code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def A__ ( self , lowerCAmelCase ) -> float: '''simple docstring''' return 0.0 def a ( A__ : np.ndarray , A__ : int ) -> tuple[int | float, int | float]: """simple docstring""" _lowercase =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowercase =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def a ( A__ : FilterType , A__ : int ) -> None: """simple docstring""" _lowercase =512 _lowercase =[1] + [0] * (size - 1) _lowercase =[filter_type.process(A__ ) for item in inputs] _lowercase =[0] * (samplerate - size) # zero-padding outputs += filler _lowercase =np.abs(np.fft.fft(A__ ) ) _lowercase =20 * np.logaa(A__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds _lowercase =get_bounds(A__ , A__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(A__ ) plt.show() def a ( A__ : FilterType , A__ : int ) -> None: """simple docstring""" _lowercase =512 _lowercase =[1] + [0] * (size - 1) _lowercase =[filter_type.process(A__ ) for item in inputs] _lowercase =[0] * (samplerate - size) # zero-padding outputs += filler _lowercase =np.angle(np.fft.fft(A__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(A__ , -2 * pi ) ) plt.show()
205
import argparse import os import re lowercase_ = 'src/transformers' # Pattern that looks at the indentation in a line. lowercase_ = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. lowercase_ = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase_ = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. lowercase_ = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase_ = re.compile(R'\[([^\]]+)\]') def a ( A__ : Dict ) -> Optional[Any]: """simple docstring""" _lowercase =_re_indent.search(A__ ) return "" if search is None else search.groups()[0] def a ( A__ : Optional[Any] , A__ : Dict="" , A__ : Union[str, Any]=None , A__ : Tuple=None ) -> Dict: """simple docstring""" _lowercase =0 _lowercase =code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 _lowercase =['\n'.join(lines[:index] )] else: _lowercase =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowercase =[lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(A__ ) ) if index < len(A__ ) - 1: _lowercase =[lines[index + 1]] index += 1 else: _lowercase =[] else: blocks.append('\n'.join(A__ ) ) _lowercase =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('\n'.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def a ( A__ : int ) -> Union[str, Any]: """simple docstring""" def _inner(A__ : Any ): return key(A__ ).lower().replace('_' , '' ) return _inner def a ( A__ : Any , A__ : Union[str, Any]=None ) -> int: """simple docstring""" def noop(A__ : Optional[int] ): return x if key is None: _lowercase =noop # Constants are all uppercase, they go first. _lowercase =[obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowercase =[obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. _lowercase =[obj for obj in objects if not key(A__ )[0].isupper()] _lowercase =ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def a ( A__ : Union[str, Any] ) -> Tuple: """simple docstring""" def _replace(A__ : Optional[int] ): _lowercase =match.groups()[0] if "," not in imports: return F'''[{imports}]''' _lowercase =[part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase =keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(A__ )] ) + "]" _lowercase =import_statement.split('\n' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowercase =2 if lines[1].strip() == '[' else 1 _lowercase =[(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowercase =sort_objects(A__ , key=lambda A__ : x[1] ) _lowercase =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowercase =_re_bracket_content.sub(_replace , lines[1] ) else: _lowercase =[part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase =keys[:-1] _lowercase =get_indent(lines[1] ) + ', '.join([F'''"{k}"''' for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line _lowercase =_re_bracket_content.sub(_replace , A__ ) return import_statement def a ( A__ : Dict , A__ : int=True ) -> Optional[Any]: """simple docstring""" with open(A__ , encoding='utf-8' ) as f: _lowercase =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowercase =split_code_in_indented_blocks( A__ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowercase =main_blocks[block_idx] _lowercase =block.split('\n' ) # Get to the start of the imports. _lowercase =0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowercase =len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. _lowercase ='\n'.join(block_lines[line_idx:-1] ) _lowercase =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowercase =split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend _lowercase =_re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowercase =[(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowercase =[(i, key) for i, key in enumerate(A__ ) if key is not None] _lowercase =[x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowercase =0 _lowercase =[] for i in range(len(A__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowercase =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. _lowercase ='\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(A__ ) ) def a ( A__ : List[Any]=True ) -> List[str]: """simple docstring""" _lowercase =[] for root, _, files in os.walk(A__ ): if "__init__.py" in files: _lowercase =sort_imports(os.path.join(A__ , '__init__.py' ) , check_only=A__ ) if result: _lowercase =[os.path.join(A__ , '__init__.py' )] if len(A__ ) > 0: raise ValueError(F'''Would overwrite {len(A__ )} files, run `make style`.''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') lowercase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
205
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowercase: Tuple = logging.get_logger(__name__) __lowercase: Union[str, Any] = {"vocab_file": "spiece.model"} __lowercase: Tuple = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } __lowercase: str = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } __lowercase: List[str] = "▁" class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = VOCAB_FILES_NAMES _lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any], a_ : List[Any], a_ : str=True, a_ : Union[str, Any]=True, a_ : Tuple=False, a_ : Any="[CLS]", a_ : Optional[Any]="[SEP]", a_ : str="<unk>", a_ : List[str]="[SEP]", a_ : str="<pad>", a_ : List[Any]="[CLS]", a_ : Dict="[MASK]", a_ : Optional[Dict[str, Any]] = None, **a_ : Optional[Any], ): """simple docstring""" UpperCamelCase__ = ( AddedToken(a_, lstrip=a_, rstrip=a_, normalized=a_ ) if isinstance(a_, a_ ) else mask_token ) UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_, remove_space=a_, keep_accents=a_, bos_token=a_, eos_token=a_, unk_token=a_, sep_token=a_, pad_token=a_, cls_token=a_, mask_token=a_, sp_model_kwargs=self.sp_model_kwargs, **a_, ) UpperCamelCase__ = do_lower_case UpperCamelCase__ = remove_space UpperCamelCase__ = keep_accents UpperCamelCase__ = vocab_file UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def lowercase_ ( self : Dict ): """simple docstring""" return len(self.sp_model ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): """simple docstring""" UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self : Optional[Any], a_ : List[str] ): """simple docstring""" UpperCamelCase__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs" ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self : List[Any], a_ : Optional[Any] ): """simple docstring""" if self.remove_space: UpperCamelCase__ = " ".join(inputs.strip().split() ) else: UpperCamelCase__ = inputs UpperCamelCase__ = outputs.replace("``", "\"" ).replace("''", "\"" ) if not self.keep_accents: UpperCamelCase__ = unicodedata.normalize("NFKD", a_ ) UpperCamelCase__ = "".join([c for c in outputs if not unicodedata.combining(a_ )] ) if self.do_lower_case: UpperCamelCase__ = outputs.lower() return outputs def lowercase_ ( self : Any, a_ : str ): """simple docstring""" UpperCamelCase__ = self.preprocess_text(a_ ) UpperCamelCase__ = self.sp_model.encode(a_, out_type=a_ ) UpperCamelCase__ = [] for piece in pieces: if len(a_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): UpperCamelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(a_, "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCamelCase__ = cur_pieces[1:] else: UpperCamelCase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a_ ) else: new_pieces.append(a_ ) return new_pieces def lowercase_ ( self : Any, a_ : Optional[Any] ): """simple docstring""" return self.sp_model.PieceToId(a_ ) def lowercase_ ( self : Optional[Any], a_ : Optional[Any] ): """simple docstring""" return self.sp_model.IdToPiece(a_ ) def lowercase_ ( self : Optional[int], a_ : List[str] ): """simple docstring""" UpperCamelCase__ = [] UpperCamelCase__ = "" UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a_ ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(a_ ) UpperCamelCase__ = False out_string += self.sp_model.decode(a_ ) return out_string.strip() def lowercase_ ( self : Tuple, a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self : str, a_ : List[int], a_ : Optional[List[int]] = None, a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_, token_ids_a=a_, already_has_special_tokens=a_ ) if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1] def lowercase_ ( self : int, a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : Optional[Any], a_ : str, a_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( a_, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_, "wb" ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
350
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 'gpt_neox_japanese' def __init__( self : List[str], a_ : Union[str, Any]=3_2000, a_ : str=2560, a_ : Dict=32, a_ : Tuple=32, a_ : Union[str, Any]=4, a_ : Union[str, Any]="gelu", a_ : int=1.00, a_ : Dict=1_0000, a_ : Any=2048, a_ : Optional[int]=0.02, a_ : int=1e-5, a_ : int=True, a_ : Optional[int]=3_1996, a_ : List[str]=3_1999, a_ : List[str]=0.1, a_ : Optional[int]=0.0, **a_ : Tuple, ): """simple docstring""" super().__init__(bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = rotary_pct UpperCamelCase__ = rotary_emb_base UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = attention_dropout UpperCamelCase__ = hidden_dropout
31
0
'''simple docstring''' class a_ : '''simple docstring''' def __init__( self , A ) -> None: _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = [0] * size _SCREAMING_SNAKE_CASE = [0] * size @staticmethod def snake_case_( A ) -> int: return index | (index + 1) @staticmethod def snake_case_( A ) -> int: return (index & (index + 1)) - 1 def snake_case_( self , A , A ) -> None: _SCREAMING_SNAKE_CASE = value while index < self.size: _SCREAMING_SNAKE_CASE = self.get_prev(A ) + 1 if current_left_border == index: _SCREAMING_SNAKE_CASE = value else: _SCREAMING_SNAKE_CASE = max(A , A , A ) _SCREAMING_SNAKE_CASE = self.get_next(A ) def snake_case_( self , A , A ) -> int: right -= 1 # Because of right is exclusive _SCREAMING_SNAKE_CASE = 0 while left <= right: _SCREAMING_SNAKE_CASE = self.get_prev(A ) if left <= current_left: _SCREAMING_SNAKE_CASE = max(A , self.tree[right] ) _SCREAMING_SNAKE_CASE = current_left else: _SCREAMING_SNAKE_CASE = max(A , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCamelCase ( __lowerCamelCase : Tuple ) ->Tuple: _SCREAMING_SNAKE_CASE = fname.split(os.path.sep )[-1] return re.search(R"""^(.