_dim=32, attention_head_dim=8, use_linear_projection=lowerCamelCase__, only_cross_attention=(True, True, False), num_class_embeds=100, ) return model @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) A : int = AutoencoderKL( block_out_channels=[32, 32, 64], in_channels=3, out_channels=3, down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""], up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""], latent_channels=4, ) return model @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) A : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="""gelu""", projection_dim=512, ) return CLIPTextModel(lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : str = """cpu""" # ensure determinism for the device-dependent torch.Generator A : str = self.dummy_cond_unet_upscale A : Tuple = DDPMScheduler() A : List[str] = DDIMScheduler(prediction_type="""v_prediction""" ) A : Any = self.dummy_vae A : str = self.dummy_text_encoder A : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A : Optional[int] = self.dummy_image.cpu().permute(0, 2, 3, 1 )[0] A : Dict = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A : Dict = StableDiffusionUpscalePipeline( unet=lowerCamelCase__, low_res_scheduler=lowerCamelCase__, scheduler=lowerCamelCase__, vae=lowerCamelCase__, text_encoder=lowerCamelCase__, tokenizer=lowerCamelCase__, max_noise_level=350, ) A : Dict = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A : List[Any] = """A painting of a squirrel eating a burger""" A : Optional[int] = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) A : Any = sd_pipe( [prompt], image=lowerCamelCase__, generator=lowerCamelCase__, guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="""np""", ) A : str = output.images A : Optional[Any] = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) A : Dict = sd_pipe( [prompt], image=lowerCamelCase__, generator=lowerCamelCase__, guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="""np""", return_dict=lowerCamelCase__, )[0] A : Union[str, Any] = image[0, -3:, -3:, -1] A : Dict = image_from_tuple[0, -3:, -3:, -1] A : Optional[int] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) A : Union[str, Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self ): A : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator A : Optional[Any] = self.dummy_cond_unet_upscale A : List[Any] = DDPMScheduler() A : int = DDIMScheduler(prediction_type="""v_prediction""" ) A : Tuple = self.dummy_vae A : Union[str, Any] = self.dummy_text_encoder A : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A : List[Any] = self.dummy_image.cpu().permute(0, 2, 3, 1 )[0] A : List[str] = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A : int = StableDiffusionUpscalePipeline( unet=lowerCamelCase__, low_res_scheduler=lowerCamelCase__, scheduler=lowerCamelCase__, vae=lowerCamelCase__, text_encoder=lowerCamelCase__, tokenizer=lowerCamelCase__, max_noise_level=350, ) A : str = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A : Dict = """A painting of a squirrel eating a burger""" A : Optional[int] = sd_pipe( 2 * [prompt], image=2 * [low_res_image], guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="""np""", ) A : Dict = output.images assert image.shape[0] == 2 A : List[str] = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) A : Optional[Any] = sd_pipe( [prompt], image=lowerCamelCase__, generator=lowerCamelCase__, num_images_per_prompt=2, guidance_scale=6.0, noise_level=20, num_inference_steps=2, output_type="""np""", ) A : List[str] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""", """This test requires a GPU""" ) def _lowerCAmelCase ( self ): A : List[str] = self.dummy_cond_unet_upscale A : Any = DDPMScheduler() A : Optional[Any] = DDIMScheduler(prediction_type="""v_prediction""" ) A : List[str] = self.dummy_vae A : List[Any] = self.dummy_text_encoder A : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A : str = self.dummy_image.cpu().permute(0, 2, 3, 1 )[0] A : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 A : int = unet.half() A : List[Any] = text_encoder.half() # make sure here that pndm scheduler skips prk A : Optional[Any] = StableDiffusionUpscalePipeline( unet=lowerCamelCase__, low_res_scheduler=lowerCamelCase__, scheduler=lowerCamelCase__, vae=lowerCamelCase__, text_encoder=lowerCamelCase__, tokenizer=lowerCamelCase__, max_noise_level=350, ) A : Any = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A : str = """A painting of a squirrel eating a burger""" A : List[str] = torch.manual_seed(0 ) A : Optional[int] = sd_pipe( [prompt], image=lowerCamelCase__, generator=lowerCamelCase__, num_inference_steps=2, output_type="""np""", ).images A : List[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) A : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) A : Optional[int] = """stabilityai/stable-diffusion-x4-upscaler""" A : List[str] = StableDiffusionUpscalePipeline.from_pretrained(lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() A : Union[str, Any] = """a cat sitting on a park bench""" A : Union[str, Any] = torch.manual_seed(0 ) A : Optional[Any] = pipe( prompt=lowerCamelCase__, image=lowerCamelCase__, generator=lowerCamelCase__, output_type="""np""", ) A : str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self ): A : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) A : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) A : str = """stabilityai/stable-diffusion-x4-upscaler""" A : Tuple = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() A : Tuple = """a cat sitting on a park bench""" A : List[str] = torch.manual_seed(0 ) A : List[str] = pipe( prompt=lowerCamelCase__, image=lowerCamelCase__, generator=lowerCamelCase__, output_type="""np""", ) A : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) A : List[Any] = """stabilityai/stable-diffusion-x4-upscaler""" A : Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A : Any = """a cat sitting on a park bench""" A : Optional[Any] = torch.manual_seed(0 ) A : Tuple = pipe( prompt=lowerCamelCase__, image=lowerCamelCase__, generator=lowerCamelCase__, num_inference_steps=5, output_type="""np""", ) A : str = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
116
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=0.0, lowerCamelCase__ = None, lowerCamelCase__ = "geglu", lowerCamelCase__ = None, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = True, lowerCamelCase__ = "layer_norm", lowerCamelCase__ = False, ): super().__init__() A : Dict = only_cross_attention A : Tuple = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" A : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A : Dict = AdaLayerNorm(lowerCamelCase__, lowerCamelCase__ ) elif self.use_ada_layer_norm_zero: A : List[str] = AdaLayerNormZero(lowerCamelCase__, lowerCamelCase__ ) else: A : Tuple = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) A : Any = Attention( query_dim=lowerCamelCase__, heads=lowerCamelCase__, dim_head=lowerCamelCase__, dropout=lowerCamelCase__, bias=lowerCamelCase__, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=lowerCamelCase__, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A : int = ( AdaLayerNorm(lowerCamelCase__, lowerCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) ) A : Dict = Attention( query_dim=lowerCamelCase__, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=lowerCamelCase__, dim_head=lowerCamelCase__, dropout=lowerCamelCase__, bias=lowerCamelCase__, upcast_attention=lowerCamelCase__, ) # is self-attn if encoder_hidden_states is none else: A : Dict = None A : Dict = None # 3. Feed-forward A : Optional[Any] = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) A : int = FeedForward(lowerCamelCase__, dropout=lowerCamelCase__, activation_fn=lowerCamelCase__, final_dropout=lowerCamelCase__ ) # let chunk size default to None A : Optional[Any] = None A : int = 0 def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): # Sets chunk feed-forward A : List[str] = chunk_size A : int = dim def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A : Optional[int] = self.norma(lowerCamelCase__, lowerCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A : Tuple = self.norma( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, hidden_dtype=hidden_states.dtype ) else: A : Tuple = self.norma(lowerCamelCase__ ) A : Dict = cross_attention_kwargs if cross_attention_kwargs is not None else {} A : str = self.attna( lowerCamelCase__, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=lowerCamelCase__, **lowerCamelCase__, ) if self.use_ada_layer_norm_zero: A : List[Any] = gate_msa.unsqueeze(1 ) * attn_output A : str = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A : Optional[int] = ( self.norma(lowerCamelCase__, lowerCamelCase__ ) if self.use_ada_layer_norm else self.norma(lowerCamelCase__ ) ) A : Optional[Any] = self.attna( lowerCamelCase__, encoder_hidden_states=lowerCamelCase__, attention_mask=lowerCamelCase__, **lowerCamelCase__, ) A : Dict = attn_output + hidden_states # 3. Feed-forward A : str = self.norma(lowerCamelCase__ ) if self.use_ada_layer_norm_zero: A : Tuple = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A : Any = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A : Optional[Any] = torch.cat( [self.ff(lowerCamelCase__ ) for hid_slice in norm_hidden_states.chunk(lowerCamelCase__, dim=self._chunk_dim )], dim=self._chunk_dim, ) else: A : Dict = self.ff(lowerCamelCase__ ) if self.use_ada_layer_norm_zero: A : Optional[Any] = gate_mlp.unsqueeze(1 ) * ff_output A : Optional[int] = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = 4, lowerCamelCase__ = 0.0, lowerCamelCase__ = "geglu", lowerCamelCase__ = False, ): super().__init__() A : str = int(dim * mult ) A : Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": A : Dict = GELU(lowerCamelCase__, lowerCamelCase__ ) if activation_fn == "gelu-approximate": A : Optional[int] = GELU(lowerCamelCase__, lowerCamelCase__, approximate="""tanh""" ) elif activation_fn == "geglu": A : Any = GEGLU(lowerCamelCase__, lowerCamelCase__ ) elif activation_fn == "geglu-approximate": A : Optional[Any] = ApproximateGELU(lowerCamelCase__, lowerCamelCase__ ) A : Dict = nn.ModuleList([] ) # project in self.net.append(lowerCamelCase__ ) # project dropout self.net.append(nn.Dropout(lowerCamelCase__ ) ) # project out self.net.append(nn.Linear(lowerCamelCase__, lowerCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowerCamelCase__ ) ) def _lowerCAmelCase ( self, lowerCamelCase__ ): for module in self.net: A : int = module(lowerCamelCase__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = "none" ): super().__init__() A : Optional[int] = nn.Linear(lowerCamelCase__, lowerCamelCase__ ) A : int = approximate def _lowerCAmelCase ( self, lowerCamelCase__ ): if gate.device.type != "mps": return F.gelu(lowerCamelCase__, approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ), approximate=self.approximate ).to(dtype=gate.dtype ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = self.proj(lowerCamelCase__ ) A : Union[str, Any] = self.gelu(lowerCamelCase__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Union[str, Any] = nn.Linear(lowerCamelCase__, dim_out * 2 ) def _lowerCAmelCase ( self, lowerCamelCase__ ): if gate.device.type != "mps": return F.gelu(lowerCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A , A : Any = self.proj(lowerCamelCase__ ).chunk(2, dim=-1 ) return hidden_states * self.gelu(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Union[str, Any] = nn.Linear(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = self.proj(lowerCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Dict = nn.Embedding(lowerCamelCase__, lowerCamelCase__ ) A : Tuple = nn.SiLU() A : Tuple = nn.Linear(lowerCamelCase__, embedding_dim * 2 ) A : List[str] = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): A : int = self.linear(self.silu(self.emb(lowerCamelCase__ ) ) ) A , A : Optional[int] = torch.chunk(lowerCamelCase__, 2 ) A : Tuple = self.norm(lowerCamelCase__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Union[str, Any] = CombinedTimestepLabelEmbeddings(lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = nn.SiLU() A : str = nn.Linear(lowerCamelCase__, 6 * embedding_dim, bias=lowerCamelCase__ ) A : List[Any] = nn.LayerNorm(lowerCamelCase__, elementwise_affine=lowerCamelCase__, eps=1e-6 ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): A : Tuple = self.linear(self.silu(self.emb(lowerCamelCase__, lowerCamelCase__, hidden_dtype=lowerCamelCase__ ) ) ) A , A , A , A , A , A : Optional[Any] = emb.chunk(6, dim=1 ) A : List[str] = self.norm(lowerCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = 1e-5 ): super().__init__() A : int = num_groups A : Dict = eps if act_fn is None: A : Union[str, Any] = None else: A : Optional[int] = get_activation(lowerCamelCase__ ) A : Dict = nn.Linear(lowerCamelCase__, out_dim * 2 ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): if self.act: A : Dict = self.act(lowerCamelCase__ ) A : Optional[int] = self.linear(lowerCamelCase__ ) A : int = emb[:, :, None, None] A , A : Tuple = emb.chunk(2, dim=1 ) A : Any = F.group_norm(lowerCamelCase__, self.num_groups, eps=self.eps ) A : List[str] = x * (1 + scale) + shift return x
116
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__(self , lowercase , lowercase=7 , lowercase=3 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , lowercase=True , lowercase=1 / 255 , lowercase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A_ : Dict = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} A_ : Any = parent A_ : List[Any] = batch_size A_ : Optional[Any] = num_channels A_ : List[str] = min_resolution A_ : int = max_resolution A_ : str = do_resize A_ : Optional[Any] = size A_ : List[str] = do_normalize A_ : int = image_mean A_ : Optional[Any] = image_std A_ : int = do_rescale A_ : List[str] = rescale_factor A_ : Union[str, Any] = do_pad def _a (self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _a (self , lowercase , lowercase=False ): if not batched: A_ : Any = image_inputs[0] if isinstance(lowercase , Image.Image ): A_, A_ : Tuple = image.size else: A_, A_ : List[str] = image.shape[1], image.shape[2] if w < h: A_ : List[str] = int(self.size["""shortest_edge"""] * h / w ) A_ : Union[str, Any] = self.size["""shortest_edge"""] elif w > h: A_ : int = self.size["""shortest_edge"""] A_ : List[str] = int(self.size["""shortest_edge"""] * w / h ) else: A_ : Tuple = self.size["""shortest_edge"""] A_ : str = self.size["""shortest_edge"""] else: A_ : List[str] = [] for image in image_inputs: A_, A_ : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : Tuple = max(lowercase , key=lambda lowercase : item[0] )[0] A_ : Dict = max(lowercase , key=lambda lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = ConditionalDetrImageProcessor if is_vision_available() else None def _a (self ): A_ : Optional[int] = ConditionalDetrImageProcessingTester(self ) @property def _a (self ): return self.image_processor_tester.prepare_image_processor_dict() def _a (self ): A_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , """image_mean""" ) ) self.assertTrue(hasattr(lowercase , """image_std""" ) ) self.assertTrue(hasattr(lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase , """do_resize""" ) ) self.assertTrue(hasattr(lowercase , """size""" ) ) def _a (self ): A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase ) A_ : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase ) def _a (self ): pass def _a (self ): # Initialize image_processing A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input A_ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_, A_ : Optional[Any] = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_, A_ : Optional[int] = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) A_ : List[Any] = image_processing(lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a (self ): # Initialize image_processing A_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_, A_ : Dict = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Union[str, Any] = image_processing(lowercase , return_tensors="""pt""" ).pixel_values A_, A_ : List[Any] = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a (self ): # Initialize image_processing A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input A_ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_, A_ : Any = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Union[str, Any] = image_processing(lowercase , return_tensors="""pt""" ).pixel_values A_, A_ : Optional[int] = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _a (self ): # prepare image and target A_ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: A_ : Tuple = json.loads(f.read() ) A_ : Optional[Any] = {"""image_id""": 39769, """annotations""": target} # encode them A_ : Any = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) A_ : List[str] = image_processing(images=lowercase , annotations=lowercase , return_tensors="""pt""" ) # verify pixel values A_ : Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase ) A_ : Optional[Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area A_ : Any = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase ) ) # verify boxes A_ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase ) A_ : Any = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase , atol=1E-3 ) ) # verify image_id A_ : int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase ) ) # verify is_crowd A_ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase ) ) # verify class_labels A_ : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase ) ) # verify orig_size A_ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase ) ) # verify size A_ : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase ) ) @slow def _a (self ): # prepare image, target and masks_path A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: A_ : Tuple = json.loads(f.read() ) A_ : List[Any] = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} A_ : str = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them A_ : int = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) A_ : Optional[Any] = image_processing(images=lowercase , annotations=lowercase , masks_path=lowercase , return_tensors="""pt""" ) # verify pixel values A_ : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase ) A_ : Optional[Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area A_ : Optional[Any] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase ) ) # verify boxes A_ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase ) A_ : List[Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase , atol=1E-3 ) ) # verify image_id A_ : str = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase ) ) # verify is_crowd A_ : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase ) ) # verify class_labels A_ : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase ) ) # verify masks A_ : Optional[Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase ) # verify orig_size A_ : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase ) ) # verify size A_ : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase ) )
135
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowerCamelCase :Union[str, Any] = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __SCREAMING_SNAKE_CASE : bool = field(default=__UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) __SCREAMING_SNAKE_CASE : bool = field(default=__UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__UpperCAmelCase , metadata={'help': 'Source language id for translation.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__UpperCAmelCase , metadata={'help': 'Target language id for translation.'} ) __SCREAMING_SNAKE_CASE : Optional[int] = field(default=__UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' logger.info(f'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(f' {key} = {metrics[key]}' ) save_json(lowerCamelCase__ , os.path.join(lowerCamelCase__ , f'{split}_results.json' ) ) def a ( ): '''simple docstring''' A_ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_, A_, A_ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_, A_, A_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(lowerCamelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A_ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) A_ : int = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): assert hasattr(lowerCamelCase__ , lowerCamelCase__ ), f'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(lowerCamelCase__ , lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) A_ : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) A_ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowerCamelCase__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: A_ : int = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowerCamelCase__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Optional[Any] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: A_ : List[str] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowerCamelCase__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) A_ : Union[str, Any] = SeqaSeqDataset # Get datasets A_ : Union[str, Any] = ( dataset_class( lowerCamelCase__ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) A_ : int = ( dataset_class( lowerCamelCase__ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) A_ : Tuple = ( dataset_class( lowerCamelCase__ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer A_ : Optional[Any] = ( build_compute_metrics_fn(data_args.task , lowerCamelCase__ ) if training_args.predict_with_generate else None ) A_ : List[str] = SeqaSeqTrainer( model=lowerCamelCase__ , args=lowerCamelCase__ , data_args=lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , data_collator=SeqaSeqDataCollator( lowerCamelCase__ , lowerCamelCase__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , ) A_ : str = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) A_ : List[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) A_ : Any = train_result.metrics A_ : str = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowerCamelCase__ , training_args.output_dir ) all_metrics.update(lowerCamelCase__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) A_ : Tuple = trainer.evaluate(metric_key_prefix="""val""" ) A_ : str = data_args.n_val A_ : Optional[Any] = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowerCamelCase__ , training_args.output_dir ) all_metrics.update(lowerCamelCase__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) A_ : Any = trainer.predict(test_dataset=lowerCamelCase__ , metric_key_prefix="""test""" ) A_ : int = test_output.metrics A_ : Tuple = data_args.n_test if trainer.is_world_process_zero(): A_ : List[Any] = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowerCamelCase__ , training_args.output_dir ) all_metrics.update(lowerCamelCase__ ) if training_args.predict_with_generate: A_ : List[Any] = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) A_ : Tuple = lmap(str.strip , lowerCamelCase__ ) write_txt_file(lowerCamelCase__ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowerCamelCase__ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def a ( lowerCamelCase__ ): '''simple docstring''' main() if __name__ == "__main__": main()
135
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } UpperCAmelCase__ : Any = { 'camembert-base': 5_1_2, } UpperCAmelCase__ : int = '▁' class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES __UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Any = ['''input_ids''', '''attention_mask'''] __UpperCamelCase : int = CamembertTokenizer def __init__(self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__=["<s>NOTUSED", "</s>NOTUSED"] , **SCREAMING_SNAKE_CASE__ , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_file SCREAMING_SNAKE_CASE__ : Dict = False if not self.vocab_file else True def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Tuple = [self.cls_token_id] SCREAMING_SNAKE_CASE__ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
25
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A : UpperCamelCase__ : Union[str, Any] =XGLMConfig UpperCamelCase__ : Dict ={} UpperCamelCase__ : Tuple ='gelu' def __init__( self : List[Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any]=14 , lowercase_ : Dict=7 , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : Any=True , lowercase_ : Optional[int]=99 , lowercase_ : List[Any]=32 , lowercase_ : List[Any]=2 , lowercase_ : Dict=4 , lowercase_ : List[str]=37 , lowercase_ : int="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[str]=512 , lowercase_ : Union[str, Any]=0.02 , ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Dict =parent _lowerCamelCase : Optional[Any] =batch_size _lowerCamelCase : Optional[int] =seq_length _lowerCamelCase : Union[str, Any] =is_training _lowerCamelCase : Tuple =use_input_mask _lowerCamelCase : str =use_labels _lowerCamelCase : Any =vocab_size _lowerCamelCase : List[str] =d_model _lowerCamelCase : List[Any] =num_hidden_layers _lowerCamelCase : Union[str, Any] =num_attention_heads _lowerCamelCase : List[Any] =ffn_dim _lowerCamelCase : Optional[Any] =activation_function _lowerCamelCase : Dict =activation_dropout _lowerCamelCase : Tuple =attention_dropout _lowerCamelCase : List[str] =max_position_embeddings _lowerCamelCase : int =initializer_range _lowerCamelCase : Optional[int] =None _lowerCamelCase : Optional[Any] =0 _lowerCamelCase : List[str] =2 _lowerCamelCase : Any =1 def lowerCamelCase ( self : str ) -> int: """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowerCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _lowerCamelCase : Any =None if self.use_input_mask: _lowerCamelCase : str =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] =self.get_config() _lowerCamelCase : Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCamelCase ( self : List[str] ) -> Dict: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowercase_ , ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : str =self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Any =config_and_inputs _lowerCamelCase : Union[str, Any] ={ 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class A ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : Union[str, Any] =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase__ : List[str] =(TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase__ : Any =( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase__ : str =False UpperCamelCase__ : int =False UpperCamelCase__ : int =False def lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _lowerCamelCase : Tuple =TFXGLMModelTester(self ) _lowerCamelCase : str =ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def lowerCamelCase ( self : str ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def lowerCamelCase ( self : Any ) -> int: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int =TFXGLMModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A ( unittest.TestCase ): @slow def lowerCamelCase ( self : str , lowercase_ : str=True ) -> Tuple: """simple docstring""" _lowerCamelCase : Any =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : List[Any] =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCamelCase : int =[2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on _lowerCamelCase : Dict =model.generate(lowercase_ , do_sample=lowercase_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ ) @slow def lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : Any =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) _lowerCamelCase : Tuple =tokenizer('Today is a nice day and' , return_tensors='tf' ) _lowerCamelCase : Optional[int] =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): _lowerCamelCase : List[Any] =model.generate(lowercase_ , do_sample=lowercase_ , seed=[7, 0] ) _lowerCamelCase : Union[str, Any] =tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase_ ) _lowerCamelCase : Union[str, Any] =( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowercase_ , lowercase_ ) @slow def lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : int =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : Any =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : Optional[Any] ='left' # use different length sentences to test batching _lowerCamelCase : int =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] _lowerCamelCase : List[Any] =tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) _lowerCamelCase : int =inputs['input_ids'] _lowerCamelCase : str =model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) _lowerCamelCase : Optional[Any] =tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : List[str] =model.generate(input_ids=lowercase_ , max_new_tokens=12 ) _lowerCamelCase : Tuple =tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Dict =model.generate(input_ids=lowercase_ , max_new_tokens=12 ) _lowerCamelCase : str =tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) _lowerCamelCase : str =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) _lowerCamelCase : int =tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) _lowerCamelCase : List[str] =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
199
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase :List[str] = logging.get_logger(__name__) class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : str = ["input_features", "is_longer"] def __init__( self : Optional[Any] , snake_case : int=64 , snake_case : List[str]=4_8000 , snake_case : int=480 , snake_case : Optional[int]=10 , snake_case : List[str]=1024 , snake_case : List[str]=0.0 , snake_case : Union[str, Any]=False , snake_case : float = 0 , snake_case : float = 1_4000 , snake_case : int = None , snake_case : str = "fusion" , snake_case : str = "repeatpad" , **snake_case : Dict , ) -> Union[str, Any]: super().__init__( feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , return_attention_mask=snake_case , **snake_case , ) __UpperCAmelCase : str = top_db __UpperCAmelCase : List[str] = truncation __UpperCAmelCase : Union[str, Any] = padding __UpperCAmelCase : str = fft_window_size __UpperCAmelCase : List[str] = (fft_window_size >> 1) + 1 __UpperCAmelCase : Any = hop_length __UpperCAmelCase : Optional[Any] = max_length_s __UpperCAmelCase : str = max_length_s * sampling_rate __UpperCAmelCase : Any = sampling_rate __UpperCAmelCase : Optional[int] = frequency_min __UpperCAmelCase : Dict = frequency_max __UpperCAmelCase : Optional[int] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm=snake_case , mel_scale='''htk''' , ) __UpperCAmelCase : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm='''slaney''' , mel_scale='''slaney''' , ) def lowerCamelCase__ ( self : str ) -> Dict[str, Any]: __UpperCAmelCase : int = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowerCamelCase__ ( self : str , snake_case : np.array , snake_case : Optional[np.array] = None ) -> np.ndarray: __UpperCAmelCase : Dict = spectrogram( snake_case , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case , log_mel='''dB''' , ) return log_mel_spectrogram.T def lowerCamelCase__ ( self : Optional[int] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple ) -> List[str]: __UpperCAmelCase : int = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __UpperCAmelCase : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __UpperCAmelCase : str = [0] # randomly choose index for each part __UpperCAmelCase : Any = np.random.choice(ranges[0] ) __UpperCAmelCase : List[str] = np.random.choice(ranges[1] ) __UpperCAmelCase : Dict = np.random.choice(ranges[2] ) __UpperCAmelCase : Dict = mel[idx_front : idx_front + chunk_frames, :] __UpperCAmelCase : Optional[int] = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCAmelCase : Any = mel[idx_back : idx_back + chunk_frames, :] __UpperCAmelCase : Any = torch.tensor(mel[None, None, :] ) __UpperCAmelCase : List[str] = torch.nn.functional.interpolate( snake_case , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=snake_case ) __UpperCAmelCase : List[Any] = mel_shrink[0][0].numpy() __UpperCAmelCase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowerCamelCase__ ( self : Dict , snake_case : np.array , snake_case : Optional[Any] , snake_case : List[Any] , snake_case : Optional[Any] ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCAmelCase : Optional[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCAmelCase : Dict = len(snake_case ) - max_length __UpperCAmelCase : Optional[int] = np.random.randint(0 , overflow + 1 ) __UpperCAmelCase : Dict = waveform[idx : idx + max_length] __UpperCAmelCase : List[str] = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __UpperCAmelCase : Dict = self._np_extract_fbank_features(snake_case , self.mel_filters ) __UpperCAmelCase : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCAmelCase : int = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCAmelCase : str = np.stack([mel, mel, mel, mel] , axis=0 ) __UpperCAmelCase : Union[str, Any] = False else: __UpperCAmelCase : List[Any] = self._random_mel_fusion(snake_case , snake_case , snake_case ) __UpperCAmelCase : Optional[Any] = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: __UpperCAmelCase : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCAmelCase : Tuple = int(max_length / len(snake_case ) ) __UpperCAmelCase : Tuple = np.stack(np.tile(snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __UpperCAmelCase : Union[str, Any] = int(max_length / len(snake_case ) ) __UpperCAmelCase : Tuple = np.stack(np.tile(snake_case , snake_case ) ) __UpperCAmelCase : List[Any] = np.pad(snake_case , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": __UpperCAmelCase : Optional[int] = self._np_extract_fbank_features(snake_case , self.mel_filters ) __UpperCAmelCase : Optional[int] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __UpperCAmelCase : List[str] = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : str , snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case : str = None , snake_case : Optional[str] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : Optional[Union[str, TensorType]] = None , **snake_case : Dict , ) -> BatchFeature: __UpperCAmelCase : List[Any] = truncation if truncation is not None else self.truncation __UpperCAmelCase : Union[str, Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __UpperCAmelCase : Optional[int] = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __UpperCAmelCase : int = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase : int = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): __UpperCAmelCase : Union[str, Any] = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase : Any = [np.asarray(snake_case )] # convert to mel spectrogram, truncate and pad if needed. __UpperCAmelCase : Optional[Any] = [ self._get_input_mel(snake_case , max_length if max_length else self.nb_max_samples , snake_case , snake_case ) for waveform in raw_speech ] __UpperCAmelCase : Any = [] __UpperCAmelCase : Any = [] for mel, longer in padded_inputs: input_mel.append(snake_case ) is_longer.append(snake_case ) if truncation == "fusion" and sum(snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCAmelCase : int = np.random.randint(0 , len(snake_case ) ) __UpperCAmelCase : List[str] = True if isinstance(input_mel[0] , snake_case ): __UpperCAmelCase : str = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __UpperCAmelCase : Optional[int] = [[longer] for longer in is_longer] __UpperCAmelCase : List[str] = {'''input_features''': input_mel, '''is_longer''': is_longer} __UpperCAmelCase : Optional[Any] = BatchFeature(snake_case ) if return_tensors is not None: __UpperCAmelCase : List[Any] = input_features.convert_to_tensors(snake_case ) return input_features
240
'''simple docstring''' def _a ( _lowercase : int = 600851475143 ): '''simple docstring''' try: __UpperCAmelCase : str = int(_lowercase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __UpperCAmelCase : Dict = 1 __UpperCAmelCase : List[str] = 2 while i * i <= n: while n % i == 0: __UpperCAmelCase : int = i n //= i i += 1 if n > 1: __UpperCAmelCase : List[str] = n return int(_lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
240
1
from manim import * class A ( _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : Any )-> Optional[int]: '''simple docstring''' A__ = Rectangle(height=0.5,width=0.5 ) A__ = Rectangle(height=0.25,width=0.25 ) A__ = Rectangle(height=0.46,width=0.46 ).set_stroke(width=0 ) A__ = [mem.copy() for i in range(6 )] A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = VGroup(lowercase_,lowercase_ ).arrange(lowercase_,buff=0 ) A__ = Text('CPU',font_size=2_4 ) A__ = Group(lowercase_,lowercase_ ).arrange(lowercase_,buff=0.5,aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) A__ = [mem.copy() for i in range(4 )] A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = Text('GPU',font_size=2_4 ) A__ = Group(lowercase_,lowercase_ ).arrange(lowercase_,buff=0.5,aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = Text('Model',font_size=2_4 ) A__ = Group(lowercase_,lowercase_ ).arrange(lowercase_,buff=0.5,aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) A__ = [] A__ = [] A__ = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) A__ = Rectangle(height=0.46 / 4,width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_,opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ),buff=0.02,direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0],direction=lowercase_,buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1],direction=lowercase_,buff=0.0 ) self.add(lowercase_ ) model_cpu_arr.append(lowercase_ ) self.add(*lowercase_,*lowercase_,*lowercase_ ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = Text('Loaded Checkpoint',font_size=2_4 ) A__ = Group(lowercase_,lowercase_ ).arrange(lowercase_,buff=0.5,aligned_edge=lowercase_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowercase_ ) A__ = [] A__ = [] for i, rect in enumerate(lowercase_ ): A__ = fill.copy().set_fill(lowercase_,opacity=0.7 ) target.move_to(lowercase_ ) ckpt_arr.append(lowercase_ ) A__ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowercase_ ) self.add(*lowercase_,*lowercase_ ) A__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A__ = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model',font_size=1_8,) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_,lowercase_ ) A__ = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint',font_size=1_8,) blue_text.next_to(lowercase_,DOWN * 2.4,aligned_edge=key_text.get_left() ) self.add(lowercase_ ) A__ = MarkupText( F'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.',font_size=2_4,) step_a.move_to([2, 2, 0] ) A__ = [meta_mem.copy() for i in range(6 )] A__ = [meta_mem.copy() for i in range(6 )] A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = VGroup(*lowercase_ ).arrange(lowercase_,buff=0 ) A__ = VGroup(lowercase_,lowercase_ ).arrange(lowercase_,buff=0 ) A__ = Text('Disk',font_size=2_4 ) A__ = Group(lowercase_,lowercase_ ).arrange(lowercase_,buff=0.5,aligned_edge=lowercase_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(lowercase_,run_time=3 ),Write(lowercase_,run_time=1 ),Create(lowercase_,run_time=1 ) ) A__ = [] for i, rect in enumerate(lowercase_ ): A__ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowercase_,run_time=1.5 ) ) self.play(*lowercase_ ) self.play(FadeOut(lowercase_ ) ) A__ = MarkupText(F'Then, the checkpoint is removed from memory\nthrough garbage collection.',font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_,run_time=3 ) ) self.play( FadeOut(lowercase_,lowercase_,*lowercase_,*lowercase_ ),) self.wait()
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase : Optional[Any] = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
0
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort lowercase__ : Tuple = '''1''' lowercase__ : Any = '''0''' lowercase__ : Any = '''1''' lowercase__ : Any = ort.SessionOptions() lowercase__ : Optional[Any] = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') lowercase__ : List[Any] = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] lowercase__ : Optional[Any] = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) lowercase__ : List[str] = ort.RunOptions() lowercase__ : Any = 1_28 lowercase__ : Tuple = 1 lowercase__ : Tuple = np.ones((batch, sequence), dtype=np.intaa) lowercase__ : Any = np.ones((batch, sequence), dtype=np.intaa) lowercase__ : Optional[Any] = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') lowercase__ : Any = time.time() lowercase__ : List[Any] = 20_00 lowercase__ : int = {} for iter in range(max_iters): lowercase__ : Tuple = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 10_00 / max_iters))
190
'''simple docstring''' import math def _lowerCAmelCase ( __snake_case : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( __snake_case : float = 0.1 ) -> int: __A : Dict = 3 __A : int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
190
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __UpperCamelCase : def __init__( self , __a , ): '''simple docstring''' __a : List[str] = parent __a : Union[str, Any] = 13 __a : Any = 7 __a : Optional[int] = True __a : Tuple = True __a : Any = False __a : Optional[int] = True __a : Optional[Any] = 99 __a : str = 32 __a : Union[str, Any] = 2 __a : Optional[Any] = 4 __a : Any = 37 __a : str = 'gelu' __a : str = 0.1 __a : List[Any] = 0.1 __a : List[str] = 512 __a : Union[str, Any] = 16 __a : Union[str, Any] = 2 __a : Optional[Any] = 0.02 __a : str = 3 __a : List[Any] = 4 __a : Union[str, Any] = None def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : int = None if self.use_input_mask: __a : int = random_attention_mask([self.batch_size, self.seq_length] ) __a : Union[str, Any] = None __a : Union[str, Any] = None __a : Dict = None if self.use_labels: __a : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __a : int = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : int = TFDistilBertModel(config=__a ) __a : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} __a : Union[str, Any] = model(__a ) __a : Dict = [input_ids, input_mask] __a : Optional[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Optional[Any] = TFDistilBertForMaskedLM(config=__a ) __a : str = {'input_ids': input_ids, 'attention_mask': input_mask} __a : Tuple = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : List[Any] = TFDistilBertForQuestionAnswering(config=__a ) __a : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, } __a : Any = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : List[str] = self.num_labels __a : Optional[Any] = TFDistilBertForSequenceClassification(__a ) __a : Any = {'input_ids': input_ids, 'attention_mask': input_mask} __a : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Optional[int] = self.num_choices __a : Dict = TFDistilBertForMultipleChoice(__a ) __a : Any = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __a : Union[str, Any] = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __a : List[Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } __a : Optional[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Tuple = self.num_labels __a : Union[str, Any] = TFDistilBertForTokenClassification(__a ) __a : str = {'input_ids': input_ids, 'attention_mask': input_mask} __a : Union[str, Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.prepare_config_and_inputs() ((__a) , (__a) , (__a) , (__a) , (__a) , (__a)) : Any = config_and_inputs __a : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) A_ = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) A_ = False A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = TFDistilBertModelTester(self ) __a : Optional[int] = ConfigTester(self , config_class=__a , dim=37 ) def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __a : List[str] = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) __a : Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __a : int = model(__a )[0] __a : str = [1, 6, 768] self.assertEqual(output.shape , __a ) __a : List[Any] = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
27
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus" ): __a : List[Any] = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , 'html.parser' ) __a : Union[str, Any] = soup.findAll('h1' ) __a : int = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
27