*)_\d+\.jpg$""" , __lowerCamelCase ).groups()[0] class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A , A=None , A=None ) -> int: _SCREAMING_SNAKE_CASE = file_names _SCREAMING_SNAKE_CASE = image_transform _SCREAMING_SNAKE_CASE = label_to_id def __len__( self ) -> Optional[Any]: return len(self.file_names ) def __getitem__( self , A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.file_names[idx] _SCREAMING_SNAKE_CASE = PIL.Image.open(A ) _SCREAMING_SNAKE_CASE = raw_image.convert("""RGB""" ) if self.image_transform is not None: _SCREAMING_SNAKE_CASE = self.image_transform(A ) _SCREAMING_SNAKE_CASE = extract_label(A ) if self.label_to_id is not None: _SCREAMING_SNAKE_CASE = self.label_to_id[label] return {"image": image, "label": label} def lowerCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Tuple ) ->str: # Initialize accelerator if args.with_tracking: _SCREAMING_SNAKE_CASE = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: _SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _SCREAMING_SNAKE_CASE = config["""lr"""] _SCREAMING_SNAKE_CASE = int(config["""num_epochs"""] ) _SCREAMING_SNAKE_CASE = int(config["""seed"""] ) _SCREAMING_SNAKE_CASE = int(config["""batch_size"""] ) _SCREAMING_SNAKE_CASE = config["""image_size"""] if not isinstance(__lowerCamelCase , (list, tuple) ): _SCREAMING_SNAKE_CASE = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , """isdigit""" ): if args.checkpointing_steps == "epoch": _SCREAMING_SNAKE_CASE = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _SCREAMING_SNAKE_CASE = int(args.checkpointing_steps ) else: raise ValueError( F'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: _SCREAMING_SNAKE_CASE = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _SCREAMING_SNAKE_CASE = os.path.split(__lowerCamelCase )[-1].split(""".""" )[0] accelerator.init_trackers(__lowerCamelCase , __lowerCamelCase ) # Grab all the image filenames _SCREAMING_SNAKE_CASE = [os.path.join(args.data_dir , __lowerCamelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )] # Build the label correspondences _SCREAMING_SNAKE_CASE = [extract_label(__lowerCamelCase ) for fname in file_names] _SCREAMING_SNAKE_CASE = list(set(__lowerCamelCase ) ) id_to_label.sort() _SCREAMING_SNAKE_CASE = {lbl: i for i, lbl in enumerate(__lowerCamelCase )} # Set the seed before splitting the data. np.random.seed(__lowerCamelCase ) torch.manual_seed(__lowerCamelCase ) torch.cuda.manual_seed_all(__lowerCamelCase ) # Split our filenames between train and validation _SCREAMING_SNAKE_CASE = np.random.permutation(len(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = int(0.8 * len(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = random_perm[:cut] _SCREAMING_SNAKE_CASE = random_perm[cut:] # For training we use a simple RandomResizedCrop _SCREAMING_SNAKE_CASE = Compose([RandomResizedCrop(__lowerCamelCase , scale=(0.5, 1.0) ), ToTensor()] ) _SCREAMING_SNAKE_CASE = PetsDataset( [file_names[i] for i in train_split] , image_transform=__lowerCamelCase , label_to_id=__lowerCamelCase ) # For evaluation, we use a deterministic Resize _SCREAMING_SNAKE_CASE = Compose([Resize(__lowerCamelCase ), ToTensor()] ) _SCREAMING_SNAKE_CASE = PetsDataset([file_names[i] for i in eval_split] , image_transform=__lowerCamelCase , label_to_id=__lowerCamelCase ) # Instantiate dataloaders. _SCREAMING_SNAKE_CASE = DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , batch_size=__lowerCamelCase , num_workers=4 ) _SCREAMING_SNAKE_CASE = DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , batch_size=__lowerCamelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _SCREAMING_SNAKE_CASE = create_model("""resnet50d""" , pretrained=__lowerCamelCase , num_classes=len(__lowerCamelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _SCREAMING_SNAKE_CASE = False for param in model.get_classifier().parameters(): _SCREAMING_SNAKE_CASE = True # We normalize the batches of images to be a bit faster. _SCREAMING_SNAKE_CASE = torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device ) _SCREAMING_SNAKE_CASE = torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler _SCREAMING_SNAKE_CASE = OneCycleLR(optimizer=__lowerCamelCase , max_lr=__lowerCamelCase , epochs=__lowerCamelCase , steps_per_epoch=len(__lowerCamelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # We need to keep track of how many total steps we have iterated over _SCREAMING_SNAKE_CASE = 0 # We also need to keep track of the starting epoch so files are named properly _SCREAMING_SNAKE_CASE = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) _SCREAMING_SNAKE_CASE = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _SCREAMING_SNAKE_CASE = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _SCREAMING_SNAKE_CASE = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _SCREAMING_SNAKE_CASE = os.path.splitext(__lowerCamelCase )[0] if "epoch" in training_difference: _SCREAMING_SNAKE_CASE = int(training_difference.replace("""epoch_""" , """""" ) ) + 1 _SCREAMING_SNAKE_CASE = None else: _SCREAMING_SNAKE_CASE = int(training_difference.replace("""step_""" , """""" ) ) _SCREAMING_SNAKE_CASE = resume_step // len(__lowerCamelCase ) resume_step -= starting_epoch * len(__lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase , __lowerCamelCase ): model.train() if args.with_tracking: _SCREAMING_SNAKE_CASE = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _SCREAMING_SNAKE_CASE = accelerator.skip_first_batches(__lowerCamelCase , __lowerCamelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _SCREAMING_SNAKE_CASE = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _SCREAMING_SNAKE_CASE = {k: v.to(accelerator.device ) for k, v in batch.items()} _SCREAMING_SNAKE_CASE = (batch["""image"""] - mean) / std _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.nn.functional.cross_entropy(__lowerCamelCase , batch["""label"""] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE = F'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , __lowerCamelCase ) accelerator.save_state(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. _SCREAMING_SNAKE_CASE = {k: v.to(accelerator.device ) for k, v in batch.items()} _SCREAMING_SNAKE_CASE = (batch["""image"""] - mean) / std with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = outputs.argmax(dim=-1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch["""label"""]) ) _SCREAMING_SNAKE_CASE = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _SCREAMING_SNAKE_CASE = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}: {100 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { """accuracy""": 100 * eval_metric, """train_loss""": total_loss.item() / len(__lowerCamelCase ), """epoch""": epoch, } , step=__lowerCamelCase , ) if checkpointing_steps == "epoch": _SCREAMING_SNAKE_CASE = F'epoch_{epoch}' if args.output_dir is not None: _SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , __lowerCamelCase ) accelerator.save_state(__lowerCamelCase ) if args.with_tracking: accelerator.end_training() def lowerCamelCase ( ) ->int: _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument("""--data_dir""" , required=__lowerCamelCase , help="""The data folder on disk.""" ) parser.add_argument("""--fp16""" , action="""store_true""" , help="""If passed, will use FP16 training.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCamelCase , default=__lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--checkpointing_steps""" , type=__lowerCamelCase , default=__lowerCamelCase , help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" , ) parser.add_argument( """--output_dir""" , type=__lowerCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=__lowerCamelCase , default=__lowerCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=__lowerCamelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = {"""lr""": 3e-2, """num_epochs""": 3, """seed""": 42, """batch_size""": 64, """image_size""": 224} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
58
1
'''simple docstring''' from timeit import timeit def UpperCamelCase( UpperCAmelCase_ ): if number < 0: raise ValueError('the value of input must not be negative' ) UpperCAmelCase : Any = 0 while number: number &= number - 1 result += 1 return result def UpperCamelCase( UpperCAmelCase_ ): if number < 0: raise ValueError('the value of input must not be negative' ) UpperCAmelCase : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCamelCase( ): def do_benchmark(UpperCAmelCase_ ) -> None: UpperCAmelCase : Union[str, Any] = """import __main__ as z""" print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(_lowerCAmelCase ) = }""" ) UpperCAmelCase : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=_lowerCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(_lowerCAmelCase ) = }""" ) UpperCAmelCase : str = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=_lowerCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(_lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
371
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : str = ["""pixel_values"""] def __init__( self : Dict , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = True , **lowercase_ : Any , ) -> None: super().__init__(**lowercase_ ) UpperCAmelCase : Dict = size if size is not None else {'shortest_edge': 224} UpperCAmelCase : Any = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase : List[str] = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCAmelCase : Any = get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name='crop_size' ) UpperCAmelCase : Optional[int] = do_resize UpperCAmelCase : str = size UpperCAmelCase : str = resample UpperCAmelCase : Union[str, Any] = do_center_crop UpperCAmelCase : Any = crop_size UpperCAmelCase : Optional[Any] = do_rescale UpperCAmelCase : List[Any] = rescale_factor UpperCAmelCase : Any = do_normalize UpperCAmelCase : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase : str = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase : Union[str, Any] = do_convert_rgb def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ) -> np.ndarray: UpperCAmelCase : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase : str = get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Any , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ) -> np.ndarray: UpperCAmelCase : List[Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ) -> Union[str, Any]: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[int] , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : int = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowercase_ : List[Any] , ) -> PIL.Image.Image: UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : List[str] = size if size is not None else self.size UpperCAmelCase : Dict = get_size_dict(lowercase_ , param_name='size' , default_to_square=lowercase_ ) UpperCAmelCase : int = resample if resample is not None else self.resample UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : Union[str, Any] = get_size_dict(lowercase_ , param_name='crop_size' , default_to_square=lowercase_ ) UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : str = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase : List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase : Union[str, Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase : int = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase : List[Any] = [to_numpy_array(lowercase_ ) for image in images] if do_resize: UpperCAmelCase : Dict = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: UpperCAmelCase : List[str] = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: UpperCAmelCase : str = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: UpperCAmelCase : List[Any] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] UpperCAmelCase : Optional[int] = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase : str = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
280
0