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""pixel_values"""] def __init__( self : List[str] , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = True , **UpperCamelCase : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase ) __UpperCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : List[Any] = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} __UpperCAmelCase : Tuple = get_size_dict(UpperCamelCase , param_name="""crop_size""" ) __UpperCAmelCase : Dict = do_resize __UpperCAmelCase : str = size __UpperCAmelCase : int = resample __UpperCAmelCase : Any = do_rescale __UpperCAmelCase : Union[str, Any] = rescale_factor __UpperCAmelCase : Optional[Any] = do_center_crop __UpperCAmelCase : Optional[int] = crop_size __UpperCAmelCase : Tuple = do_flip_channel_order def lowerCamelCase__ ( self : List[str] , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : PILImageResampling = PIL.Image.BILINEAR , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) __UpperCAmelCase : Any = get_resize_output_image_size(UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : np.ndarray , UpperCamelCase : Dict[str, int] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Dict , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : np.ndarray , UpperCamelCase : Union[int, float] , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Dict , ): '''simple docstring''' return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : np.ndarray , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' return flip_channel_order(UpperCamelCase , data_format=UpperCamelCase ) def lowerCamelCase__ ( self : str , UpperCamelCase : ImageInput , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : PILImageResampling = None , UpperCamelCase : bool = None , UpperCamelCase : float = None , UpperCamelCase : bool = None , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : bool = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase : Dict , ): '''simple docstring''' __UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : int = resample if resample is not None else self.resample __UpperCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : List[str] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) __UpperCAmelCase : List[Any] = size if size is not None else self.size __UpperCAmelCase : str = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) __UpperCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase , param_name="""crop_size""" ) __UpperCAmelCase : Optional[int] = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : int = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: __UpperCAmelCase : Dict = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: __UpperCAmelCase : Optional[int] = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: __UpperCAmelCase : int = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: __UpperCAmelCase : Optional[Any] = [self.flip_channel_order(image=UpperCamelCase ) for image in images] __UpperCAmelCase : Dict = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] __UpperCAmelCase : Tuple = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Tuple] = None ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCamelCase ): __UpperCAmelCase : List[str] = target_sizes.numpy() __UpperCAmelCase : Dict = [] for idx in range(len(UpperCamelCase ) ): __UpperCAmelCase : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase ) else: __UpperCAmelCase : Union[str, Any] = logits.argmax(dim=1 ) __UpperCAmelCase : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
320
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCAmelCase : List[str] = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = EfficientNetConfig() __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""] __UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""] __UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""] __UpperCAmelCase : int = """huggingface/label-files""" __UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = 1_0_0_0 __UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase ( _UpperCamelCase : Any ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : List[str] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , ) return preprocessor def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __UpperCAmelCase : str = sorted(set(_UpperCamelCase ) ) __UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) __UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )} __UpperCAmelCase : Any = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __UpperCAmelCase : List[str] = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __UpperCAmelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: __UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1] __UpperCAmelCase : Tuple = """classifier.weight""" __UpperCAmelCase : Optional[int] = """classifier.bias""" return key_mapping def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __UpperCAmelCase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: __UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) ) else: __UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCamelCase ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = model_classes[model_name]( include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , ) __UpperCAmelCase : List[str] = original_model.trainable_variables __UpperCAmelCase : List[Any] = original_model.non_trainable_variables __UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __UpperCAmelCase : int = param.numpy() __UpperCAmelCase : Dict = list(tf_params.keys() ) # Load HuggingFace model __UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval() __UpperCAmelCase : Any = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase ) replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Initialize preprocessor and preprocess input image __UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase ) __UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase ) __UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 ) __UpperCAmelCase : str = original_model.predict(_UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCamelCase ): os.mkdir(_UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCamelCase ) preprocessor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) __UpperCAmelCase : List[str] = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_UpperCamelCase ) hf_model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
320
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( __lowercase , __lowercase , unittest.TestCase): '''simple docstring''' _A = StableDiffusionDiffEditPipeline _A = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} _A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} _A = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _A = frozenset([]) def _lowerCamelCase ( self :str ) -> Optional[int]: torch.manual_seed(0 ) __UpperCamelCase : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=a , ) __UpperCamelCase : int = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=a , set_alpha_to_one=a , ) __UpperCamelCase : List[Any] = DDIMInverseScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=a , set_alpha_to_zero=a , ) torch.manual_seed(0 ) __UpperCamelCase : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) __UpperCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) __UpperCamelCase : Optional[Any] = CLIPTextModel(a ) __UpperCamelCase : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCamelCase : int = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowerCamelCase ( self :Any , a :int , a :Any=0 ) -> Optional[Any]: __UpperCamelCase : Any = floats_tensor((1, 1_6, 1_6) , rng=random.Random(a ) ).to(a ) __UpperCamelCase : Any = floats_tensor((1, 2, 4, 1_6, 1_6) , rng=random.Random(a ) ).to(a ) if str(a ).startswith("mps" ): __UpperCamelCase : List[Any] = torch.manual_seed(a ) else: __UpperCamelCase : List[Any] = torch.Generator(device=a ).manual_seed(a ) __UpperCamelCase : int = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowerCamelCase ( self :Tuple , a :int , a :Dict=0 ) -> Optional[int]: __UpperCamelCase : Optional[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(a ) ).to(a ) __UpperCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase : int = Image.fromarray(np.uinta(a ) ).convert("RGB" ) if str(a ).startswith("mps" ): __UpperCamelCase : Optional[int] = torch.manual_seed(a ) else: __UpperCamelCase : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) __UpperCamelCase : Any = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowerCamelCase ( self :List[str] , a :Optional[Any] , a :Any=0 ) -> str: __UpperCamelCase : int = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(a ) ).to(a ) __UpperCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase : int = Image.fromarray(np.uinta(a ) ).convert("RGB" ) if str(a ).startswith("mps" ): __UpperCamelCase : Optional[int] = torch.manual_seed(a ) else: __UpperCamelCase : Optional[int] = torch.Generator(device=a ).manual_seed(a ) __UpperCamelCase : str = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def _lowerCamelCase ( self :Optional[Any] ) -> List[Any]: if not hasattr(self.pipeline_class , "_optional_components" ): return __UpperCamelCase : Dict = self.get_dummy_components() __UpperCamelCase : int = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(a , a , a ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __UpperCamelCase : Any = self.get_dummy_inputs(a ) __UpperCamelCase : Optional[Any] = pipe(**a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a ) __UpperCamelCase : Dict = self.pipeline_class.from_pretrained(a ) pipe_loaded.to(a ) pipe_loaded.set_progress_bar_config(disable=a ) for optional_component in pipe._optional_components: self.assertTrue( getattr(a , a ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) __UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(a ) __UpperCamelCase : Tuple = pipe_loaded(**a )[0] __UpperCamelCase : Optional[Any] = np.abs(output - output_loaded ).max() self.assertLess(a , 1E-4 ) def _lowerCamelCase ( self :int ) -> Optional[int]: __UpperCamelCase : Optional[int] = """cpu""" __UpperCamelCase : Optional[Any] = self.get_dummy_components() __UpperCamelCase : List[str] = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __UpperCamelCase : Union[str, Any] = self.get_dummy_mask_inputs(a ) __UpperCamelCase : List[Any] = pipe.generate_mask(**a ) __UpperCamelCase : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 1_6, 1_6) ) __UpperCamelCase : Optional[int] = np.array([0] * 9 ) __UpperCamelCase : Union[str, Any] = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _lowerCamelCase ( self :int ) -> Optional[Any]: __UpperCamelCase : Optional[Any] = """cpu""" __UpperCamelCase : List[str] = self.get_dummy_components() __UpperCamelCase : Optional[Any] = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __UpperCamelCase : Optional[int] = self.get_dummy_inversion_inputs(a ) __UpperCamelCase : List[str] = pipe.invert(**a ).images __UpperCamelCase : Union[str, Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) __UpperCamelCase : Dict = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __UpperCamelCase : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1E-3 ) def _lowerCamelCase ( self :Union[str, Any] ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def _lowerCamelCase ( self :int ) -> int: __UpperCamelCase : List[Any] = """cpu""" __UpperCamelCase : int = self.get_dummy_components() __UpperCamelCase : List[Any] = {"""beta_start""": 0.00085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} __UpperCamelCase : int = DPMSolverMultistepScheduler(**a ) __UpperCamelCase : int = DPMSolverMultistepInverseScheduler(**a ) __UpperCamelCase : List[str] = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __UpperCamelCase : Tuple = self.get_dummy_inversion_inputs(a ) __UpperCamelCase : Any = pipe.invert(**a ).images __UpperCamelCase : Dict = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) __UpperCamelCase : Any = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] , ) __UpperCamelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1E-3 ) @require_torch_gpu @slow class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :Dict ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _lowerCamelCase ( cls :Optional[int] ) -> Dict: __UpperCamelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) __UpperCamelCase : Union[str, Any] = raw_image.convert("RGB" ).resize((7_6_8, 7_6_8) ) __UpperCamelCase : List[str] = raw_image def _lowerCamelCase ( self :Optional[int] ) -> Optional[Any]: __UpperCamelCase : Dict = torch.manual_seed(0 ) __UpperCamelCase : int = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=a , torch_dtype=torch.floataa ) __UpperCamelCase : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config ) __UpperCamelCase : Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a ) __UpperCamelCase : Tuple = """a bowl of fruit""" __UpperCamelCase : List[Any] = """a bowl of pears""" __UpperCamelCase : str = pipe.generate_mask( image=self.raw_image , source_prompt=a , target_prompt=a , generator=a , ) __UpperCamelCase : Tuple = pipe.invert( prompt=a , image=self.raw_image , inpaint_strength=0.7 , generator=a ).latents __UpperCamelCase : Any = pipe( prompt=a , mask_image=a , image_latents=a , generator=a , negative_prompt=a , inpaint_strength=0.7 , output_type="numpy" , ).images[0] __UpperCamelCase : List[str] = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5E-1 def _lowerCamelCase ( self :Union[str, Any] ) -> Optional[Any]: __UpperCamelCase : Optional[Any] = torch.manual_seed(0 ) __UpperCamelCase : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=a , torch_dtype=torch.floataa ) __UpperCamelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __UpperCamelCase : Any = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a ) __UpperCamelCase : int = """a bowl of fruit""" __UpperCamelCase : int = """a bowl of pears""" __UpperCamelCase : str = pipe.generate_mask( image=self.raw_image , source_prompt=a , target_prompt=a , generator=a , ) __UpperCamelCase : Any = pipe.invert( prompt=a , image=self.raw_image , inpaint_strength=0.7 , generator=a , num_inference_steps=2_5 , ).latents __UpperCamelCase : str = pipe( prompt=a , mask_image=a , image_latents=a , generator=a , negative_prompt=a , inpaint_strength=0.7 , num_inference_steps=2_5 , output_type="numpy" , ).images[0] __UpperCamelCase : Tuple = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5E-1
232
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : Any = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AlbertTokenizer lowercase = AlbertTokenizerFast lowercase = True lowercase = True lowercase = True def _lowercase( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Optional[int] = AlbertTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self , A ) -> int: UpperCAmelCase : Optional[int] = """this is a test""" UpperCAmelCase : Dict = """this is a test""" return input_text, output_text def _lowercase( self ) -> int: UpperCAmelCase : Tuple = """<pad>""" UpperCAmelCase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Any: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(A ) , 30000 ) def _lowercase( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _lowercase( self ) -> Union[str, Any]: if not self.test_rust_tokenizer: return UpperCAmelCase : int = self.get_tokenizer() UpperCAmelCase : List[str] = self.get_rust_tokenizer() UpperCAmelCase : Optional[Any] = """I was born in 92000, and this is falsé.""" UpperCAmelCase : str = tokenizer.tokenize(A ) UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) UpperCAmelCase : Any = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = tokenizer.encode(A ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) def _lowercase( self ) -> Any: UpperCAmelCase : List[Any] = AlbertTokenizer(A , keep_accents=A ) UpperCAmelCase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [48, 25, 21, 1289] ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = AlbertTokenizer(A ) UpperCAmelCase : Optional[int] = tokenizer.encode("""sequence builders""" ) UpperCAmelCase : Any = tokenizer.encode("""multi-sequence build""" ) UpperCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowercase( self ) -> Dict: # fmt: off UpperCAmelCase : Tuple = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
265
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ = len(set_a.intersection(__lowerCamelCase ) ) if alternative_union: lowercase_ = len(__lowerCamelCase ) + len(__lowerCamelCase ) else: lowercase_ = len(set_a.union(__lowerCamelCase ) ) return intersection / union if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(__lowerCamelCase , (list, tuple) ): lowercase_ = [element for element in set_a if element in set_b] if alternative_union: lowercase_ = len(__lowerCamelCase ) + len(__lowerCamelCase ) return len(__lowerCamelCase ) / union else: lowercase_ = set_a + [element for element in set_b if element not in set_a] return len(__lowerCamelCase ) / len(__lowerCamelCase ) return len(__lowerCamelCase ) / len(__lowerCamelCase ) return None if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = {"""a""", """b""", """c""", """d""", """e"""} SCREAMING_SNAKE_CASE__ = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
361
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device UpperCAmelCase : str = False class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[str] = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) __UpperCAmelCase : Tuple = torch.manual_seed(0 ) __UpperCAmelCase : str = pipe( image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images __UpperCAmelCase : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase : Any = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
115
lowerCAmelCase : str = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
253
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : Tuple = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class _UpperCAmelCase ( lowerCAmelCase_ ): a : int ="""t5""" a : Optional[Any] =["""past_key_values"""] a : Optional[int] ={"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self,__SCREAMING_SNAKE_CASE=3_21_28,__SCREAMING_SNAKE_CASE=5_12,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=6,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=8,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE=1_28,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=1e-6,__SCREAMING_SNAKE_CASE=1.0,__SCREAMING_SNAKE_CASE="relu",__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=0,__SCREAMING_SNAKE_CASE=1,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = d_kv __lowerCAmelCase = d_ff __lowerCAmelCase = num_layers __lowerCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowerCAmelCase = num_heads __lowerCAmelCase = relative_attention_num_buckets __lowerCAmelCase = relative_attention_max_distance __lowerCAmelCase = dropout_rate __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_factor __lowerCAmelCase = feed_forward_proj __lowerCAmelCase = use_cache __lowerCAmelCase = self.feed_forward_proj.split("""-""" ) __lowerCAmelCase = act_info[-1] __lowerCAmelCase = act_info[0] == """gated""" if len(__SCREAMING_SNAKE_CASE ) > 1 and act_info[0] != "gated" or len(__SCREAMING_SNAKE_CASE ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowerCAmelCase = """gelu_new""" super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,is_encoder_decoder=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) class _UpperCAmelCase ( lowerCAmelCase_ ): @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: __lowerCAmelCase = """past_encoder_sequence + sequence""" __lowerCAmelCase = {0: """batch"""} __lowerCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """decoder_sequence"""} __lowerCAmelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
46
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _UpperCAmelCase ( lowerCAmelCase_ ): def lowerCamelCase__ ( self ): '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self._create_example_records() __lowerCAmelCase = Dataset.from_list(__SCREAMING_SNAKE_CASE ) self.assertListEqual(dset.column_names,["""col_1""", """col_2"""] ) for i, r in enumerate(__SCREAMING_SNAKE_CASE ): self.assertDictEqual(__SCREAMING_SNAKE_CASE,example_records[i] ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self._create_example_records() __lowerCAmelCase = Dataset.from_list(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info,dset_from_dict.info ) def lowerCamelCase__ ( self ): # checks what happens with missing columns '''simple docstring''' __lowerCAmelCase = [{"""col_1""": 1}, {"""col_2""": """x"""}] __lowerCAmelCase = Dataset.from_list(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset[0],{"""col_1""": 1} ) self.assertDictEqual(dset[1],{"""col_1""": None} ) # NB: first record is used for columns def lowerCamelCase__ ( self ): # checks if the type can be inferred from the second record '''simple docstring''' __lowerCAmelCase = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __lowerCAmelCase = Dataset.from_list(__SCREAMING_SNAKE_CASE ) self.assertEqual(dset.info.features["""col_1"""],Sequence(Value("""int64""" ) ) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = Dataset.from_list([] ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ),0 ) self.assertListEqual(dset.column_names,[] )
46
1
from __future__ import annotations import typing from collections import Counter def UpperCAmelCase_ ( __snake_case ) -> typing.Counter[int]: """simple docstring""" _lowercase =Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(__snake_case , max_perimeter + 1 ): _lowercase =(base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__snake_case ): _lowercase =int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def UpperCAmelCase_ ( __snake_case = 1000 ) -> int: """simple docstring""" _lowercase =pythagorean_triple(__snake_case ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
5
from typing import Union import fire import torch from tqdm import tqdm def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ = "cpu" , lowerCAmelCase_ = None )-> None: lowerCAmelCase_ : str = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase_ , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowerCAmelCase_ : int = v.half() if save_path is None: # overwrite src_path lowerCAmelCase_ : Tuple = src_path torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": fire.Fire(convert)
262
0
"""simple docstring""" from PIL import Image def lowerCamelCase_ (UpperCamelCase__ : Image , UpperCamelCase__ : int ): _UpperCAmelCase : Union[str, Any] = (259 * (level + 255)) / (255 * (259 - level)) def contrast(UpperCamelCase__ : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(UpperCamelCase__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _lowerCAmelCase :Union[str, Any] = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
68
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=a ): '''simple docstring''' a__ =['''transformers''', '''torch''', '''note_seq'''] def __init__( self , *A , **A ) -> int: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
68
1
class A__ : def __init__( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = {} def _lowerCamelCase ( self : List[str] ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(lowerCAmelCase__ , ' -> ' , ' -> '.join([str(lowerCAmelCase__ ) for j in self.vertex[i]] ) ) def _lowerCamelCase ( self : List[Any] , a : Any , a : List[str] ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCAmelCase__ ) else: # else make a new vertex lowerCAmelCase__ : Dict = [to_vertex] def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = True print(lowerCAmelCase__ , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase__ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
212
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( lowercase ): UpperCAmelCase : Tuple = """philschmid/bart-large-cnn-samsum""" UpperCAmelCase : str = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) UpperCAmelCase : List[str] = """summarizer""" UpperCAmelCase : List[Any] = AutoTokenizer UpperCAmelCase : Any = AutoModelForSeqaSeqLM UpperCAmelCase : Any = ["""text"""] UpperCAmelCase : Optional[Any] = ["""text"""] def _lowercase (self : Optional[Any] , _A : List[str]) -> Dict: return self.pre_processor(_A , return_tensors='pt' , truncation=_A) def _lowercase (self : List[str] , _A : Dict) -> int: return self.model.generate(**_A)[0] def _lowercase (self : Optional[int] , _A : int) -> Optional[Any]: return self.pre_processor.decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A)
95
"""simple docstring""" import numpy # List of input, output pairs _a : Optional[int]= ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _a : int= (((515, 22, 13), 555), ((61, 35, 49), 150)) _a : List[Any]= [2, 4, 1, 5] _a : Optional[int]= len(train_data) _a : str= 0.0_0_9 def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]="train" ) -> int: '''simple docstring''' return calculate_hypothesis_value(UpperCAmelCase_ , UpperCAmelCase_ ) - output( UpperCAmelCase_ , UpperCAmelCase_ ) def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> Dict: '''simple docstring''' __snake_case : int = 0 for i in range(len(UpperCAmelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) -> List[Any]: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] ) -> Any: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=m ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = 0 for i in range(UpperCAmelCase_ ): if index == -1: summation_value += _error(UpperCAmelCase_ ) else: summation_value += _error(UpperCAmelCase_ ) * train_data[i][0][index] return summation_value def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> str: '''simple docstring''' __snake_case : Dict = summation_of_cost_derivative(UpperCAmelCase_ , UpperCAmelCase_ ) / m return cost_derivative_value def __UpperCAmelCase ( ) -> List[str]: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __snake_case : Dict = 0.000_002 __snake_case : Optional[int] = 0 __snake_case : str = 0 while True: j += 1 __snake_case : Optional[int] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase_ ) ): __snake_case : Union[str, Any] = get_cost_derivative(i - 1 ) __snake_case : Any = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase_ , UpperCAmelCase_ , atol=UpperCAmelCase_ , rtol=UpperCAmelCase_ , ): break __snake_case : Optional[Any] = temp_parameter_vector print(('Number of iterations:', j) ) def __UpperCAmelCase ( ) -> int: '''simple docstring''' for i in range(len(UpperCAmelCase_ ) ): print(('Actual output value:', output(UpperCAmelCase_ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase_ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
95
1
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCamelCase__ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __lowerCAmelCase (_UpperCamelCase ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return max(metric_fn(_UpperCamelCase , _UpperCamelCase ) for gt in ground_truths ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = [line.strip() for line in open(_UpperCamelCase , 'r' ).readlines()] __lowerCAmelCase : List[Any] = [] if args.gold_data_mode == "qa": __lowerCAmelCase : Optional[Any] = pd.read_csv(_UpperCamelCase , sep='\t' , header=_UpperCamelCase ) for answer_list in data[1]: __lowerCAmelCase : Union[str, Any] = ast.literal_eval(_UpperCamelCase ) answers.append(_UpperCamelCase ) else: __lowerCAmelCase : Optional[int] = [line.strip() for line in open(_UpperCamelCase , 'r' ).readlines()] __lowerCAmelCase : Optional[int] = [[reference] for reference in references] __lowerCAmelCase : int = 0 for prediction, ground_truths in zip(_UpperCamelCase , _UpperCamelCase ): total += 1 em += metric_max_over_ground_truths(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) fa += metric_max_over_ground_truths(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = 100.0 * em / total __lowerCAmelCase : str = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : str = args.k __lowerCAmelCase : int = [line.strip() for line in open(_UpperCamelCase , 'r' ).readlines()] __lowerCAmelCase : str = [line.strip() for line in open(_UpperCamelCase , 'r' ).readlines()] __lowerCAmelCase : Tuple = 0 for hypo, reference in zip(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Optional[Any] = set(hypo.split('\t' )[:k] ) __lowerCAmelCase : Optional[Any] = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __lowerCAmelCase : str = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): def strip_title(_UpperCamelCase ): if title.startswith('"' ): __lowerCAmelCase : Any = title[1:] if title.endswith('"' ): __lowerCAmelCase : List[Any] = title[:-1] return title __lowerCAmelCase : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _UpperCamelCase , return_tensors='pt' , padding=_UpperCamelCase , truncation=_UpperCamelCase , )['input_ids'].to(args.device ) __lowerCAmelCase : Optional[int] = rag_model.rag.question_encoder(_UpperCamelCase ) __lowerCAmelCase : Dict = question_enc_outputs[0] __lowerCAmelCase : Dict = rag_model.retriever( _UpperCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) __lowerCAmelCase : Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __lowerCAmelCase : Tuple = [] for docs in all_docs: __lowerCAmelCase : int = [strip_title(_UpperCamelCase ) for title in docs['title']] provenance_strings.append('\t'.join(_UpperCamelCase ) ) return provenance_strings def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): with torch.no_grad(): __lowerCAmelCase : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _UpperCamelCase , return_tensors='pt' , padding=_UpperCamelCase , truncation=_UpperCamelCase ) __lowerCAmelCase : Tuple = inputs_dict.input_ids.to(args.device ) __lowerCAmelCase : Any = inputs_dict.attention_mask.to(args.device ) __lowerCAmelCase : Dict = rag_model.generate( # rag_model overwrites generate _UpperCamelCase , attention_mask=_UpperCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_UpperCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __lowerCAmelCase : List[Any] = rag_model.retriever.generator_tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) if args.print_predictions: for q, a in zip(_UpperCamelCase , _UpperCamelCase ): logger.info('Q: {} - A: {}'.format(_UpperCamelCase , _UpperCamelCase ) ) return answers def __lowerCAmelCase (): __lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=_UpperCamelCase , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=_UpperCamelCase , choices=['exact', 'compressed', 'legacy'] , type=_UpperCamelCase , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=_UpperCamelCase , type=_UpperCamelCase , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=_UpperCamelCase , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=_UpperCamelCase , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=_UpperCamelCase , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=_UpperCamelCase , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=_UpperCamelCase , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=_UpperCamelCase , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=_UpperCamelCase , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=_UpperCamelCase , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=_UpperCamelCase , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) __lowerCAmelCase : Tuple = parser.parse_args() __lowerCAmelCase : Union[str, Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : List[str] = {} if args.model_type is None: __lowerCAmelCase : Tuple = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): __lowerCAmelCase : Union[str, Any] = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration __lowerCAmelCase : Tuple = args.n_docs if args.index_name is not None: __lowerCAmelCase : List[Any] = args.index_name if args.index_path is not None: __lowerCAmelCase : Tuple = args.index_path else: __lowerCAmelCase : List[Any] = BartForConditionalGeneration __lowerCAmelCase : Any = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , _UpperCamelCase ) __lowerCAmelCase : str = get_scores if args.eval_mode == 'e2e' else get_precision_at_k __lowerCAmelCase : Optional[Any] = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(_UpperCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(_UpperCamelCase ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): __lowerCAmelCase : str = RagRetriever.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) __lowerCAmelCase : Tuple = model_class.from_pretrained(_UpperCamelCase , retriever=_UpperCamelCase , **_UpperCamelCase ) model.retriever.init_retrieval() else: __lowerCAmelCase : Dict = model_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: __lowerCAmelCase : Tuple = [] for line in tqdm(_UpperCamelCase ): questions.append(line.strip() ) if len(_UpperCamelCase ) == args.eval_batch_size: __lowerCAmelCase : Union[str, Any] = evaluate_batch_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) preds_file.write('\n'.join(_UpperCamelCase ) + '\n' ) preds_file.flush() __lowerCAmelCase : Optional[Any] = [] if len(_UpperCamelCase ) > 0: __lowerCAmelCase : List[str] = evaluate_batch_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) preds_file.write('\n'.join(_UpperCamelCase ) ) preds_file.flush() score_fn(_UpperCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCamelCase__ = get_args() main(args)
86
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : Tuple = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def lowerCAmelCase ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: UpperCAmelCase__ = TOKENIZER_CLASSES else: UpperCAmelCase__ = {tokenizer_name: getattr(_lowerCAmelCase , tokenizer_name + "Fast" )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: UpperCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] UpperCAmelCase__ = True if checkpoint_name is None: UpperCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCAmelCase__ = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer UpperCAmelCase__ = tokenizer_class.from_pretrained(_lowerCAmelCase , force_download=_lowerCAmelCase ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: UpperCAmelCase__ , UpperCAmelCase__ = checkpoint.split("/" ) UpperCAmelCase__ = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) elif add_prefix: UpperCAmelCase__ = checkpoint UpperCAmelCase__ = dump_path else: UpperCAmelCase__ = None UpperCAmelCase__ = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCAmelCase__ = file_path.split(_lowerCAmelCase )[-1][0] if next_char == "/": UpperCAmelCase__ = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) UpperCAmelCase__ = tokenizer.save_pretrained( _lowerCAmelCase , legacy_format=_lowerCAmelCase , filename_prefix=_lowerCAmelCase ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(_lowerCAmelCase ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) _lowerCAmelCase : str = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
169
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase : Union[str, Any] = get_tests_dir('fixtures') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @classmethod def UpperCAmelCase_ ( cls )-> int: '''simple docstring''' UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def UpperCAmelCase_ ( cls )-> Optional[int]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_ , repo_id='test-feature-extractor' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_ , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
251
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : Any = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase : int = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } lowerCAmelCase : Tuple = { 'google/realm-cc-news-pretrained-embedder': 5_12, 'google/realm-cc-news-pretrained-encoder': 5_12, 'google/realm-cc-news-pretrained-scorer': 5_12, 'google/realm-cc-news-pretrained-openqa': 5_12, 'google/realm-orqa-nq-openqa': 5_12, 'google/realm-orqa-nq-reader': 5_12, 'google/realm-orqa-wq-openqa': 5_12, 'google/realm-orqa-wq-reader': 5_12, } lowerCAmelCase : Union[str, Any] = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = RealmTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , )-> Tuple: '''simple docstring''' super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , A_ ) != do_lower_case or normalizer_state.get('strip_accents' , A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , A_ ) != tokenize_chinese_chars ): UpperCamelCase = getattr(A_ , normalizer_state.pop('type' ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**A_ ) UpperCamelCase = do_lower_case def UpperCAmelCase_ ( self , A_ , **A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = PaddingStrategy.MAX_LENGTH UpperCamelCase = text UpperCamelCase = kwargs.pop('text_pair' , A_ ) UpperCamelCase = kwargs.pop('return_tensors' , A_ ) UpperCamelCase = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(A_ ): if batch_text_pair is not None: UpperCamelCase = batch_text_pair[idx] else: UpperCamelCase = None UpperCamelCase = super().__call__(A_ , A_ , return_tensors=A_ , **A_ ) UpperCamelCase = encoded_candidates.get('input_ids' ) UpperCamelCase = encoded_candidates.get('attention_mask' ) UpperCamelCase = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(A_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(A_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(A_ ) UpperCamelCase = {key: item for key, item in output_data.items() if len(A_ ) != 0} return BatchEncoding(A_ , tensor_type=A_ ) def UpperCAmelCase_ ( self , A_ , A_=None )-> Any: '''simple docstring''' UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self , A_ , A_ = None )-> List[int]: '''simple docstring''' UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self , A_ , A_ = None )-> Tuple[str]: '''simple docstring''' UpperCamelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
251
1
"""simple docstring""" class lowerCamelCase : '''simple docstring''' def __init__(self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = """""" UpperCAmelCase__ : str = """""" UpperCAmelCase__ : Dict = [] def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: UpperCAmelCase__ : Tuple = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: UpperCAmelCase__ : Any = self.__min_dist_top_down_dp(_lowerCamelCase , n - 1 ) UpperCAmelCase__ : Tuple = self.__min_dist_top_down_dp(m - 1 , _lowerCamelCase ) UpperCAmelCase__ : Tuple = self.__min_dist_top_down_dp(m - 1 , n - 1 ) UpperCAmelCase__ : Tuple = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return self.dp[m][n] def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = worda UpperCAmelCase__ : List[Any] = worda UpperCAmelCase__ : Optional[int] = [[-1 for _ in range(len(_lowerCamelCase ) )] for _ in range(len(_lowerCamelCase ) )] return self.__min_dist_top_down_dp(len(_lowerCamelCase ) - 1 , len(_lowerCamelCase ) - 1 ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = worda UpperCAmelCase__ : List[Any] = worda UpperCAmelCase__ : Any = len(_lowerCamelCase ) UpperCAmelCase__ : List[str] = len(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty UpperCAmelCase__ : List[Any] = j elif j == 0: # second string is empty UpperCAmelCase__ : int = i elif worda[i - 1] == worda[j - 1]: # last characters are equal UpperCAmelCase__ : Optional[Any] = self.dp[i - 1][j - 1] else: UpperCAmelCase__ : Tuple = self.dp[i][j - 1] UpperCAmelCase__ : Union[str, Any] = self.dp[i - 1][j] UpperCAmelCase__ : List[str] = self.dp[i - 1][j - 1] UpperCAmelCase__ : Any = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return self.dp[m][n] if __name__ == "__main__": _A = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() _A = input("""Enter the first string: """).strip() _A = input("""Enter the second string: """).strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
171
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = BioGptTokenizer SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCAmelCase__ : str = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCAmelCase__ : Union[str, Any] = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowerCamelCase ) ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Tuple = """lower newer""" UpperCAmelCase__ : int = """lower newer""" return input_text, output_text def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : List[str] = """lower""" UpperCAmelCase__ : Optional[Any] = ["""low""", """er</w>"""] UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Optional[int] = tokens + ["""<unk>"""] UpperCAmelCase__ : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) UpperCAmelCase__ : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) UpperCAmelCase__ : str = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
171
1
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : str , lowercase_ : Optional[Any] , lowercase_ : int=13 , lowercase_ : Optional[Any]=10 , lowercase_ : int=3 , lowercase_ : str=2 , lowercase_ : Dict=2 , lowercase_ : Dict=2 , lowercase_ : Tuple=True , lowercase_ : Dict=True , lowercase_ : Optional[Any]=32 , lowercase_ : str=5 , lowercase_ : Optional[int]=4 , lowercase_ : int=37 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Dict=10 , lowercase_ : Dict=0.02 , lowercase_ : List[Any]=0.9 , lowercase_ : List[Any]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = parent SCREAMING_SNAKE_CASE_ : Dict = batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_size SCREAMING_SNAKE_CASE_ : str = num_channels SCREAMING_SNAKE_CASE_ : Tuple = patch_size SCREAMING_SNAKE_CASE_ : List[Any] = tubelet_size SCREAMING_SNAKE_CASE_ : List[str] = num_frames SCREAMING_SNAKE_CASE_ : List[Any] = is_training SCREAMING_SNAKE_CASE_ : List[Any] = use_labels SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Tuple = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = mask_ratio SCREAMING_SNAKE_CASE_ : Dict = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame SCREAMING_SNAKE_CASE_ : str = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ : Optional[int] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos SCREAMING_SNAKE_CASE_ : Optional[int] = int(mask_ratio * self.seq_length) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : str = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = VideoMAEModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = VideoMAEForPreTraining(lowercase_) model.to(lowercase_) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.ones((self.num_masks,)) SCREAMING_SNAKE_CASE_ : List[str] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) SCREAMING_SNAKE_CASE_ : List[str] = mask.expand(self.batch_size , -1).bool() SCREAMING_SNAKE_CASE_ : int = model(lowercase_ , lowercase_) # model only returns predictions for masked patches SCREAMING_SNAKE_CASE_ : str = mask.sum().item() SCREAMING_SNAKE_CASE_ : Dict = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels)) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __UpperCamelCase = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = VideoMAEModelTester(self) SCREAMING_SNAKE_CASE_ : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Any=False): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = copy.deepcopy(lowercase_) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE_ : Tuple = torch.ones((self.model_tester.num_masks,)) SCREAMING_SNAKE_CASE_ : List[str] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) SCREAMING_SNAKE_CASE_ : Tuple = mask.expand(self.model_tester.batch_size , -1).bool() SCREAMING_SNAKE_CASE_ : List[str] = bool_masked_pos.to(lowercase_) if return_labels: if model_class in [ *get_values(lowercase_), ]: SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''') def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Dict = model_class(lowercase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : List[Any] = VideoMAEModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : str = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE_ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : List[Any] = model_class(lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : str = model(**self._prepare_for_class(lowercase_ , lowercase_)) SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs.attentions self.assertEqual(len(lowercase_) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ : Any = True SCREAMING_SNAKE_CASE_ : Optional[int] = model_class(lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_)) SCREAMING_SNAKE_CASE_ : List[Any] = outputs.attentions self.assertEqual(len(lowercase_) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) SCREAMING_SNAKE_CASE_ : str = len(lowercase_) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Optional[int] = model_class(lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_)) self.assertEqual(out_len + 1 , len(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowercase_) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' def check_hidden_states_output(lowercase_ : Any , lowercase_ : Tuple , lowercase_ : int): SCREAMING_SNAKE_CASE_ : Dict = model_class(lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_)) SCREAMING_SNAKE_CASE_ : str = outputs.hidden_states SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase_) , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE_ : str = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : Optional[int] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' pass def _A () -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) SCREAMING_SNAKE_CASE_ : Any = np.load(__a ) return list(__a ) @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''').to( lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_ : str = prepare_video() SCREAMING_SNAKE_CASE_ : Dict = image_processor(lowercase_ , return_tensors='''pt''').to(lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : int = model(**lowercase_) # verify the logits SCREAMING_SNAKE_CASE_ : Dict = torch.Size((1, 400)) self.assertEqual(outputs.logits.shape , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([0.36_69, -0.06_88, -0.24_21]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4)) @slow def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''').to(lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.default_image_processor SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_video() SCREAMING_SNAKE_CASE_ : List[str] = image_processor(lowercase_ , return_tensors='''pt''').to(lowercase_) # add boolean mask, indicating which patches to mask SCREAMING_SNAKE_CASE_ : Dict = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.load(lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = model(**lowercase_) # verify the logits SCREAMING_SNAKE_CASE_ : Tuple = torch.Size([1, 1408, 1536]) SCREAMING_SNAKE_CASE_ : str = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=lowercase_) self.assertEqual(outputs.logits.shape , lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase_ , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `True`) SCREAMING_SNAKE_CASE_ : Any = torch.tensor([0.51_42] , device=lowercase_) self.assertTrue(torch.allclose(outputs.loss , lowercase_ , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `False`) SCREAMING_SNAKE_CASE_ : Optional[int] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=lowercase_).to( lowercase_) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(**lowercase_) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(torch.tensor([0.64_69]) , device=lowercase_) self.assertTrue(torch.allclose(outputs.loss , lowercase_ , atol=1e-4))
318
"""simple docstring""" from scipy.stats import pearsonr import datasets UpperCAmelCase_ : List[Any] = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ UpperCAmelCase_ : Optional[int] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ UpperCAmelCase_ : Tuple = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=False): '''simple docstring''' if return_pvalue: SCREAMING_SNAKE_CASE_ : int = pearsonr(lowercase_ , lowercase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase_ , lowercase_)[0])}
318
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__(self : List[Any] , a__ : Optional[int] , a__ : Optional[int]=13 , a__ : List[Any]=7 , a__ : Dict=True , a__ : Optional[Any]=True , a__ : List[Any]=True , a__ : Optional[Any]=True , a__ : Optional[int]=99 , a__ : Optional[Any]=32 , a__ : List[str]=5 , a__ : Any=4 , a__ : str=37 , a__ : Optional[int]="gelu" , a__ : Optional[Any]=0.1 , a__ : Dict=0.1 , a__ : Any=512 , a__ : Union[str, Any]=16 , a__ : Any=2 , a__ : Optional[int]=0.0_2 , a__ : Optional[int]=4 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_attention_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_choices def a (self : Union[str, Any] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_attention_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a (self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def a (self : Dict ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = True __snake_case = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Any = True A_ : Optional[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def a (self : Dict ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormModelTester(self ) @slow def a (self : List[Any] ): """simple docstring""" for model_class_name in self.all_model_classes: __snake_case = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(a__ ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def a (self : str ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __snake_case = model(a__ )[0] __snake_case = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , a__ ) # compare the actual values for a slice. __snake_case = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) ) @slow def a (self : Any ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __snake_case = model(a__ )[0] # compare the actual values for a slice. __snake_case = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) )
24
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
0
from math import pi def _lowerCAmelCase ( A__: List[str] , A__: Optional[Any] ): '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
371
def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] UpperCAmelCase = 6 UpperCAmelCase = 1 UpperCAmelCase = 1901 UpperCAmelCase = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 UpperCAmelCase = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 UpperCAmelCase = day - 29 else: if day > days_per_month[month - 1]: month += 1 UpperCAmelCase = day - days_per_month[month - 2] if month > 12: year += 1 UpperCAmelCase = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
152
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''SpeechT5FeatureExtractor''' __lowerCAmelCase = '''SpeechT5Tokenizer''' def __init__(self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__(self : int , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Dict ): A = kwargs.pop("""audio""" , _lowerCAmelCase ) A = kwargs.pop("""text""" , _lowerCAmelCase ) A = kwargs.pop("""text_target""" , _lowerCAmelCase ) A = kwargs.pop("""audio_target""" , _lowerCAmelCase ) A = kwargs.pop("""sampling_rate""" , _lowerCAmelCase ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: A = self.feature_extractor(_lowerCAmelCase , *_lowerCAmelCase , sampling_rate=_lowerCAmelCase , **_lowerCAmelCase ) elif text is not None: A = self.tokenizer(_lowerCAmelCase , **_lowerCAmelCase ) else: A = None if audio_target is not None: A = self.feature_extractor(audio_target=_lowerCAmelCase , *_lowerCAmelCase , sampling_rate=_lowerCAmelCase , **_lowerCAmelCase ) A = targets["""input_values"""] elif text_target is not None: A = self.tokenizer(_lowerCAmelCase , **_lowerCAmelCase ) A = targets["""input_ids"""] else: A = None if inputs is None: return targets if targets is not None: A = labels A = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: A = decoder_attention_mask return inputs def A (self : str , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Optional[int] ): A = kwargs.pop("""input_values""" , _lowerCAmelCase ) A = kwargs.pop("""input_ids""" , _lowerCAmelCase ) A = kwargs.pop("""labels""" , _lowerCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: A = self.feature_extractor.pad(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) elif input_ids is not None: A = self.tokenizer.pad(_lowerCAmelCase , **_lowerCAmelCase ) else: A = None if labels is not None: if "input_ids" in labels or (isinstance(_lowerCAmelCase , _lowerCAmelCase ) and "input_ids" in labels[0]): A = self.tokenizer.pad(_lowerCAmelCase , **_lowerCAmelCase ) A = targets["""input_ids"""] else: A = self.feature_extractor.feature_size A = self.feature_extractor.num_mel_bins A = self.feature_extractor.pad(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) A = feature_size_hack A = targets["""input_values"""] else: A = None if inputs is None: return targets if targets is not None: A = labels A = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: A = decoder_attention_mask return inputs def A (self : List[str] , *_lowerCAmelCase : Any , **_lowerCAmelCase : Union[str, Any] ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : Union[str, Any] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Dict ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase )
258
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''encodec''' def __init__(self : List[Any] , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : List[str]=2_4000 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Dict=128 , _lowerCAmelCase : Any=32 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : int=[8, 5, 4, 2] , _lowerCAmelCase : Any="weight_norm" , _lowerCAmelCase : List[str]=7 , _lowerCAmelCase : int=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : str="reflect" , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Tuple=1.0 , _lowerCAmelCase : Tuple=1024 , _lowerCAmelCase : str=None , _lowerCAmelCase : Dict=True , **_lowerCAmelCase : List[str] , ): A = target_bandwidths A = sampling_rate A = audio_channels A = normalize A = chunk_length_s A = overlap A = hidden_size A = num_filters A = num_residual_layers A = upsampling_ratios A = norm_type A = kernel_size A = last_kernel_size A = residual_kernel_size A = dilation_growth_rate A = use_causal_conv A = pad_mode A = compress A = num_lstm_layers A = trim_right_ratio A = codebook_size A = codebook_dim if codebook_dim is not None else hidden_size A = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**_lowerCAmelCase ) @property def A (self : List[Any] ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A (self : Union[str, Any] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A (self : Any ): A = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A (self : List[str] ): return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
258
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _a ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=SCREAMING_SNAKE_CASE__ ) env_command_parser(subparsers=SCREAMING_SNAKE_CASE__ ) launch_command_parser(subparsers=SCREAMING_SNAKE_CASE__ ) tpu_command_parser(subparsers=SCREAMING_SNAKE_CASE__ ) test_command_parser(subparsers=SCREAMING_SNAKE_CASE__ ) # Let's go SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE__ , "func" ): parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
356
def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> int: '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError("String lengths must match!" ) SCREAMING_SNAKE_CASE__ : Dict = 0 for chara, chara in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
191
0
A__ : Union[str, Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__ : List[Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__ : List[Any] = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' assert len(str(lowerCamelCase_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: lowercase__ = year // 100 lowercase__ = (5 * (century % 4) + 2) % 7 lowercase__ = year % 100 lowercase__ = centurian % 12 lowercase__ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowercase__ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) lowercase__ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
207
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( A__ ,A__ ): """simple docstring""" lowercase__ = """pixel_values""" lowercase__ = False lowercase__ = TimmBackboneConfig def __init__( self : Tuple, lowerCamelCase : List[str], **lowerCamelCase : List[str] ): '''simple docstring''' requires_backends(self, '''timm''' ) super().__init__(lowerCamelCase ) lowercase__ = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCamelCase, '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) lowercase__ = getattr(lowerCamelCase, '''use_pretrained_backbone''', lowerCamelCase ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. lowercase__ = config.out_indices if getattr(lowerCamelCase, '''out_indices''', lowerCamelCase ) is not None else (-1,) lowercase__ = timm.create_model( config.backbone, pretrained=lowerCamelCase, features_only=config.features_only, in_chans=config.num_channels, out_indices=lowerCamelCase, **lowerCamelCase, ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowercase__ = self._backbone.return_layers lowercase__ = {layer['''module''']: str(lowerCamelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCamelCase ) @classmethod def lowercase__ ( cls : List[str], lowerCamelCase : List[str], *lowerCamelCase : Optional[int], **lowerCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls, ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig lowercase__ = kwargs.pop('''config''', TimmBackboneConfig() ) lowercase__ = kwargs.pop('''use_timm_backbone''', lowerCamelCase ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) lowercase__ = kwargs.pop('''num_channels''', config.num_channels ) lowercase__ = kwargs.pop('''features_only''', config.features_only ) lowercase__ = kwargs.pop('''use_pretrained_backbone''', config.use_pretrained_backbone ) lowercase__ = kwargs.pop('''out_indices''', config.out_indices ) lowercase__ = TimmBackboneConfig( backbone=lowerCamelCase, num_channels=lowerCamelCase, features_only=lowerCamelCase, use_pretrained_backbone=lowerCamelCase, out_indices=lowerCamelCase, ) return super()._from_config(lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : List[Any], lowerCamelCase : Optional[Any] ): '''simple docstring''' pass def lowercase__ ( self : int, lowerCamelCase : int, lowerCamelCase : Optional[int]=None, lowerCamelCase : List[Any]=None, lowerCamelCase : int=None, **lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowercase__ = self._all_layers lowercase__ = self._backbone(lowerCamelCase, **lowerCamelCase ) lowercase__ = self._return_layers lowercase__ = tuple(hidden_states[i] for i in self.out_indices ) else: lowercase__ = self._backbone(lowerCamelCase, **lowerCamelCase ) lowercase__ = None lowercase__ = tuple(lowerCamelCase ) lowercase__ = tuple(lowerCamelCase ) if hidden_states is not None else None if not return_dict: lowercase__ = (feature_maps,) if output_hidden_states: lowercase__ = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCamelCase, hidden_states=lowerCamelCase, attentions=lowerCamelCase )
207
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=2 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=36 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=5_12 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=6 , _UpperCAmelCase=6 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=10_00 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = patch_size snake_case_ = text_seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = coordinate_size snake_case_ = shape_size snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) snake_case_ = text_seq_length snake_case_ = (image_size // patch_size) ** 2 + 1 snake_case_ = self.text_seq_length + self.image_seq_length def UpperCamelCase__ ( self ): snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = t snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.text_seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) snake_case_ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = LayoutLMvaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # text + image snake_case_ = model(_UpperCAmelCase , pixel_values=_UpperCAmelCase ) snake_case_ = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only snake_case_ = model(pixel_values=_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = self.num_labels snake_case_ = LayoutLMvaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = self.num_labels snake_case_ = LayoutLMvaForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = LayoutLMvaForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model( _UpperCAmelCase , bbox=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = False __snake_case = False __snake_case = False __snake_case = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __snake_case = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase__ ( self ): snake_case_ = LayoutLMvaModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): snake_case_ = copy.deepcopy(_UpperCAmelCase ) if model_class in get_values(_UpperCAmelCase ): snake_case_ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_UpperCAmelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_UpperCAmelCase ): snake_case_ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) elif model_class in get_values(_UpperCAmelCase ): snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) elif model_class in [ *get_values(_UpperCAmelCase ), ]: snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) elif model_class in [ *get_values(_UpperCAmelCase ), ]: snake_case_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_UpperCAmelCase , ) return inputs_dict def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) @slow def UpperCamelCase__ ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = LayoutLMvaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowerCAmelCase ()-> Dict: """simple docstring""" snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ): return LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ): snake_case_ = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(_UpperCAmelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).pixel_values.to(_UpperCAmelCase ) snake_case_ = torch.tensor([[1, 2]] ) snake_case_ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass snake_case_ = model( input_ids=input_ids.to(_UpperCAmelCase ) , bbox=bbox.to(_UpperCAmelCase ) , pixel_values=pixel_values.to(_UpperCAmelCase ) , ) # verify the logits snake_case_ = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , _UpperCAmelCase ) snake_case_ = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
365
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInpaintPipeline __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case = frozenset([] ) def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) snake_case_ = CLIPTextModel(_UpperCAmelCase ) snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) snake_case_ = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_UpperCAmelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCAmelCase ) else: snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**_UpperCAmelCase ) snake_case_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = self.get_dummy_inputs(_UpperCAmelCase ) snake_case_ = sd_pipe(**_UpperCAmelCase ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase__ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = PNDMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , scheduler=_UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='''np''' , ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
267
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE__ = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["GLPNFeatureExtractor"] SCREAMING_SNAKE_CASE__ = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
46
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 42 class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): @register_to_config def __init__( self , lowercase = 3 , lowercase = 3 , lowercase = ("DownEncoderBlock2D",) , lowercase = ("UpDecoderBlock2D",) , lowercase = (64,) , lowercase = 1 , lowercase = "silu" , lowercase = 3 , lowercase = 32 , lowercase = 256 , lowercase = 32 , lowercase = None , lowercase = 0.18_215 , lowercase = "group" , ) -> Union[str, Any]: super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=lowercase , out_channels=lowercase , down_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , act_fn=lowercase , norm_num_groups=lowercase , double_z=lowercase , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(lowercase , lowercase , 1 ) lowerCAmelCase = VectorQuantizer(lowercase , lowercase , beta=0.25 , remap=lowercase , sane_index_shape=lowercase ) lowerCAmelCase = nn.Convad(lowercase , lowercase , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=lowercase , out_channels=lowercase , up_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , act_fn=lowercase , norm_num_groups=lowercase , norm_type=lowercase , ) @apply_forward_hook def _snake_case ( self , lowercase , lowercase = True ) -> VQEncoderOutput: lowerCAmelCase = self.encoder(lowercase ) lowerCAmelCase = self.quant_conv(lowercase ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase ) @apply_forward_hook def _snake_case ( self , lowercase , lowercase = False , lowercase = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.quantize(lowercase ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(lowercase ) lowerCAmelCase = self.decoder(lowercase , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase ) def _snake_case ( self , lowercase , lowercase = True ) -> Union[DecoderOutput, torch.FloatTensor]: lowerCAmelCase = sample lowerCAmelCase = self.encode(lowercase ).latents lowerCAmelCase = self.decode(lowercase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase )
46
1
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowercase ( a__ : np.ndarray , a__ : np.ndarray , a__ : np.ndarray , a__ : int , a__ : int ) -> np.ndarray: _UpperCamelCase = cva.getAffineTransform(a__ , a__ ) return cva.warpAffine(a__ , a__ , (rows, cols) ) if __name__ == "__main__": # read original image UpperCAmelCase = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value UpperCAmelCase = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape UpperCAmelCase , UpperCAmelCase = gray_img.shape # set different points to rotate image UpperCAmelCase = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) UpperCAmelCase = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) UpperCAmelCase = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) UpperCAmelCase = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list UpperCAmelCase = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations UpperCAmelCase = plt.figure(1) UpperCAmelCase = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
54
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowercase ( a__ : list[list[int]] ) -> list[list[int]]: _UpperCamelCase = [] for i in range(len(a__ ) ): _UpperCamelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _UpperCamelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(a__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(a__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(a__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _UpperCamelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(a__ ) return next_generation def lowercase ( a__ : list[list[int]] , a__ : int ) -> list[Image.Image]: _UpperCamelCase = [] for _ in range(a__ ): # Create output image _UpperCamelCase = Image.new('''RGB''' , (len(cells[0] ), len(a__ )) ) _UpperCamelCase = img.load() # Save cells to image for x in range(len(a__ ) ): for y in range(len(cells[0] ) ): _UpperCamelCase = 255 - cells[y][x] * 255 _UpperCamelCase = (colour, colour, colour) # Save image images.append(a__ ) _UpperCamelCase = new_generation(a__ ) return images if __name__ == "__main__": UpperCAmelCase = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
54
1
# Imports import numpy as np class A__ : def __init__( self , A_=None , A_=None , A_=None , A_=None , A_=None ): '''simple docstring''' self.set_matricies(red=A_ , green=A_ , blue=A_ , red_edge=A_ , nir=A_ ) def __UpperCamelCase( self , A_=None , A_=None , A_=None , A_=None , A_=None ): '''simple docstring''' if red is not None: UpperCamelCase : Tuple = red if green is not None: UpperCamelCase : List[str] = green if blue is not None: UpperCamelCase : Tuple = blue if red_edge is not None: UpperCamelCase : List[Any] = red_edge if nir is not None: UpperCamelCase : Dict = nir return True def __UpperCamelCase( self , A_="" , A_=None , A_=None , A_=None , A_=None , A_=None ): '''simple docstring''' self.set_matricies(red=A_ , green=A_ , blue=A_ , red_edge=A_ , nir=A_ ) UpperCamelCase : Any = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def __UpperCamelCase( self ): '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def __UpperCamelCase( self ): '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def __UpperCamelCase( self ): '''simple docstring''' return self.nir * (self.red / (self.green**2)) def __UpperCamelCase( self ): '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def __UpperCamelCase( self ): '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def __UpperCamelCase( self ): '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def __UpperCamelCase( self ): '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def __UpperCamelCase( self ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def __UpperCamelCase( self ): '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def __UpperCamelCase( self ): '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def __UpperCamelCase( self ): '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def __UpperCamelCase( self ): '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def __UpperCamelCase( self , A_=0.08 , A_=1.22 , A_=0.03 ): '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def __UpperCamelCase( self ): '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def __UpperCamelCase( self ): '''simple docstring''' return (self.nir / self.green) - 1 def __UpperCamelCase( self ): '''simple docstring''' return (self.nir / self.redEdge) - 1 def __UpperCamelCase( self ): '''simple docstring''' return (self.red - self.blue) / self.red def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def __UpperCamelCase( self ): '''simple docstring''' return self.nir - self.green def __UpperCamelCase( self ): '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def __UpperCamelCase( self , A_=0.16 ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def __UpperCamelCase( self , A_=0.5 ): '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def __UpperCamelCase( self ): '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def __UpperCamelCase( self , A_=None , A_=None ): '''simple docstring''' return (self.nir - b) / (a * self.red) def __UpperCamelCase( self ): '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def __UpperCamelCase( self ): '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def __UpperCamelCase( self ): '''simple docstring''' return self.nir / self.red def __UpperCamelCase( self ): '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def __UpperCamelCase( self ): '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def __UpperCamelCase( self ): '''simple docstring''' return self.green / (self.nir + self.red + self.green) def __UpperCamelCase( self ): '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def __UpperCamelCase( self ): '''simple docstring''' return self.red / (self.nir + self.red + self.green) def __UpperCamelCase( self ): '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def __UpperCamelCase( self ): '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCamelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def __UpperCamelCase( self ): '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def __UpperCamelCase( self ): '''simple docstring''' return self.nir / self.red def __UpperCamelCase( self ): '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def __UpperCamelCase( self ): '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
52
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _A = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex _A = 10 _A = 256 def lowerCamelCase__ ( a__ : List[str] ) -> Optional[MinHash]: if len(a__ ) < MIN_NUM_TOKENS: return None UpperCamelCase_ = MinHash(num_perm=a__ ) for token in set(a__ ): min_hash.update(token.encode() ) return min_hash def lowerCamelCase__ ( a__ : str ) -> Set[str]: return {t for t in NON_ALPHA.split(a__ ) if len(t.strip() ) > 0} class lowercase_ : def __init__( self , *, __UpperCamelCase = 0.85 , ): """simple docstring""" UpperCamelCase_ = duplication_jaccard_threshold UpperCamelCase_ = NUM_PERM UpperCamelCase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) UpperCamelCase_ = defaultdict(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self._index.query(__UpperCamelCase ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = [] for base, duplicates in self._duplicate_clusters.items(): UpperCamelCase_ = [base] + list(__UpperCamelCase ) # reformat the cluster to be a list of dict UpperCamelCase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__UpperCamelCase ) return duplicate_clusters def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.get_duplicate_clusters() with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase__ ( a__ : Optional[int] ) -> List[str]: UpperCamelCase_ , UpperCamelCase_ = element UpperCamelCase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCamelCase__ ( a__ : Type[Dataset] ) -> Optional[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a__ , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def lowerCamelCase__ ( a__ : Type[Dataset] , a__ : float ) -> List[Any]: UpperCamelCase_ = DuplicationIndex(duplication_jaccard_threshold=a__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a__ ) ) , max_queue_size=100 ) ): di.add(a__ , a__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCamelCase__ ( a__ : str , a__ : str ) -> float: UpperCamelCase_ = get_tokens(a__ ) UpperCamelCase_ = get_tokens(a__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _A = None def lowerCamelCase__ ( a__ : str , a__ : str ) -> Optional[Any]: UpperCamelCase_ = [] for elementa in cluster: UpperCamelCase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: UpperCamelCase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(a__ , a__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: UpperCamelCase_ = 1 extremes.append(a__ ) return extremes def lowerCamelCase__ ( a__ : str , a__ : Optional[int] , a__ : Optional[int] ) -> str: global _shared_dataset UpperCamelCase_ = dataset UpperCamelCase_ = [] UpperCamelCase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=a__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a__ , a__ , ) , total=len(a__ ) , ): extremes_list.append(a__ ) return extremes_list def lowerCamelCase__ ( a__ : Type[Dataset] , a__ : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: UpperCamelCase_ = make_duplicate_clusters(a__ , a__ ) UpperCamelCase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} UpperCamelCase_ = {} UpperCamelCase_ = find_extremes(a__ , a__ , a__ ) for extremes in extremes_clusters: for element in extremes: UpperCamelCase_ = element UpperCamelCase_ = duplicate_indices - set(extreme_dict.keys() ) UpperCamelCase_ = dataset.filter(lambda a__ , a__ : idx not in remove_indices , with_indices=a__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: UpperCamelCase_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: UpperCamelCase_ = extreme_dict[element["""base_index"""]]["""copies"""] print(f'''Original dataset size: {len(a__ )}''' ) print(f'''Number of duplicate clusters: {len(a__ )}''' ) print(f'''Files in duplicate cluster: {len(a__ )}''' ) print(f'''Unique files in duplicate cluster: {len(a__ )}''' ) print(f'''Filtered dataset size: {len(a__ )}''' ) return ds_filter, duplicate_clusters
122
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" if "cls_token" in name: A__ = name.replace('''cls_token''' , '''vit.embeddings.cls_token''' ) if "mask_token" in name: A__ = name.replace('''mask_token''' , '''decoder.mask_token''' ) if "decoder_pos_embed" in name: A__ = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: A__ = name.replace('''pos_embed''' , '''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: A__ = name.replace('''patch_embed.proj''' , '''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A__ = name.replace('''patch_embed.norm''' , '''vit.embeddings.norm''' ) if "decoder_blocks" in name: A__ = name.replace('''decoder_blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: A__ = name.replace('''blocks''' , '''vit.encoder.layer''' ) if "attn.proj" in name: A__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: A__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: A__ = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: A__ = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: A__ = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: A__ = name.replace('''norm.weight''' , '''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: A__ = name.replace('''norm.bias''' , '''vit.layernorm.bias''' ) return name def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: A__ = key.split('''.''' ) A__ = int(key_split[1] ) if "decoder_blocks" in key: A__ = config.decoder_hidden_size A__ = '''decoder.decoder_layers.''' if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] elif "bias" in key: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = config.hidden_size A__ = '''vit.encoder.layer.''' if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] elif "bias" in key: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = val return orig_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = ViTMAEConfig() if "large" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 elif "huge" in checkpoint_url: A__ = 14 A__ = 1_280 A__ = 5_120 A__ = 32 A__ = 16 A__ = ViTMAEForPreTraining(lowercase_ ) A__ = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' )['''model'''] A__ = ViTMAEImageProcessor(size=config.image_size ) A__ = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() A__ = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) A__ = ViTMAEImageProcessor(size=config.image_size ) A__ = image_processor(images=lowercase_ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) A__ = model(**lowercase_ ) A__ = outputs.logits if "large" in checkpoint_url: A__ = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: A__ = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: A__ = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase_ , atol=1E-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
231
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _lowerCamelCase : Optional[Any] = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
231
1
UpperCamelCase = 8.314_462 # Unit - J mol-1 K-1 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
186
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""MobileViTFeatureExtractor"""] UpperCamelCase = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
186
1
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : List[Any] = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , SCREAMING_SNAKE_CASE ).groups()[0] class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : int = file_names lowerCAmelCase : Union[str, Any] = image_transform lowerCAmelCase : int = label_to_id def __len__( self ): """simple docstring""" return len(self.file_names ) def __getitem__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = self.file_names[idx] lowerCAmelCase : Any = PIL.Image.open(snake_case__ ) lowerCAmelCase : List[str] = raw_image.convert("RGB" ) if self.image_transform is not None: lowerCAmelCase : int = self.image_transform(snake_case__ ) lowerCAmelCase : Union[str, Any] = extract_label(snake_case__ ) if self.label_to_id is not None: lowerCAmelCase : Optional[Any] = self.label_to_id[label] return {"image": image, "label": label} def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if args.with_tracking: lowerCAmelCase : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: lowerCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase : Optional[Any] = config["lr"] lowerCAmelCase : Tuple = int(config["num_epochs"] ) lowerCAmelCase : int = int(config["seed"] ) lowerCAmelCase : Any = int(config["batch_size"] ) lowerCAmelCase : Dict = config["image_size"] if not isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ): lowerCAmelCase : Any = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": lowerCAmelCase : List[str] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowerCAmelCase : Union[str, Any] = int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: lowerCAmelCase : Any = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowerCAmelCase : str = os.path.split(SCREAMING_SNAKE_CASE )[-1].split("." )[0] accelerator.init_trackers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Grab all the image filenames lowerCAmelCase : Dict = [os.path.join(args.data_dir , SCREAMING_SNAKE_CASE ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences lowerCAmelCase : Tuple = [extract_label(SCREAMING_SNAKE_CASE ) for fname in file_names] lowerCAmelCase : Optional[int] = list(set(SCREAMING_SNAKE_CASE ) ) id_to_label.sort() lowerCAmelCase : int = {lbl: i for i, lbl in enumerate(SCREAMING_SNAKE_CASE )} # Set the seed before splitting the data. np.random.seed(SCREAMING_SNAKE_CASE ) torch.manual_seed(SCREAMING_SNAKE_CASE ) torch.cuda.manual_seed_all(SCREAMING_SNAKE_CASE ) # Split our filenames between train and validation lowerCAmelCase : List[Any] = np.random.permutation(len(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : List[Any] = int(0.8 * len(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : Optional[Any] = random_perm[:cut] lowerCAmelCase : List[str] = random_perm[cut:] # For training we use a simple RandomResizedCrop lowerCAmelCase : Optional[Any] = Compose([RandomResizedCrop(SCREAMING_SNAKE_CASE , scale=(0.5, 1.0) ), ToTensor()] ) lowerCAmelCase : Any = PetsDataset( [file_names[i] for i in train_split] , image_transform=SCREAMING_SNAKE_CASE , label_to_id=SCREAMING_SNAKE_CASE ) # For evaluation, we use a deterministic Resize lowerCAmelCase : Union[str, Any] = Compose([Resize(SCREAMING_SNAKE_CASE ), ToTensor()] ) lowerCAmelCase : Optional[int] = PetsDataset([file_names[i] for i in eval_split] , image_transform=SCREAMING_SNAKE_CASE , label_to_id=SCREAMING_SNAKE_CASE ) # Instantiate dataloaders. lowerCAmelCase : List[Any] = DataLoader(SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , num_workers=4 ) lowerCAmelCase : List[Any] = DataLoader(SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase : Optional[Any] = create_model("resnet50d" , pretrained=SCREAMING_SNAKE_CASE , num_classes=len(SCREAMING_SNAKE_CASE ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase : int = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowerCAmelCase : str = False for param in model.get_classifier().parameters(): lowerCAmelCase : int = True # We normalize the batches of images to be a bit faster. lowerCAmelCase : List[Any] = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) lowerCAmelCase : List[Any] = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowerCAmelCase : Tuple = torch.optim.Adam(params=model.parameters() , lr=lr / 2_5 ) # Instantiate learning rate scheduler lowerCAmelCase : Tuple = OneCycleLR(optimizer=SCREAMING_SNAKE_CASE , max_lr=SCREAMING_SNAKE_CASE , epochs=SCREAMING_SNAKE_CASE , steps_per_epoch=len(SCREAMING_SNAKE_CASE ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase : Union[str, Any] = 0 # We also need to keep track of the starting epoch so files are named properly lowerCAmelCase : Tuple = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) lowerCAmelCase : List[str] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowerCAmelCase : Dict = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowerCAmelCase : List[Any] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowerCAmelCase : Tuple = os.path.splitext(SCREAMING_SNAKE_CASE )[0] if "epoch" in training_difference: lowerCAmelCase : Dict = int(training_difference.replace("epoch_" , "" ) ) + 1 lowerCAmelCase : str = None else: lowerCAmelCase : Tuple = int(training_difference.replace("step_" , "" ) ) lowerCAmelCase : int = resume_step // len(SCREAMING_SNAKE_CASE ) resume_step -= starting_epoch * len(SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): model.train() if args.with_tracking: lowerCAmelCase : Optional[Any] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowerCAmelCase : Union[str, Any] = accelerator.skip_first_batches(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowerCAmelCase : Dict = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCAmelCase : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} lowerCAmelCase : Union[str, Any] = (batch["image"] - mean) / std lowerCAmelCase : str = model(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = torch.nn.functional.cross_entropy(SCREAMING_SNAKE_CASE , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowerCAmelCase : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) accelerator.save_state(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : List[str] = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCAmelCase : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} lowerCAmelCase : Optional[Any] = (batch["image"] - mean) / std with torch.no_grad(): lowerCAmelCase : int = model(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = outputs.argmax(dim=-1 ) lowerCAmelCase , lowerCAmelCase : List[str] = accelerator.gather_for_metrics((predictions, batch["label"]) ) lowerCAmelCase : str = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowerCAmelCase : str = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {1_0_0 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { "accuracy": 1_0_0 * eval_metric, "train_loss": total_loss.item() / len(SCREAMING_SNAKE_CASE ), "epoch": epoch, } , step=SCREAMING_SNAKE_CASE , ) if checkpointing_steps == "epoch": lowerCAmelCase : Any = f"""epoch_{epoch}""" if args.output_dir is not None: lowerCAmelCase : Optional[Any] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) accelerator.save_state(SCREAMING_SNAKE_CASE ) if args.with_tracking: accelerator.end_training() def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=SCREAMING_SNAKE_CASE , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=SCREAMING_SNAKE_CASE , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=SCREAMING_SNAKE_CASE , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) lowerCAmelCase : Optional[Any] = parser.parse_args() lowerCAmelCase : Optional[int] = {"lr": 3E-2, "num_epochs": 3, "seed": 4_2, "batch_size": 6_4, "image_size": 2_2_4} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
133
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Optional[Any] =KandinskyVaaImgaImgPipeline a : Optional[int] =["image_embeds", "negative_image_embeds", "image"] a : Optional[int] =[ "image_embeds", "negative_image_embeds", "image", ] a : str =[ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a : Dict =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 100 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : List[str] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase : int = UNetaDConditionModel(**snake_case__ ) return model @property def lowercase__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.dummy_unet lowerCAmelCase : Optional[int] = self.dummy_movq lowerCAmelCase : List[str] = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCAmelCase : Tuple = DDIMScheduler(**snake_case__ ) lowerCAmelCase : Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCAmelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : List[str] = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((256, 256) ) if str(snake_case__ ).startswith("mps" ): lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : List[str] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = "cpu" lowerCAmelCase : Dict = self.get_dummy_components() lowerCAmelCase : Union[str, Any] = self.pipeline_class(**snake_case__ ) lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCAmelCase : Union[str, Any] = output.images lowerCAmelCase : Union[str, Any] = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : int = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) lowerCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase : Optional[Any] = "A red cartoon frog, 4k" lowerCAmelCase : int = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCAmelCase : List[Any] = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) lowerCAmelCase : Tuple = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : str = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase : Tuple = pipeline( image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) lowerCAmelCase : Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
133
1
A__ : List[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def UpperCamelCase( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : str ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Union[str, Any] ): lowerCAmelCase_ : Any = [False] * len(a_ ) lowerCAmelCase_ : List[str] = [s] lowerCAmelCase_ : int = True while queue: lowerCAmelCase_ : Tuple = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(a_ ) lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : List[str] = u return visited[t] def UpperCamelCase( __UpperCamelCase : Dict ,__UpperCamelCase : Dict ,__UpperCamelCase : Dict ): lowerCAmelCase_ : Optional[Any] = [-1] * (len(a_ )) lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : List[Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(a_ ,a_ ,a_ ,a_ ): lowerCAmelCase_ : Any = float('''Inf''' ) lowerCAmelCase_ : Tuple = sink while s != source: # Find the minimum value in select path lowerCAmelCase_ : Optional[int] = min(a_ ,graph[parent[s]][s] ) lowerCAmelCase_ : Tuple = parent[s] max_flow += path_flow lowerCAmelCase_ : str = sink while v != source: lowerCAmelCase_ : List[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCAmelCase_ : str = parent[v] for i in range(len(a_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
103
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]: A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass def UpperCAmelCase_ ( self ) -> int: A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
344
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _A = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] _A = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = ''' Hello world! cécé herlolip''' _A = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def __UpperCamelCase ( _A ): lowerCAmelCase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(_A , _A ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = dct.pop(_A ) lowerCAmelCase_ = val def __UpperCamelCase ( _A ): lowerCAmelCase_ = torch.load(_A , map_location='''cpu''' ) lowerCAmelCase_ = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def __UpperCamelCase ( _A ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(_A , _A , bias=_A ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def __UpperCamelCase ( _A , _A , _A=None ): if not os.path.exists(_A ): lowerCAmelCase_ = torch.hub.load('''pytorch/fairseq''' , _A ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(_A ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace('''.''' , '''-''' ) lowerCAmelCase_ = BartConfig.from_pretrained(_A ) lowerCAmelCase_ = bart.encode(_A ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(_A ).encode(_A , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(_A , _A ).all(): raise ValueError( f"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(_A ) lowerCAmelCase_ = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(_A , _A , _A ) lowerCAmelCase_ = BartForSequenceClassification(_A ).eval() model.load_state_dict(_A ) lowerCAmelCase_ = bart.predict('''mnli''' , _A , return_logits=_A ) lowerCAmelCase_ = model(_A )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(_A ) lowerCAmelCase_ = state_dict['''decoder.embed_tokens.weight'''] lowerCAmelCase_ = bart.extract_features(_A ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(_A ).eval() model.load_state_dict(_A ) lowerCAmelCase_ = model(_A ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(_A ).eval() # an existing summarization ckpt model.model.load_state_dict(_A ) if hasattr(_A , '''lm_head''' ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(_A )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) _A = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
351
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class A ( __UpperCAmelCase ): __snake_case = 'gpt_neox' def __init__( self, UpperCamelCase__=5_0432, UpperCamelCase__=6144, UpperCamelCase__=44, UpperCamelCase__=64, UpperCamelCase__=2_4576, UpperCamelCase__="gelu", UpperCamelCase__=0.25, UpperCamelCase__=1_0000, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.1, UpperCamelCase__=2048, UpperCamelCase__=0.02, UpperCamelCase__=1E-5, UpperCamelCase__=True, UpperCamelCase__=0, UpperCamelCase__=2, UpperCamelCase__=False, UpperCamelCase__=True, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" super().__init__(bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = rotary_pct lowerCAmelCase_ = rotary_emb_base lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = hidden_dropout lowerCAmelCase_ = classifier_dropout lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = use_cache lowerCAmelCase_ = tie_word_embeddings lowerCAmelCase_ = use_parallel_residual lowerCAmelCase_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling, UpperCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) lowerCAmelCase_ = self.rope_scaling.get('''type''', UpperCamelCase__ ) lowerCAmelCase_ = self.rope_scaling.get('''factor''', UpperCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(UpperCamelCase__, UpperCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