from __future__ import annotations _UpperCAmelCase : str = list[tuple[int, int]] _UpperCAmelCase : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _UpperCAmelCase : Tuple = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class lowerCAmelCase : def __init__( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : float , UpperCAmelCase : Node | None , ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = pos_x lowerCamelCase__ : List[Any] = pos_y lowerCamelCase__ : Union[str, Any] = (pos_y, pos_x) lowerCamelCase__ : Optional[Any] = goal_x lowerCamelCase__ : Optional[int] = goal_y lowerCamelCase__ : str = g_cost lowerCamelCase__ : int = parent lowerCamelCase__ : Union[str, Any] = self.calculate_heuristic() def A_ ( self : Optional[Any] ) -> float: lowerCamelCase__ : Dict = abs(self.pos_x - self.goal_x ) lowerCamelCase__ : int = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : int , UpperCAmelCase : int ) -> bool: return self.f_cost < other.f_cost class lowerCAmelCase : def __init__( self : List[str] , UpperCAmelCase : tuple[int, int] , UpperCAmelCase : tuple[int, int] ) -> Union[str, Any]: lowerCamelCase__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCAmelCase ) lowerCamelCase__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , UpperCAmelCase ) lowerCamelCase__ : List[str] = [self.start] lowerCamelCase__ : list[Node] = [] lowerCamelCase__ : Tuple = False def A_ ( self : Any ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCamelCase__ : Optional[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowerCamelCase__ : Optional[int] = True return self.retrace_path(UpperCAmelCase ) self.closed_nodes.append(UpperCAmelCase ) lowerCamelCase__ : List[Any] = self.get_successors(UpperCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCAmelCase ) else: # retrieve the best current path lowerCamelCase__ : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCAmelCase ) else: self.open_nodes.append(UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def A_ ( self : int , UpperCAmelCase : Node ) -> list[Node]: lowerCamelCase__ : List[Any] = [] for action in delta: lowerCamelCase__ : Union[str, Any] = parent.pos_x + action[1] lowerCamelCase__ : Any = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCAmelCase , UpperCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCAmelCase , ) ) return successors def A_ ( self : Tuple , UpperCAmelCase : Node | None ) -> Path: lowerCamelCase__ : Optional[Any] = node lowerCamelCase__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase__ : Optional[int] = current_node.parent path.reverse() return path if __name__ == "__main__": _UpperCAmelCase : Tuple = (0, 0) _UpperCAmelCase : Tuple = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") _UpperCAmelCase : str = GreedyBestFirst(init, goal) _UpperCAmelCase : int = greedy_bf.search() if path: for pos_x, pos_y in path: _UpperCAmelCase : int = 2 for elem in grid: print(elem)
50
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase :Tuple = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): def _a (self , lowercase ): if isinstance(lowercase , lowercase ): A_ : Tuple = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__(self , lowercase , lowercase , lowercase ): if len(lowercase ) == 0 or len(lowercase ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(lowercase ) ) if isinstance(lowercase , lowercase ): A_ : Optional[Any] = [sequences] A_ : List[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowercase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__UpperCAmelCase ) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase=ZeroShotClassificationArgumentHandler() , *lowercase , **lowercase ): A_ : str = args_parser super().__init__(*lowercase , **lowercase ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _a (self ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _a (self , lowercase , lowercase=True , lowercase=True , lowercase=TruncationStrategy.ONLY_FIRST , **lowercase ): A_ : Optional[int] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) A_ : Any = self.tokenizer.eos_token try: A_ : Optional[Any] = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=lowercase , ) except Exception as e: if "too short" in str(lowercase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. A_ : str = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _a (self , **lowercase ): if kwargs.get("""multi_class""" , lowercase ) is not None: A_ : Union[str, Any] = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) A_ : Tuple = {} if "candidate_labels" in kwargs: A_ : Optional[int] = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: A_ : List[str] = kwargs["""hypothesis_template"""] A_ : Union[str, Any] = {} if "multi_label" in kwargs: A_ : Optional[int] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__(self , lowercase , *lowercase , **lowercase , ): if len(lowercase ) == 0: pass elif len(lowercase ) == 1 and "candidate_labels" not in kwargs: A_ : Any = args[0] else: raise ValueError(F'Unable to understand extra arguments {args}' ) return super().__call__(lowercase , **lowercase ) def _a (self , lowercase , lowercase=None , lowercase="This example is {}." ): A_, A_ : Any = self._args_parser(lowercase , lowercase , lowercase ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowercase , lowercase ) ): A_ : List[Any] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowercase ) - 1, **model_input, } def _a (self , lowercase ): A_ : Dict = inputs["""candidate_label"""] A_ : Any = inputs["""sequence"""] A_ : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} A_ : Optional[int] = self.model(**lowercase ) A_ : Optional[Any] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _a (self , lowercase , lowercase=False ): A_ : Tuple = [outputs["""candidate_label"""] for outputs in model_outputs] A_ : Optional[int] = [outputs["""sequence"""] for outputs in model_outputs] A_ : Union[str, Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) A_ : List[str] = logits.shape[0] A_ : Optional[int] = len(lowercase ) A_ : int = N // n A_ : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowercase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently A_ : Dict = self.entailment_id A_ : Dict = -1 if entailment_id == 0 else 0 A_ : str = reshaped_outputs[..., [contradiction_id, entailment_id]] A_ : Optional[Any] = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : Tuple = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels A_ : Optional[int] = reshaped_outputs[..., self.entailment_id] A_ : Any = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : List[str] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
206
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Dict = '''▁''' __UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} __UpperCamelCase : str = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } __UpperCamelCase : Tuple = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } __UpperCamelCase : Optional[Any] = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } __UpperCamelCase : str = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = ["input_ids"] snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = RESOURCE_FILES_NAMES def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = do_lower_case lowerCAmelCase = sentencepiece_model_ckpt lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase = self.load_vocab(filepath=_snake_case ) else: lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase = {v: k for k, v in self.vocab.items()} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if text is None: return None lowerCAmelCase = self.tokenize(_snake_case ) lowerCAmelCase ,lowerCAmelCase = '', [] for i, ch in enumerate(_snake_case ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case ) else: lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case ) if self.is_whitespace(_snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(_snake_case ) ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase = token[1:] lowerCAmelCase = text[offset:].index(_snake_case ) + offset lowerCAmelCase = start + len(_snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase = end return token_mapping @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) ) def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('enable_sampling' ) is True: lowerCAmelCase = True if self.sp_model_kwargs.get('alpha' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case ) else: lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = [] for pi, piece in enumerate(_snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_snake_case ) and pi != 0: new_pieces.append(_snake_case ) continue else: continue lowerCAmelCase = 0 for i, chunk in enumerate(_snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_snake_case ) lowerCAmelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i if len(_snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.convert_ids_to_tokens(_snake_case ) lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.reverse_vocab.get(_snake_case , self.unk_token ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(_snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_snake_case ) == 1: lowerCAmelCase = unicodedata.category(_snake_case ) if cat == "Zs": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = {} with io.open(_snake_case , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_snake_case ): lowerCAmelCase = line.rstrip('\n' ) lowerCAmelCase = int(_snake_case ) return token_to_idx def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = 0 if os.path.isdir(_snake_case ): lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) lowerCAmelCase = token_index writer.write(token + '\n' ) index += 1 lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' ) with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (vocab_file,)
309
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A : Union[str, Any] = logging.get_logger(__name__) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : List[str] , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Dict , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Dict , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : str , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[int, float] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Optional[Any] , )->int: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , )->np.ndarray: if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = to_numpy_array(__UpperCamelCase ) if do_resize: _UpperCAmelCase = self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) if do_center_crop: _UpperCAmelCase = self.center_crop(__UpperCamelCase , size=__UpperCamelCase ) if do_rescale: _UpperCAmelCase = self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) if do_normalize: _UpperCAmelCase = self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) _UpperCAmelCase = to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) return image def lowercase__ ( self : Optional[int] , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCamelCase : Any , )->PIL.Image.Image: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name='''crop_size''' ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) _UpperCAmelCase = make_batched(__UpperCamelCase ) _UpperCAmelCase = [ [ self._preprocess_image( image=__UpperCamelCase , do_resize=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , do_center_crop=__UpperCamelCase , crop_size=__UpperCamelCase , do_rescale=__UpperCamelCase , rescale_factor=__UpperCamelCase , do_normalize=__UpperCamelCase , image_mean=__UpperCamelCase , image_std=__UpperCamelCase , data_format=__UpperCamelCase , ) for img in video ] for video in videos ] _UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
260
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __A : Union[str, Any] = "\\n\n" __A : Any = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" __A : List[str] = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def lowercase__ ( self : List[Any] )->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def lowercase__ ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : int = 1_6 , __UpperCamelCase : bool = True , __UpperCamelCase : List[Any]=None )->Any: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _UpperCAmelCase = '''cuda''' else: _UpperCAmelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = model.to(__UpperCamelCase ) _UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__UpperCamelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _UpperCAmelCase = model.config.max_length - 1 else: _UpperCAmelCase = model.config.max_length _UpperCAmelCase = tokenizer( __UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors='''pt''' , return_attention_mask=__UpperCamelCase , ).to(__UpperCamelCase ) _UpperCAmelCase = encodings['''input_ids'''] _UpperCAmelCase = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _UpperCAmelCase = [] _UpperCAmelCase = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(__UpperCamelCase ) , __UpperCamelCase ) ): _UpperCAmelCase = min(start_index + batch_size , len(__UpperCamelCase ) ) _UpperCAmelCase = encoded_texts[start_index:end_index] _UpperCAmelCase = attn_masks[start_index:end_index] if add_start_token: _UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__UpperCamelCase ) _UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _UpperCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__UpperCamelCase ), attn_mask] , dim=1 ) _UpperCAmelCase = encoded_batch with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ).logits _UpperCAmelCase = out_logits[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = attn_mask[..., 1:].contiguous() _UpperCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , __UpperCamelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__UpperCamelCase )}
260
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCamelCase = FunnelTokenizer __UpperCamelCase = FunnelTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' super().setUp() A_ : Tuple = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self :List[Any] , **snake_case :Any ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( self :str , **snake_case :str ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( self :str , snake_case :Dict ): '''simple docstring''' A_ : List[str] = '''UNwant\u00E9d,running''' A_ : Dict = '''unwanted, running''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : str = self.tokenizer_class(self.vocab_file ) A_ : Dict = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCamelCase__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [7, 4, 5, 10, 8, 9] ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : int = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: A_ : Union[str, Any] = tokenizer("UNwant\u00E9d,running" ) A_ : Optional[int] = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) A_ : Any = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
357
from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] ) -> Dict: A_ : Optional[Any] = 0 if start < end: A_ : Tuple = randint(_lowerCAmelCase , _lowerCAmelCase ) A_ : str = a[end] A_ : Optional[Any] = a[pivot] A_ : List[str] = temp A_ , A_ : int = _in_place_partition(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) count += _in_place_quick_sort(_lowerCAmelCase , _lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(_lowerCAmelCase , p + 1 , _lowerCAmelCase ) return count def __snake_case ( _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> str: A_ : Union[str, Any] = 0 A_ : List[str] = randint(_lowerCAmelCase , _lowerCAmelCase ) A_ : str = a[end] A_ : str = a[pivot] A_ : Any = temp A_ : int = start - 1 for index in range(_lowerCAmelCase , _lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value A_ : Union[str, Any] = new_pivot_index + 1 A_ : Union[str, Any] = a[new_pivot_index] A_ : Union[str, Any] = a[index] A_ : Union[str, Any] = temp A_ : Tuple = a[new_pivot_index + 1] A_ : Optional[int] = a[end] A_ : Dict = temp return new_pivot_index + 1, count _lowerCAmelCase : List[str] = TemporaryFile() _lowerCAmelCase : int = 100 # 1000 elements are to be sorted _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 0, 1 # mean and standard deviation _lowerCAmelCase : int = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array _lowerCAmelCase : Optional[Any] = np.load(outfile) _lowerCAmelCase : Optional[int] = len(M) - 1 _lowerCAmelCase : Union[str, Any] = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
70
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : int= { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str]= [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _a : str= _LazyModule(__name__, globals()["__file__"], _import_structure)
172
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _a : List[Any]= re.compile(R"\s+") def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> int: '''simple docstring''' return {"hash": hashlib.mda(re.sub(UpperCAmelCase_ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def __UpperCAmelCase ( UpperCAmelCase_ : Any ) -> Optional[int]: '''simple docstring''' __snake_case : Any = [len(UpperCAmelCase_ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(UpperCAmelCase_ ), "line_max": max(UpperCAmelCase_ )} def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] ) -> str: '''simple docstring''' __snake_case : Tuple = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ) -> List[str]: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=5 ) -> str: '''simple docstring''' __snake_case : Tuple = ['auto-generated', 'autogenerated', 'automatically generated'] __snake_case : Tuple = example['content'].splitlines() for _, line in zip(range(UpperCAmelCase_ ) , UpperCAmelCase_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : Optional[int]=0.05 ) -> Optional[Any]: '''simple docstring''' __snake_case : List[Any] = ['unit tests', 'test file', 'configuration file'] __snake_case : Tuple = example['content'].splitlines() __snake_case : Tuple = 0 __snake_case : Any = 0 # first test for _, line in zip(range(UpperCAmelCase_ ) , UpperCAmelCase_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __snake_case : int = example['content'].count('\n' ) __snake_case : str = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> Any: '''simple docstring''' __snake_case : Any = ['def ', 'class ', 'for ', 'while '] __snake_case : Optional[int] = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=4 ) -> Dict: '''simple docstring''' __snake_case : Optional[Any] = example['content'].splitlines() __snake_case : Tuple = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case : List[Any] = tokenizer(example['content'] , truncation=UpperCAmelCase_ )['input_ids'] __snake_case : Union[str, Any] = len(example['content'] ) / len(UpperCAmelCase_ ) return {"ratio": ratio} def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> str: '''simple docstring''' __snake_case : List[Any] = {} results.update(get_hash(UpperCAmelCase_ ) ) results.update(line_stats(UpperCAmelCase_ ) ) results.update(alpha_stats(UpperCAmelCase_ ) ) results.update(char_token_ratio(UpperCAmelCase_ ) ) results.update(is_autogenerated(UpperCAmelCase_ ) ) results.update(is_config_or_test(UpperCAmelCase_ ) ) results.update(has_no_keywords(UpperCAmelCase_ ) ) results.update(has_few_assignments(UpperCAmelCase_ ) ) return results def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> Any: '''simple docstring''' if not check_uniques(UpperCAmelCase_ , UpperCAmelCase_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( UpperCAmelCase_ : Any ) -> Any: '''simple docstring''' with open(UpperCAmelCase_ , 'rb' ) as f_in: with gzip.open(str(UpperCAmelCase_ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(UpperCAmelCase_ , UpperCAmelCase_ ) os.unlink(UpperCAmelCase_ ) # Settings _a : int= HfArgumentParser(PreprocessingArguments) _a : Union[str, Any]= parser.parse_args() if args.num_workers is None: _a : str= multiprocessing.cpu_count() _a : Optional[int]= AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _a : Tuple= time.time() _a : Dict= load_dataset(args.dataset_name, split="train") print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing _a : str= time.time() _a : int= ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes _a : Tuple= set(ds.unique("hash")) _a : Optional[int]= len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics _a : Union[str, Any]= time.time() _a : List[Any]= ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _a : Tuple= time.time() _a, _a : Tuple= deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file _a : Union[str, Any]= Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) _a : List[Any]= output_dir / "data" data_dir.mkdir(exist_ok=True) _a : Tuple= time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _a : List[str]= str(data_dir / f'''file-{file_number+1:012}.json''') _a : List[str]= min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
172
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ = "" else: UpperCAmelCase_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ = in_proj_bias[: config.hidden_size] UpperCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ = in_proj_bias[-config.hidden_size :] def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=lowerCAmelCase__ , ) UpperCAmelCase_ = ViTHybridConfig(backbone_config=lowerCAmelCase__ , image_size=384 , num_labels=1000 ) UpperCAmelCase_ = False # load original model from timm UpperCAmelCase_ = timm.create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ = timm_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase__ ) UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "imagenet-1k-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": UpperCAmelCase_ = ViTHybridModel(lowerCAmelCase__ ).eval() else: UpperCAmelCase_ = ViTHybridForImageClassification(lowerCAmelCase__ ).eval() model.load_state_dict(lowerCAmelCase__ ) # create image processor UpperCAmelCase_ = create_transform(**resolve_data_config({} , model=lowerCAmelCase__ ) ) UpperCAmelCase_ = transform.transforms UpperCAmelCase_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } UpperCAmelCase_ = ViTHybridImageProcessor( do_resize=lowerCAmelCase__ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase__ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = transform(lowerCAmelCase__ ).unsqueeze(0 ) UpperCAmelCase_ = processor(lowerCAmelCase__ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) # verify logits with torch.no_grad(): UpperCAmelCase_ = model(lowerCAmelCase__ ) UpperCAmelCase_ = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: UpperCAmelCase_ = timm_model.forward_features(lowerCAmelCase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCAmelCase__ , outputs.pooler_output , atol=1e-3 ) else: UpperCAmelCase_ = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(f"""ybelkada/{vit_name}""" ) processor.push_to_hub(f"""ybelkada/{vit_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) lowerCamelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
241
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''rwkv''' UpperCamelCase = {'''max_position_embeddings''': '''context_length'''} def __init__( self : str , _UpperCAmelCase : int=50277 , _UpperCAmelCase : Optional[Any]=1024 , _UpperCAmelCase : str=4096 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Tuple=1e-5 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Union[str, Any]=6 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Optional[Any] , ) -> str: '''simple docstring''' UpperCAmelCase_ = vocab_size UpperCAmelCase_ = context_length UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = rescale_every UpperCAmelCase_ = use_cache UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
241
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: snake_case : List[Any] = len(lowercase ) # We need to create solution object to save path. snake_case : str = [[0 for _ in range(lowercase )] for _ in range(lowercase )] snake_case : Dict = run_maze(lowercase ,0 ,0 ,lowercase ) if solved: print("""\n""".join(str(lowercase ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> bool: snake_case : Optional[Any] = len(lowercase ) # Final check point. if i == j == (size - 1): snake_case : List[str] = 1 return True snake_case : Dict = (not i < 0) and (not j < 0) # Check lower bounds snake_case : List[str] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case : Optional[Any] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case : Optional[int] = 1 # check for directions if ( run_maze(lowercase ,i + 1 ,lowercase ,lowercase ) or run_maze(lowercase ,lowercase ,j + 1 ,lowercase ) or run_maze(lowercase ,i - 1 ,lowercase ,lowercase ) or run_maze(lowercase ,lowercase ,j - 1 ,lowercase ) ): return True snake_case : Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
124
from __future__ import annotations import math lowerCamelCase : Optional[int] = '2020.9.26' lowerCamelCase : int = 'xcodz-dot, cclaus, dhruvmanila' def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> tuple[float, float]: if not all(isinstance(lowercase ,(float, int) ) for val in locals().values() ): snake_case : Dict = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(lowercase ) snake_case : List[str] = ((x * distance) / (z + distance)) * scale snake_case : Dict = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> tuple[float, float, float]: if not isinstance(lowercase ,lowercase ): raise TypeError("""Axis must be a str""" ) snake_case : Tuple = locals() del input_variables["axis"] if not all(isinstance(lowercase ,(float, int) ) for val in input_variables.values() ): snake_case : int = ( """Input values except axis must either be float or int: """ f"""{list(input_variables.values() )}""" ) raise TypeError(lowercase ) snake_case : int = (angle % 360) / 450 * 180 / math.pi if axis == "z": snake_case : str = x * math.cos(lowercase ) - y * math.sin(lowercase ) snake_case : List[Any] = y * math.cos(lowercase ) + x * math.sin(lowercase ) snake_case : Optional[int] = z elif axis == "x": snake_case : Optional[Any] = y * math.cos(lowercase ) - z * math.sin(lowercase ) snake_case : Optional[int] = z * math.cos(lowercase ) + y * math.sin(lowercase ) snake_case : Optional[int] = x elif axis == "y": snake_case : List[str] = x * math.cos(lowercase ) - z * math.sin(lowercase ) snake_case : Tuple = z * math.cos(lowercase ) + x * math.sin(lowercase ) snake_case : Optional[int] = y else: raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