167
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowercase : def __init__(self , A , A=1_3 , A=1_0 , A=3 , A=2 , A=2 , A=2 , A=True , A=True , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=1_0 , A=0.02 , A=0.9 , A=None , ): lowerCamelCase_ : List[str] = parent lowerCamelCase_ : Any = batch_size lowerCamelCase_ : int = image_size lowerCamelCase_ : List[str] = num_channels lowerCamelCase_ : Union[str, Any] = patch_size lowerCamelCase_ : int = tubelet_size lowerCamelCase_ : Any = num_frames lowerCamelCase_ : Union[str, Any] = is_training lowerCamelCase_ : List[Any] = use_labels lowerCamelCase_ : Optional[int] = hidden_size lowerCamelCase_ : List[str] = num_hidden_layers lowerCamelCase_ : Optional[Any] = num_attention_heads lowerCamelCase_ : str = intermediate_size lowerCamelCase_ : List[Any] = hidden_act lowerCamelCase_ : Tuple = hidden_dropout_prob lowerCamelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase_ : str = type_sequence_label_size lowerCamelCase_ : Tuple = initializer_range lowerCamelCase_ : Tuple = mask_ratio lowerCamelCase_ : Optional[int] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowerCamelCase_ : Dict = (image_size // patch_size) ** 2 lowerCamelCase_ : Optional[Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowerCamelCase_ : Optional[int] = int(mask_ratio * self.seq_length ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ : List[Any] = None if self.use_labels: lowerCamelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ (self ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase__ (self , A , A , A ): lowerCamelCase_ : Optional[Any] = VideoMAEModel(config=A ) model.to(A ) model.eval() lowerCamelCase_ : Dict = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ (self , A , A , A ): lowerCamelCase_ : Optional[int] = VideoMAEForPreTraining(A ) model.to(A ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase_ : Tuple = torch.ones((self.num_masks,) ) lowerCamelCase_ : List[str] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowerCamelCase_ : List[str] = mask.expand(self.batch_size , -1 ).bool() lowerCamelCase_ : Any = model(A , A ) # model only returns predictions for masked patches lowerCamelCase_ : Optional[Any] = mask.sum().item() lowerCamelCase_ : Union[str, Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self.prepare_config_and_inputs() lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = config_and_inputs lowerCamelCase_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase : int = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase : Dict = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase : Optional[Any] = False lowerCamelCase : Tuple = False lowerCamelCase : Tuple = False lowerCamelCase : Optional[Any] = False def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = VideoMAEModelTester(self ) lowerCamelCase_ : Dict = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def UpperCAmelCase__ (self , A , A , A=False ): lowerCamelCase_ : Tuple = copy.deepcopy(A ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase_ : Tuple = torch.ones((self.model_tester.num_masks,) ) lowerCamelCase_ : Union[str, Any] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowerCamelCase_ : str = mask.expand(self.model_tester.batch_size , -1 ).bool() lowerCamelCase_ : int = bool_masked_pos.to(A ) if return_labels: if model_class in [ *get_values(A ), ]: lowerCamelCase_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def UpperCAmelCase__ (self ): self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def UpperCAmelCase__ (self ): pass def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Dict = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Optional[int] = model_class(A ) lowerCamelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ : Union[str, Any] = [*signature.parameters.keys()] lowerCamelCase_ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A ) @slow def UpperCAmelCase__ (self ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : List[Any] = VideoMAEModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase__ (self ): if not self.has_attentions: pass else: lowerCamelCase_, lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : int = True for model_class in self.all_model_classes: lowerCamelCase_ : Dict = self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase_ : Any = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowerCamelCase_ : Tuple = True lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : Tuple = True lowerCamelCase_ : List[str] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase_ : Optional[Any] = model(**self._prepare_for_class(A , A ) ) lowerCamelCase_ : List[Any] = outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ : Tuple = True lowerCamelCase_ : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase_ : List[str] = model(**self._prepare_for_class(A , A ) ) lowerCamelCase_ : Tuple = outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase_ : Union[str, Any] = len(A ) # Check attention is always last and order is fine lowerCamelCase_ : Union[str, Any] = True lowerCamelCase_ : str = True lowerCamelCase_ : Dict = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase_ : int = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 1 , len(A ) ) lowerCamelCase_ : str = outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase__ (self ): def check_hidden_states_output(A , A , A ): lowerCamelCase_ : int = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase_ : Optional[int] = model(**self._prepare_for_class(A , A ) ) lowerCamelCase_ : List[Any] = outputs.hidden_states lowerCamelCase_ : int = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(A ) , A ) lowerCamelCase_ : List[str] = self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase_ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase_, lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Optional[Any] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ : Optional[int] = True check_hidden_states_output(A , A , A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ (self ): pass def lowercase_ ( ) -> List[str]: '''simple docstring''' lowerCamelCase_ : int = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowerCamelCase_ : str = np.load(_lowercase ) return list(_lowercase ) @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def UpperCAmelCase__ (self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( A ) lowerCamelCase_ : List[str] = self.default_image_processor lowerCamelCase_ : Any = prepare_video() lowerCamelCase_ : Optional[int] = image_processor(A , return_tensors='''pt''' ).to(A ) # forward pass with torch.no_grad(): lowerCamelCase_ : Dict = model(**A ) # verify the logits lowerCamelCase_ : Tuple = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , A ) lowerCamelCase_ : Union[str, Any] = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) ) @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(A ) lowerCamelCase_ : Tuple = self.default_image_processor lowerCamelCase_ : List[Any] = prepare_video() lowerCamelCase_ : Union[str, Any] = image_processor(A , return_tensors='''pt''' ).to(A ) # add boolean mask, indicating which patches to mask lowerCamelCase_ : str = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) lowerCamelCase_ : int = torch.load(A ) # forward pass with torch.no_grad(): lowerCamelCase_ : Any = model(**A ) # verify the logits lowerCamelCase_ : Optional[int] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) lowerCamelCase_ : Dict = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=A ) self.assertEqual(outputs.logits.shape , A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , A , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowerCamelCase_ : Any = torch.tensor([0.51_42] , device=A ) self.assertTrue(torch.allclose(outputs.loss , A , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowerCamelCase_ : Union[str, Any] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=A ).to( A ) with torch.no_grad(): lowerCamelCase_ : List[Any] = model(**A ) lowerCamelCase_ : int = torch.tensor(torch.tensor([0.64_69] ) , device=A ) self.assertTrue(torch.allclose(outputs.loss , A , atol=1E-4 ) )
318
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowercase : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowercase : Any = os.environ.get('''USER_TOKEN''', '''''') def lowercase_ ( _lowercase ) -> dict[Any, Any]: '''simple docstring''' lowerCamelCase_ : str = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
318
1
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple ) ->int: # Initialise PyTorch model A__ : Optional[int] = TaConfig.from_json_file(UpperCAmelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) A__ : int = TaForConditionalGeneration(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
359
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : str=True , snake_case : Dict=False , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : str="gelu" , snake_case : Tuple=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : str=3 , snake_case : Dict=4 , snake_case : Optional[Any]=None , ): '''simple docstring''' A__ : int = parent A__ : Union[str, Any] = batch_size A__ : Optional[int] = seq_length A__ : List[Any] = is_training A__ : List[str] = use_input_mask A__ : Optional[Any] = use_token_type_ids A__ : List[Any] = use_labels A__ : Union[str, Any] = vocab_size A__ : List[Any] = hidden_size A__ : Any = num_hidden_layers A__ : Any = num_attention_heads A__ : Optional[int] = intermediate_size A__ : Any = hidden_act A__ : Tuple = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : Optional[int] = max_position_embeddings A__ : Tuple = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[str] = initializer_range A__ : Any = num_labels A__ : Any = num_choices A__ : int = scope def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = None if self.use_input_mask: A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_token_type_ids: A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : int = None A__ : int = None A__ : List[str] = None if self.use_labels: A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case ) A__ : Dict = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , ): '''simple docstring''' A__ : List[str] = BioGptForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Any , snake_case : str , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , *snake_case : Dict ): '''simple docstring''' A__ : Union[str, Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() # create attention mask A__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) A__ : Any = self.seq_length // 2 A__ : str = 0 # first forward pass A__ , A__ : List[Any] = model(snake_case , attention_mask=snake_case ).to_tuple() # create hypothetical next token and extent to next_input_ids A__ : int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids A__ : List[str] = ids_tensor((1,) , snake_case ).item() + 1 A__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) A__ : int = random_other_next_tokens # append to next input_ids and attn_mask A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , ) # get two different outputs A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Optional[int] = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )["""last_hidden_state"""] # select random slice A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() A__ : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : Optional[Any] , *snake_case : str ): '''simple docstring''' A__ : Dict = BioGptModel(config=snake_case ).to(snake_case ).eval() A__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) # first forward pass A__ : Dict = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ , A__ : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) A__ : Any = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[ """last_hidden_state""" ] # select random slice A__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Tuple , *snake_case : Union[str, Any] , snake_case : Union[str, Any]=False ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM(snake_case ) model.to(snake_case ) if gradient_checkpointing: model.gradient_checkpointing_enable() A__ : Optional[Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _UpperCamelCase ( self : int , snake_case : Optional[Any] , *snake_case : Optional[int] ): '''simple docstring''' A__ : int = BioGptModel(snake_case ) A__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _UpperCamelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , *snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = self.num_labels A__ : int = BioGptForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : str = config_and_inputs A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) snake_case_ = (BioGptForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : List[str] = BioGptModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : str = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) A__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = """left""" # Define PAD Token = EOS Token = 50256 A__ : Optional[int] = tokenizer.eos_token A__ : Dict = model.config.eos_token_id # use different length sentences to test batching A__ : Union[str, Any] = [ """Hello, my dog is a little""", """Today, I""", ] A__ : List[str] = tokenizer(snake_case , return_tensors="""pt""" , padding=snake_case ) A__ : str = inputs["""input_ids"""].to(snake_case ) A__ : Dict = model.generate( input_ids=snake_case , attention_mask=inputs["""attention_mask"""].to(snake_case ) , ) A__ : Optional[int] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Any = model.generate(input_ids=snake_case ) A__ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() A__ : str = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Dict = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings ) A__ : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) A__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case ) A__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case ) A__ : Optional[int] = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] ) @slow def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Optional[Any] = BioGptModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[int] = 3 A__ : List[Any] = input_dict["""input_ids"""] A__ : Dict = input_ids.ne(1 ).to(snake_case ) A__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ : Union[str, Any] = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() A__ : Any = 3 A__ : List[Any] = """multi_label_classification""" A__ : Dict = input_dict["""input_ids"""] A__ : Tuple = input_ids.ne(1 ).to(snake_case ) A__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A__ : Tuple = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) A__ : str = torch.tensor([[2, 4805, 9, 656, 21]] ) A__ : Dict = model(snake_case )[0] A__ : Tuple = 4_2384 A__ : str = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : str = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) torch.manual_seed(0 ) A__ : Tuple = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case ) A__ : Optional[int] = model.generate( **snake_case , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case , ) A__ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case ) A__ : List[str] = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(snake_case , snake_case )
296
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->list: '''simple docstring''' if n_term == "": return [] a : list = [] for temp in range(int(_lowercase ) ): series.append(F"""1/{temp + 1}""" if series else "1" ) return series if __name__ == "__main__": a : Any = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
105
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase_( a__ ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(a__ , a__ ) return k def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**a__ ) SCREAMING_SNAKE_CASE : Optional[int] = PegasusForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Dict = torch_model.model.state_dict() SCREAMING_SNAKE_CASE : List[str] = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE : int = rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE : Dict = v.T SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE : int = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = torch_model.model.load_state_dict(a__ , strict=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def UpperCAmelCase_( a__="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a__ , desc='''converting tf checkpoint to dict''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE : Dict = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Any = array return tf_weights def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Path(a__ ).parent.name SCREAMING_SNAKE_CASE : Union[str, Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] SCREAMING_SNAKE_CASE : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(a__ ) SCREAMING_SNAKE_CASE : List[str] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": SCREAMING_SNAKE_CASE : int = task_specific_params SCREAMING_SNAKE_CASE : List[str] = convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(a__ , Path(a__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : List[str] = parser.parse_args() if args.save_dir is None: a__ : Any = Path(args.tf_ckpt_path).parent.name a__ : int = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Optional[Any]) ->Tuple: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']): A__ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]: '''simple docstring''' A__ = '''sshleifer/tiny-gpt2''' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) A__ = PyTorchBenchmark(UpperCAmelCase__) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: '''simple docstring''' A__ = '''sgugger/tiny-distilbert-classification''' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , only_pretrain_model=UpperCAmelCase__ , ) A__ = PyTorchBenchmark(UpperCAmelCase__) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = '''sshleifer/tiny-gpt2''' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , torchscript=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) A__ = PyTorchBenchmark(UpperCAmelCase__) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: '''simple docstring''' A__ = '''sshleifer/tiny-gpt2''' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , fpaa=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) A__ = PyTorchBenchmark(UpperCAmelCase__) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' A__ = '''sshleifer/tiny-gpt2''' A__ = AutoConfig.from_pretrained(UpperCAmelCase__) # set architectures equal to `None` A__ = None A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) A__ = PyTorchBenchmark(UpperCAmelCase__ , configs=[config]) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE ( self : str) ->List[str]: '''simple docstring''' A__ = '''sshleifer/tiny-gpt2''' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) A__ = PyTorchBenchmark(UpperCAmelCase__) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''') def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = '''sshleifer/tiny-gpt2''' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase__ , multi_process=UpperCAmelCase__ , ) A__ = PyTorchBenchmark(UpperCAmelCase__) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ = '''sshleifer/tiny-gpt2''' A__ = AutoConfig.from_pretrained(UpperCAmelCase__) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) A__ = PyTorchBenchmark(UpperCAmelCase__ , configs=[config]) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]: '''simple docstring''' A__ = '''sshleifer/tinier_bart''' A__ = AutoConfig.from_pretrained(UpperCAmelCase__) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) A__ = PyTorchBenchmark(UpperCAmelCase__ , configs=[config]) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]: '''simple docstring''' A__ = '''sshleifer/tiny-gpt2''' A__ = AutoConfig.from_pretrained(UpperCAmelCase__) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) A__ = PyTorchBenchmark(UpperCAmelCase__ , configs=[config]) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = '''sshleifer/tinier_bart''' A__ = AutoConfig.from_pretrained(UpperCAmelCase__) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) A__ = PyTorchBenchmark(UpperCAmelCase__ , configs=[config]) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple: '''simple docstring''' A__ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , save_to_csv=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase__ , '''inf_time.csv''') , train_memory_csv_file=os.path.join(UpperCAmelCase__ , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(UpperCAmelCase__ , '''inf_mem.csv''') , train_time_csv_file=os.path.join(UpperCAmelCase__ , '''train_time.csv''') , env_info_csv_file=os.path.join(UpperCAmelCase__ , '''env.csv''') , multi_process=UpperCAmelCase__ , ) A__ = PyTorchBenchmark(UpperCAmelCase__) benchmark.run() self.assertTrue(Path(os.path.join(UpperCAmelCase__ , '''inf_time.csv''')).exists()) self.assertTrue(Path(os.path.join(UpperCAmelCase__ , '''train_time.csv''')).exists()) self.assertTrue(Path(os.path.join(UpperCAmelCase__ , '''inf_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(UpperCAmelCase__ , '''train_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(UpperCAmelCase__ , '''env.csv''')).exists()) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(UpperCAmelCase__ : Tuple): self.assertTrue(hasattr(UpperCAmelCase__ , '''sequential''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''cumulative''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''current''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''total''')) with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase__ , '''log.txt''') , log_print=UpperCAmelCase__ , trace_memory_line_by_line=UpperCAmelCase__ , multi_process=UpperCAmelCase__ , ) A__ = PyTorchBenchmark(UpperCAmelCase__) A__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(UpperCAmelCase__ , '''log.txt''')).exists())
231
from __future__ import annotations from collections import Counter from random import random class UpperCamelCase_ : '''simple docstring''' def __init__( self : Any) ->Optional[Any]: '''simple docstring''' A__ = {} def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str) ->None: '''simple docstring''' A__ = {} def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : float) ->None: '''simple docstring''' if nodea not in self.connections: self.add_node(UpperCAmelCase__) if nodea not in self.connections: self.add_node(UpperCAmelCase__) A__ = probability def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->list[str]: '''simple docstring''' return list(self.connections) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str) ->str: '''simple docstring''' A__ = 0 A__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, int]: """simple docstring""" A__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowercase_ , lowercase_ , lowercase_ ) A__ = Counter(graph.get_nodes() ) A__ = start for _ in range(lowercase_ ): A__ = graph.transition(lowercase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
231
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = '''vit_msn''' def __init__( self, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.0, lowercase_=0.0, lowercase_=0.02, lowercase_=1E-06, lowercase_=224, lowercase_=16, lowercase_=3, lowercase_=True, **lowercase_, ) -> str: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =layer_norm_eps a__ =image_size a__ =patch_size a__ =num_channels a__ =qkv_bias
188
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCamelCase_ = logging.getLogger(__name__) def __lowerCamelCase ( ) -> int: __SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=a_ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=a_ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=a_ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=a_ , default='''data/dump''' , help='''The dump file prefix.''' ) __SCREAMING_SNAKE_CASE :Any = parser.parse_args() logger.info(f'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __SCREAMING_SNAKE_CASE :Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __SCREAMING_SNAKE_CASE :str = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE :str = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __SCREAMING_SNAKE_CASE :str = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __SCREAMING_SNAKE_CASE :Union[str, Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __SCREAMING_SNAKE_CASE :str = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __SCREAMING_SNAKE_CASE :Union[str, Any] = fp.readlines() logger.info('''Start encoding''' ) logger.info(f'''{len(a_ )} examples to process.''' ) __SCREAMING_SNAKE_CASE :Optional[int] = [] __SCREAMING_SNAKE_CASE :List[str] = 0 __SCREAMING_SNAKE_CASE :Optional[Any] = 1_00_00 __SCREAMING_SNAKE_CASE :List[Any] = time.time() for text in data: __SCREAMING_SNAKE_CASE :Any = f'''{bos} {text.strip()} {sep}''' __SCREAMING_SNAKE_CASE :int = tokenizer.encode(a_ , add_special_tokens=a_ ) rslt.append(a_ ) iter += 1 if iter % interval == 0: __SCREAMING_SNAKE_CASE :Any = time.time() logger.info(f'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __SCREAMING_SNAKE_CASE :Any = time.time() logger.info('''Finished binarization''' ) logger.info(f'''{len(a_ )} examples processed.''' ) __SCREAMING_SNAKE_CASE :Optional[int] = f'''{args.dump_file}.{args.tokenizer_name}.pickle''' __SCREAMING_SNAKE_CASE :str = tokenizer.vocab_size if vocab_size < (1 << 16): __SCREAMING_SNAKE_CASE :Union[str, Any] = [np.uintaa(a_ ) for d in rslt] else: __SCREAMING_SNAKE_CASE :List[Any] = [np.intaa(a_ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'''Dump to {dp_file}''' ) with open(a_ , '''wb''' ) as handle: pickle.dump(rslt_ , a_ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
191
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : Tuple = parent __snake_case : str = batch_size __snake_case : Tuple = seq_length __snake_case : List[str] = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : List[Any] = use_labels __snake_case : Tuple = vocab_size __snake_case : List[Any] = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : Any = intermediate_size __snake_case : str = hidden_act __snake_case : List[str] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : int = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Optional[int] = num_choices __snake_case : str = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : str = None __snake_case : str = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = LlamaModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : str = model(a_ , attention_mask=a_ ) __snake_case : Tuple = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : int = True __snake_case : Any = LlamaModel(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case : Tuple = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , ) __snake_case : int = model(a_ , attention_mask=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LlamaForCausalLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : str = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = True __snake_case : int = True __snake_case : Optional[Any] = LlamaForCausalLM(config=a_ ) model.to(a_ ) model.eval() # first forward pass __snake_case : List[Any] = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , use_cache=a_ , ) __snake_case : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : int = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : int = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : int = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , output_hidden_states=a_ , )['''hidden_states'''][0] __snake_case : List[Any] = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , past_key_values=a_ , output_hidden_states=a_ , )['''hidden_states'''][0] # select random slice __snake_case : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a_ , a_ , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Any = config_and_inputs __snake_case : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowerCamelCase__ =(LlamaForCausalLM,) if is_torch_available() else () lowerCamelCase__ =( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LlamaModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : List[str] = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = 3 __snake_case : Any = input_dict['''input_ids'''] __snake_case : List[Any] = input_ids.ne(1 ).to(a_ ) __snake_case : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : List[Any] = LlamaForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model(a_ , attention_mask=a_ , labels=a_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[Any] = 3 __snake_case : Tuple = '''single_label_classification''' __snake_case : Optional[int] = input_dict['''input_ids'''] __snake_case : int = input_ids.ne(1 ).to(a_ ) __snake_case : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : Tuple = LlamaForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , attention_mask=a_ , labels=a_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = 3 __snake_case : int = '''multi_label_classification''' __snake_case : Union[str, Any] = input_dict['''input_ids'''] __snake_case : Any = input_ids.ne(1 ).to(a_ ) __snake_case : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __snake_case : List[Any] = LlamaForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Any = ids_tensor([1, 10] , config.vocab_size ) __snake_case : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : Any = LlamaModel(a_ ) original_model.to(a_ ) original_model.eval() __snake_case : List[Any] = original_model(a_ ).last_hidden_state __snake_case : str = original_model(a_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : str = {'''type''': scaling_type, '''factor''': 10.0} __snake_case : Optional[int] = LlamaModel(a_ ) scaled_model.to(a_ ) scaled_model.eval() __snake_case : Union[str, Any] = scaled_model(a_ ).last_hidden_state __snake_case : List[Any] = scaled_model(a_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a_ , a_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a_ , a_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a_ , a_ , atol=1E-5 ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : Any = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) __snake_case : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __snake_case : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : List[str] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : Tuple = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) __snake_case : Union[str, Any] = model(torch.tensor(a_ ) ) # Expected mean on dim = -1 __snake_case : Dict = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : Tuple = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : int = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) __snake_case : Dict = model(torch.tensor(a_ ) ) # Expected mean on dim = -1 __snake_case : List[str] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : Dict = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : List[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) __snake_case : List[Any] = model(torch.tensor(a_ ) ) __snake_case : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 ) # fmt: off __snake_case : Tuple = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' __snake_case : Dict = '''Simply put, the theory of relativity states that ''' __snake_case : Optional[int] = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) __snake_case : Tuple = tokenizer.encode(a_ , return_tensors='''pt''' ) __snake_case : Optional[Any] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=a_ ) # greedy generation outputs __snake_case : Union[str, Any] = model.generate(a_ , max_new_tokens=64 , top_p=a_ , temperature=1 , do_sample=a_ ) __snake_case : List[str] = tokenizer.decode(generated_ids[0] , skip_special_tokens=a_ ) self.assertEqual(a_ , a_ )
24
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
1
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _A = logging.get_logger(__name__) class lowercase_ ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
122
import colorsys from PIL import Image # type: ignore def lowerCamelCase__ ( a__ : float , a__ : float , a__ : int ) -> float: UpperCamelCase_ = x UpperCamelCase_ = y for step in range(a__ ): # noqa: B007 UpperCamelCase_ = a * a - b * b + x UpperCamelCase_ = 2 * a * b + y UpperCamelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase__ ( a__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase__ ( a__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(a__ , 1 , 1 ) ) def lowerCamelCase__ ( a__ : int = 800 , a__ : int = 600 , a__ : float = -0.6 , a__ : float = 0 , a__ : float = 3.2 , a__ : int = 50 , a__ : bool = True , ) -> Image.Image: UpperCamelCase_ = Image.new("""RGB""" , (image_width, image_height) ) UpperCamelCase_ = img.load() # loop through the image-coordinates for image_x in range(a__ ): for image_y in range(a__ ): # determine the figure-coordinates based on the image-coordinates UpperCamelCase_ = figure_width / image_width * image_height UpperCamelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase_ = get_distance(a__ , a__ , a__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase_ = get_color_coded_rgb(a__ ) else: UpperCamelCase_ = get_black_and_white_rgb(a__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _A = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
122
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Any = {} class __magic_name__ ( __lowerCAmelCase): A: str = "llama" A: List[Any] = ["past_key_values"] def __init__( self : Dict , lowerCamelCase__ : Optional[int]=32000 , lowerCamelCase__ : int=4096 , lowerCamelCase__ : Any=11008 , lowerCamelCase__ : str=32 , lowerCamelCase__ : Optional[Any]=32 , lowerCamelCase__ : Any=None , lowerCamelCase__ : Any="silu" , lowerCamelCase__ : Optional[Any]=2048 , lowerCamelCase__ : str=0.02 , lowerCamelCase__ : Dict=1E-6 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : int=0 , lowerCamelCase__ : str=1 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : Tuple=1 , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : str=None , **lowerCamelCase__ : str , ) -> Dict: '''simple docstring''' UpperCamelCase__ : Tuple = vocab_size UpperCamelCase__ : Tuple = max_position_embeddings UpperCamelCase__ : List[Any] = hidden_size UpperCamelCase__ : Dict = intermediate_size UpperCamelCase__ : int = num_hidden_layers UpperCamelCase__ : str = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : Optional[int] = num_key_value_heads UpperCamelCase__ : Dict = hidden_act UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : Tuple = rms_norm_eps UpperCamelCase__ : Any = pretraining_tp UpperCamelCase__ : Tuple = use_cache UpperCamelCase__ : List[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , tie_word_embeddings=lowerCamelCase__ , **lowerCamelCase__ , ) def UpperCAmelCase__ ( self : List[Any] ) -> int: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"got {self.rope_scaling}" ) UpperCamelCase__ : List[str] = self.rope_scaling.get('''type''' , lowerCamelCase__ ) UpperCamelCase__ : Dict = self.rope_scaling.get('''factor''' , lowerCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
51
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : Dict = image.size UpperCamelCase__ , UpperCamelCase__ : List[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase__ : Any = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) UpperCamelCase__ : Union[str, Any] = np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0 UpperCamelCase__ : Optional[int] = image[None].transpose(0 , 3 , 1 , 2 ) UpperCamelCase__ : int = torch.from_numpy(SCREAMING_SNAKE_CASE ) return 2.0 * image - 1.0 class __magic_name__ ( __lowerCAmelCase): def __init__( self : Dict , lowerCamelCase__ : VQModel , lowerCamelCase__ : UNetaDModel , lowerCamelCase__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(vqvae=lowerCamelCase__ , unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self : int , lowerCamelCase__ : Union[torch.Tensor, PIL.Image.Image] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : Optional[int] = 100 , lowerCamelCase__ : Optional[float] = 0.0 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(lowerCamelCase__ , PIL.Image.Image ): UpperCamelCase__ : int = 1 elif isinstance(lowerCamelCase__ , torch.Tensor ): UpperCamelCase__ : Dict = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCamelCase__ )}" ) if isinstance(lowerCamelCase__ , PIL.Image.Image ): UpperCamelCase__ : Any = preprocess(lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ : Tuple = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCamelCase__ : Any = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCamelCase__ : Union[str, Any] = next(self.unet.parameters() ).dtype UpperCamelCase__ : Any = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device , dtype=lowerCamelCase__ ) UpperCamelCase__ : Any = image.to(device=self.device , dtype=lowerCamelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCamelCase__ , device=self.device ) UpperCamelCase__ : str = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ : int = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase__ : Dict = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ : Optional[int] = {} if accepts_eta: UpperCamelCase__ : Union[str, Any] = eta for t in self.progress_bar(lowerCamelCase__ ): # concat latents and low resolution image in the channel dimension. UpperCamelCase__ : Any = torch.cat([latents, image] , dim=1 ) UpperCamelCase__ : List[str] = self.scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) # predict the noise residual UpperCamelCase__ : Dict = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ : Tuple = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample # decode the image latents with the VQVAE UpperCamelCase__ : Tuple = self.vqvae.decode(lowerCamelCase__ ).sample UpperCamelCase__ : Tuple = torch.clamp(lowerCamelCase__ , -1.0 , 1.0 ) UpperCamelCase__ : Any = image / 2 + 0.5 UpperCamelCase__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ : List[str] = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ )
51
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Tuple = logging.get_logger(__name__) a__ : Optional[Any] = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Union[str, Any] = "vit" def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict=7_6_8 , UpperCAmelCase__ : Tuple=1_2 , UpperCAmelCase__ : str=1_2 , UpperCAmelCase__ : Dict=3_0_7_2 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : Optional[Any]=0.02 , UpperCAmelCase__ : str=1E-12 , UpperCAmelCase__ : List[str]=2_2_4 , UpperCAmelCase__ : List[str]=1_6 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1_6 , **UpperCAmelCase__ : Optional[Any] , ) -> List[Any]: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = encoder_stride class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : List[Any] = version.parse("1.11") @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase_ ( self : Any ) -> float: return 1E-4
54
"""simple docstring""" from PIL import Image def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.size __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = image.load() for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCAmelCase_ ): for i in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": a__ : List[str] = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
54
1
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : int = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCAmelCase : Tuple = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : int = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Any = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Union[str, Any] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class SCREAMING_SNAKE_CASE__ ( pl.LightningModule ): def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : str="base" , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Any , ): """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowerCAmelCase_) lowercase_ = 0 lowercase_ = Path(self.hparams.output_dir) lowercase_ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowercase_ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: lowercase_ = config lowercase_ = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , lowerCAmelCase_ , lowerCAmelCase_): assert hasattr(self.config , lowerCAmelCase_), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowerCAmelCase_ , getattr(self.hparams , lowerCAmelCase_)) if tokenizer is None: lowercase_ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowerCAmelCase_ , ) else: lowercase_ = tokenizer lowercase_ = MODEL_MODES[mode] if model is None: lowercase_ = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path) , config=self.config , cache_dir=lowerCAmelCase_ , ) else: lowercase_ = model def _UpperCAmelCase ( self : List[Any] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = self.model_type.from_pretrained(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = arg_to_scheduler[self.hparams.lr_scheduler] lowercase_ = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps()) lowercase_ = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model lowercase_ = ["""bias""", """LayerNorm.weight"""] lowercase_ = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: lowercase_ = Adafactor( lowerCAmelCase_ , lr=self.hparams.learning_rate , scale_parameter=lowerCAmelCase_ , relative_step=lowerCAmelCase_) else: lowercase_ = AdamW( lowerCAmelCase_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon) lowercase_ = optimizer lowercase_ = self.get_lr_scheduler() return [optimizer], [scheduler] def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): """simple docstring""" return self.validation_step(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : List[str]): """simple docstring""" return self.validation_end(lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = max(1 , self.hparams.gpus) # TODO: consider num_tpu_cores lowercase_ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" if stage == "test": lowercase_ = len(self.test_dataloader().dataset) else: lowercase_ = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=lowerCAmelCase_) lowercase_ = len(self.train_dataloader().dataset) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any = False): """simple docstring""" raise NotImplementedError("""You must implement this for your task""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" return self.train_loader def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=lowerCAmelCase_) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Dict): """simple docstring""" return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( lowerCAmelCase_ , list(filter(lowerCAmelCase_ , self.hparams.model_name_or_path.split("""/"""))).pop() , str(self.hparams.max_seq_length) , ) , ) @pl.utilities.rank_zero_only def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = self.output_dir.joinpath("""best_tfmr""") lowercase_ = self.step_count self.model.save_pretrained(lowerCAmelCase_) self.tokenizer.save_pretrained(lowerCAmelCase_) @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]): """simple docstring""" parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=lowerCAmelCase_ , help="""Pretrained config name or path if not the same as model_name""") parser.add_argument( """--tokenizer_name""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(lowerCAmelCase_).parent / """test_run""" / """cache""") , type=lowerCAmelCase_ , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=lowerCAmelCase_ , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=lowerCAmelCase_ , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=lowerCAmelCase_ , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=lowerCAmelCase_ , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5E-5 , type=lowerCAmelCase_ , help="""The initial learning rate for Adam.""") parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=lowerCAmelCase_ , metavar=lowerCAmelCase_ , type=lowerCAmelCase_ , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=lowerCAmelCase_ , help="""Weight decay if we apply some.""") parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=lowerCAmelCase_ , help="""Epsilon for Adam optimizer.""") parser.add_argument("""--warmup_steps""" , default=0 , type=lowerCAmelCase_ , help="""Linear warmup over warmup_steps.""") parser.add_argument("""--num_workers""" , default=4 , type=lowerCAmelCase_ , help="""kwarg passed to DataLoader""") parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=lowerCAmelCase_) parser.add_argument("""--train_batch_size""" , default=3_2 , type=lowerCAmelCase_) parser.add_argument("""--eval_batch_size""" , default=3_2 , type=lowerCAmelCase_) parser.add_argument("""--adafactor""" , action="""store_true""") class SCREAMING_SNAKE_CASE__ ( pl.Callback ): def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any): """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class SCREAMING_SNAKE_CASE__ ( pl.Callback ): def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]): """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowerCAmelCase_) class SCREAMING_SNAKE_CASE__ ( pl.Callback ): def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = trainer.lr_schedulers[0]["""scheduler"""] lowercase_ = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int): """simple docstring""" rank_zero_info("""***** Validation results *****""") lowercase_ = trainer.callback_metrics # Log results for key in sorted(lowerCAmelCase_): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(lowerCAmelCase_ , str(metrics[key]))) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any): """simple docstring""" rank_zero_info("""***** Test results *****""") lowercase_ = trainer.callback_metrics # Log and save results to file lowercase_ = os.path.join(pl_module.hparams.output_dir , """test_results.txt""") with open(lowerCAmelCase_ , """w""") as writer: for key in sorted(lowerCAmelCase_): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(lowerCAmelCase_ , str(metrics[key]))) writer.write("""{} = {}\n""".format(lowerCAmelCase_ , str(metrics[key]))) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> None: '''simple docstring''' parser.add_argument( """--output_dir""" , default=str(Path(lowercase_ ).parent / """test_run""" / """model_checkpoints""" ) , type=lowercase_ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=lowercase_ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=lowercase_ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=lowercase_ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=lowercase_ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=lowercase_ , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(lowercase_ ).parent / """test_run""" / """dummy-train-data""" ) , type=lowercase_ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=[] , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ) -> int: '''simple docstring''' pl.seed_everything(args.seed ) # init model lowercase_ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowercase_ ) # add custom checkpoints if checkpoint_callback is None: lowercase_ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowercase_ ) if logging_callback is None: lowercase_ = LoggingCallback() lowercase_ = {} if args.fpaa: lowercase_ = 16 if args.gpus > 1: lowercase_ = """auto""" lowercase_ = """ddp""" lowercase_ = args.accumulate_grad_batches lowercase_ = None lowercase_ = """auto""" lowercase_ = pl.Trainer.from_argparse_args( lowercase_ , weights_summary=lowercase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowercase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowercase_ , ) if args.do_train: trainer.fit(lowercase_ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