124
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
355
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = 42 snake_case = 42 def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , )->Union[Tuple, ImagePipelineOutput]: '''simple docstring''' A_ : List[Any] = self.unet.config.sample_size A_ : List[Any] = (batch_size, 3, img_size, img_size) A_ : List[Any] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) A_ : Tuple = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper A_ : str = self.scheduler.schedule[t] A_ : List[str] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat A_ , A_ : List[str] = self.scheduler.add_noise_to_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. A_ : List[Any] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev A_ : Dict = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. A_ : int = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample A_ : Optional[Any] = self.scheduler.step_correct( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , step_output.prev_sample , step_output['''derivative'''] , ) A_ : List[Any] = step_output.prev_sample A_ : Union[str, Any] = (sample / 2 + 0.5).clamp(0 , 1 ) A_ : List[str] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A_ : Dict = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
65
0
'''simple docstring''' __lowerCAmelCase = {str(digit): digit**5 for digit in range(1_0)} def UpperCAmelCase_ (__a : int ): """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__a ) ) def UpperCAmelCase_ (): """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(__a ) ) if __name__ == "__main__": print(solution())
271
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_ (__a : List[Any] ): """simple docstring""" if ( (cp >= 0x4E_00 and cp <= 0x9F_FF) or (cp >= 0x34_00 and cp <= 0x4D_BF) # or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) # or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) # or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) # or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) # or (cp >= 0xF9_00 and cp <= 0xFA_FF) or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) # ): # return True return False def UpperCAmelCase_ (__a : str ): """simple docstring""" for char in word: _a : Union[str, Any] = ord(__a ) if not _is_chinese_char(__a ): return 0 return 1 def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : Dict = set() for token in tokens: _a : str = len(__a ) > 1 and is_chinese(__a ) if chinese_word: word_set.add(__a ) _a : Optional[Any] = list(__a ) return word_list def UpperCAmelCase_ (__a : List[str] , __a : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens _a : Optional[Any] = max([len(__a ) for w in chinese_word_set] ) _a : Optional[int] = bert_tokens _a, _a : Any = 0, len(__a ) while start < end: _a : Tuple = True if is_chinese(bert_word[start] ): _a : Union[str, Any] = min(end - start , __a ) for i in range(__a , 1 , -1 ): _a : Optional[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _a : Any = '##' + bert_word[j] _a : Union[str, Any] = start + i _a : int = False break if single_word: start += 1 return bert_word def UpperCAmelCase_ (__a : List[str] , __a : LTP , __a : BertTokenizer ): """simple docstring""" _a : int = [] for i in range(0 , len(__a ) , 1_0_0 ): _a : Union[str, Any] = ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0] _a : Optional[Any] = [get_chinese_word(__a ) for r in res] ltp_res.extend(__a ) assert len(__a ) == len(__a ) _a : str = [] for i in range(0 , len(__a ) , 1_0_0 ): _a : List[str] = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=__a , truncation=__a , max_length=5_1_2 ) bert_res.extend(res['input_ids'] ) assert len(__a ) == len(__a ) _a : List[str] = [] for input_ids, chinese_word in zip(__a , __a ): _a : int = [] for id in input_ids: _a : Optional[int] = bert_tokenizer._convert_id_to_token(__a ) input_tokens.append(__a ) _a : List[str] = add_sub_symbol(__a , __a ) _a : Tuple = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__a ): if token[:2] == "##": _a : str = token[2:] # save chinese tokens' pos if len(__a ) == 1 and _is_chinese_char(ord(__a ) ): ref_id.append(__a ) ref_ids.append(__a ) assert len(__a ) == len(__a ) return ref_ids def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: _a : Dict = f.readlines() _a : int = [line.strip() for line in data if len(__a ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a : int = LTP(args.ltp ) # faster in GPU device _a : Tuple = BertTokenizer.from_pretrained(args.bert ) _a : int = prepare_ref(__a , __a , __a ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _a : Optional[Any] = [json.dumps(__a ) + '\n' for ref in ref_ids] f.writelines(__a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") __lowerCAmelCase = parser.parse_args() main(args)
271
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class UpperCAmelCase : def __init__(self : Optional[Any] , snake_case__ : str , snake_case__ : List[str]=13 , snake_case__ : Union[str, Any]=7 , snake_case__ : str=True , snake_case__ : Union[str, Any]=True , snake_case__ : Dict=True , snake_case__ : Dict=True , snake_case__ : Optional[Any]=99 , snake_case__ : Optional[Any]=64 , snake_case__ : Union[str, Any]=32 , snake_case__ : Any=5 , snake_case__ : Dict=4 , snake_case__ : List[str]=37 , snake_case__ : str="gelu" , snake_case__ : Dict=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[str]=5_12 , snake_case__ : Tuple=16 , snake_case__ : Union[str, Any]=2 , snake_case__ : Dict=0.02 , snake_case__ : Any=3 , snake_case__ : Optional[int]=4 , snake_case__ : Optional[Any]=None , ) -> List[str]: '''simple docstring''' snake_case : Tuple = parent snake_case : Dict = batch_size snake_case : Union[str, Any] = seq_length snake_case : str = is_training snake_case : Dict = use_input_mask snake_case : Tuple = use_token_type_ids snake_case : str = use_labels snake_case : int = vocab_size snake_case : List[str] = hidden_size snake_case : Dict = embedding_size snake_case : Dict = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : int = intermediate_size snake_case : Union[str, Any] = hidden_act snake_case : Optional[Any] = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : str = max_position_embeddings snake_case : List[str] = type_vocab_size snake_case : Tuple = type_sequence_label_size snake_case : Tuple = initializer_range snake_case : List[str] = num_labels snake_case : Dict = num_choices snake_case : List[str] = scope def _SCREAMING_SNAKE_CASE (self : Dict ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Optional[Any] = None if self.use_input_mask: snake_case : Any = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : List[Any] = None if self.use_token_type_ids: snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : str = None snake_case : Tuple = None snake_case : Union[str, Any] = None if self.use_labels: snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Tuple ) -> List[str]: '''simple docstring''' snake_case : Tuple = MegatronBertModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) snake_case : Dict = model(snake_case_ , token_type_ids=snake_case_ ) snake_case : Tuple = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : str ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = MegatronBertForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Any = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = MegatronBertForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : int = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = MegatronBertForNextSentencePrediction(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Tuple = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = MegatronBertForPreTraining(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : str = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , next_sentence_label=snake_case_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : List[str] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : Optional[Any] = MegatronBertForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Optional[int] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Tuple ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = self.num_labels snake_case : Optional[int] = MegatronBertForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[int] ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = self.num_labels snake_case : Dict = MegatronBertForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : List[str] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Dict , snake_case__ : Any , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str ) -> Dict: '''simple docstring''' snake_case : str = self.num_choices snake_case : Union[str, Any] = MegatronBertForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Any = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[Any]: '''simple docstring''' snake_case : Tuple = self.prepare_config_and_inputs() ( snake_case ) : str = config_and_inputs snake_case : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( __lowercase ,__lowercase ,unittest.TestCase ): A__ : Any = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) A__ : Tuple = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) A__ : Optional[Any] = True # test_resize_embeddings = False A__ : List[Any] = False def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Dict=False ) -> Union[str, Any]: '''simple docstring''' snake_case : List[str] = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): snake_case : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ ) snake_case : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = MegatronBertModelTester(self ) snake_case : Any = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[Any]: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Any: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*snake_case_ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[int]: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*snake_case_ ) def UpperCamelCase ( __lowerCamelCase : str ): return torch.tensor( lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , ) __lowerCamelCase = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow @unittest.skip("Model is not available." ) def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case : List[str] = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: snake_case : Tuple = os.path.join(os.environ["MYDIR"] , snake_case_ ) snake_case : Any = MegatronBertModel.from_pretrained(snake_case_ ) model.to(snake_case_ ) model.half() snake_case : Union[str, Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): snake_case : List[str] = model(snake_case_ )[0] snake_case : Optional[int] = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , snake_case_ ) snake_case : Tuple = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): snake_case : Optional[int] = output[0, ii, jj] snake_case : Any = expected[3 * ii + jj] snake_case : Union[str, Any] = '''ii={} jj={} a={} b={}'''.format(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) self.assertTrue(math.isclose(snake_case_ , snake_case_ , rel_tol=snake_case_ , abs_tol=snake_case_ ) , msg=snake_case_ )
351
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Tuple , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : int = 8 , **snake_case__ : Dict , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : int = do_rescale snake_case : List[str] = rescale_factor snake_case : Optional[Any] = do_pad snake_case : Dict = pad_size def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : np.ndarray , snake_case__ : float , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : Optional[Union[str, ChannelDimension]] = None ) -> Dict: '''simple docstring''' snake_case , snake_case : Union[str, Any] = get_image_size(snake_case__ ) snake_case : str = (old_height // size + 1) * size - old_height snake_case : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> Tuple: '''simple docstring''' snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_pad if do_pad is not None else self.do_pad snake_case : Dict = pad_size if pad_size is not None else self.pad_size snake_case : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: snake_case : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
10
0
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Dict: '''simple docstring''' UpperCAmelCase = len(__lowercase ) while cur > 1: # Find the maximum number in arr UpperCAmelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCAmelCase = arr[mi::-1] + arr[mi + 1 : len(__lowercase )] # Reverse whole list UpperCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(__lowercase )] cur -= 1 return arr if __name__ == "__main__": __A : str = input("Enter numbers separated by a comma:\n").strip() __A : List[Any] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
273
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase_ ( __lowercase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = image.size _UpperCAmelCase , _UpperCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _UpperCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _UpperCAmelCase = np.array(__lowercase ).astype(np.floataa ) / 255.0 _UpperCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase = torch.from_numpy(__lowercase ) return 2.0 * image - 1.0 class A_ ( lowerCAmelCase_ ): def __init__( self : Optional[Any] , snake_case_ : VQModel , snake_case_ : UNetaDModel , snake_case_ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=snake_case_ , unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self : Any , snake_case_ : Union[torch.Tensor, PIL.Image.Image] = None , snake_case_ : Optional[int] = 1 , snake_case_ : Optional[int] = 1_0_0 , snake_case_ : Optional[float] = 0.0 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case_ )}' ) if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = preprocess(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _UpperCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) _UpperCAmelCase = next(self.unet.parameters() ).dtype _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=self.device , dtype=snake_case_ ) _UpperCAmelCase = image.to(device=self.device , dtype=snake_case_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case_ , device=self.device ) _UpperCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta for t in self.progress_bar(snake_case_ ): # concat latents and low resolution image in the channel dimension. _UpperCAmelCase = torch.cat([latents, image] , dim=1 ) _UpperCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) # predict the noise residual _UpperCAmelCase = self.unet(snake_case_ , snake_case_ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample # decode the image latents with the VQVAE _UpperCAmelCase = self.vqvae.decode(snake_case_ ).sample _UpperCAmelCase = torch.clamp(snake_case_ , -1.0 , 1.0 ) _UpperCAmelCase = image / 2 + 0.5 _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
22
0
import requests from bsa import BeautifulSoup def lowerCAmelCase__ ( _a : str = "AAPL" ): snake_case_ : List[Any] = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' snake_case_ : Optional[Any] = BeautifulSoup(requests.get(_a ).text , "html.parser" ) snake_case_ : Dict = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
36
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[Any] = ['pixel_values'] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = size if size is not None else {"height": 256, "width": 256} snake_case_ : int = get_size_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case_ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" ) snake_case_ : str = do_resize snake_case_ : Tuple = size snake_case_ : Tuple = resample snake_case_ : Dict = do_center_crop snake_case_ : Any = crop_size snake_case_ : int = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : Optional[int] = do_normalize snake_case_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: snake_case_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( _SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: snake_case_ : str = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: snake_case_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize snake_case_ : Tuple = resample if resample is not None else self.resample snake_case_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : Optional[int] = image_std if image_std is not None else self.image_std snake_case_ : Optional[Any] = size if size is not None else self.size snake_case_ : int = get_size_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : str = crop_size if crop_size is not None else self.crop_size snake_case_ : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" ) snake_case_ : int = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case_ : Optional[int] = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: snake_case_ : Optional[Any] = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: snake_case_ : List[Any] = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: snake_case_ : List[str] = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] snake_case_ : int = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] snake_case_ : List[str] = {"pixel_values": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
36
1
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _UpperCAmelCase : def __init__( self , _A , _A=2 , _A=32 , _A=16 , _A=3 , _A=True , _A=True , _A=32 , _A=4 , _A=[0, 1, 2, 3] , _A=4 , _A=37 , _A="gelu" , _A=0.1 , _A=0.1 , _A=0.02 , _A=3 , _A=[1, 3_84, 24, 24] , _A=True , _A=None , ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : int = image_size _UpperCAmelCase : Tuple = patch_size _UpperCAmelCase : int = num_channels _UpperCAmelCase : Union[str, Any] = is_training _UpperCAmelCase : int = use_labels _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : List[str] = num_hidden_layers _UpperCAmelCase : List[str] = backbone_out_indices _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : int = num_labels _UpperCAmelCase : Tuple = backbone_featmap_shape _UpperCAmelCase : List[str] = scope _UpperCAmelCase : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : List[Any] = (image_size // patch_size) ** 2 _UpperCAmelCase : Optional[Any] = num_patches + 1 def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : str = None if self.use_labels: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase : Any = self.get_config() return config, pixel_values, labels def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 1_92, 3_84, 7_68], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_A , backbone_featmap_shape=self.backbone_featmap_shape , ) def __snake_case ( self , _A , _A , _A ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = DPTModel(config=_A ) model.to(_A ) model.eval() _UpperCAmelCase : Tuple = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self , _A , _A , _A ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : int = DPTForDepthEstimation(_A ) model.to(_A ) model.eval() _UpperCAmelCase : List[Any] = model(_A ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __snake_case ( self , _A , _A , _A ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = self.num_labels _UpperCAmelCase : List[Any] = DPTForSemanticSegmentation(_A ) model.to(_A ) model.eval() _UpperCAmelCase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCAmelCase : List[str] = config_and_inputs _UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( snake_case__ , snake_case__ , unittest.TestCase): __a : List[Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __a : Union[str, Any] = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __a : Optional[int] = False __a : str = False __a : Tuple = False def __snake_case ( self ) -> int: '''simple docstring''' _UpperCAmelCase : Optional[int] = DPTModelTester(self ) _UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def __snake_case ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __snake_case ( self ) -> List[str]: '''simple docstring''' pass def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def __snake_case ( self ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Optional[int] = model_class(_A ) _UpperCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : str = [*signature.parameters.keys()] _UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , _A ) def __snake_case ( self ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __snake_case ( self ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_A ) def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) def __snake_case ( self ) -> List[Any]: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Union[str, Any] = True if model_class in get_values(_A ): continue _UpperCAmelCase : int = model_class(_A ) model.to(_A ) model.train() _UpperCAmelCase : str = self._prepare_for_class(_A , _A , return_labels=_A ) _UpperCAmelCase : Dict = model(**_A ).loss loss.backward() def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = True if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing: continue _UpperCAmelCase : Tuple = model_class(_A ) model.to(_A ) model.gradient_checkpointing_enable() model.train() _UpperCAmelCase : List[Any] = self._prepare_for_class(_A , _A , return_labels=_A ) _UpperCAmelCase : Tuple = model(**_A ).loss loss.backward() def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[str] = _config_zero_init(_A ) for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class(config=_A ) # Skip the check for the backbone _UpperCAmelCase : Union[str, Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _UpperCAmelCase : Union[str, Any] = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __snake_case ( self ) -> List[str]: '''simple docstring''' pass @slow def __snake_case ( self ) -> Any: '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _UpperCAmelCase : Optional[int] = DPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __snake_case ( self ) -> int: '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = "add" with self.assertRaises(_A ): _UpperCAmelCase : List[str] = DPTForDepthEstimation(_A ) def UpperCamelCase ( ) -> Any: _UpperCAmelCase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase): def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : int = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) _UpperCAmelCase : List[str] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(_A ) _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : int = image_processor(images=_A , return_tensors="""pt""" ).to(_A ) # forward pass with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(**_A ) _UpperCAmelCase : List[Any] = outputs.predicted_depth # verify the predicted depth _UpperCAmelCase : List[str] = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , _A ) _UpperCAmelCase : Tuple = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(_A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , _A , atol=1e-4 ) )
246
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> float: """simple docstring""" def get_matched_characters(_UpperCAmelCase : str , _UpperCAmelCase : str ) -> str: _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Dict = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _UpperCAmelCase : int = int(max(0 , i - limit ) ) _UpperCAmelCase : Any = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCAmelCase ) _UpperCAmelCase : List[Any] = F"""{_stra[0:_stra.index(_UpperCAmelCase )]} {_stra[_stra.index(_UpperCAmelCase ) + 1:]}""" return "".join(_UpperCAmelCase ) # matching characters _UpperCAmelCase : Union[str, Any] = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Tuple = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Tuple = len(_UpperCAmelCase ) # transposition _UpperCAmelCase : Optional[Any] = ( len([(ca, ca) for ca, ca in zip(_UpperCAmelCase , _UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: _UpperCAmelCase : Dict = 0.0 else: _UpperCAmelCase : Optional[int] = ( 1 / 3 * ( match_count / len(_UpperCAmelCase ) + match_count / len(_UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _UpperCAmelCase : str = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
31