362
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : int = 6): """simple docstring""" lowercase_ = None lowercase_ = None self.create_linked_list(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = Node() lowercase_ = current_node lowercase_ = current_node lowercase_ = current_node for _ in range(1 , lowerCAmelCase_): lowercase_ = Node() lowercase_ = current_node lowercase_ = previous_node lowercase_ = current_node lowercase_ = self.front lowercase_ = previous_node def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ = self.rear.next if self.rear: lowercase_ = data def _UpperCAmelCase ( self : str): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ = self.front.data lowercase_ = None return data lowercase_ = self.front lowercase_ = old_front.next lowercase_ = old_front.data lowercase_ = None return data def _UpperCAmelCase ( self : Any): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""") class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str]): """simple docstring""" lowercase_ = None lowercase_ = None lowercase_ = None if __name__ == "__main__": import doctest doctest.testmod()
313
0
"""simple docstring""" from collections.abc import Sequence def _snake_case ( snake_case__ : Sequence[float] , snake_case__ : bool = False ): if not arr: return 0 A = 0 if allow_empty_subarrays else float('-inf' ) A = 0.0 for num in arr: A = max(0 if allow_empty_subarrays else num , curr_sum + num ) A = max(snake_case__ , snake_case__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _lowercase = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"""{max_subarray_sum(nums) = }""")
74
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ,A_ : list[int] ) -> None: A = len(A_ ) A = [0] * len_array if len_array > 0: A = array[0] for i in range(1 ,A_ ): A = self.prefix_sum[i - 1] + array[i] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ) -> bool: A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
74
1
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments a : Any = logging.getLogger(__name__) @dataclass class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) __lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={"help": "Whether to SortishSamler or not."} ) __lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={"help": "whether to use adafactor"} ) __lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) __lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) __lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__ , metadata={"help": "Dropout probability. Goes into model.config."} ) __lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) __lowerCamelCase = field( default="linear" , metadata={"help": f"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
150
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging a : Dict = logging.get_logger(__name__) a : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED a : List[str] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } a : Dict = { """allenai/led-base-16384""": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase__() ->List[Any]: """simple docstring""" lowercase__ : Optional[int]= ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowercase__ : str= bs[:] lowercase__ : List[str]= 0 for b in range(2**8 ): if b not in bs: bs.append(A ) cs.append(2**8 + n ) n += 1 lowercase__ : Union[str, Any]= [chr(A ) for n in cs] return dict(zip(A , A ) ) def lowercase__(A ) ->str: """simple docstring""" lowercase__ : Optional[int]= set() lowercase__ : Optional[int]= word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : Tuple= char return pairs class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["input_ids", "attention_mask"] def __init__( self , snake_case__ , snake_case__ , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , **snake_case__ , ): '''simple docstring''' lowercase__ : Dict= AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token lowercase__ : Dict= AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token lowercase__ : str= AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token lowercase__ : Optional[Any]= AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token lowercase__ : List[str]= AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token lowercase__ : Any= AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ : int= AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) with open(snake_case__ , encoding="utf-8" ) as vocab_handle: lowercase__ : int= json.load(snake_case__ ) lowercase__ : List[str]= {v: k for k, v in self.encoder.items()} lowercase__ : Dict= errors # how to handle errors in decoding lowercase__ : Optional[int]= bytes_to_unicode() lowercase__ : str= {v: k for k, v in self.byte_encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: lowercase__ : Tuple= merges_handle.read().split("\n" )[1:-1] lowercase__ : List[str]= [tuple(merge.split() ) for merge in bpe_merges] lowercase__ : int= dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowercase__ : Optional[int]= {} lowercase__ : Tuple= add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ : Optional[int]= re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCAmelCase_ ( self ): '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' if token in self.cache: return self.cache[token] lowercase__ : Any= tuple(snake_case__ ) lowercase__ : Union[str, Any]= get_pairs(snake_case__ ) if not pairs: return token while True: lowercase__ : Union[str, Any]= min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ : Dict= bigram lowercase__ : Optional[Any]= [] lowercase__ : Optional[int]= 0 while i < len(snake_case__ ): try: lowercase__ : Optional[int]= word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ : List[Any]= j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : Optional[int]= tuple(snake_case__ ) lowercase__ : List[Any]= new_word if len(snake_case__ ) == 1: break else: lowercase__ : Tuple= get_pairs(snake_case__ ) lowercase__ : Tuple= " ".join(snake_case__ ) lowercase__ : List[str]= word return word def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' lowercase__ : Optional[int]= [] for token in re.findall(self.pat , snake_case__ ): lowercase__ : int= "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' return self.decoder.get(snake_case__ ) def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' lowercase__ : Union[str, Any]= "".join(snake_case__ ) lowercase__ : Optional[int]= bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def UpperCAmelCase_ ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ : Dict= os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Tuple= os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(snake_case__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + "\n" ) lowercase__ : Any= 0 with open(snake_case__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowercase__ : Optional[Any]= token_index writer.write(" ".join(snake_case__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ : Any= [self.cls_token_id] lowercase__ : Dict= [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def UpperCAmelCase_ ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' lowercase__ : Tuple= [self.sep_token_id] lowercase__ : Optional[int]= [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self , snake_case__ , snake_case__=False , **snake_case__ ): '''simple docstring''' lowercase__ : str= kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case__ ) > 0 and not text[0].isspace()): lowercase__ : List[Any]= " " + text return (text, kwargs) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ = None , snake_case__ = PaddingStrategy.DO_NOT_PAD , snake_case__ = None , snake_case__ = None , ): '''simple docstring''' lowercase__ : List[str]= super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: lowercase__ : Tuple= "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase__ : Any= encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase__ : int= len(encoded_inputs["global_attention_mask"] ) != len(snake_case__ ) if needs_to_be_padded: lowercase__ : Dict= len(snake_case__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase__ : Tuple= ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowercase__ : Any= [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
150
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2", "stage3"] , UpperCAmelCase=[1, 2, 3] , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = model(UpperCAmelCase ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(UpperCAmelCase ): _UpperCAmelCase = ['stem'] _UpperCAmelCase = MaskFormerSwinBackbone(config=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase__ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # Swin has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(UpperCAmelCase ): _UpperCAmelCase = 0 return t def check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase={} ): with torch.no_grad(): _UpperCAmelCase = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ).to_tuple() def recursive_check(UpperCAmelCase , UpperCAmelCase ): if isinstance(UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase , UpperCAmelCase ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCAmelCase ) , set_nan_tensor_to_zero(UpperCAmelCase ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}. Dict has""" F""" `nan`: {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}.""" ) , ) recursive_check(UpperCAmelCase , UpperCAmelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) @require_torch class __lowerCamelCase ( unittest.TestCase , snake_case__): """simple docstring""" UpperCamelCase__ = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase__ = MaskFormerSwinConfig def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase = backbone_class(UpperCAmelCase ) backbone.to(UpperCAmelCase ) backbone.eval() _UpperCAmelCase = backbone(**UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase = backbone(**UpperCAmelCase , output_hidden_states=UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase = backbone(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
39
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase_ ( ): lowercase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=__SCREAMING_SNAKE_CASE , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=__SCREAMING_SNAKE_CASE , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=__SCREAMING_SNAKE_CASE ) return parser.parse_args() def UpperCAmelCase_ ( ): lowercase = parse_args() # Import training_script as a module. lowercase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase = script_fpath.stem lowercase = importlib.import_module(__SCREAMING_SNAKE_CASE ) # Patch sys.argv lowercase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
195
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a ( _lowerCamelCase ): snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "LayoutLMv2ImageProcessor" snake_case_ = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Union[str, Any] , lowercase_ : Any=None , lowercase_ : int=None , **lowercase_ : int ): if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase_ , ) snake_case_ = kwargs.pop('''feature_extractor''' ) snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase_ , lowercase_ ) def __call__( self : List[str] , lowercase_ : Tuple , lowercase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowercase_ : Union[List[List[int]], List[List[List[int]]]] = None , lowercase_ : Optional[Union[List[int], List[List[int]]]] = None , lowercase_ : bool = True , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Union[bool, str, TruncationStrategy] = None , lowercase_ : Optional[int] = None , lowercase_ : int = 0 , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[Union[str, TensorType]] = None , **lowercase_ : List[Any] , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor snake_case_ = self.image_processor(images=lowercase_ , return_tensors=lowercase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase_ , lowercase_ ): snake_case_ = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case_ = features['''words'''] snake_case_ = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel values snake_case_ = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: snake_case_ = self.get_overflowing_images(lowercase_ , encoded_inputs['''overflow_to_sample_mapping'''] ) snake_case_ = images return encoded_inputs def A_ ( self : Any , lowercase_ : str , lowercase_ : List[Any] ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case_ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F" {len(lowercase_ )} and {len(lowercase_ )}" ) return images_with_overflow def A_ ( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : int ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def A_ ( self : List[Any] , *lowercase_ : List[Any] , **lowercase_ : Dict ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def A_ ( self : List[Any] ): return ["input_ids", "bbox", "attention_mask", "image"] @property def A_ ( self : Dict ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase_ , ) return self.image_processor_class @property def A_ ( self : Dict ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase_ , ) return self.image_processor
72
'''simple docstring''' from datetime import datetime import requests def __magic_name__ ( __UpperCAmelCase ) -> bytes: '''simple docstring''' snake_case_ = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' snake_case_ = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(__UpperCAmelCase ).content if __name__ == "__main__": a : Optional[Any] = input('Enter Video/IGTV url: ').strip() a : Union[str, Any] = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
72
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : str = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''xlnet''' UpperCamelCase__ = ['''mems'''] UpperCamelCase__ = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :Dict , __magic_name__ :Optional[int]=3_2000 , __magic_name__ :Union[str, Any]=1024 , __magic_name__ :str=24 , __magic_name__ :List[Any]=16 , __magic_name__ :Tuple=4096 , __magic_name__ :Dict="gelu" , __magic_name__ :Optional[int]=True , __magic_name__ :str="bi" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :List[str]=1E-1_2 , __magic_name__ :List[str]=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :Any=None , __magic_name__ :Any=True , __magic_name__ :List[str]=False , __magic_name__ :Optional[int]=False , __magic_name__ :Union[str, Any]=-1 , __magic_name__ :Optional[Any]=False , __magic_name__ :Dict="last" , __magic_name__ :str=True , __magic_name__ :List[Any]="tanh" , __magic_name__ :Tuple=0.1 , __magic_name__ :Optional[Any]=5 , __magic_name__ :int=5 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :Union[str, Any]=1 , __magic_name__ :str=2 , **__magic_name__ :List[Any] , ): '''simple docstring''' a = vocab_size a = d_model a = n_layer a = n_head if d_model % n_head != 0: raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) a = d_model // n_head a = ff_activation a = d_inner a = untie_r a = attn_type a = initializer_range a = layer_norm_eps a = dropout a = mem_len a = reuse_len a = bi_data a = clamp_len a = same_length a = summary_type a = summary_use_proj a = summary_activation a = summary_last_dropout a = start_n_top a = end_n_top a = bos_token_id a = pad_token_id a = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , __magic_name__ , ) a = kwargs["""use_cache"""] a = use_mems_eval a = use_mems_train super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) @property def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def lowerCamelCase__ ( self :Any , __magic_name__ :Union[str, Any] ): '''simple docstring''' raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
228
def __A ( __lowerCamelCase ) -> int: a = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __A ( __lowerCamelCase = 100 ) -> int: a = 1 a = 2 for i in range(2 , max_n + 1 ): a = pre_numerator a = 2 * i // 3 if i % 3 == 0 else 1 a = cur_numerator a = e_cont * pre_numerator + temp return sum_digits(__lowerCamelCase ) if __name__ == "__main__": print(F'{solution() = }')
228
1
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : Any = None a__ : Dict = BloomTokenizerFast a__ : str = BloomTokenizerFast a__ : Dict = True a__ : Optional[Any] = False a__ : str = "tokenizer_file" a__ : str = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def a ( self : Optional[int] ): super().setUp() __UpperCAmelCase = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **_lowercase : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def a ( self : Any ): __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] __UpperCAmelCase = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] __UpperCAmelCase = tokenizer.batch_encode_plus(_lowercase )['''input_ids'''] self.assertListEqual(_lowercase , _lowercase ) __UpperCAmelCase = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def a ( self : Union[str, Any] , _lowercase : List[Any]=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __UpperCAmelCase = '''This is a simple input''' __UpperCAmelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] __UpperCAmelCase = ('''This is a simple input''', '''This is a pair''') __UpperCAmelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(_lowercase , max_length=_lowercase ) tokenizer_r.encode_plus(_lowercase , max_length=_lowercase ) tokenizer_r.batch_encode_plus(_lowercase , max_length=_lowercase ) tokenizer_r.encode(_lowercase , max_length=_lowercase ) tokenizer_r.batch_encode_plus(_lowercase , max_length=_lowercase ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) __UpperCAmelCase = None # Hotfixing padding = None self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding='''max_length''' ) # Simple input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding='''max_length''' ) # Simple input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding='''max_length''' , ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding='''max_length''' ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding='''max_length''' ) # Pair input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding='''max_length''' , ) def a ( self : List[str] ): __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=_lowercase ) __UpperCAmelCase = next(iter(_lowercase ) )['''premise'''] # pick up one data __UpperCAmelCase = list(sample_data.values() ) __UpperCAmelCase = list(map(tokenizer.encode , _lowercase ) ) __UpperCAmelCase = [tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase ) for x in output_tokens] self.assertListEqual(_lowercase , _lowercase ) def a ( self : Optional[Any] ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
86
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : List[Any] = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
1
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( lowerCAmelCase_ , unittest.TestCase): lowerCamelCase__ : Optional[Any] = BioGptTokenizer lowerCamelCase__ : List[str] = False def _UpperCAmelCase ( self ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowercase__ : Any = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) lowercase__ : str = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def _UpperCAmelCase ( self , a ) -> Tuple: lowercase__ : Optional[Any] = 'lower newer' lowercase__ : str = 'lower newer' return input_text, output_text def _UpperCAmelCase ( self ) -> str: lowercase__ : List[Any] = BioGptTokenizer(self.vocab_file , self.merges_file ) lowercase__ : List[Any] = 'lower' lowercase__ : List[str] = ['low', 'er</w>'] lowercase__ : str = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : List[Any] = tokens + ['<unk>'] lowercase__ : Optional[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @slow def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Union[str, Any] = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) lowercase__ : str = tokenizer.encode('sequence builders' , add_special_tokens=lowerCamelCase__ ) lowercase__ : Union[str, Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCamelCase__ ) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) lowercase__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
77
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
296
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowercase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = StableUnCLIPImgaImgPipeline __SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : List[str] = frozenset([] ) def a ( self ): snake_case_ = 32 snake_case_ = embedder_hidden_size # image encoding components snake_case_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) snake_case_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=snake_case , projection_dim=snake_case , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) snake_case_ = StableUnCLIPImageNormalizer(embedding_dim=snake_case ) snake_case_ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) snake_case_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=snake_case , layers_per_block=1 , upcast_attention=snake_case , use_linear_projection=snake_case , ) torch.manual_seed(0 ) snake_case_ = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=snake_case , steps_offset=1 , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL() snake_case_ = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def a ( self , snake_case , snake_case=0 , snake_case=True ): if str(snake_case ).startswith('mps' ): snake_case_ = torch.manual_seed(snake_case ) else: snake_case_ = torch.Generator(device=snake_case ).manual_seed(snake_case ) snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) if pil_image: snake_case_ = input_image * 0.5 + 0.5 snake_case_ = input_image.clamp(0 , 1 ) snake_case_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case_ = DiffusionPipeline.numpy_to_pil(snake_case )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def a ( self ): snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableUnCLIPImgaImgPipeline(**snake_case ) snake_case_ = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) snake_case_ = self.get_dummy_inputs(snake_case ) inputs.update({'image_embeds': None} ) snake_case_ = sd_pipe(**snake_case ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a ( self ): snake_case_ = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=snake_case ) def a ( self ): snake_case_ = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=snake_case ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def a ( self ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=snake_case ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) snake_case_ = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case_ = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case_ = pipe(snake_case , 'anime turle' , generator=snake_case , output_type='np' ) snake_case_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case , snake_case ) def a ( self ): snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) snake_case_ = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case_ = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case_ = pipe(snake_case , 'anime turle' , generator=snake_case , output_type='np' ) snake_case_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case , snake_case ) def a ( self ): snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) snake_case_ = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case_ = pipe( snake_case , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
200
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowercase ( unittest.TestCase ): @slow def a ( self ): snake_case_ = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) snake_case_ = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(snake_case ) from datasets import load_dataset snake_case_ = load_dataset('nielsr/rvlcdip-demo' ) snake_case_ = dataset['train'][0]['image'].convert('RGB' ) snake_case_ = image_processor(snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): snake_case_ = model(**snake_case ) snake_case_ = outputs.logits snake_case_ = torch.Size((1, 16) ) self.assertEqual(logits.shape , snake_case ) snake_case_ = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=snake_case , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case , atol=1e-4 ) )
200
1
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
115
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : List[str] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } UpperCAmelCase : Tuple = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } UpperCAmelCase : str = '▁' class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] __a = BarthezTokenizer def __init__( self : Optional[int] , UpperCamelCase : List[str]=None , UpperCamelCase : List[str]=None , UpperCamelCase : Union[str, Any]="<s>" , UpperCamelCase : Any="</s>" , UpperCamelCase : Tuple="</s>" , UpperCamelCase : Tuple="<s>" , UpperCamelCase : int="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : int="<mask>" , **UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : Tuple = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , **UpperCamelCase , ) __UpperCAmelCase : List[Any] = vocab_file __UpperCAmelCase : Tuple = False if not self.vocab_file else True def lowerCamelCase__ ( self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : List[Any] = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : List[Any] = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
115
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = CustomTokenizer pass
370
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCamelCase__ ( snake_case_ : Tuple=None ) -> Optional[int]: __snake_case = argparse.ArgumentParser(add_help=snake_case_ , allow_abbrev=snake_case_ ) # The main config parser __snake_case = config_command_parser(snake_case_ ) # The subparser to add commands to __snake_case = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(snake_case_ , parents=[parent_parser] ) update_command_parser(snake_case_ , parents=[parent_parser] ) return config_parser def lowerCamelCase__ ( ) -> Optional[int]: __snake_case = get_config_parser() __snake_case = config_parser.parse_args() if not hasattr(snake_case_ , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(snake_case_ ) if __name__ == "__main__": main()
24
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[str] = CpmAntTokenizer A_ : Optional[int] = False def a (self : Optional[int] ): """simple docstring""" super().setUp() __snake_case = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def a (self : Dict ): """simple docstring""" __snake_case = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __snake_case = '''今天天气真好!''' __snake_case = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = '''今天天气真好!''' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) __snake_case = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
24
1
"""simple docstring""" def lowercase_ ( __UpperCAmelCase ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowerCAmelCase__ : Dict = sum(__UpperCAmelCase ) / len(__UpperCAmelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" def lowercase_ ( __UpperCAmelCase ) -> str: if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) lowerCAmelCase__ : List[str] = """""" while len(__UpperCAmelCase ) % 3 != 0: lowerCAmelCase__ : Optional[Any] = """0""" + bin_string lowerCAmelCase__ : List[Any] = [ bin_string[index : index + 3] for index in range(len(__UpperCAmelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowerCAmelCase__ : Optional[int] = 0 for index, val in enumerate(__UpperCAmelCase ): oct_val += int(2 ** (2 - index) * int(__UpperCAmelCase ) ) oct_string += str(__UpperCAmelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
212
0
def A (__A : int ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(__A , __A ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(__A )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
51
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): snake_case_ : Optional[Any] = "pt" elif is_tf_available(): snake_case_ : Union[str, Any] = "tf" else: snake_case_ : str = "jax" class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[Any] = ByTaTokenizer UpperCAmelCase__ : int = False def lowerCamelCase ( self : Optional[int]): """simple docstring""" super().setUp() UpperCAmelCase_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def lowerCamelCase ( self : Tuple): """simple docstring""" return ByTaTokenizer.from_pretrained('''google/byt5-small''') def lowerCamelCase ( self : List[str] , **_snake_case : Union[str, Any]): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Dict , _snake_case : int , _snake_case : Tuple=False , _snake_case : Dict=20 , _snake_case : Optional[Any]=5): """simple docstring""" UpperCAmelCase_ = [] for i in range(len(_snake_case)): try: UpperCAmelCase_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_snake_case) except UnicodeDecodeError: pass toks.append((i, tok)) UpperCAmelCase_ = list(filter(lambda _snake_case: re.match(r'''^[ a-zA-Z]+$''' , t[1]) , _snake_case)) UpperCAmelCase_ = list(filter(lambda _snake_case: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_snake_case) , _snake_case)) if max_length is not None and len(_snake_case) > max_length: UpperCAmelCase_ = toks[:max_length] if min_length is not None and len(_snake_case) < min_length and len(_snake_case) > 0: while len(_snake_case) < min_length: UpperCAmelCase_ = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase_ = [t[0] for t in toks] # Ensure consistency UpperCAmelCase_ = tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case) if " " not in output_txt and len(_snake_case) > 1: UpperCAmelCase_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_snake_case) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_snake_case) ) if with_prefix_space: UpperCAmelCase_ = ''' ''' + output_txt UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) return output_txt, output_ids def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>''']) UpperCAmelCase_ = tokenizer(['''hi''', '''I went to the gym''', '''''']) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids''']) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = '''Unicode €.''' UpperCAmelCase_ = tokenizer(_snake_case) UpperCAmelCase_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _snake_case) # decoding UpperCAmelCase_ = tokenizer.decode(_snake_case) self.assertEqual(_snake_case , '''Unicode €.</s>''') UpperCAmelCase_ = tokenizer('''e è é ê ë''') UpperCAmelCase_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _snake_case) # decoding UpperCAmelCase_ = tokenizer.decode(_snake_case) self.assertEqual(_snake_case , '''e è é ê ë</s>''') # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''')) , '''e è é ê ë</s>''') def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off UpperCAmelCase_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on UpperCAmelCase_ = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case) self.assertIsInstance(_snake_case , _snake_case) if FRAMEWORK != "jax": UpperCAmelCase_ = list(batch.input_ids.numpy()[0]) else: UpperCAmelCase_ = list(batch.input_ids.tolist()[0]) self.assertListEqual(_snake_case , _snake_case) self.assertEqual((2, 37) , batch.input_ids.shape) self.assertEqual((2, 37) , batch.attention_mask.shape) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase_ = tokenizer(_snake_case , padding=_snake_case , return_tensors=_snake_case) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _snake_case) self.assertIn('''attention_mask''' , _snake_case) self.assertNotIn('''decoder_input_ids''' , _snake_case) self.assertNotIn('''decoder_attention_mask''' , _snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = [ '''Summary of the text.''', '''Another summary.''', ] UpperCAmelCase_ = tokenizer( text_target=_snake_case , max_length=32 , padding='''max_length''' , truncation=_snake_case , return_tensors=_snake_case) self.assertEqual(32 , targets['''input_ids'''].shape[1]) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.ta_base_tokenizer UpperCAmelCase_ = ['''A long paragraph for summarization. </s>'''] UpperCAmelCase_ = ['''Summary of the text. </s>'''] # fmt: off UpperCAmelCase_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] UpperCAmelCase_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on UpperCAmelCase_ = tokenizer(_snake_case , text_target=_snake_case) self.assertEqual(_snake_case , batch['''input_ids'''][0]) self.assertEqual(_snake_case , batch['''labels'''][0]) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): self.assertNotEqual(tokenizer.model_max_length , 42) # Now let's start the test UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = ''' He is very happy, UNwant\u00E9d,running''' UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(_snake_case) UpperCAmelCase_ = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case) self.assertListEqual(_snake_case , _snake_case) shutil.rmtree(_snake_case) UpperCAmelCase_ = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam''']) UpperCAmelCase_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''') tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens}) UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(_snake_case) UpperCAmelCase_ = after_tokenizer.encode(_snake_case , add_special_tokens=_snake_case) self.assertListEqual(_snake_case , _snake_case) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length , 42) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(_snake_case , model_max_length=43) self.assertEqual(tokenizer.model_max_length , 43) shutil.rmtree(_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case) with open(os.path.join(_snake_case , '''special_tokens_map.json''') , encoding='''utf-8''') as json_file: UpperCAmelCase_ = json.load(_snake_case) with open(os.path.join(_snake_case , '''tokenizer_config.json''') , encoding='''utf-8''') as json_file: UpperCAmelCase_ = json.load(_snake_case) UpperCAmelCase_ = [F"""<extra_id_{i}>""" for i in range(125)] UpperCAmelCase_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] UpperCAmelCase_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_snake_case , '''special_tokens_map.json''') , '''w''' , encoding='''utf-8''') as outfile: json.dump(_snake_case , _snake_case) with open(os.path.join(_snake_case , '''tokenizer_config.json''') , '''w''' , encoding='''utf-8''') as outfile: json.dump(_snake_case , _snake_case) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ = tokenizer_class.from_pretrained( _snake_case , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''])) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_snake_case)] UpperCAmelCase_ = tokenizer_class.from_pretrained( _snake_case , additional_special_tokens=_snake_case , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''])) , ) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_snake_case) UpperCAmelCase_ = tokenizer_class.from_pretrained(_snake_case) self.assertTrue(tokenizer.decode([255]) == '''''') def lowerCamelCase ( self : int): """simple docstring""" pass def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Dict): """simple docstring""" pass def lowerCamelCase ( self : List[Any]): """simple docstring""" pass def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.get_tokenizers(fast=_snake_case , do_lower_case=_snake_case) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): UpperCAmelCase_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertIsInstance(_snake_case , _snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): UpperCAmelCase_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] UpperCAmelCase_ = 0 UpperCAmelCase_ = tokenizer.convert_ids_to_tokens( _snake_case , skip_special_tokens=_snake_case) for attr in attributes_list: setattr(_snake_case , attr + '''_id''' , _snake_case) self.assertEqual(getattr(_snake_case , _snake_case) , _snake_case) self.assertEqual(getattr(_snake_case , attr + '''_id''') , _snake_case) setattr(_snake_case , attr + '''_id''' , _snake_case) self.assertEqual(getattr(_snake_case , _snake_case) , _snake_case) self.assertEqual(getattr(_snake_case , attr + '''_id''') , _snake_case) setattr(_snake_case , '''additional_special_tokens_ids''' , []) self.assertListEqual(getattr(_snake_case , '''additional_special_tokens''') , []) self.assertListEqual(getattr(_snake_case , '''additional_special_tokens_ids''') , []) setattr(_snake_case , '''additional_special_tokens_ids''' , [token_id_to_test_setters]) self.assertListEqual(getattr(_snake_case , '''additional_special_tokens''') , [token_to_test_setters]) self.assertListEqual(getattr(_snake_case , '''additional_special_tokens_ids''') , [token_id_to_test_setters])
51
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right SCREAMING_SNAKE_CASE : Optional[int] = 128022 SCREAMING_SNAKE_CASE : Optional[int] = 128028 @require_sentencepiece class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Optional[int] = MaMaaaTokenizer lowercase_ : Any = False lowercase_ : Dict = False lowercase_ : str = True def UpperCamelCase ( self) -> List[str]: """simple docstring""" super().setUp() _lowercase : List[Any] = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] _lowercase : List[Any] = dict(zip(_lowerCAmelCase, range(len(_lowerCAmelCase)))) _lowercase : Dict = Path(self.tmpdirname) save_json(_lowerCAmelCase, save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_lowerCAmelCase, save_dir / VOCAB_FILES_NAMES['spm_file']) _lowercase : int = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def UpperCamelCase ( self, **lowerCamelCase) -> Optional[int]: """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname, **_lowerCAmelCase) def UpperCamelCase ( self, lowerCamelCase) -> Any: """simple docstring""" return ( "This is a test", "This is a test", ) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = '</s>' _lowercase : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase), _lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase), _lowerCAmelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = self.get_tokenizer() _lowercase : Dict = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0], '</s>') self.assertEqual(vocab_keys[1], '<unk>') self.assertEqual(vocab_keys[-1], '<s>') self.assertEqual(len(_lowerCAmelCase), tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('Skip this test while all models are still to be uploaded.') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : str = self.get_tokenizer() _lowercase : Tuple = tokenizer.tokenize('This is a test') self.assertListEqual(_lowerCAmelCase, ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase), [2, 3, 4, 5, 6], ) _lowercase : List[str] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_lowerCAmelCase, ['▁This', '▁is', '▁a', '▁t', 'est']) _lowercase : Dict = tokenizer.convert_tokens_to_string(_lowerCAmelCase) self.assertEqual(_lowerCAmelCase, 'This is a test') @slow def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = {'input_ids': [[12_80_22, 11_01_08, 3_97, 11, 3_82_72, 22_47, 12_48_11, 2_85, 1_81_05, 15_86, 2_07, 7, 3_95_34, 44_28, 3_97, 10_19, 1_81_05, 15_86, 2_07, 7, 4_13_37, 1_67_86, 2_41, 7, 2_02_14, 17, 12_56_90, 1_03_98, 7, 4_43_78, 5_80_69, 6_83_42, 77_98, 73_43, 11, 2_99, 3_33_10, 4, 1_58, 3_73_50, 9_40_77, 45_69, 2_99, 3_33_10, 90, 4, 5_28_40, 2_90, 4, 3_12_70, 1_12, 2_99, 6_82, 4, 5_28_40, 3_99_53, 1_40_79, 1_93, 5_25_19, 9_08_94, 1_78_94, 12_06_97, 11, 4_04_45, 5_51, 17, 10_19, 5_25_19, 9_08_94, 1_77_56, 9_63, 11, 4_04_45, 4_80, 17, 97_92, 11_20, 51_73, 13_93, 62_40, 1_67_86, 2_41, 12_09_96, 28, 12_45, 13_93, 11_82_40, 1_11_23, 10_19, 9_36_12, 26_91, 1_06_18, 9_80_58, 12_04_09, 19_28, 2_79, 4, 4_06_83, 3_67, 1_78, 2_07, 10_19, 1_03, 10_31_21, 5_06, 6_52_96, 5, 2], [12_80_22, 2_12_17, 3_67, 1_17, 12_54_50, 1_28, 7_19, 7, 73_08, 40, 9_36_12, 1_26_69, 11_16, 1_67_04, 71, 1_77_85, 36_99, 1_55_92, 35, 1_44, 95_84, 2_41, 1_19_43, 7_13, 9_50, 7_99, 22_47, 8_84_27, 1_50, 1_49, 11_88_13, 12_07_06, 10_19, 10_69_06, 8_15_18, 28, 12_24, 2_27_99, 3_97, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_80_22, 16_58, 12_33_11, 51_55, 55_78, 47_22, 2_79, 1_49_47, 23_66, 11_20, 11_97, 14, 13_48, 92_32, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase, model_name='facebook/m2m100_418M', revision='c168bae485c864188cf9aa0e4108b0b6934dc91e', ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase( unittest.TestCase ): lowercase_ : str = """facebook/m2m100_418M""" lowercase_ : int = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] lowercase_ : int = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off lowercase_ : Union[str, Any] = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def UpperCamelCase ( cls) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name, src_lang='en', tgt_lang='fr') _lowercase : List[str] = 1 return cls def UpperCamelCase ( self) -> str: """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('ar'), 12_80_06) self.assertEqual(self.tokenizer.get_lang_id('en'), 12_80_22) self.assertEqual(self.tokenizer.get_lang_id('ro'), 12_80_76) self.assertEqual(self.tokenizer.get_lang_id('mr'), 12_80_63) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = self.tokenizer.get_vocab() self.assertEqual(len(_lowerCAmelCase), self.tokenizer.vocab_size) self.assertEqual(vocab['<unk>'], 3) self.assertIn(self.tokenizer.get_lang_token('en'), _lowerCAmelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : str = 'en' _lowercase : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens, _lowerCAmelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" self.assertIn(_lowerCAmelCase, self.tokenizer.all_special_ids) # fmt: off _lowercase : Tuple = [FR_CODE, 53_64, 82, 86_42, 4, 2_94, 47, 8, 1_40_28, 1_36, 32_86, 97_06, 6, 9_07_97, 6, 14_40_12, 1_62, 8_81_28, 3_00_61, 5, 2] # fmt: on _lowercase : Dict = self.tokenizer.decode(_lowerCAmelCase, skip_special_tokens=_lowerCAmelCase) _lowercase : Any = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=_lowerCAmelCase) self.assertEqual(_lowerCAmelCase, _lowerCAmelCase) self.assertNotIn(self.tokenizer.eos_token, _lowerCAmelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = tempfile.mkdtemp() _lowercase : Tuple = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_lowerCAmelCase) _lowercase : int = MaMaaaTokenizer.from_pretrained(_lowerCAmelCase) self.assertDictEqual(new_tok.lang_token_to_id, _lowerCAmelCase) @require_torch def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = 'en' _lowercase : Optional[Any] = 'fr' _lowercase : Optional[Any] = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=_lowerCAmelCase, return_tensors='pt') _lowercase : Optional[Any] = shift_tokens_right( batch['labels'], self.tokenizer.pad_token_id, self.tokenizer.eos_token_id) for k in batch: _lowercase : Union[str, Any] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('mr')]) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) _lowercase : Optional[Any] = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('zh')]) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) @require_torch def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('mr')]) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) _lowercase : Union[str, Any] = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('zh')]) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = self.tokenizer._build_translation_inputs('A test', return_tensors='pt', src_lang='en', tgt_lang='ar') self.assertEqual( nested_simplify(_lowerCAmelCase), { # en_XX, A, test, EOS 'input_ids': [[12_80_22, 58, 41_83, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 12_80_06, }, )
354
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _lowercase : List[str] = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=lowerCamelCase, scheduler=lowerCamelCase) @torch.no_grad() def __call__( self, lowerCamelCase = 1, lowerCamelCase = None, lowerCamelCase = 0.0, lowerCamelCase = 50, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size, lowerCamelCase): _lowercase : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _lowercase : Union[str, Any] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCamelCase)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') _lowercase : str = randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(lowerCamelCase) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output _lowercase : Union[str, Any] = self.unet(lowerCamelCase, lowerCamelCase).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step( lowerCamelCase, lowerCamelCase, lowerCamelCase, eta=lowerCamelCase, use_clipped_model_output=lowerCamelCase, generator=lowerCamelCase).prev_sample _lowercase : Any = (image / 2 + 0.5).clamp(0, 1) _lowercase : str = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : Optional[int] = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase)