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''falcon''' lowerCamelCase_ = ['''past_key_values'''] def __init__( self : str , __lowerCamelCase : Union[str, Any]=6_5_0_2_4 , __lowerCamelCase : Optional[Any]=4_5_4_4 , __lowerCamelCase : List[Any]=3_2 , __lowerCamelCase : str=7_1 , __lowerCamelCase : List[str]=1e-5 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : Any=True , __lowerCamelCase : Any=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : str=None , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Any=1_1 , __lowerCamelCase : Any=1_1 , **__lowerCamelCase : List[Any] , ): """simple docstring""" _SCREAMING_SNAKE_CASE = vocab_size # Backward compatibility with n_embed kwarg _SCREAMING_SNAKE_CASE = kwargs.pop("n_embed" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = hidden_size if n_embed is None else n_embed _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = layer_norm_epsilon _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = hidden_dropout _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = num_attention_heads if num_kv_heads is None else num_kv_heads _SCREAMING_SNAKE_CASE = alibi _SCREAMING_SNAKE_CASE = new_decoder_architecture _SCREAMING_SNAKE_CASE = multi_query # Ignored when new_decoder_architecture is True _SCREAMING_SNAKE_CASE = parallel_attn _SCREAMING_SNAKE_CASE = bias super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return self.hidden_size // self.num_attention_heads @property def lowerCAmelCase_ ( self : Dict ): """simple docstring""" return not self.alibi
111
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
111
1
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a_ : Dict = logging.get_logger(__name__) class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = ["input_features"] def __init__( self , UpperCamelCase=80 , UpperCamelCase=1_6000 , UpperCamelCase=160 , UpperCamelCase=30 , UpperCamelCase=400 , UpperCamelCase=0.0 , UpperCamelCase=False , **UpperCamelCase , ): """simple docstring""" super().__init__( feature_size=UpperCamelCase , sampling_rate=UpperCamelCase , padding_value=UpperCamelCase , return_attention_mask=UpperCamelCase , **UpperCamelCase , ) lowerCamelCase_ = n_fft lowerCamelCase_ = hop_length lowerCamelCase_ = chunk_length lowerCamelCase_ = chunk_length * sampling_rate lowerCamelCase_ = self.n_samples // hop_length lowerCamelCase_ = sampling_rate lowerCamelCase_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCamelCase , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=UpperCamelCase , norm="slaney" , mel_scale="slaney" , ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = spectrogram( UpperCamelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) lowerCamelCase_ = log_spec[:, :-1] lowerCamelCase_ = np.maximum(UpperCamelCase , log_spec.max() - 8.0 ) lowerCamelCase_ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase = 0.0 ): """simple docstring""" if attention_mask is not None: lowerCamelCase_ = np.array(UpperCamelCase , np.intaa ) lowerCamelCase_ = [] for vector, length in zip(UpperCamelCase , attention_mask.sum(-1 ) ): lowerCamelCase_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCamelCase_ = padding_value normed_input_values.append(UpperCamelCase ) else: lowerCamelCase_ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , UpperCamelCase , UpperCamelCase = True , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = "max_length" , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCamelCase_ = isinstance(UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase_ = is_batched_numpy or ( isinstance(UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase , np.ndarray ): lowerCamelCase_ = np.asarray(UpperCamelCase , dtype=np.floataa ) elif isinstance(UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase_ = [np.asarray([raw_speech] ).T] lowerCamelCase_ = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding lowerCamelCase_ = self.pad( UpperCamelCase , padding=UpperCamelCase , max_length=max_length if max_length else self.n_samples , truncation=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCamelCase_ = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) lowerCamelCase_ = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format lowerCamelCase_ = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) lowerCamelCase_ = [self._np_extract_fbank_features(UpperCamelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , UpperCamelCase ): lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.floataa ) for feature in input_features] else: lowerCamelCase_ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCamelCase_ = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: lowerCamelCase_ = padded_inputs.convert_to_tensors(UpperCamelCase ) return padded_inputs def snake_case ( self ): """simple docstring""" lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
55
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class A ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) lowerCAmelCase_ = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(UpperCamelCase__ ) from datasets import load_dataset lowerCAmelCase_ = load_dataset('''nielsr/rvlcdip-demo''' ) lowerCAmelCase_ = dataset['''train'''][0]['''image'''].convert('''RGB''' ) lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**UpperCamelCase__ ) lowerCAmelCase_ = outputs.logits lowerCAmelCase_ = torch.Size((1, 16) ) self.assertEqual(logits.shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347], device=UpperCamelCase__, dtype=torch.float, ) self.assertTrue(torch.allclose(logits[0, :3], UpperCamelCase__, atol=1E-4 ) )
278
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : List[str] = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
263
"""simple docstring""" def A ( snake_case :list[list[int]] , snake_case :int , snake_case :int , snake_case :list[int] ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def A ( snake_case :list[list[int]] , snake_case :list[int] , snake_case :int ) -> bool: # Base Case if curr_ind == len(snake_case ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(snake_case ) ): if valid_connection(snake_case , snake_case , snake_case , snake_case ): # Insert current vertex into path as next transition __UpperCamelCase = next_ver # Validate created path if util_hamilton_cycle(snake_case , snake_case , curr_ind + 1 ): return True # Backtrack __UpperCamelCase = -1 return False def A ( snake_case :list[list[int]] , snake_case :int = 0 ) -> list[int]: __UpperCamelCase = [-1] * (len(snake_case ) + 1) # initialize start and end of path with starting index __UpperCamelCase = __UpperCamelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(snake_case , snake_case , 1 ) else []
263
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase : Optional[Any] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ ) else: UpperCAmelCase : Union[str, Any] =None UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : VQModel __lowerCamelCase : CLIPTextModel __lowerCamelCase : CLIPTokenizer __lowerCamelCase : TransformeraDModel __lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings __lowerCamelCase : VQDiffusionScheduler def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int: '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1 # get prompt text embeddings UpperCAmelCase : Optional[int] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase : int =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate text embeddings for each generation per prompt UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 ) else: UpperCAmelCase : str =[''''''] * batch_size UpperCAmelCase : Tuple =text_input_ids.shape[-1] UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1] UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 ) UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =1 elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Tuple =len(snake_case__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' ) UpperCAmelCase : Tuple =batch_size * num_images_per_prompt UpperCAmelCase : List[str] =guidance_scale > 1.0 UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(snake_case__ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1 UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCAmelCase : Any =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ , device=self.device ) UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device ) UpperCAmelCase : Optional[int] =latents for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 ) UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ ) UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase : Optional[Any] =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ ) UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ ) UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ ) UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ ) UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase : int =keep_mask[:, :-1, :] UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase : Dict =log_p_x_0.clone() UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0) return rv
348
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self , snake_case__ , snake_case__=12 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , snake_case__=0 , snake_case__=None , ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : List[Any] =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : Union[str, Any] =use_input_mask UpperCAmelCase : Tuple =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : Tuple =hidden_size UpperCAmelCase : Dict =projection_dim UpperCAmelCase : Optional[int] =num_hidden_layers UpperCAmelCase : Dict =num_attention_heads UpperCAmelCase : int =intermediate_size UpperCAmelCase : Any =dropout UpperCAmelCase : Union[str, Any] =attention_dropout UpperCAmelCase : Union[str, Any] =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : str =scope UpperCAmelCase : str =bos_token_id def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : int =None if self.use_input_mask: UpperCAmelCase : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase : Optional[int] =input_mask.numpy() UpperCAmelCase , UpperCAmelCase : List[Any] =input_mask.shape UpperCAmelCase : Optional[Any] =np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : List[Any] =1 UpperCAmelCase : Tuple =0 UpperCAmelCase : List[Any] =self.get_config() return config, input_ids, tf.convert_to_tensor(snake_case__ ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =TFBlipTextModel(config=snake_case__ ) UpperCAmelCase : List[Any] =model(snake_case__ , attention_mask=snake_case__ , training=snake_case__ ) UpperCAmelCase : str =model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] =config_and_inputs UpperCAmelCase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[int] = (TFBlipTextModel,) if is_tf_available() else () __lowerCamelCase : Dict = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Dict = False def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str =BlipTextModelTester(self ) UpperCAmelCase : Optional[int] =ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] =TFBlipTextModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__=True ) -> Any: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case__ )
348
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Tuple ="""informer""" lowercase : Union[str, Any] ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = "student_t" , UpperCamelCase_ = "nll" , UpperCamelCase_ = 1 , UpperCamelCase_ = None , UpperCamelCase_ = "mean" , UpperCamelCase_ = 0 , UpperCamelCase_ = 0 , UpperCamelCase_ = 0 , UpperCamelCase_ = 0 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = 64 , UpperCamelCase_ = 32 , UpperCamelCase_ = 32 , UpperCamelCase_ = 2 , UpperCamelCase_ = 2 , UpperCamelCase_ = 2 , UpperCamelCase_ = 2 , UpperCamelCase_ = True , UpperCamelCase_ = "gelu" , UpperCamelCase_ = 0.05 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 100 , UpperCamelCase_ = 0.02 , UpperCamelCase_=True , UpperCamelCase_ = "prob" , UpperCamelCase_ = 5 , UpperCamelCase_ = True , **UpperCamelCase_ , ): # time series specific configuration lowercase_ :Optional[Any] = prediction_length lowercase_ :List[Any] = context_length or prediction_length lowercase_ :Optional[int] = distribution_output lowercase_ :Dict = loss lowercase_ :List[Any] = input_size lowercase_ :Optional[int] = num_time_features lowercase_ :Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowercase_ :Tuple = scaling lowercase_ :Tuple = num_dynamic_real_features lowercase_ :Dict = num_static_real_features lowercase_ :Optional[Any] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase_ :Dict = cardinality else: lowercase_ :List[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase_ :int = embedding_dimension else: lowercase_ :List[str] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase_ :List[str] = num_parallel_samples # Transformer architecture configuration lowercase_ :Optional[Any] = input_size * len(self.lags_sequence ) + self._number_of_features lowercase_ :Dict = d_model lowercase_ :List[Any] = encoder_attention_heads lowercase_ :Tuple = decoder_attention_heads lowercase_ :Dict = encoder_ffn_dim lowercase_ :Optional[Any] = decoder_ffn_dim lowercase_ :Optional[Any] = encoder_layers lowercase_ :Tuple = decoder_layers lowercase_ :List[str] = dropout lowercase_ :Dict = attention_dropout lowercase_ :str = activation_dropout lowercase_ :Union[str, Any] = encoder_layerdrop lowercase_ :Dict = decoder_layerdrop lowercase_ :Dict = activation_function lowercase_ :Dict = init_std lowercase_ :Optional[Any] = use_cache # Informer lowercase_ :Optional[Any] = attention_type lowercase_ :Union[str, Any] = sampling_factor lowercase_ :Optional[Any] = distil super().__init__(is_encoder_decoder=UpperCamelCase_ , **UpperCamelCase_ ) @property def UpperCamelCase ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