84
0
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class _a ( __a ): __a : Optional[int] = """owlvit_text_model""" def __init__( self : Tuple , lowercase : Union[str, Any]=49_408 , lowercase : str=512 , lowercase : int=2_048 , lowercase : Optional[Any]=12 , lowercase : Any=8 , lowercase : Optional[int]=16 , lowercase : Union[str, Any]="quick_gelu" , lowercase : Dict=1E-5 , lowercase : Tuple=0.0 , lowercase : str=0.02 , lowercase : Dict=1.0 , lowercase : str=0 , lowercase : List[str]=49_406 , lowercase : int=49_407 , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_act UpperCAmelCase = layer_norm_eps UpperCAmelCase = attention_dropout UpperCAmelCase = initializer_range UpperCAmelCase = initializer_factor @classmethod def A ( cls : int , lowercase : Union[str, os.PathLike] , **lowercase : List[Any] ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": UpperCAmelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase , **lowercase ) class _a ( __a ): __a : Dict = """owlvit_vision_model""" def __init__( self : Tuple , lowercase : str=768 , lowercase : Dict=3_072 , lowercase : int=12 , lowercase : Tuple=12 , lowercase : Optional[int]=3 , lowercase : Optional[int]=768 , lowercase : Optional[int]=32 , lowercase : Union[str, Any]="quick_gelu" , lowercase : Dict=1E-5 , lowercase : List[Any]=0.0 , lowercase : List[Any]=0.02 , lowercase : str=1.0 , **lowercase : str , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = hidden_act UpperCAmelCase = layer_norm_eps UpperCAmelCase = attention_dropout UpperCAmelCase = initializer_range UpperCAmelCase = initializer_factor @classmethod def A ( cls : Optional[Any] , lowercase : Union[str, os.PathLike] , **lowercase : int ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": UpperCAmelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase , **lowercase ) class _a ( __a ): __a : Dict = """owlvit""" __a : Optional[Any] = True def __init__( self : Tuple , lowercase : Tuple=None , lowercase : Optional[Any]=None , lowercase : List[str]=512 , lowercase : Any=2.6592 , lowercase : List[Any]=True , **lowercase : str , ): '''simple docstring''' super().__init__(**lowercase ) if text_config is None: UpperCAmelCase = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: UpperCAmelCase = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) UpperCAmelCase = OwlViTTextConfig(**lowercase ) UpperCAmelCase = OwlViTVisionConfig(**lowercase ) UpperCAmelCase = projection_dim UpperCAmelCase = logit_scale_init_value UpperCAmelCase = return_dict UpperCAmelCase = 1.0 @classmethod def A ( cls : Tuple , lowercase : Union[str, os.PathLike] , **lowercase : List[str] ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase , **lowercase ) @classmethod def A ( cls : List[str] , lowercase : Dict , lowercase : Dict , **lowercase : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = text_config UpperCAmelCase = vision_config return cls.from_dict(lowercase , **lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.text_config.to_dict() UpperCAmelCase = self.vision_config.to_dict() UpperCAmelCase = self.__class__.model_type return output class _a ( __a ): @property def A ( self : Optional[Any] ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 def A ( self : Tuple , lowercase : "ProcessorMixin" , lowercase : int = -1 , lowercase : int = -1 , lowercase : Optional["TensorType"] = None , ): '''simple docstring''' UpperCAmelCase = super().generate_dummy_inputs( processor.tokenizer , batch_size=lowercase , seq_length=lowercase , framework=lowercase ) UpperCAmelCase = super().generate_dummy_inputs( processor.image_processor , batch_size=lowercase , framework=lowercase ) return {**text_input_dict, **image_input_dict} @property def A ( self : List[Any] ): '''simple docstring''' return 14
34
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
0
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( ) -> List[Any]: lowercase__ : str = 10 lowercase__ : int = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) lowercase__ : List[str] = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(__lowerCamelCase ) ), } , features=__lowerCamelCase , ) return dataset @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: lowercase__ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=__lowerCamelCase ) return filename # FILE_CONTENT + files lowerCAmelCase_ = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' lowercase__ : str = FILE_CONTENT with open(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase ) return filename @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: import bza lowercase__ : Any = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' lowercase__ : Optional[int] = bytes(__lowerCamelCase , '''utf-8''' ) with bza.open(__lowerCamelCase , '''wb''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: import gzip lowercase__ : str = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) lowercase__ : Dict = bytes(__lowerCamelCase , '''utf-8''' ) with gzip.open(__lowerCamelCase , '''wb''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: if datasets.config.LZ4_AVAILABLE: import lza.frame lowercase__ : Any = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' lowercase__ : Optional[int] = bytes(__lowerCamelCase , '''utf-8''' ) with lza.frame.open(__lowerCamelCase , '''wb''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: if datasets.config.PY7ZR_AVAILABLE: import pyazr lowercase__ : List[str] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(__lowerCamelCase , '''w''' ) as archive: archive.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: import tarfile lowercase__ : List[str] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(__lowerCamelCase , '''w''' ) as f: f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> int: import lzma lowercase__ : str = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' lowercase__ : Any = bytes(__lowerCamelCase , '''utf-8''' ) with lzma.open(__lowerCamelCase , '''wb''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: import zipfile lowercase__ : int = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowercase__ : Tuple = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' lowercase__ : List[Any] = bytes(__lowerCamelCase , '''utf-8''' ) with zstd.open(__lowerCamelCase , '''wb''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : Dict = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' lowercase__ : Any = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase ) return filename lowerCAmelCase_ = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowerCAmelCase_ = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowerCAmelCase_ = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowerCAmelCase_ = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowerCAmelCase_ = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( ) -> Optional[int]: return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : Tuple = datasets.Dataset.from_dict(__lowerCamelCase ) lowercase__ : Any = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(__lowerCamelCase ) ) as con: lowercase__ : Union[str, Any] = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Any = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(__lowerCamelCase , '''w''' , newline='''''' ) as f: lowercase__ : int = csv.DictWriter(__lowerCamelCase , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : int = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(__lowerCamelCase , '''w''' , newline='''''' ) as f: lowercase__ : Optional[int] = csv.DictWriter(__lowerCamelCase , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: import bza lowercase__ : Any = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(__lowerCamelCase , '''rb''' ) as f: lowercase__ : List[Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__lowerCamelCase , '''wb''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : int = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(__lowerCamelCase , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : List[str] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowerCamelCase ) ) ) f.write(__lowerCamelCase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Any = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) lowercase__ : int = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(__lowerCamelCase , '''wb''' ) as f: lowercase__ : List[Any] = pq.ParquetWriter(__lowerCamelCase , schema=__lowerCamelCase ) lowercase__ : Optional[Any] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__lowerCamelCase ) )] for k in DATA[0]} , schema=__lowerCamelCase ) writer.write_table(__lowerCamelCase ) writer.close() return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : Tuple = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) lowercase__ : Any = {'''data''': DATA} with open(__lowerCamelCase , '''w''' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : Tuple = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) lowercase__ : str = {'''data''': DATA_DICT_OF_LISTS} with open(__lowerCamelCase , '''w''' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(__lowerCamelCase , '''w''' ) as f: for item in DATA: f.write(json.dumps(__lowerCamelCase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(__lowerCamelCase , '''w''' ) as f: for item in DATA: f.write(json.dumps(__lowerCamelCase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]: lowercase__ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(__lowerCamelCase , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(__lowerCamelCase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(__lowerCamelCase , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(__lowerCamelCase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: import gzip lowercase__ : Dict = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(__lowerCamelCase , '''rb''' ) as orig_file: with gzip.open(__lowerCamelCase , '''wb''' ) as zipped_file: zipped_file.writelines(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: import gzip lowercase__ : Dict = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(__lowerCamelCase , '''rb''' ) as orig_file: with gzip.open(__lowerCamelCase , '''wb''' ) as zipped_file: zipped_file.writelines(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: lowercase__ : int = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : str = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.join('''nested''' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowerCamelCase ) ) ) f.write(__lowerCamelCase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : Dict = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(__lowerCamelCase , '''w''' ) as f: f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.add(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: lowercase__ : int = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(__lowerCamelCase , '''w''' ) as f: f.add(__lowerCamelCase , arcname=os.path.join('''nested''' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : List[str] = ['''0''', '''1''', '''2''', '''3'''] lowercase__ : int = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(__lowerCamelCase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Union[str, Any] = ['''0''', '''1''', '''2''', '''3'''] lowercase__ : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(__lowerCamelCase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Union[str, Any] = ['''0''', '''1''', '''2''', '''3'''] lowercase__ : int = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(__lowerCamelCase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: lowercase__ : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowerCamelCase ) ) ) f.write(__lowerCamelCase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowerCamelCase ) ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(__lowerCamelCase , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]: lowercase__ : List[Any] = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) lowercase__ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( ) -> Union[str, Any]: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( ) -> List[Any]: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : List[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(__lowerCamelCase , '''w''' ) as f: f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ) ) f.write(__lowerCamelCase , arcname=os.path.basename(__lowerCamelCase ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : Optional[Any] = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
302
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowercase__ : List[str] = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowercase__ : List[str] = '''The dog is cute and lives in the garden house''' lowercase__ : int = jnp.array([tokenizer.encode(_snake_case )] ) lowercase__ : Any = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) lowercase__ : Optional[Any] = model(_snake_case )['''last_hidden_state'''] self.assertEqual(output.shape ,_snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,_snake_case ,atol=1e-3 ) )
302
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging snake_case__ : Optional[int] = logging.get_logger(__name__) snake_case__ : List[Any] = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class snake_case_( a__ ): __UpperCamelCase = '''trajectory_transformer''' __UpperCamelCase = ['''past_key_values'''] __UpperCamelCase = { '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=1_0_0 , UpperCamelCase_ : int=5 , UpperCamelCase_ : Dict=1 , UpperCamelCase_ : str=1 , UpperCamelCase_ : int=2_4_9 , UpperCamelCase_ : int=6 , UpperCamelCase_ : Tuple=1_7 , UpperCamelCase_ : Optional[Any]=2_5 , UpperCamelCase_ : Optional[int]=4 , UpperCamelCase_ : Tuple=4 , UpperCamelCase_ : Any=1_2_8 , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : int=0.0_006 , UpperCamelCase_ : List[Any]=5_1_2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : str=1E-12 , UpperCamelCase_ : List[str]=1 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=1 , UpperCamelCase_ : str=5_0_2_5_6 , UpperCamelCase_ : Dict=5_0_2_5_6 , **UpperCamelCase_ : List[str] , ): lowerCAmelCase : Any = vocab_size lowerCAmelCase : List[Any] = action_weight lowerCAmelCase : int = reward_weight lowerCAmelCase : Optional[int] = value_weight lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : Dict = block_size lowerCAmelCase : Any = action_dim lowerCAmelCase : int = observation_dim lowerCAmelCase : int = transition_dim lowerCAmelCase : Tuple = learning_rate lowerCAmelCase : List[str] = n_layer lowerCAmelCase : Union[str, Any] = n_head lowerCAmelCase : str = n_embd lowerCAmelCase : Any = embd_pdrop lowerCAmelCase : Optional[int] = attn_pdrop lowerCAmelCase : Tuple = resid_pdrop lowerCAmelCase : int = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : List[str] = kaiming_initializer_range lowerCAmelCase : str = use_cache super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
60
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ :int = logging.get_logger(__name__) lowerCAmelCase__ :Optional[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class __a ( UpperCAmelCase ): _a : str = 'data2vec-text' def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class __a ( UpperCAmelCase ): @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
329
0
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' return F'''gaussian_noise_s={seed}_shape={'_'.join([str(snake_case_ ) for s in shape] )}.npy''' def _UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() def _UpperCamelCase ( self , snake_case_=0 , snake_case_=(4, 4, 6_4, 6_4) , snake_case_=False ): '''simple docstring''' UpperCAmelCase_ : Tuple = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase_ : Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(snake_case_ , snake_case_ ) ) , dtype=snake_case_ ) return image def _UpperCamelCase ( self , snake_case_=False , snake_case_="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' UpperCAmelCase_ : Tuple = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase_ : List[Any] = 'bf16' if fpaa else None UpperCAmelCase_ : Optional[Any] = FlaxUNetaDConditionModel.from_pretrained( snake_case_ , subfolder='unet' , dtype=snake_case_ , revision=snake_case_ ) return model, params def _UpperCamelCase ( self , snake_case_=0 , snake_case_=(4, 7_7, 7_6_8) , snake_case_=False ): '''simple docstring''' UpperCAmelCase_ : Any = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase_ : Dict = jnp.array(load_hf_numpy(self.get_file_format(snake_case_ , snake_case_ ) ) , dtype=snake_case_ ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [1_7, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1_0_0_0, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=snake_case_ ) UpperCAmelCase_ : int = self.get_latents(snake_case_ , fpaa=snake_case_ ) UpperCAmelCase_ : Any = self.get_encoder_hidden_states(snake_case_ , fpaa=snake_case_ ) UpperCAmelCase_ : List[Any] = model.apply( {'params': params} , snake_case_ , jnp.array(snake_case_ , dtype=jnp.intaa ) , encoder_hidden_states=snake_case_ , ).sample assert sample.shape == latents.shape UpperCAmelCase_ : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCAmelCase_ : int = jnp.array(snake_case_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(snake_case_ , snake_case_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [1_7, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1_0_0_0, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : int = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=snake_case_ ) UpperCAmelCase_ : List[str] = self.get_latents(snake_case_ , shape=(4, 4, 9_6, 9_6) , fpaa=snake_case_ ) UpperCAmelCase_ : str = self.get_encoder_hidden_states(snake_case_ , shape=(4, 7_7, 1_0_2_4) , fpaa=snake_case_ ) UpperCAmelCase_ : int = model.apply( {'params': params} , snake_case_ , jnp.array(snake_case_ , dtype=jnp.intaa ) , encoder_hidden_states=snake_case_ , ).sample assert sample.shape == latents.shape UpperCAmelCase_ : Union[str, Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCAmelCase_ : List[Any] = jnp.array(snake_case_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(snake_case_ , snake_case_ , atol=1E-2 )
359
'''simple docstring''' snake_case__ : str = '''Tobias Carryer''' from time import time class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ): # noqa: B008 '''simple docstring''' UpperCAmelCase_ : str = multiplier UpperCAmelCase_ : Dict = increment UpperCAmelCase_ : Tuple = modulo UpperCAmelCase_ : Dict = seed def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. snake_case__ : Any = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
274
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase_ = { """configuration_tapas""": ["""TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TapasConfig"""], """tokenization_tapas""": ["""TapasTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TapasForMaskedLM""", """TapasForQuestionAnswering""", """TapasForSequenceClassification""", """TapasModel""", """TapasPreTrainedModel""", """load_tf_weights_in_tapas""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFTapasForMaskedLM""", """TFTapasForQuestionAnswering""", """TFTapasForSequenceClassification""", """TFTapasModel""", """TFTapasPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
58
_lowerCAmelCase : Dict = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _lowerCAmelCase : str = ["a", "b", "c", "d", "e"] def lowerCAmelCase ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = start # add current to visited visited.append(_lowerCAmelCase ) UpperCAmelCase__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCAmelCase__ = topological_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(_lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): for vertice in vertices: if vertice not in visited: UpperCAmelCase__ = topological_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # return sort return sort if __name__ == "__main__": _lowerCAmelCase : Optional[int] = topological_sort("a", [], []) print(sort)
169
0
def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : List[str] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def a__ ( ): print(sum_of_series(1, 1, 1_0 ) ) if __name__ == "__main__": import doctest doctest.testmod()
357
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowercase (unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = size if size is not None else {'shortest_edge': 1_8} SCREAMING_SNAKE_CASE_ : Optional[Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : str = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = image_size SCREAMING_SNAKE_CASE_ : str = min_resolution SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_resolution SCREAMING_SNAKE_CASE_ : int = do_resize SCREAMING_SNAKE_CASE_ : List[Any] = size SCREAMING_SNAKE_CASE_ : Optional[int] = do_center_crop SCREAMING_SNAKE_CASE_ : Any = crop_size SCREAMING_SNAKE_CASE_ : List[Any] = do_normalize SCREAMING_SNAKE_CASE_ : List[str] = image_mean SCREAMING_SNAKE_CASE_ : Optional[int] = image_std def UpperCamelCase__ ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowercase (__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = LevitImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = LevitImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_std' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'size' ) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : str = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
162
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""OwlViTFeatureExtractor"""] lowerCamelCase__ = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
86
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return round(float(moles / volume ) * nfactor ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return round(float((moles * 0.0821 * temperature) / (volume) ) ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
86
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = (DPMSolverSDEScheduler,) __snake_case = 1_0 def UpperCamelCase__ ( self , **_UpperCAmelCase ): snake_case_ = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**_UpperCAmelCase ) return config def UpperCamelCase__ ( self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def UpperCamelCase__ ( self ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def UpperCamelCase__ ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def UpperCamelCase__ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(_UpperCAmelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1E-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def UpperCamelCase__ ( self ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case_ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(_UpperCAmelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1E-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1E-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1E-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1E-3 def UpperCamelCase__ ( self ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: snake_case_ = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(_UpperCAmelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1E-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def UpperCamelCase__ ( self ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCAmelCase , use_karras_sigmas=_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma snake_case_ = sample.to(_UpperCAmelCase ) for t in scheduler.timesteps: snake_case_ = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(_UpperCAmelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
267
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowerCAmelCase ()-> Optional[Any]: """simple docstring""" snake_case_ = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) return image def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" snake_case_ = dct.pop(SCREAMING_SNAKE_CASE ) snake_case_ = val def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases snake_case_ = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) snake_case_ = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict snake_case_ = torch.cat((q_bias, torch.zeros_like(SCREAMING_SNAKE_CASE , requires_grad=SCREAMING_SNAKE_CASE ), v_bias) ) snake_case_ = qkv_bias def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" snake_case_ = 364 if '''coco''' in model_name else 224 snake_case_ = BlipaVisionConfig(image_size=SCREAMING_SNAKE_CASE ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: snake_case_ = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=SCREAMING_SNAKE_CASE ).to_dict() elif "opt-6.7b" in model_name: snake_case_ = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=SCREAMING_SNAKE_CASE ).to_dict() elif "t5-xl" in model_name: snake_case_ = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: snake_case_ = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() snake_case_ = BlipaConfig(vision_config=SCREAMING_SNAKE_CASE , text_config=SCREAMING_SNAKE_CASE ) return config, image_size @torch.no_grad() def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False )-> List[Any]: """simple docstring""" snake_case_ = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) snake_case_ = tokenizer('''\n''' , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids[0] snake_case_ , snake_case_ = get_blipa_config(SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE ) snake_case_ = BlipaForConditionalGeneration(SCREAMING_SNAKE_CASE ).eval() snake_case_ = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } snake_case_ , snake_case_ = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) snake_case_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case_ , snake_case_ , snake_case_ = load_model_and_preprocess( name=SCREAMING_SNAKE_CASE , model_type=SCREAMING_SNAKE_CASE , is_eval=SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE ) original_model.eval() print('''Done!''' ) # update state dict keys snake_case_ = original_model.state_dict() snake_case_ = create_rename_keys(SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE ) if key.startswith('''Qformer.bert''' ): snake_case_ = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: snake_case_ = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: snake_case_ = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: snake_case_ = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): snake_case_ = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): snake_case_ = key.replace('''t5''' , '''language''' ) snake_case_ = val # read in qv biases read_in_q_v_bias(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = hf_model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] snake_case_ = load_demo_image() snake_case_ = vis_processors['''eval'''](SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE ) snake_case_ = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE ) # create processor snake_case_ = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE ) snake_case_ = BlipaProcessor(image_processor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) snake_case_ = processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values.to(SCREAMING_SNAKE_CASE ) # make sure processor creates exact same pixel values assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) original_model.to(SCREAMING_SNAKE_CASE ) hf_model.to(SCREAMING_SNAKE_CASE ) with torch.no_grad(): if "opt" in model_name: snake_case_ = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits snake_case_ = hf_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).logits else: snake_case_ = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits snake_case_ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) snake_case_ = hf_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": snake_case_ = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=SCREAMING_SNAKE_CASE ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": snake_case_ = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=SCREAMING_SNAKE_CASE ) else: # cast to same type snake_case_ = logits.dtype assert torch.allclose(original_logits.to(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , atol=1E-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) snake_case_ = '''''' snake_case_ = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE ) snake_case_ = original_model.generate({'''image''': original_pixel_values} ) snake_case_ = hf_model.generate( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , SCREAMING_SNAKE_CASE ) snake_case_ = input_ids.shape[1] snake_case_ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=SCREAMING_SNAKE_CASE ) snake_case_ = [text.strip() for text in output_text] print('''HF generation:''' , SCREAMING_SNAKE_CASE ) if pytorch_dump_folder_path is not None: processor.save_pretrained(SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
267
1
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __A = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __A = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __A = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def A__ ( self ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCamelCase__ , hypotheses=lowerCamelCase__ , min_len=lowerCamelCase__ , max_len=lowerCamelCase__ ) }
164
'''simple docstring''' def _A ( lowercase__ ): lowercase__ = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase__ = True for i in range(0 , len(lowercase__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase__ , lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False for i in range(1 , len(lowercase__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase__ , lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False return input_list if __name__ == "__main__": print("Enter list to be sorted") __A = [int(x) for x in input().split()] # inputing elements of the list in one line __A = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
164
1
"""simple docstring""" import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Optional[Any] )-> List[Any]: super().__init__() lowerCamelCase__ : Tuple =module lowerCamelCase__ : List[str] =nn.Sequential( nn.Linear(module.in_features, _UpperCAmelCase, bias=_UpperCAmelCase ), nn.Linear(_UpperCAmelCase, module.out_features, bias=_UpperCAmelCase ), ) lowerCamelCase__ : Optional[int] =(2.0 / (5 * min(module.in_features, module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight, std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def snake_case ( self : Any, lowerCamelCase : Tuple, *lowerCamelCase : Any, **lowerCamelCase : Union[str, Any] )-> Any: return self.module(_UpperCAmelCase, *_UpperCAmelCase, **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): _a = "bigscience/bloom-1b7" # Constant values _a = 2.109659552692574 _a = "Hello my name is" _a = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) _a = 1_0 def snake_case ( self : Optional[int] )-> Optional[Any]: # Models and tokenizer lowerCamelCase__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name ) class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): def snake_case ( self : Optional[Any] )-> Optional[Any]: super().setUp() # Models and tokenizer lowerCamelCase__ : Optional[Any] =AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.floataa, device_map='''auto''' ) lowerCamelCase__ : List[Any] =AutoModelForCausalLM.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map='''auto''' ) def snake_case ( self : Optional[Any] )-> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def snake_case ( self : List[Any] )-> List[Any]: lowerCamelCase__ : List[str] =self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase, '''quantization_config''' ) ) lowerCamelCase__ : Union[str, Any] =config.to_dict() lowerCamelCase__ : Union[str, Any] =config.to_diff_dict() lowerCamelCase__ : Dict =config.to_json_string() def snake_case ( self : Optional[Any] )-> List[Any]: from bitsandbytes.nn import Paramsabit lowerCamelCase__ : Optional[int] =self.model_fpaa.get_memory_footprint() lowerCamelCase__ : int =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit, self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCamelCase__ : List[str] =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def snake_case ( self : int )-> Optional[int]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase, torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def snake_case ( self : str )-> int: lowerCamelCase__ : Tuple =self.tokenizer(self.input_text, return_tensors='''pt''' ) lowerCamelCase__ : List[Any] =self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ), max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=_UpperCAmelCase ), self.EXPECTED_OUTPUTS ) def snake_case ( self : Tuple )-> Union[str, Any]: lowerCamelCase__ : str =BitsAndBytesConfig() lowerCamelCase__ : str =True lowerCamelCase__ : List[str] =AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=_UpperCAmelCase, device_map='''auto''' ) lowerCamelCase__ : Tuple =self.tokenizer(self.input_text, return_tensors='''pt''' ) lowerCamelCase__ : Any =model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ), max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=_UpperCAmelCase ), self.EXPECTED_OUTPUTS ) def snake_case ( self : Dict )-> Any: with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def snake_case ( self : Dict )-> int: lowerCamelCase__ : int =BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): lowerCamelCase__ : str =AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=_UpperCAmelCase, load_in_abit=_UpperCAmelCase, device_map='''auto''', bnb_abit_quant_type='''nf4''', ) def snake_case ( self : int )-> Optional[int]: with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCamelCase__ : str =self.tokenizer(self.input_text, return_tensors='''pt''' ) lowerCamelCase__ : str =self.model_fpaa.to(torch.floataa ) lowerCamelCase__ : int =self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ), max_new_tokens=10 ) # Check this does not throw an error lowerCamelCase__ : List[Any] =self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowerCamelCase__ : Tuple =self.model_fpaa.half() # Check this does not throw an error lowerCamelCase__ : Any =self.model_fpaa.float() def snake_case ( self : List[Any] )-> str: lowerCamelCase__ : int =AutoModelForSeqaSeqLM.from_pretrained('''t5-small''', load_in_abit=_UpperCAmelCase, device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @classmethod def snake_case ( cls : Tuple )-> Dict: lowerCamelCase__ : List[Any] ='''t5-small''' lowerCamelCase__ : List[Any] ='''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense lowerCamelCase__ : List[str] =AutoTokenizer.from_pretrained(cls.model_name ) lowerCamelCase__ : Any ='''Translate in German: Hello, my dog is cute''' def snake_case ( self : List[Any] )-> Optional[int]: gc.collect() torch.cuda.empty_cache() def snake_case ( self : Tuple )-> List[Any]: from transformers import TaForConditionalGeneration lowerCamelCase__ : List[str] =TaForConditionalGeneration._keep_in_fpaa_modules lowerCamelCase__ : Union[str, Any] =None # test with `t5-small` lowerCamelCase__ : Dict =TaForConditionalGeneration.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map='''auto''' ) lowerCamelCase__ : Any =self.tokenizer(self.input_text, return_tensors='''pt''' ).to(0 ) lowerCamelCase__ : str =model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` lowerCamelCase__ : int =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_abit=_UpperCAmelCase, device_map='''auto''' ) lowerCamelCase__ : Any =self.tokenizer(self.input_text, return_tensors='''pt''' ).to(0 ) lowerCamelCase__ : str =model.generate(**_UpperCAmelCase ) lowerCamelCase__ : List[str] =modules def snake_case ( self : Dict )-> Optional[int]: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCamelCase__ : int =TaForConditionalGeneration.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linearabit ) ) lowerCamelCase__ : str =self.tokenizer(self.input_text, return_tensors='''pt''' ).to(0 ) lowerCamelCase__ : str =model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` lowerCamelCase__ : Optional[Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_abit=_UpperCAmelCase, device_map='''auto''' ) lowerCamelCase__ : Optional[Any] =self.tokenizer(self.input_text, return_tensors='''pt''' ).to(0 ) lowerCamelCase__ : List[Any] =model.generate(**_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): def snake_case ( self : Any )-> Optional[Any]: super().setUp() # model_name lowerCamelCase__ : Optional[Any] ='''bigscience/bloom-560m''' lowerCamelCase__ : int ='''t5-small''' # Different types of model lowerCamelCase__ : str =AutoModel.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map='''auto''' ) # Sequence classification model lowerCamelCase__ : int =AutoModelForSequenceClassification.from_pretrained( self.model_name, load_in_abit=_UpperCAmelCase, device_map='''auto''' ) # CausalLM model lowerCamelCase__ : int =AutoModelForCausalLM.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map='''auto''' ) # Seq2seq model lowerCamelCase__ : List[Any] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name, load_in_abit=_UpperCAmelCase, device_map='''auto''' ) def snake_case ( self : int )-> str: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def snake_case ( self : Optional[Any] )-> List[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): def snake_case ( self : List[Any] )-> Optional[Any]: super().setUp() def snake_case ( self : Any )-> Optional[int]: del self.pipe gc.collect() torch.cuda.empty_cache() def snake_case ( self : Tuple )-> Union[str, Any]: lowerCamelCase__ : List[str] =pipeline( '''text-generation''', model=self.model_name, model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa}, max_new_tokens=self.MAX_NEW_TOKENS, ) # Real second forward pass lowerCamelCase__ : Optional[int] =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''], self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): def snake_case ( self : Any )-> str: super().setUp() def snake_case ( self : Optional[int] )-> int: lowerCamelCase__ : Tuple =AutoModelForCausalLM.from_pretrained( self.model_name, load_in_abit=_UpperCAmelCase, device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ), {0, 1} ) # Check that inference pass works on the model lowerCamelCase__ : str =self.tokenizer(self.input_text, return_tensors='''pt''' ) # Second real batch lowerCamelCase__ : str =model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ), max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=_UpperCAmelCase ), self.EXPECTED_OUTPUTS ) class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): def snake_case ( self : List[str] )-> Optional[int]: lowerCamelCase__ : Tuple ='''facebook/opt-350m''' super().setUp() def snake_case ( self : Dict )-> str: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowerCamelCase__ : Tuple =AutoModelForCausalLM.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ), {torch.cuda.current_device()} ) for param in model.parameters(): lowerCamelCase__ : Optional[int] =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCamelCase__ : int =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): lowerCamelCase__ : int =LoRALayer(module.q_proj, rank=16 ) lowerCamelCase__ : List[str] =LoRALayer(module.k_proj, rank=16 ) lowerCamelCase__ : Optional[Any] =LoRALayer(module.v_proj, rank=16 ) # Step 3: dummy batch lowerCamelCase__ : int =self.tokenizer('''Test batch ''', return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCamelCase__ : List[str] =model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase, _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase, nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): _a = "gpt2-xl" _a = 3.3191854854152187
352
"""simple docstring""" def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =[0] * len(__lowerCamelCase ) lowerCamelCase__ : List[Any] =[] lowerCamelCase__ : List[Any] =[1] * len(__lowerCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowerCamelCase ) ): if indegree[i] == 0: queue.append(__lowerCamelCase ) while queue: lowerCamelCase__ : Tuple =queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCamelCase__ : Optional[Any] =long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__lowerCamelCase ) print(max(__lowerCamelCase ) ) # Adjacency list of Graph _lowercase : Optional[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
272
0
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __UpperCamelCase ( lowerCamelCase__ ): @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowerCamelCase_ =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowerCamelCase_ =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowerCamelCase_ ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(lowerCAmelCase ) BertModel.from_pretrained(lowerCAmelCase ) BertTokenizer.from_pretrained(lowerCAmelCase ) pipeline(task='''fill-mask''', model=lowerCAmelCase ) # baseline - just load from_pretrained with normal network lowerCamelCase_ =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowerCamelCase_ =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCamelCase_ ='''1''' lowerCamelCase_ =subprocess.run(lowerCAmelCase, env=lowerCAmelCase, check=lowerCAmelCase, capture_output=lowerCAmelCase ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('''success''', result.stdout.decode() ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowerCamelCase_ =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowerCamelCase_ =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowerCamelCase_ ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(lowerCAmelCase ) BertModel.from_pretrained(lowerCAmelCase ) BertTokenizer.from_pretrained(lowerCAmelCase ) pipeline(task='''fill-mask''', model=lowerCAmelCase ) # baseline - just load from_pretrained with normal network lowerCamelCase_ =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowerCamelCase_ =self.get_env() lowerCamelCase_ =subprocess.run(lowerCAmelCase, env=lowerCAmelCase, check=lowerCAmelCase, capture_output=lowerCAmelCase ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('''success''', result.stdout.decode() ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowerCamelCase_ =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowerCamelCase_ =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowerCamelCase_ =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowerCamelCase_ =self.get_env() lowerCamelCase_ =subprocess.run(lowerCAmelCase, env=lowerCAmelCase, check=lowerCAmelCase, capture_output=lowerCAmelCase ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('''success''', result.stdout.decode() ) # next emulate no network lowerCamelCase_ =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCamelCase_ ='''1''' lowerCamelCase_ =subprocess.run(lowerCAmelCase, env=lowerCAmelCase, check=lowerCAmelCase, capture_output=lowerCAmelCase ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('''success''', result.stdout.decode() ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =''' from transformers import pipeline ''' lowerCamelCase_ =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowerCamelCase_ =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowerCamelCase_ =self.get_env() lowerCamelCase_ ='''1''' lowerCamelCase_ =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowerCamelCase_ =subprocess.run(lowerCAmelCase, env=lowerCAmelCase, check=lowerCAmelCase, capture_output=lowerCAmelCase ) self.assertEqual(result.returncode, 1, result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''', result.stderr.decode().replace('''\n''', '''''' ), ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =''' from transformers import AutoModel ''' lowerCamelCase_ =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowerCamelCase_ =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowerCamelCase_ =self.get_env() lowerCamelCase_ =subprocess.run(lowerCAmelCase, env=lowerCAmelCase, check=lowerCAmelCase, capture_output=lowerCAmelCase ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('''success''', result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCamelCase_ ='''1''' lowerCamelCase_ =subprocess.run(lowerCAmelCase, env=lowerCAmelCase, check=lowerCAmelCase, capture_output=lowerCAmelCase ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('''success''', result.stdout.decode() )
75
'''simple docstring''' def a_ ( __snake_case : Any , __snake_case : List[str] ) -> str: """simple docstring""" lowerCamelCase_ ='''''' for i in table: res += inp[i - 1] return res def a_ ( __snake_case : List[str] ) -> Optional[int]: """simple docstring""" return data[1:] + data[0] def a_ ( __snake_case : str , __snake_case : Tuple ) -> int: """simple docstring""" lowerCamelCase_ ='''''' for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def a_ ( __snake_case : Optional[Any] , __snake_case : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ =int('''0b''' + data[0] + data[-1] , 2 ) lowerCamelCase_ =int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def a_ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : int , __snake_case : Tuple , __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =message[:4] lowerCamelCase_ =message[4:] lowerCamelCase_ =apply_table(__snake_case , __snake_case ) lowerCamelCase_ =xor(__snake_case , __snake_case ) lowerCamelCase_ =apply_sbox(__snake_case , temp[:4] ) # noqa: E741 lowerCamelCase_ =apply_sbox(__snake_case , temp[4:] ) lowerCamelCase_ ='''0''' * (2 - len(__snake_case )) + l # noqa: E741 lowerCamelCase_ ='''0''' * (2 - len(__snake_case )) + r lowerCamelCase_ =apply_table(l + r , __snake_case ) lowerCamelCase_ =xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": a_ : Any = input("""Enter 10 bit key: """) a_ : Any = input("""Enter 8 bit message: """) a_ : str = [6, 3, 7, 4, 8, 5, 10, 9] a_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] a_ : str = [2, 4, 3, 1] a_ : Optional[int] = [2, 6, 3, 1, 4, 8, 5, 7] a_ : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] a_ : Union[str, Any] = [4, 1, 2, 3, 2, 3, 4, 1] a_ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] a_ : Any = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation a_ : List[Any] = apply_table(key, paa_table) a_ : str = temp[:5] a_ : Optional[Any] = temp[5:] a_ : Tuple = left_shift(left) a_ : Optional[Any] = left_shift(right) a_ : str = apply_table(left + right, pa_table) a_ : Optional[Any] = left_shift(left) a_ : Tuple = left_shift(right) a_ : Union[str, Any] = left_shift(left) a_ : List[str] = left_shift(right) a_ : Optional[int] = apply_table(left + right, pa_table) # encryption a_ : Optional[int] = apply_table(message, IP) a_ : List[Any] = function(expansion, sa, sa, keya, temp) a_ : str = temp[4:] + temp[:4] a_ : List[str] = function(expansion, sa, sa, keya, temp) a_ : Union[str, Any] = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption a_ : Optional[int] = apply_table(CT, IP) a_ : List[Any] = function(expansion, sa, sa, keya, temp) a_ : int = temp[4:] + temp[:4] a_ : int = function(expansion, sa, sa, keya, temp) a_ : Optional[int] = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
75
1
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __snake_case = logging.getLogger(__name__) def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : str ): """simple docstring""" if os.path.exists(_lowerCAmelCase ): if os.path.exists(os.path.join(_lowerCAmelCase, '''config.json''' ) ) and os.path.isfile( os.path.join(_lowerCAmelCase, '''config.json''' ) ): os.remove(os.path.join(_lowerCAmelCase, '''config.json''' ) ) if os.path.exists(os.path.join(_lowerCAmelCase, '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(_lowerCAmelCase, '''pytorch_model.bin''' ) ): os.remove(os.path.join(_lowerCAmelCase, '''pytorch_model.bin''' ) ) else: os.makedirs(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict=False ): """simple docstring""" _a = 2 if unlogit: _a = torch.pow(_lowerCAmelCase, _lowerCAmelCase ) _a = p * torch.log(_lowerCAmelCase ) _a = 0 return -plogp.sum(dim=-1 ) def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'{x + 1}' for x in range(len(_lowerCAmelCase ) ) ) ) for row in range(len(_lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(f'layer {row + 1}:\t' + '''\t'''.join(f'{x:d}' for x in tensor[row].cpu().data ) ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : List[str], _lowerCAmelCase : List[str], _lowerCAmelCase : Any=True, _lowerCAmelCase : int=True, _lowerCAmelCase : Any=None, _lowerCAmelCase : str=False ): """simple docstring""" _a , _a = model.config.num_hidden_layers, model.config.num_attention_heads _a = torch.zeros(_lowerCAmelCase, _lowerCAmelCase ).to(args.device ) _a = torch.zeros(_lowerCAmelCase, _lowerCAmelCase ).to(args.device ) if head_mask is None: _a = torch.ones(_lowerCAmelCase, _lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=_lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _a = None _a = 0.0 _a = 0.0 for step, inputs in enumerate(tqdm(_lowerCAmelCase, desc='''Iteration''', disable=args.local_rank not in [-1, 0] ) ): _a = tuple(t.to(args.device ) for t in inputs ) ((_a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _a = model(_lowerCAmelCase, labels=_lowerCAmelCase, head_mask=_lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _a , _a , _a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_lowerCAmelCase ): _a = entropy(attn.detach(), _lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _a = 2 _a = torch.pow(torch.pow(_lowerCAmelCase, _lowerCAmelCase ).sum(-1 ), 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: _a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(_lowerCAmelCase ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(_lowerCAmelCase ) logger.info('''Head ranked by importance scores''' ) _a = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device ) _a = torch.arange( head_importance.numel(), device=args.device ) _a = head_ranks.view_as(_lowerCAmelCase ) print_ad_tensor(_lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : str, _lowerCAmelCase : Optional[int] ): """simple docstring""" _a , _a , _a = compute_heads_importance(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, compute_entropy=_lowerCAmelCase ) _a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''', _lowerCAmelCase, original_score * args.masking_threshold ) _a = torch.ones_like(_lowerCAmelCase ) _a = max(1, int(new_head_mask.numel() * args.masking_amount ) ) _a = original_score while current_score >= original_score * args.masking_threshold: _a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _a = float('''Inf''' ) _a = head_importance.view(-1 ).sort()[1] if len(_lowerCAmelCase ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''', str(current_heads_to_mask.tolist() ) ) _a = new_head_mask.view(-1 ) _a = 0.0 _a = new_head_mask.view_as(_lowerCAmelCase ) _a = new_head_mask.clone().detach() print_ad_tensor(_lowerCAmelCase ) # Compute metric and head importance again _a , _a , _a = compute_heads_importance( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, compute_entropy=_lowerCAmelCase, head_mask=_lowerCAmelCase ) _a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''', _lowerCAmelCase, new_head_mask.sum(), new_head_mask.sum() / new_head_mask.numel() * 1_00, ) logger.info('''Final head mask''' ) print_ad_tensor(_lowerCAmelCase ) np.save(os.path.join(args.output_dir, '''head_mask.npy''' ), head_mask.detach().cpu().numpy() ) return head_mask def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : List[str], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : str ): """simple docstring""" _a = datetime.now() _a , _a , _a = compute_heads_importance( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, compute_entropy=_lowerCAmelCase, compute_importance=_lowerCAmelCase, head_mask=_lowerCAmelCase ) _a = 1 / loss _a = datetime.now() - before_time _a = sum(p.numel() for p in model.parameters() ) _a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(_lowerCAmelCase, _lowerCAmelCase ): _a = [ v, ] assert sum(len(_lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_lowerCAmelCase ) _a = sum(p.numel() for p in model.parameters() ) _a = datetime.now() _a , _a , _a = compute_heads_importance( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, compute_entropy=_lowerCAmelCase, compute_importance=_lowerCAmelCase, head_mask=_lowerCAmelCase, actually_pruned=_lowerCAmelCase, ) _a = 1 / loss _a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''', _lowerCAmelCase, _lowerCAmelCase, pruned_num_params / original_num_params * 1_00, ) logger.info('''Pruning: score with masking: %f score with pruning: %f''', _lowerCAmelCase, _lowerCAmelCase ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''', original_time / new_time * 1_00 ) save_model(_lowerCAmelCase, args.output_dir ) def A_ ( ): """simple docstring""" _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''', default=_lowerCAmelCase, type=_lowerCAmelCase, required=_lowerCAmelCase, help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''', ) parser.add_argument( '''--model_name_or_path''', default=_lowerCAmelCase, type=_lowerCAmelCase, required=_lowerCAmelCase, help='''Path to pretrained model or model identifier from huggingface.co/models''', ) parser.add_argument( '''--output_dir''', default=_lowerCAmelCase, type=_lowerCAmelCase, required=_lowerCAmelCase, help='''The output directory where the model predictions and checkpoints will be written.''', ) # Other parameters parser.add_argument( '''--config_name''', default='''''', type=_lowerCAmelCase, help='''Pretrained config name or path if not the same as model_name_or_path''', ) parser.add_argument( '''--tokenizer_name''', default='''''', type=_lowerCAmelCase, help='''Pretrained tokenizer name or path if not the same as model_name_or_path''', ) parser.add_argument( '''--cache_dir''', default=_lowerCAmelCase, type=_lowerCAmelCase, help='''Where do you want to store the pre-trained models downloaded from s3''', ) parser.add_argument( '''--data_subset''', type=_lowerCAmelCase, default=-1, help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''', action='''store_true''', help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''', action='''store_true''', help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''', action='''store_true''', help='''Don\'t normalize all importance scores between 0 and 1''', ) parser.add_argument( '''--try_masking''', action='''store_true''', help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''', default=0.9, type=_lowerCAmelCase, help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''', ) parser.add_argument( '''--masking_amount''', default=0.1, type=_lowerCAmelCase, help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''', default='''acc''', type=_lowerCAmelCase, help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''', default=1_28, type=_lowerCAmelCase, help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ), ) parser.add_argument('''--batch_size''', default=1, type=_lowerCAmelCase, help='''Batch size.''' ) parser.add_argument('''--seed''', type=_lowerCAmelCase, default=42 ) parser.add_argument('''--local_rank''', type=_lowerCAmelCase, default=-1, help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''', action='''store_true''', help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''', type=_lowerCAmelCase, default='''''', help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''', type=_lowerCAmelCase, default='''''', help='''Can be used for distant debugging.''' ) _a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=_lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _a = torch.device('''cuda''', args.local_rank ) _a = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device, args.n_gpu, bool(args.local_rank != -1 ) ) ) _a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _a = nn.parallel.DistributedDataParallel( _lowerCAmelCase, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=_lowerCAmelCase ) elif args.n_gpu > 1: _a = nn.DataParallel(_lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir, exist_ok=_lowerCAmelCase ) torch.save(_lowerCAmelCase, os.path.join(args.output_dir, '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''', _lowerCAmelCase ) # Prepare dataset _a = np.concatenate( [ np.loadtxt(args.data_dir, dtype=np.intaa ), ] ) _a = (torch.from_numpy(_lowerCAmelCase ),) _a = TensorDataset(*_lowerCAmelCase ) _a = RandomSampler(_lowerCAmelCase ) _a = DataLoader(_lowerCAmelCase, sampler=_lowerCAmelCase, batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _a = mask_heads(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) prune_heads(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) if __name__ == "__main__": main()
153
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[Any]: super().__init__( __UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) _a = field _a = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else {self.split: path_or_paths} _a = Json( cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , field=__UpperCAmelCase , **__UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> str: # Build iterable dataset if self.streaming: _a = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _a = None _a = None _a = None _a = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) _a = self.builder.as_dataset( split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Tuple: if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) _a = dataset _a = path_or_buf _a = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _a = num_proc _a = '''utf-8''' _a = to_json_kwargs def _UpperCAmelCase ( self ) -> int: _a = self.to_json_kwargs.pop('''path_or_buf''' , __UpperCAmelCase ) _a = self.to_json_kwargs.pop('''orient''' , '''records''' ) _a = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) _a = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) _a = self.to_json_kwargs.pop('''compression''' , __UpperCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=__UpperCAmelCase ) as buffer: _a = self._write(file_obj=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' ''' was passed. Please provide a local path instead.''' ) _a = self._write( file_obj=self.path_or_buf , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) return written def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: _a , _a , _a , _a , _a = args _a = query_table( table=self.dataset.data , key=slice(__UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) _a = batch.to_pandas().to_json( path_or_buf=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **__UpperCAmelCase ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) -> int: _a = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): _a = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__UpperCAmelCase ) else: _a , _a = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __UpperCAmelCase , __UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(__UpperCAmelCase ) return written
153
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __SCREAMING_SNAKE_CASE =False class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' return 12 @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' return 12 @property def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return 32 @property def _UpperCAmelCase ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[str] = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=3 ,num_vq_embeddings=self.num_embed ,vq_embed_dim=3 ,) return model @property def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[str] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(__UpperCamelCase ) @property def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Optional[Any] = 12 lowercase_ : Dict = 12 lowercase_ : str = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } lowercase_ : Tuple = TransformeraDModel(**__UpperCamelCase ) return model def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : int = 'cpu' lowercase_ : Tuple = self.dummy_vqvae lowercase_ : List[Any] = self.dummy_text_encoder lowercase_ : Union[str, Any] = self.dummy_tokenizer lowercase_ : Optional[Any] = self.dummy_transformer lowercase_ : str = VQDiffusionScheduler(self.num_embed ) lowercase_ : Optional[int] = LearnedClassifierFreeSamplingEmbeddings(learnable=__UpperCamelCase ) lowercase_ : Tuple = VQDiffusionPipeline( vqvae=__UpperCamelCase ,text_encoder=__UpperCamelCase ,tokenizer=__UpperCamelCase ,transformer=__UpperCamelCase ,scheduler=__UpperCamelCase ,learned_classifier_free_sampling_embeddings=__UpperCamelCase ,) lowercase_ : Optional[Any] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : List[str] = 'teddy bear playing in the pool' lowercase_ : Dict = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) lowercase_ : Optional[int] = pipe([prompt] ,generator=__UpperCamelCase ,num_inference_steps=2 ,output_type='np' ) lowercase_ : Optional[int] = output.images lowercase_ : int = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) lowercase_ : List[Any] = pipe( [prompt] ,generator=__UpperCamelCase ,output_type='np' ,return_dict=__UpperCamelCase ,num_inference_steps=2 )[0] lowercase_ : str = image[0, -3:, -3:, -1] lowercase_ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowercase_ : Optional[Any] = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'cpu' lowercase_ : int = self.dummy_vqvae lowercase_ : Optional[Any] = self.dummy_text_encoder lowercase_ : Union[str, Any] = self.dummy_tokenizer lowercase_ : int = self.dummy_transformer lowercase_ : Union[str, Any] = VQDiffusionScheduler(self.num_embed ) lowercase_ : Dict = LearnedClassifierFreeSamplingEmbeddings( learnable=__UpperCamelCase ,hidden_size=self.text_embedder_hidden_size ,length=tokenizer.model_max_length ) lowercase_ : Dict = VQDiffusionPipeline( vqvae=__UpperCamelCase ,text_encoder=__UpperCamelCase ,tokenizer=__UpperCamelCase ,transformer=__UpperCamelCase ,scheduler=__UpperCamelCase ,learned_classifier_free_sampling_embeddings=__UpperCamelCase ,) lowercase_ : Optional[Any] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : Dict = 'teddy bear playing in the pool' lowercase_ : List[Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) lowercase_ : List[str] = pipe([prompt] ,generator=__UpperCamelCase ,num_inference_steps=2 ,output_type='np' ) lowercase_ : Optional[int] = output.images lowercase_ : Optional[int] = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) lowercase_ : int = pipe( [prompt] ,generator=__UpperCamelCase ,output_type='np' ,return_dict=__UpperCamelCase ,num_inference_steps=2 )[0] lowercase_ : str = image[0, -3:, -3:, -1] lowercase_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowercase_ : Optional[int] = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) lowercase_ : Dict = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) lowercase_ : Optional[Any] = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though lowercase_ : Any = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) lowercase_ : Optional[Any] = pipeline( 'teddy bear playing in the pool' ,num_images_per_prompt=1 ,generator=__UpperCamelCase ,output_type='np' ,) lowercase_ : str = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
213
"""simple docstring""" __SCREAMING_SNAKE_CASE =[ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
213
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : str=13 , lowerCAmelCase : Optional[Any]=7 , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=False , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Tuple=99 , lowerCAmelCase : Dict=0 , lowerCAmelCase : str=32 , lowerCAmelCase : Tuple=5 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : str=5_12 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : Tuple="last" , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=0 , ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = parent __lowerCAmelCase : str = batch_size __lowerCAmelCase : Tuple = seq_length __lowerCAmelCase : Tuple = is_training __lowerCAmelCase : Any = use_input_lengths __lowerCAmelCase : int = use_token_type_ids __lowerCAmelCase : List[str] = use_labels __lowerCAmelCase : int = gelu_activation __lowerCAmelCase : Dict = sinusoidal_embeddings __lowerCAmelCase : Dict = causal __lowerCAmelCase : Optional[int] = asm __lowerCAmelCase : str = n_langs __lowerCAmelCase : List[str] = vocab_size __lowerCAmelCase : Optional[Any] = n_special __lowerCAmelCase : Optional[Any] = hidden_size __lowerCAmelCase : Optional[Any] = num_hidden_layers __lowerCAmelCase : Tuple = num_attention_heads __lowerCAmelCase : Optional[Any] = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Optional[Any] = type_sequence_label_size __lowerCAmelCase : int = initializer_range __lowerCAmelCase : List[Any] = num_labels __lowerCAmelCase : Optional[Any] = num_choices __lowerCAmelCase : Any = summary_type __lowerCAmelCase : Optional[int] = use_proj __lowerCAmelCase : Optional[int] = scope __lowerCAmelCase : Optional[Any] = bos_token_id def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : List[Any] = None if self.use_input_lengths: __lowerCAmelCase : Dict = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase : List[str] = None if self.use_token_type_ids: __lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase : int = None __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : List[Any] = None if self.use_labels: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : Any = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : str = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , ) -> Tuple: """simple docstring""" __lowerCAmelCase : int = XLMModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[Any] = model(lowerCAmelCase , lengths=lowerCAmelCase , langs=lowerCAmelCase ) __lowerCAmelCase : Tuple = model(lowerCAmelCase , langs=lowerCAmelCase ) __lowerCAmelCase : Any = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : int , lowerCAmelCase : Any , ) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = XLMWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Tuple = model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , ) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = XLMForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) __lowerCAmelCase : str = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] , ) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[int] = XLMForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Dict = model(lowerCAmelCase ) __lowerCAmelCase : List[str] = model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , p_mask=lowerCAmelCase , ) __lowerCAmelCase : Optional[int] = model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , ) ((__lowerCAmelCase) ,) : List[str] = result_with_labels.to_tuple() __lowerCAmelCase : Tuple = model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) ((__lowerCAmelCase) ,) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = XLMForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Dict = model(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : int , ) -> int: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.num_labels __lowerCAmelCase : Tuple = XLMForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[str] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = self.num_choices __lowerCAmelCase : Dict = XLMForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : int = model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" __lowerCAmelCase : int = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) , ) : Any = config_and_inputs __lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase : str =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCamelCase : Optional[int] =( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : str ) -> Any: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]=False ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = XLMModelTester(self ) __lowerCAmelCase : Tuple = ConfigTester(self , config_class=lowerCAmelCase , emb_dim=37 ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : List[Any]=1 ) -> List[str]: """simple docstring""" self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase ) ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowerCAmelCase : Optional[Any] = min_length + idx + 1 __lowerCAmelCase : Dict = min_length + idx + 1 __lowerCAmelCase : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=1 ) -> Dict: """simple docstring""" self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase ) , ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowerCAmelCase : Dict = min_length + idx + 1 __lowerCAmelCase : List[str] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase ) , ) pass @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Tuple = XLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCAmelCase ) __lowerCAmelCase : Dict = torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase ) # the president __lowerCAmelCase : int = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase : Optional[int] = model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase )
139
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCAmelCase = logging.get_logger(__name__) def snake_case_ (__A : List[str] , __A : str ) -> int: __lowerCAmelCase : str = set() __lowerCAmelCase : int = [] def parse_line(__A : List[Any] ): for line in fp: if isinstance(__A , __A ): __lowerCAmelCase : str = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(__A ) > 0: __lowerCAmelCase : Tuple = """\n""".join(__A ) # Only keep the warnings specified in `targets` if any(f''': {x}: ''' in warning for x in targets ): selected_warnings.add(__A ) buffer.clear() continue else: __lowerCAmelCase : Optional[int] = line.strip() buffer.append(__A ) if from_gh: for filename in os.listdir(__A ): __lowerCAmelCase : Optional[Any] = os.path.join(__A , __A ) if not os.path.isdir(__A ): # read the file if filename != "warnings.txt": continue with open(__A ) as fp: parse_line(__A ) else: try: with zipfile.ZipFile(__A ) as z: for filename in z.namelist(): if not os.path.isdir(__A ): # read the file if filename != "warnings.txt": continue with z.open(__A ) as fp: parse_line(__A ) except Exception: logger.warning( f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def snake_case_ (__A : Dict , __A : Union[str, Any] ) -> Dict: __lowerCAmelCase : Any = set() __lowerCAmelCase : Optional[int] = [os.path.join(__A , __A ) for p in os.listdir(__A ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(__A , __A ) ) return selected_warnings if __name__ == "__main__": def snake_case_ (__A : int ) -> Tuple: return values.split(""",""" ) __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCAmelCase = extract_warnings(args.output_dir, args.targets) __UpperCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
139
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any]=False): lowercase__ : List[str] = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''module.blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''')) rename_keys.append((f'''module.blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''')) rename_keys.append( (f'''module.blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''')) rename_keys.append((f'''module.blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''')) rename_keys.append((f'''module.blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''')) rename_keys.append((f'''module.blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''')) rename_keys.append((f'''module.blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''')) rename_keys.append((f'''module.blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''')) rename_keys.append((f'''module.blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''')) rename_keys.append((f'''module.blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''')) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ]) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase__ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ]) return rename_keys def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : int=False): for i in range(config.num_hidden_layers): if base_model: lowercase__ : str = "" else: lowercase__ : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : List[str] = state_dict.pop(f'''module.blocks.{i}.attn.qkv.weight''') lowercase__ : int = state_dict.pop(f'''module.blocks.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] lowercase__ : Union[str, Any] = in_proj_bias[: config.hidden_size] lowercase__ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : str = in_proj_bias[-config.hidden_size :] def lowercase_ ( _lowerCamelCase : Dict): lowercase__ : List[Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. lowercase__ : str = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any]): lowercase__ : Union[str, Any] = dct.pop(_lowerCamelCase) lowercase__ : Union[str, Any] = val def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict): lowercase__ : Union[str, Any] = ViTMSNConfig() lowercase__ : Dict = 1000 lowercase__ : str = "datasets/huggingface/label-files" lowercase__ : List[str] = "imagenet-1k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase) , "r")) lowercase__ : str = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : str = idalabel lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase__ : Any = 384 lowercase__ : Optional[Any] = 1536 lowercase__ : Any = 6 elif "l16" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : Any = 4096 lowercase__ : Any = 24 lowercase__ : List[str] = 16 lowercase__ : Any = 0.1 elif "b4" in checkpoint_url: lowercase__ : int = 4 elif "l7" in checkpoint_url: lowercase__ : Optional[int] = 7 lowercase__ : Dict = 1024 lowercase__ : Union[str, Any] = 4096 lowercase__ : str = 24 lowercase__ : Dict = 16 lowercase__ : Any = 0.1 lowercase__ : Union[str, Any] = ViTMSNModel(_lowerCamelCase) lowercase__ : Dict = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu")["target_encoder"] lowercase__ : Dict = ViTImageProcessor(size=config.image_size) remove_projection_head(_lowerCamelCase) lowercase__ : Optional[Any] = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , base_model=_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() lowercase__ : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) lowercase__ : Any = ViTImageProcessor( size=config.image_size , image_mean=_lowerCamelCase , image_std=_lowerCamelCase) lowercase__ : Tuple = image_processor(images=_lowerCamelCase , return_tensors="pt") # forward pass torch.manual_seed(2) lowercase__ : int = model(**_lowerCamelCase) lowercase__ : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase__ : Optional[Any] = torch.tensor([[-1.0915, -1.4876, -1.1809]]) elif "b16" in checkpoint_url: lowercase__ : Tuple = torch.tensor([[14.2889, -18.9045, 11.7281]]) elif "l16" in checkpoint_url: lowercase__ : Tuple = torch.tensor([[41.5028, -22.8681, 45.6475]]) elif "b4" in checkpoint_url: lowercase__ : Optional[int] = torch.tensor([[-4.3868, 5.2932, -0.4137]]) else: lowercase__ : Optional[int] = torch.tensor([[-0.1792, -0.6465, 2.4263]]) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _lowerCamelCase , atol=1E-4) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
87
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) SCREAMING_SNAKE_CASE__:str = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Tuple = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__:List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
261
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : """simple docstring""" def __init__( self: Optional[int] , UpperCamelCase: str , UpperCamelCase: int=13 , UpperCamelCase: Any=32 , UpperCamelCase: Optional[int]=3 , UpperCamelCase: int=4 , UpperCamelCase: str=[10, 20, 30, 40] , UpperCamelCase: Optional[int]=[2, 2, 3, 2] , UpperCamelCase: List[Any]=True , UpperCamelCase: Optional[int]=True , UpperCamelCase: Optional[Any]=37 , UpperCamelCase: str="gelu" , UpperCamelCase: Tuple=10 , UpperCamelCase: Optional[Any]=0.02 , UpperCamelCase: Tuple=["stage2", "stage3", "stage4"] , UpperCamelCase: Any=3 , UpperCamelCase: Dict=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_stages A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = intermediate_size A__ = hidden_act A__ = type_sequence_label_size A__ = initializer_range A__ = out_features A__ = num_labels A__ = scope A__ = num_stages def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self: Any ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCamelCase ( self: Dict ): """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCamelCase , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCamelCase ( self: Any , UpperCamelCase: Dict , UpperCamelCase: Optional[int] , UpperCamelCase: List[str] ): """simple docstring""" A__ = UperNetForSemanticSegmentation(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = (UperNetForSemanticSegmentation,) if is_torch_available() else () UpperCAmelCase = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = UperNetModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def UpperCamelCase ( self: Any ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self: List[Any] ): """simple docstring""" return def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCamelCase ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase ( self: Any ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase ( self: Any ): """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" pass def UpperCamelCase ( self: List[Any] ): """simple docstring""" def check_hidden_states_output(UpperCamelCase: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Dict ): A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(UpperCamelCase ) A__ = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: A__ = model_class(config=UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def UpperCamelCase ( self: int ): """simple docstring""" pass @slow def UpperCamelCase ( self: int ): """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = UperNetForSemanticSegmentation.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def _snake_case ( ): A__ = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) A__ = Image.open(UpperCAmelCase_ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: int ): """simple docstring""" A__ = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) A__ = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCamelCase ) A__ = prepare_img() A__ = processor(images=UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) with torch.no_grad(): A__ = model(**UpperCamelCase ) A__ = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) A__ = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase , atol=1e-4 ) ) def UpperCamelCase ( self: int ): """simple docstring""" A__ = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) A__ = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCamelCase ) A__ = prepare_img() A__ = processor(images=UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) with torch.no_grad(): A__ = model(**UpperCamelCase ) A__ = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) A__ = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase , atol=1e-4 ) )
69
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : str = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = "funnel" UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self: str , UpperCamelCase: List[Any]=3_05_22 , UpperCamelCase: Any=[4, 4, 4] , UpperCamelCase: Dict=None , UpperCamelCase: Dict=2 , UpperCamelCase: Optional[int]=7_68 , UpperCamelCase: List[str]=12 , UpperCamelCase: Optional[Any]=64 , UpperCamelCase: str=30_72 , UpperCamelCase: Any="gelu_new" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Any=0.1 , UpperCamelCase: List[str]=0.0 , UpperCamelCase: Tuple=0.1 , UpperCamelCase: Union[str, Any]=None , UpperCamelCase: Tuple=1e-9 , UpperCamelCase: Tuple="mean" , UpperCamelCase: str="relative_shift" , UpperCamelCase: Any=True , UpperCamelCase: List[Any]=True , UpperCamelCase: int=True , **UpperCamelCase: List[str] , ): """simple docstring""" A__ = vocab_size A__ = block_sizes A__ = [1] * len(UpperCamelCase ) if block_repeats is None else block_repeats assert len(UpperCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." A__ = num_decoder_layers A__ = d_model A__ = n_head A__ = d_head A__ = d_inner A__ = hidden_act A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = initializer_range A__ = initializer_std A__ = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" A__ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" A__ = attention_type A__ = separate_cls A__ = truncate_seq A__ = pool_q_only super().__init__(**UpperCamelCase ) @property def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Tuple ): """simple docstring""" raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def UpperCamelCase ( self: Any , UpperCamelCase: Dict ): """simple docstring""" raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
69
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self : Dict , __lowercase : int = 32 , __lowercase : int = 64 , __lowercase : int = 20 , __lowercase : int = 768 , __lowercase : Any=77 , __lowercase : Optional[int]=4 , __lowercase : float = 0.0 , __lowercase : str = "silu" , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = "linear" , __lowercase : Optional[str] = "prd" , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , ): '''simple docstring''' super().__init__() __a = num_attention_heads __a = attention_head_dim __a = num_attention_heads * attention_head_dim __a = additional_embeddings __a = time_embed_dim or inner_dim __a = embedding_proj_dim or embedding_dim __a = clip_embed_dim or embedding_dim __a = Timesteps(__lowercase , __lowercase , 0 ) __a = TimestepEmbedding(__lowercase , __lowercase , out_dim=__lowercase , act_fn=__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) if embedding_proj_norm_type is None: __a = None elif embedding_proj_norm_type == "layer": __a = nn.LayerNorm(__lowercase ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) __a = nn.Linear(__lowercase , __lowercase ) if encoder_hid_proj_type is None: __a = None elif encoder_hid_proj_type == "linear": __a = nn.Linear(__lowercase , __lowercase ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) __a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowercase ) ) if added_emb_type == "prd": __a = nn.Parameter(torch.zeros(1 , 1 , __lowercase ) ) elif added_emb_type is None: __a = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) __a = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , activation_fn="""gelu""" , attention_bias=__lowercase , ) for d in range(__lowercase ) ] ) if norm_in_type == "layer": __a = nn.LayerNorm(__lowercase ) elif norm_in_type is None: __a = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) __a = nn.LayerNorm(__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) __a = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) __a = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , __lowercase , persistent=__lowercase ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) __a = nn.Parameter(torch.zeros(1 , __lowercase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = {} def fn_recursive_add_processors(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict[str, AttentionProcessor] ): if hasattr(__lowercase , """set_processor""" ): __a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , __lowercase , __lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowercase , __lowercase , __lowercase ) return processors def UpperCamelCase_ ( self : List[str] , __lowercase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' __a = len(self.attn_processors.keys() ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(__lowercase )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__lowercase : str , __lowercase : torch.nn.Module , __lowercase : Dict ): if hasattr(__lowercase , """set_processor""" ): if not isinstance(__lowercase , __lowercase ): module.set_processor(__lowercase ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , __lowercase , __lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Union[torch.Tensor, float, int] , __lowercase : torch.FloatTensor , __lowercase : Optional[torch.FloatTensor] = None , __lowercase : Optional[torch.BoolTensor] = None , __lowercase : bool = True , ): '''simple docstring''' __a = hidden_states.shape[0] __a = timestep if not torch.is_tensor(__lowercase ): __a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__lowercase ) and len(timesteps.shape ) == 0: __a = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a = timesteps * torch.ones(__lowercase , dtype=timesteps.dtype , device=timesteps.device ) __a = self.time_proj(__lowercase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __a = timesteps_projected.to(dtype=self.dtype ) __a = self.time_embedding(__lowercase ) if self.embedding_proj_norm is not None: __a = self.embedding_proj_norm(__lowercase ) __a = self.embedding_proj(__lowercase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __a = self.encoder_hidden_states_proj(__lowercase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __a = self.proj_in(__lowercase ) __a = self.positional_embedding.to(hidden_states.dtype ) __a = [] __a = 0 if encoder_hidden_states is not None: additional_embeds.append(__lowercase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __a = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __a = hidden_states[:, None, :] __a = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __a = self.prd_embedding.to(hidden_states.dtype ).expand(__lowercase , -1 , -1 ) additional_embeds.append(__lowercase ) __a = torch.cat( __lowercase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __a = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __a = F.pad( __lowercase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __a = hidden_states + positional_embeddings if attention_mask is not None: __a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 __a = F.pad(__lowercase , (0, self.additional_embeddings) , value=0.0 ) __a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __a = self.norm_in(__lowercase ) for block in self.transformer_blocks: __a = block(__lowercase , attention_mask=__lowercase ) __a = self.norm_out(__lowercase ) if self.prd_embedding is not None: __a = hidden_states[:, -1] else: __a = hidden_states[:, additional_embeddings_len:] __a = self.proj_to_clip_embeddings(__lowercase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : Tuple ): '''simple docstring''' __a = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
302
1
"""simple docstring""" import itertools import math def __lowercase ( _a ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( ): snake_case_ : str = 2 while True: if is_prime(_a ): yield num num += 1 def __lowercase ( _a = 10_001 ): return next(itertools.islice(prime_generator() , nth - 1 , _a ) ) if __name__ == "__main__": print(f'{solution() = }')
155
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase__ : int = logging.get_logger('''transformers.models.encodec''') lowercase__ : Optional[int] = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowercase__ : Tuple = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowercase__ : List[str] = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowercase__ : List[Any] = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowercase__ : int = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowercase__ : int = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase__ : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase__ : int = [] lowercase__ : Dict = [] def __lowercase ( _a , _a , _a , _a , _a ): for attribute in key.split('''.''' ): snake_case_ : Optional[Any] = getattr(_a , _a ) if weight_type is not None: snake_case_ : Union[str, Any] = getattr(_a , _a ).shape else: snake_case_ : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case_ : Dict = value elif weight_type == "weight_g": snake_case_ : List[Any] = value elif weight_type == "weight_v": snake_case_ : List[Any] = value elif weight_type == "bias": snake_case_ : Optional[Any] = value elif weight_type == "running_mean": snake_case_ : str = value elif weight_type == "running_var": snake_case_ : List[Any] = value elif weight_type == "num_batches_tracked": snake_case_ : Tuple = value elif weight_type == "weight_ih_l0": snake_case_ : Dict = value elif weight_type == "weight_hh_l0": snake_case_ : str = value elif weight_type == "bias_ih_l0": snake_case_ : str = value elif weight_type == "bias_hh_l0": snake_case_ : Dict = value elif weight_type == "weight_ih_l1": snake_case_ : Optional[int] = value elif weight_type == "weight_hh_l1": snake_case_ : Dict = value elif weight_type == "bias_ih_l1": snake_case_ : List[str] = value elif weight_type == "bias_hh_l1": snake_case_ : Optional[int] = value else: snake_case_ : Dict = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def __lowercase ( _a , _a ): for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case_, snake_case_ : Tuple = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowercase ( _a , _a , _a ): snake_case_ : str = [] if model_name == "encodec_24khz" or "encodec_32khz": snake_case_ : Any = MAPPING_24K elif model_name == "encodec_48khz": snake_case_ : int = MAPPING_48K else: raise ValueError(f"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(_a , _a ): logger.info(f"{name} was ignored" ) continue snake_case_ : Optional[Any] = False for key, mapped_key in MAPPING.items(): if "*" in key: snake_case_, snake_case_ : List[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: snake_case_ : Any = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue snake_case_ : str = True if "*" in mapped_key: snake_case_ : Optional[Any] = name.split(_a )[0].split('''.''' )[-2] snake_case_ : str = mapped_key.replace('''*''' , _a ) if "weight_g" in name: snake_case_ : int = '''weight_g''' elif "weight_v" in name: snake_case_ : List[str] = '''weight_v''' elif "weight_ih_l0" in name: snake_case_ : List[Any] = '''weight_ih_l0''' elif "weight_hh_l0" in name: snake_case_ : Tuple = '''weight_hh_l0''' elif "bias_ih_l0" in name: snake_case_ : Any = '''bias_ih_l0''' elif "bias_hh_l0" in name: snake_case_ : Dict = '''bias_hh_l0''' elif "weight_ih_l1" in name: snake_case_ : str = '''weight_ih_l1''' elif "weight_hh_l1" in name: snake_case_ : List[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: snake_case_ : List[Any] = '''bias_ih_l1''' elif "bias_hh_l1" in name: snake_case_ : List[Any] = '''bias_hh_l1''' elif "bias" in name: snake_case_ : Optional[int] = '''bias''' elif "weight" in name: snake_case_ : str = '''weight''' elif "running_mean" in name: snake_case_ : Optional[int] = '''running_mean''' elif "running_var" in name: snake_case_ : int = '''running_var''' elif "num_batches_tracked" in name: snake_case_ : Optional[int] = '''num_batches_tracked''' else: snake_case_ : Optional[Any] = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(f"Unused weights: {unused_weights}" ) @torch.no_grad() def __lowercase ( _a , _a , _a , _a=None , _a=None , ): if config_path is not None: snake_case_ : Optional[int] = EncodecConfig.from_pretrained(_a ) else: snake_case_ : str = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": snake_case_ : Union[str, Any] = [8, 5, 4, 4] snake_case_ : Optional[int] = [2.2] snake_case_ : Any = 64 snake_case_ : Dict = 32_000 snake_case_ : int = 2_048 snake_case_ : int = False snake_case_ : Optional[int] = False snake_case_ : Optional[int] = False elif model_name == "encodec_48khz": snake_case_ : List[str] = [8, 5, 4, 2] snake_case_ : List[Any] = [3.0, 6.0, 12.0, 24.0] snake_case_ : Any = 48_000 snake_case_ : List[str] = 2 snake_case_ : int = False snake_case_ : str = '''time_group_norm''' snake_case_ : int = True snake_case_ : List[str] = 1.0 snake_case_ : Tuple = 0.01 else: raise ValueError(f"Unknown model name: {model_name}" ) snake_case_ : Any = EncodecModel(_a ) snake_case_ : str = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_a ) snake_case_ : Optional[Any] = torch.load(_a ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights snake_case_ : Union[str, Any] = original_checkpoint['''best_state'''] recursively_load_weights(_a , _a , _a ) model.save_pretrained(_a ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(_a ) model.push_to_hub(_a ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
155
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Any = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __lowercase ( a_ , a_ ): """simple docstring""" UpperCamelCase : int = "resnet" UpperCamelCase : Dict = ["basic", "bottleneck"] def __init__( self , A=3 , A=64 , A=[2_56, 5_12, 10_24, 20_48] , A=[3, 4, 6, 3] , A="bottleneck" , A="relu" , A=False , A=None , A=None , **A , ) -> Optional[Any]: '''simple docstring''' super().__init__(**A ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) lowerCamelCase = num_channels lowerCamelCase = embedding_size lowerCamelCase = hidden_sizes lowerCamelCase = depths lowerCamelCase = layer_type lowerCamelCase = hidden_act lowerCamelCase = downsample_in_first_stage lowerCamelCase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(A ) + 1 )] lowerCamelCase , lowerCamelCase = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names ) class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Union[str, Any] = version.parse("1.11" ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __A ( self ) -> float: '''simple docstring''' return 1e-3
252
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") UpperCAmelCase, UpperCAmelCase : Optional[Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") UpperCAmelCase : Dict = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: UpperCAmelCase : str = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCAmelCase : str = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
252
1
from math import asin, atan, cos, radians, sin, sqrt, tan UpperCAmelCase__ = 6378137.0 UpperCAmelCase__ = 6356752.314245 UpperCAmelCase__ = 6378137 def _a ( a :float , a :float , a :float , a :float ) -> float: a = (AXIS_A - AXIS_B) / AXIS_A a = atan((1 - flattening) * tan(radians(a ) ) ) a = atan((1 - flattening) * tan(radians(a ) ) ) a = radians(a ) a = radians(a ) # Equation a = sin((phi_a - phi_a) / 2 ) a = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda a = sqrt(sin_sq_phi + (cos(a ) * cos(a ) * sin_sq_lambda) ) return 2 * RADIUS * asin(a ) if __name__ == "__main__": import doctest doctest.testmod()
357
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
0
"""simple docstring""" from numpy import exp, pi, sqrt def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase = 0.0 , _UpperCamelCase = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
86
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient SCREAMING_SNAKE_CASE__ = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> List[Any]: """simple docstring""" snake_case = test_results.split(' ' ) snake_case = 0 snake_case = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. snake_case = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(_UpperCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> List[str]: """simple docstring""" snake_case = {} snake_case = None snake_case = False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]' , _UpperCamelCase ): snake_case = True snake_case = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): snake_case = line snake_case = False return failures class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = title snake_case = doc_test_results['time_spent'].split(',' )[0] snake_case = doc_test_results['success'] snake_case = doc_test_results['failures'] snake_case = self.n_success + self.n_failures # Failures and success of the modeling tests snake_case = doc_test_results @property def snake_case ( self ): """simple docstring""" snake_case = [self._time_spent] snake_case = 0 for time in time_spent: snake_case = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowerCAmelCase ) == 1: snake_case = [0, 0, time_parts[0]] snake_case ,snake_case ,snake_case = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds snake_case ,snake_case ,snake_case = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return F"""{int(lowerCAmelCase )}h{int(lowerCAmelCase )}m{int(lowerCAmelCase )}s""" @property def snake_case ( self ): """simple docstring""" return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def snake_case ( self ): """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def snake_case ( self ): """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def snake_case ( self ): """simple docstring""" snake_case = 40 snake_case = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(lowerCAmelCase , lowerCAmelCase )} snake_case = '' for category, failures in category_failures.items(): if len(lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def snake_case ( self ): """simple docstring""" snake_case = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowerCAmelCase ) @staticmethod def snake_case ( ): """simple docstring""" snake_case = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=lowerCAmelCase , ) def snake_case ( self ): """simple docstring""" print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) snake_case = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else 'All tests passed.' snake_case = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=lowerCAmelCase , ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = '' for key, value in failures.items(): snake_case = value[:2_00] + ' [Truncated]' if len(lowerCAmelCase ) > 2_50 else value failures_text += F"""*{key}*\n_{value}_\n\n""" snake_case = job_name snake_case = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: snake_case = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def snake_case ( self ): """simple docstring""" if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) snake_case = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) snake_case = sorted(self.doc_test_results.items() , key=lambda lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): snake_case = F"""*Num failures* :{len(job_result["failed"] )} \n""" snake_case = job_result['failures'] snake_case = self.get_reply_blocks(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , text=lowerCAmelCase ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F"""Results for {job}""" , blocks=lowerCAmelCase , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def lowerCAmelCase__ ( ) -> Tuple: """simple docstring""" snake_case = os.environ['GITHUB_RUN_ID'] snake_case = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" snake_case = requests.get(_UpperCamelCase ).json() snake_case = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) snake_case = math.ceil((result['total_count'] - 1_0_0) / 1_0_0 ) for i in range(_UpperCamelCase ): snake_case = requests.get(url + f"""&page={i + 2}""" ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , _UpperCamelCase ) return {} def lowerCAmelCase__ ( _UpperCamelCase : str ) -> List[str]: """simple docstring""" snake_case = {} if os.path.exists(_UpperCamelCase ): snake_case = os.listdir(_UpperCamelCase ) for file in files: try: with open(os.path.join(_UpperCamelCase , _UpperCamelCase ) , encoding='utf-8' ) as f: snake_case = f.read() except UnicodeDecodeError as e: raise ValueError(f"""Could not open {os.path.join(_UpperCamelCase , _UpperCamelCase )}.""" ) from e return _artifact def lowerCAmelCase__ ( ) -> Union[str, Any]: """simple docstring""" class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" snake_case = name snake_case = [] def __str__( self ): """simple docstring""" return self.name def snake_case ( self , lowerCAmelCase ): """simple docstring""" self.paths.append({'name': self.name, 'path': path} ) snake_case = {} snake_case = filter(os.path.isdir , os.listdir() ) for directory in directories: snake_case = directory if artifact_name not in _available_artifacts: snake_case = Artifact(_UpperCamelCase ) _available_artifacts[artifact_name].add_path(_UpperCamelCase ) return _available_artifacts if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = get_job_links() SCREAMING_SNAKE_CASE__ = retrieve_available_artifacts() SCREAMING_SNAKE_CASE__ = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' SCREAMING_SNAKE_CASE__ = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job SCREAMING_SNAKE_CASE__ = github_actions_job_links.get("run_doctests") SCREAMING_SNAKE_CASE__ = available_artifacts["doc_tests_gpu_test_reports"].paths[0] SCREAMING_SNAKE_CASE__ = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = handle_test_results(artifact["stats"]) SCREAMING_SNAKE_CASE__ = failed SCREAMING_SNAKE_CASE__ = success SCREAMING_SNAKE_CASE__ = time_spent[1:-1] + ", " SCREAMING_SNAKE_CASE__ = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): SCREAMING_SNAKE_CASE__ = line.replace("FAILED ", "") SCREAMING_SNAKE_CASE__ = line.split()[0].replace("\n", "") if "::" in line: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = line.split("::") else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): SCREAMING_SNAKE_CASE__ = docs[file_regex] doc_test_results[category]["failed"].append(test) SCREAMING_SNAKE_CASE__ = all_failures[test] if test in all_failures else "N/A" SCREAMING_SNAKE_CASE__ = failure break SCREAMING_SNAKE_CASE__ = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
150
0
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowercase__ ( snake_case_ :int ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_ :float , snake_case_ :float ) -> bool: __UpperCAmelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __UpperCAmelCase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. __UpperCAmelCase = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def lowercase__ ( snake_case_ :int , snake_case_ :Callable[[float], float] , snake_case_ :float = 0.0 , snake_case_ :float = 1.0 , ): return mean( function_to_integrate(uniform(snake_case_ , snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowercase__ ( snake_case_ :int , snake_case_ :float = 0.0 , snake_case_ :float = 1.0 ): def identity_function(snake_case_ :float ) -> float: return x __UpperCAmelCase = area_under_curve_estimator( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def lowercase__ ( snake_case_ :int ): def function_to_integrate(snake_case_ :float ) -> float: return sqrt(4.0 - x * x ) __UpperCAmelCase = area_under_curve_estimator( snake_case_ , snake_case_ , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
86
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : int = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = "bloom" a__ : List[Any] = ["past_key_values"] a__ : Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , _lowercase : Dict=25_08_80 , _lowercase : str=64 , _lowercase : int=2 , _lowercase : Union[str, Any]=8 , _lowercase : Optional[Any]=1E-5 , _lowercase : Dict=0.02 , _lowercase : Optional[int]=True , _lowercase : Any=1 , _lowercase : Dict=2 , _lowercase : Optional[Any]=False , _lowercase : Union[str, Any]=0.0 , _lowercase : str=0.0 , _lowercase : str=1 , _lowercase : int=False , **_lowercase : List[str] , ): __UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg __UpperCAmelCase = kwargs.pop('''n_embed''' , _lowercase ) __UpperCAmelCase = hidden_size if n_embed is None else n_embed __UpperCAmelCase = n_layer __UpperCAmelCase = n_head __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_range __UpperCAmelCase = use_cache __UpperCAmelCase = pretraining_tp __UpperCAmelCase = apply_residual_connection_post_layernorm __UpperCAmelCase = hidden_dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = bos_token_id __UpperCAmelCase = eos_token_id __UpperCAmelCase = slow_but_exact super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[str] = version.parse("1.12" ) def __init__( self : Optional[int] , _lowercase : PretrainedConfig , _lowercase : str = "default" , _lowercase : List[PatchingSpec] = None , _lowercase : bool = False , ): super().__init__(_lowercase , task=_lowercase , patching_specs=_lowercase , use_past=_lowercase ) if not getattr(self._config , '''pad_token_id''' , _lowercase ): # TODO: how to do that better? __UpperCAmelCase = 0 @property def a ( self : Optional[int] ): __UpperCAmelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_lowercase , direction='''inputs''' , inverted_values_shape=_lowercase ) __UpperCAmelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a ( self : Any ): return self._config.n_layer @property def a ( self : Tuple ): return self._config.n_head @property def a ( self : Dict ): return 1E-3 def a ( self : List[str] , _lowercase : "PreTrainedTokenizer" , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional["TensorType"] = None , ): __UpperCAmelCase = super(_lowercase , self ).generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase = seqlen + 2 __UpperCAmelCase = self._config.hidden_size // self.num_attention_heads __UpperCAmelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __UpperCAmelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __UpperCAmelCase = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers ) ] __UpperCAmelCase = common_inputs['''attention_mask'''] if self.use_past: __UpperCAmelCase = ordered_inputs['''attention_mask'''].dtype __UpperCAmelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) return ordered_inputs @property def a ( self : Any ): return 13
86
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase : int = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
115
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): a_ = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCamelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCamelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
243
0
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : """simple docstring""" @staticmethod def _snake_case ( *a_ ,**a_ ) -> Dict: pass def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _snake_case ( self ,a_ ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase : Optional[int] = DepthEstimationPipeline(model=a_ ,image_processor=a_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : int = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} ,a_ ) import datasets _UpperCAmelCase : List[Any] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" ,"""image""" ,split="""test""" ) _UpperCAmelCase : List[str] = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] ,a_ ,) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def _snake_case ( self ) -> str: pass @slow @require_torch def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Optional[int] = """Intel/dpt-large""" _UpperCAmelCase : Tuple = pipeline("""depth-estimation""" ,model=a_ ) _UpperCAmelCase : List[str] = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) _UpperCAmelCase : List[Any] = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) ,29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) ,2.662 ) @require_torch def _snake_case ( self ) -> str: # This is highly irregular to have no small tests. self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
349
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
1
import collections import importlib.util import os import re from pathlib import Path lowerCamelCase__ = """src/transformers""" # Matches is_xxx_available() lowerCamelCase__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowerCamelCase__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCamelCase__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowerCamelCase__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowerCamelCase__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCamelCase__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowerCamelCase__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowerCamelCase__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowerCamelCase__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowerCamelCase__ = re.compile(r"""^\s*try:""") # Catches a line with else: lowerCamelCase__ = re.compile(r"""^\s*else:""") def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" if _re_test_backend.search(_SCREAMING_SNAKE_CASE ) is None: return None __a = [b[0] for b in _re_backend.findall(_SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __a = f.readlines() __a = 0 while line_index < len(_SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure __a = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: __a = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ): __a = _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ).groups()[0] __a = re.findall("""\[([^\]]+)\]""" , _SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue __a = _re_import_struct_key_value.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: __a = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 __a = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. __a = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __a = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __a = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): __a = lines[line_index] if _re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ) is not None: __a = _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ ) __a = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(_SCREAMING_SNAKE_CASE ) is not None: __a = _re_between_brackets.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ ) __a = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0] objects.extend(_SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(_SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 __a = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __a = [] while ( line_index < len(_SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): __a = lines[line_index] __a = _re_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 __a = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(_SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. __a = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __a = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __a = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): __a = lines[line_index] __a = _re_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 __a = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" def find_duplicates(_SCREAMING_SNAKE_CASE : Union[str, Any] ): return [k for k, v in collections.Counter(_SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __a = [] for key in import_dict_objects.keys(): __a = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}" ) __a = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __a = """base imports""" if key == """none""" else f"{key} backend" errors.append(f"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f" {a} in _import_structure but not in TYPE_HINT." ) return errors def lowerCAmelCase__ ( ): """simple docstring""" __a = [] for root, _, files in os.walk(_SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __a = os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" ) __a = parse_init(_SCREAMING_SNAKE_CASE ) if objects is not None: __a = analyze_results(*_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: __a = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("""\n""".join(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError("""\n\n""".join(_SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase__ ( ): """simple docstring""" __a = [] for path, directories, files in os.walk(_SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(_SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_SCREAMING_SNAKE_CASE ) / folder).glob("""*.py""" ) ) ) == 0: continue __a = str((Path(_SCREAMING_SNAKE_CASE ) / folder).relative_to(_SCREAMING_SNAKE_CASE ) ) __a = short_path.replace(os.path.sep , """.""" ) submodules.append(_SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue __a = str((Path(_SCREAMING_SNAKE_CASE ) / fname).relative_to(_SCREAMING_SNAKE_CASE ) ) __a = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(_SCREAMING_SNAKE_CASE ) return submodules lowerCamelCase__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def lowerCAmelCase__ ( ): """simple docstring""" __a = importlib.util.spec_from_file_location( """transformers""" , os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __a = spec.loader.load_module() __a = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_SCREAMING_SNAKE_CASE ) > 0: __a = """\n""".join(f"- {module}" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f"{list_of_modules}\n" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
302
import string import numpy def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE : __lowerCamelCase : List[str] =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __lowerCamelCase : List[Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 ) __lowerCamelCase : Optional[Any] =numpy.vectorize(lowerCamelCase__ ) def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray ): '''simple docstring''' __a = self.modulus(__lowercase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __a = encrypt_key.shape[0] def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' return self.key_string.index(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : int ): '''simple docstring''' return self.key_string[round(__lowercase )] def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = len(self.key_string ) if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1: __a = ( F"determinant modular {req_l} of encryption key({det}) " F"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' __a = [char for char in text.upper() if char in self.key_string] __a = chars[-1] while len(__lowercase ) % self.break_key != 0: chars.append(__lowercase ) return "".join(__lowercase ) def UpperCamelCase_ ( self : List[str] , __lowercase : str ): '''simple docstring''' __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[ 0 ] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __a = i break __a = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowercase ) ) def UpperCamelCase_ ( self : Any , __lowercase : str ): '''simple docstring''' __a = self.make_decrypt_key() __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): """simple docstring""" __a = int(input("""Enter the order of the encryption key: """ ) ) __a = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(_SCREAMING_SNAKE_CASE ): __a = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(_SCREAMING_SNAKE_CASE ) __a = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __a = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __a = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(_SCREAMING_SNAKE_CASE ) ) elif option == "2": __a = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __lowerCAmelCase ( _a ): lowerCamelCase_ : str = '''gpt_bigcode''' lowerCamelCase_ : Any = ['''past_key_values'''] lowerCamelCase_ : Union[str, Any] = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__(self , __magic_name__=5_0257 , __magic_name__=1024 , __magic_name__=768 , __magic_name__=12 , __magic_name__=12 , __magic_name__=None , __magic_name__="gelu_pytorch_tanh" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1e-5 , __magic_name__=0.02 , __magic_name__=True , __magic_name__=True , __magic_name__=5_0256 , __magic_name__=5_0256 , __magic_name__=True , __magic_name__=True , __magic_name__=True , **__magic_name__ , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = vocab_size snake_case_ : Dict = n_positions snake_case_ : Union[str, Any] = n_embd snake_case_ : Tuple = n_layer snake_case_ : Optional[int] = n_head snake_case_ : int = n_inner snake_case_ : Optional[Any] = activation_function snake_case_ : Dict = resid_pdrop snake_case_ : Optional[int] = embd_pdrop snake_case_ : Tuple = attn_pdrop snake_case_ : str = layer_norm_epsilon snake_case_ : Tuple = initializer_range snake_case_ : Optional[Any] = scale_attn_weights snake_case_ : Optional[int] = use_cache snake_case_ : List[str] = attention_softmax_in_fpaa snake_case_ : Optional[Any] = scale_attention_softmax_in_fpaa snake_case_ : Dict = multi_query snake_case_ : List[str] = bos_token_id snake_case_ : Tuple = eos_token_id super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
279
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
279
1
'''simple docstring''' from pathlib import Path import fire def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Path(SCREAMING_SNAKE_CASE_) __lowerCAmelCase = Path(SCREAMING_SNAKE_CASE_) dest_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_) for path in src_dir.iterdir(): __lowerCAmelCase = [x.rstrip() for x in list(path.open().readlines())][:n] __lowerCAmelCase = dest_dir.joinpath(path.name) print(SCREAMING_SNAKE_CASE_) dest_path.open('''w''').write('''\n'''.join(SCREAMING_SNAKE_CASE_)) if __name__ == "__main__": fire.Fire(minify)
174
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __a(): '''simple docstring''' _lowerCAmelCase = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) TestCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) # Parse args _lowerCAmelCase , _lowerCAmelCase = parser.parse_known_args() if not hasattr(SCREAMING_SNAKE_CASE_ , "func" ): parser.print_help() exit(1 ) _lowerCAmelCase = parse_unknown_args(SCREAMING_SNAKE_CASE_ ) # Run _lowerCAmelCase = args.func(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) service.run() if __name__ == "__main__": main()
158
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Any = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class a__ ( __snake_case , __snake_case ): A__ : Optional[Any] = 'bit' A__ : Dict = ['preactivation', 'bottleneck'] A__ : Dict = ['SAME', 'VALID'] def __init__( self , UpperCAmelCase=3 , UpperCAmelCase=6_4 , UpperCAmelCase=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , UpperCAmelCase=[3, 4, 6, 3] , UpperCAmelCase="preactivation" , UpperCAmelCase="relu" , UpperCAmelCase=None , UpperCAmelCase=3_2 , UpperCAmelCase=0.0 , UpperCAmelCase=False , UpperCAmelCase=3_2 , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**UpperCAmelCase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __a = global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) __a = num_channels __a = embedding_size __a = hidden_sizes __a = depths __a = layer_type __a = hidden_act __a = global_padding __a = num_groups __a = drop_path_rate __a = embedding_dynamic_padding __a = output_stride __a = width_factor __a = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(UpperCAmelCase ) + 1 )] __a , __a = get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
360
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class a__ ( __snake_case ): A__ : Any = 'Wav2Vec2FeatureExtractor' A__ : str = 'AutoTokenizer' def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: super().__init__(UpperCAmelCase , UpperCAmelCase ) __a = self.feature_extractor __a = False @classmethod def __SCREAMING_SNAKE_CASE ( cls , UpperCAmelCase , **UpperCAmelCase ) -> Dict: try: return super().from_pretrained(UpperCAmelCase , **UpperCAmelCase ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , UpperCAmelCase , ) __a = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __a = WavaVecaCTCTokenizer.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) return cls(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) def __call__( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase , **UpperCAmelCase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) __a = kwargs.pop('raw_speech' ) else: __a = kwargs.pop('audio' , UpperCAmelCase ) __a = kwargs.pop('sampling_rate' , UpperCAmelCase ) __a = kwargs.pop('text' , UpperCAmelCase ) if len(UpperCAmelCase ) > 0: __a = args[0] __a = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __a = self.feature_extractor(UpperCAmelCase , *UpperCAmelCase , sampling_rate=UpperCAmelCase , **UpperCAmelCase ) if text is not None: __a = self.tokenizer(UpperCAmelCase , **UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: __a = encodings['input_ids'] return inputs def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*UpperCAmelCase , **UpperCAmelCase ) __a = kwargs.pop('input_features' , UpperCAmelCase ) __a = kwargs.pop('labels' , UpperCAmelCase ) if len(UpperCAmelCase ) > 0: __a = args[0] __a = args[1:] if input_features is not None: __a = self.feature_extractor.pad(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) if labels is not None: __a = self.tokenizer.pad(UpperCAmelCase , **UpperCAmelCase ) if labels is None: return input_features elif input_features is None: return labels else: __a = labels['input_ids'] return input_features def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @contextmanager def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) __a = True __a = self.tokenizer yield __a = self.feature_extractor __a = False
197
0
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _snake_case ( _a , _a ): @register_to_config def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int = 128 ,SCREAMING_SNAKE_CASE__ : int = 256 ,SCREAMING_SNAKE_CASE__ : float = 2_000.0 ,SCREAMING_SNAKE_CASE__ : int = 768 ,SCREAMING_SNAKE_CASE__ : int = 12 ,SCREAMING_SNAKE_CASE__ : int = 12 ,SCREAMING_SNAKE_CASE__ : int = 64 ,SCREAMING_SNAKE_CASE__ : int = 2_048 ,SCREAMING_SNAKE_CASE__ : float = 0.1 ,): super().__init__() SCREAMING_SNAKE_CASE:Any = nn.Sequential( nn.Linear(SCREAMING_SNAKE_CASE__ ,d_model * 4 ,bias=SCREAMING_SNAKE_CASE__ ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=SCREAMING_SNAKE_CASE__ ) ,nn.SiLU() ,) SCREAMING_SNAKE_CASE:str = nn.Embedding(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = False SCREAMING_SNAKE_CASE:str = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[Any] = nn.Dropout(p=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = nn.ModuleList() for lyr_num in range(SCREAMING_SNAKE_CASE__ ): # FiLM conditional T5 decoder SCREAMING_SNAKE_CASE:Tuple = DecoderLayer(d_model=SCREAMING_SNAKE_CASE__ ,d_kv=SCREAMING_SNAKE_CASE__ ,num_heads=SCREAMING_SNAKE_CASE__ ,d_ff=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__ ) self.decoders.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = TaLayerNorm(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = nn.Dropout(p=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[Any] ): SCREAMING_SNAKE_CASE:int = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Any ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. SCREAMING_SNAKE_CASE:Optional[int] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) SCREAMING_SNAKE_CASE:Optional[int] = self.conditioning_emb(SCREAMING_SNAKE_CASE__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) SCREAMING_SNAKE_CASE:List[Any] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. SCREAMING_SNAKE_CASE:List[Any] = torch.broadcast_to( torch.arange(SCREAMING_SNAKE_CASE__ ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) SCREAMING_SNAKE_CASE:List[Any] = self.position_encoding(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = self.continuous_inputs_projection(SCREAMING_SNAKE_CASE__ ) inputs += position_encodings SCREAMING_SNAKE_CASE:List[Any] = self.dropout(SCREAMING_SNAKE_CASE__ ) # decoder: No padding present. SCREAMING_SNAKE_CASE:Optional[Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. SCREAMING_SNAKE_CASE:List[str] = [(x, self.encoder_decoder_mask(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings SCREAMING_SNAKE_CASE:List[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) SCREAMING_SNAKE_CASE:Optional[int] = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: SCREAMING_SNAKE_CASE:str = lyr( SCREAMING_SNAKE_CASE__ ,conditioning_emb=SCREAMING_SNAKE_CASE__ ,encoder_hidden_states=SCREAMING_SNAKE_CASE__ ,encoder_attention_mask=SCREAMING_SNAKE_CASE__ ,)[0] SCREAMING_SNAKE_CASE:str = self.decoder_norm(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = self.post_dropout(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = self.spec_out(SCREAMING_SNAKE_CASE__ ) return spec_out class _snake_case ( nn.Module ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Tuple=1e-6 ): super().__init__() SCREAMING_SNAKE_CASE:Tuple = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=SCREAMING_SNAKE_CASE__ ,d_kv=SCREAMING_SNAKE_CASE__ ,num_heads=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=SCREAMING_SNAKE_CASE__ ,d_kv=SCREAMING_SNAKE_CASE__ ,num_heads=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__ ,layer_norm_epsilon=SCREAMING_SNAKE_CASE__ ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=SCREAMING_SNAKE_CASE__ ,d_ff=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__ ,layer_norm_epsilon=SCREAMING_SNAKE_CASE__ ) ) def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any=None ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,): SCREAMING_SNAKE_CASE:Union[str, Any] = self.layer[0]( SCREAMING_SNAKE_CASE__ ,conditioning_emb=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,) if encoder_hidden_states is not None: SCREAMING_SNAKE_CASE:Any = torch.where(encoder_attention_mask > 0 ,0 ,-1e10 ).to( encoder_hidden_states.dtype ) SCREAMING_SNAKE_CASE:Tuple = self.layer[1]( SCREAMING_SNAKE_CASE__ ,key_value_states=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,) # Apply Film Conditional Feed Forward layer SCREAMING_SNAKE_CASE:Union[str, Any] = self.layer[-1](SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return (hidden_states,) class _snake_case ( nn.Module ): def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE:str = TaLayerNorm(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = Attention(query_dim=SCREAMING_SNAKE_CASE__ ,heads=SCREAMING_SNAKE_CASE__ ,dim_head=SCREAMING_SNAKE_CASE__ ,out_bias=SCREAMING_SNAKE_CASE__ ,scale_qk=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[int] = nn.Dropout(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Dict=None ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,): # pre_self_attention_layer_norm SCREAMING_SNAKE_CASE:str = self.layer_norm(SCREAMING_SNAKE_CASE__ ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE:List[str] = self.FiLMLayer(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Self-attention block SCREAMING_SNAKE_CASE:Tuple = self.attention(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__ ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : str ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : List[Any] ): super().__init__() SCREAMING_SNAKE_CASE:Tuple = Attention(query_dim=SCREAMING_SNAKE_CASE__ ,heads=SCREAMING_SNAKE_CASE__ ,dim_head=SCREAMING_SNAKE_CASE__ ,out_bias=SCREAMING_SNAKE_CASE__ ,scale_qk=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = TaLayerNorm(SCREAMING_SNAKE_CASE__ ,eps=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = nn.Dropout(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,): SCREAMING_SNAKE_CASE:str = self.layer_norm(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = self.attention( SCREAMING_SNAKE_CASE__ ,encoder_hidden_states=SCREAMING_SNAKE_CASE__ ,attention_mask=attention_mask.squeeze(1 ) ,) SCREAMING_SNAKE_CASE:Union[str, Any] = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__ ) return layer_output class _snake_case ( nn.Module ): def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ): super().__init__() SCREAMING_SNAKE_CASE:str = TaDenseGatedActDense(d_model=SCREAMING_SNAKE_CASE__ ,d_ff=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[int] = TaFiLMLayer(in_features=d_model * 4 ,out_features=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = TaLayerNorm(SCREAMING_SNAKE_CASE__ ,eps=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = nn.Dropout(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Tuple=None ): SCREAMING_SNAKE_CASE:Any = self.layer_norm(SCREAMING_SNAKE_CASE__ ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE:Optional[int] = self.film(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[int] = self.DenseReluDense(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__ ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Dict ): super().__init__() SCREAMING_SNAKE_CASE:Optional[Any] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[Any] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = nn.Dropout(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[Any] = NewGELUActivation() def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ): SCREAMING_SNAKE_CASE:int = self.act(self.wi_a(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE:int = self.wi_a(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[Any] = hidden_gelu * hidden_linear SCREAMING_SNAKE_CASE:List[str] = self.dropout(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = self.wo(SCREAMING_SNAKE_CASE__ ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int=1e-6 ): super().__init__() SCREAMING_SNAKE_CASE:Any = nn.Parameter(torch.ones(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE:List[Any] = eps def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Any ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 SCREAMING_SNAKE_CASE:Union[str, Any] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: SCREAMING_SNAKE_CASE:Dict = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _snake_case ( nn.Module ): def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(SCREAMING_SNAKE_CASE__ ,3.0 )) )) class _snake_case ( nn.Module ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Any ): super().__init__() SCREAMING_SNAKE_CASE:Any = nn.Linear(SCREAMING_SNAKE_CASE__ ,out_features * 2 ,bias=SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : int ): SCREAMING_SNAKE_CASE:Optional[Any] = self.scale_bias(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[Any] = torch.chunk(SCREAMING_SNAKE_CASE__ ,2 ,-1 ) SCREAMING_SNAKE_CASE:Optional[Any] = x * (1 + scale) + shift return x
139
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A_ = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _snake_case : _A : str _A : Optional[str] = None _A : Optional[Union[str, int]] = None _A : Optional[Union[str, int]] = None _A : Optional[Union[str, int]] = None def __UpperCamelCase ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[Any] ): return F'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def __UpperCamelCase ( self : List[Any] ): return self.major, self.minor, self.patch def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): return Version(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): return other raise TypeError(F'''{other} (type {type(SCREAMING_SNAKE_CASE__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ): try: SCREAMING_SNAKE_CASE:List[str] = self._validate_operand(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ): SCREAMING_SNAKE_CASE:Tuple = self._validate_operand(SCREAMING_SNAKE_CASE__ ) return self.tuple < other.tuple def __hash__( self : Union[str, Any] ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __UpperCamelCase ( cls : str ,SCREAMING_SNAKE_CASE__ : str ): SCREAMING_SNAKE_CASE:str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __UpperCamelCase ( self : Tuple ): return self.version_str def A_ ( snake_case ): SCREAMING_SNAKE_CASE:int = _VERSION_REG.match(snake_case ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(snake_case ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def A_ ( snake_case ): return ".".join(str(snake_case ) for v in version_tuple )
139
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowerCamelCase_ = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
367
'''simple docstring''' import torch from transformers import AutoModel class lowercase_ ( torch.nn.Module ): """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : Union[str, Any]="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__lowerCamelCase , self ).__init__() _SCREAMING_SNAKE_CASE = AutoModel.from_pretrained(__lowerCamelCase , return_dict=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.nn.CosineSimilarity(3 , 1e-08 ) _SCREAMING_SNAKE_CASE = torch.nn.Softmax(dim=1 ) def lowerCAmelCase_ ( self : Dict , **__lowerCamelCase : Any ): """simple docstring""" return self.bert(**__lowerCamelCase ).last_hidden_state def lowerCAmelCase_ ( self : Optional[Any] , __lowerCamelCase : List[str] ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__lowerCamelCase ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Tuple=1 ): """simple docstring""" return self.softmax(T * self.cos(__lowerCamelCase , __lowerCamelCase ) ) def lowerCAmelCase_ ( self : int , __lowerCamelCase : str , __lowerCamelCase : str ): """simple docstring""" _SCREAMING_SNAKE_CASE = W_supports["sizes"].tolist() _SCREAMING_SNAKE_CASE = W_supports["start_token_id"].item() _SCREAMING_SNAKE_CASE = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _SCREAMING_SNAKE_CASE = self.BERT(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.BERT(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = W_supports["input_ids"] == start_token_id _SCREAMING_SNAKE_CASE = W_supports["input_ids"] == end_token_id for i, size in enumerate(__lowerCamelCase ): if i == 0: _SCREAMING_SNAKE_CASE = 0 else: _SCREAMING_SNAKE_CASE = support_sizes[i - 1] _SCREAMING_SNAKE_CASE = S[s : s + size][start_token_masks[s : s + size]] _SCREAMING_SNAKE_CASE = S[s : s + size][end_token_masks[s : s + size]] _SCREAMING_SNAKE_CASE = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _SCREAMING_SNAKE_CASE = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _SCREAMING_SNAKE_CASE = torch.vstack((p_starts, p_start) ) _SCREAMING_SNAKE_CASE = torch.vstack((p_ends, p_end) ) else: _SCREAMING_SNAKE_CASE = p_start _SCREAMING_SNAKE_CASE = p_end return p_starts, p_ends
111
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case_ = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
24
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } lowerCAmelCase__ = { '''moussaKam/mbarthez''': 1_024, '''moussaKam/barthez''': 1_024, '''moussaKam/barthez-orangesum-title''': 1_024, } lowerCAmelCase__ = '''▁''' class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = ["input_ids", "attention_mask"] def __init__(self , __a , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a = None , **__a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) UpperCamelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} UpperCamelCase = len(self.sp_model ) - 1 UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case_ (self , __a , __a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ (self , __a , __a = None , __a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def snake_case_ (self , __a , __a = None ) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ (self ) -> Any: return len(self.sp_model ) def snake_case_ (self ) -> int: UpperCamelCase = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ (self , __a ) -> List[str]: return self.sp_model.encode(__a , out_type=__a ) def snake_case_ (self , __a ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase = self.sp_model.PieceToId(__a ) return spm_id if spm_id else self.unk_token_id def snake_case_ (self , __a ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__a ) def snake_case_ (self , __a ) -> Union[str, Any]: UpperCamelCase = [] UpperCamelCase = "" UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(__a ) UpperCamelCase = False out_string += self.sp_model.decode(__a ) return out_string.strip() def __getstate__(self ) -> str: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__(self , __a ) -> Optional[int]: UpperCamelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ (self , __a , __a = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
153
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Dict = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
'''simple docstring''' def a__ ( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase : int, lowercase : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _UpperCamelCase = update_area_of_max_square(lowercase, col + 1 ) _UpperCamelCase = update_area_of_max_square(row + 1, col + 1 ) _UpperCamelCase = update_area_of_max_square(row + 1, lowercase ) if mat[row][col]: _UpperCamelCase = 1 + min([right, diagonal, down] ) _UpperCamelCase = max(largest_square_area[0], lowercase ) return sub_problem_sol else: return 0 _UpperCamelCase = [0] update_area_of_max_square(0, 0 ) return largest_square_area[0] def a__ ( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _UpperCamelCase = update_area_of_max_square_using_dp_array(lowercase, col + 1, lowercase ) _UpperCamelCase = update_area_of_max_square_using_dp_array(row + 1, col + 1, lowercase ) _UpperCamelCase = update_area_of_max_square_using_dp_array(row + 1, lowercase, lowercase ) if mat[row][col]: _UpperCamelCase = 1 + min([right, diagonal, down] ) _UpperCamelCase = max(largest_square_area[0], lowercase ) _UpperCamelCase = sub_problem_sol return sub_problem_sol else: return 0 _UpperCamelCase = [0] _UpperCamelCase = [[-1] * cols for _ in range(lowercase )] update_area_of_max_square_using_dp_array(0, 0, lowercase ) return largest_square_area[0] def a__ ( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: """simple docstring""" _UpperCamelCase = [[0] * (cols + 1) for _ in range(rows + 1 )] _UpperCamelCase = 0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): _UpperCamelCase = dp_array[row][col + 1] _UpperCamelCase = dp_array[row + 1][col + 1] _UpperCamelCase = dp_array[row + 1][col] if mat[row][col] == 1: _UpperCamelCase = 1 + min(lowercase, lowercase, lowercase ) _UpperCamelCase = max(dp_array[row][col], lowercase ) else: _UpperCamelCase = 0 return largest_square_area def a__ ( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: """simple docstring""" _UpperCamelCase = [0] * (cols + 1) _UpperCamelCase = [0] * (cols + 1) _UpperCamelCase = 0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): _UpperCamelCase = current_row[col + 1] _UpperCamelCase = next_row[col + 1] _UpperCamelCase = next_row[col] if mat[row][col] == 1: _UpperCamelCase = 1 + min(lowercase, lowercase, lowercase ) _UpperCamelCase = max(current_row[col], lowercase ) else: _UpperCamelCase = 0 _UpperCamelCase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
287
0