357
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Any = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 SCREAMING_SNAKE_CASE : Tuple = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Tuple =VOCAB_FILES_NAMES lowercase : Dict =PRETRAINED_VOCAB_FILES_MAP lowercase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[Any] =["""input_ids""", """attention_mask"""] lowercase : str =TaTokenizer lowercase : List[int] =[] def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="</s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_=100 , UpperCamelCase_=None , **UpperCamelCase_ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase_ :Union[str, Any] = [f"<extra_id_{i}>" for i in range(UpperCamelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ :Tuple = len(set(filter(lambda UpperCamelCase_ : bool('''extra_id_''' in str(UpperCamelCase_ ) ) , UpperCamelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , extra_ids=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase_ :Union[str, Any] = vocab_file lowercase_ :Optional[int] = False if not self.vocab_file else True lowercase_ :Dict = extra_ids @staticmethod def UpperCamelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ :Optional[int] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase_ , ) return max_model_length def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ :Dict = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): lowercase_ :Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ :str = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): lowercase_ :Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase ( self ): return list( set(filter(lambda UpperCamelCase_ : bool(re.search(R'''<extra_id_\d+>''' , UpperCamelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase ( self ): return [self.convert_tokens_to_ids(UpperCamelCase_ ) for token in self.get_sentinel_tokens()]
252
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Any = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = ['DeiTFeatureExtractor'] lowerCAmelCase :Union[str, Any] = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys lowerCAmelCase :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _lowerCAmelCase :Optional[Any] = False class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) _UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = pipe.dual_guided( prompt='''first prompt''' , image=A , text_to_image_strength=0.75 , generator=A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A ) _UpperCAmelCase : int = VersatileDiffusionPipeline.from_pretrained(A , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : int = generator.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = pipe.dual_guided( prompt='''first prompt''' , image=A , text_to_image_strength=0.75 , generator=A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : List[Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : int = '''cyberpunk 2077''' _UpperCAmelCase : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipe.dual_guided( prompt=A , image=A , text_to_image_strength=0.75 , generator=A , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' , ).images _UpperCAmelCase : Union[str, Any] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : List[Any] = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 _UpperCAmelCase : Dict = '''A painting of a squirrel eating a burger ''' _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipe.text_to_image( prompt=A , generator=A , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' ).images _UpperCAmelCase : Tuple = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : int = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 _UpperCAmelCase : int = pipe.image_variation(A , generator=A , output_type='''numpy''' ).images _UpperCAmelCase : Optional[int] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : List[str] = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
263
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowerCAmelCase ( a__ , a__ ) -> Optional[int]: __a = old_name if "patch_embed" in old_name: __a , __a , __a = old_name.split('''.''' ) if layer == "0": __a = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": __a = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": __a = old_name.replace('''3''' , '''convolution2''' ) else: __a = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''' , a__ ): __a = R'''\b\d{2}\b''' if bool(re.search(a__ , a__ ) ): __a = re.search(R'''\d\.\d\d.''' , a__ ).group() else: __a = re.search(R'''\d\.\d.''' , a__ ).group() if int(match[0] ) < 6: __a = old_name.replace(a__ , '''''' ) __a = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) __a = '''intermediate_stages.''' + trimmed_name else: __a = old_name.replace(a__ , '''''' ) if int(match[2] ) < num_meta4D_last_stage: __a = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: __a = str(int(match[2] ) - num_meta4D_last_stage ) __a = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: __a = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: __a = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: __a = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: __a = trimmed_name.replace('''fc2''' , '''linear_out''' ) __a = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''' , a__ ): __a = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: __a = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __a = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __a = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: __a = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: __a = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: __a = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: __a = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __a = new_name.replace('''norm''' , '''layernorm''' ) __a = '''efficientformer.''' + new_name else: __a = '''efficientformer.encoder.''' + new_name return new_name def __lowerCAmelCase ( a__ , a__ ) -> Optional[int]: for key in checkpoint.copy().keys(): __a = checkpoint.pop(a__ ) __a = val return checkpoint def __lowerCAmelCase ( ) -> str: __a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a = Image.open(requests.get(a__ , stream=a__ ).raw ) return image def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> Any: __a = torch.load(a__ , map_location='''cpu''' )['''model'''] __a = EfficientFormerConfig.from_json_file(a__ ) __a = EfficientFormerForImageClassificationWithTeacher(a__ ) __a = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) __a = config.depths[-1] - config.num_metaad_blocks + 1 __a = convert_torch_checkpoint(a__ , a__ ) model.load_state_dict(a__ ) model.eval() __a = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image __a = prepare_img() __a = 256 __a = 224 __a = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) __a = processor(images=a__ , return_tensors='''pt''' ).pixel_values # original processing pipeline __a = Compose( [ Resize(a__ , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(a__ ), ToTensor(), Normalize(a__ , a__ ), ] ) __a = image_transforms(a__ ).unsqueeze(0 ) assert torch.allclose(a__ , a__ ) __a = model(a__ ) __a = outputs.logits __a = (1, 1000) if "l1" in model_name: __a = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , a__ , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __a = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , a__ , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __a = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(a__ ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add model''' , use_temp_dir=a__ , ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add image processor''' , use_temp_dir=a__ , ) if __name__ == "__main__": A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) A : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
33
import functools def __lowerCAmelCase ( a__ , a__ ) -> int: __a = len(a__ ) __a = len(a__ ) @functools.cache def min_distance(a__ , a__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __a = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , a__ ) , 1 + min_distance(a__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
33
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : int = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
54
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __magic_name__ ( __lowerCAmelCase): def __init__( self : Optional[Any] , lowerCamelCase__ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase__ : Optional[NamedSplit] = None , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : int , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : int = path_or_paths UpperCamelCase__ : List[Any] = split if split or isinstance(lowerCamelCase__ , lowerCamelCase__ ) else '''train''' UpperCamelCase__ : Optional[Any] = features UpperCamelCase__ : List[Any] = cache_dir UpperCamelCase__ : Optional[int] = keep_in_memory UpperCamelCase__ : int = streaming UpperCamelCase__ : Union[str, Any] = num_proc UpperCamelCase__ : List[Any] = kwargs @abstractmethod def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class __magic_name__ ( __lowerCAmelCase): def __init__( self : int , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = features UpperCamelCase__ : Optional[int] = cache_dir UpperCamelCase__ : Union[str, Any] = keep_in_memory UpperCamelCase__ : Tuple = streaming UpperCamelCase__ : Optional[Any] = num_proc UpperCamelCase__ : Union[str, Any] = kwargs @abstractmethod def UpperCAmelCase__ ( self : Tuple ) -> Union[Dataset, IterableDataset]: '''simple docstring''' pass
146
0
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
225
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase : List[str] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""CLIPFeatureExtractor"""] lowercase : Union[str, Any] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
1
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" if not len(__A ) == len(__A ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients _snake_case , _snake_case , _snake_case : Dict = equationa _snake_case , _snake_case , _snake_case : Dict = equationa # Calculate the determinants of the matrices _snake_case : List[Any] = aa * ba - aa * ba _snake_case : List[str] = ca * ba - ca * ba _snake_case : int = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _snake_case : Dict = determinant_x / determinant _snake_case : Any = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
64
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) class A ( UpperCAmelCase_ ): __UpperCAmelCase : int = ['input_values', 'attention_mask'] def __init__(self : Any , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 1_6_0_0_0 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : bool = False , __UpperCAmelCase : int = 8_0 , __UpperCAmelCase : int = 1_6 , __UpperCAmelCase : int = 6_4 , __UpperCAmelCase : str = "hann_window" , __UpperCAmelCase : float = 1.0 , __UpperCAmelCase : float = 8_0 , __UpperCAmelCase : float = 7_6_0_0 , __UpperCAmelCase : float = 1E-10 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : bool = True , **__UpperCAmelCase : Any , ) -> str: """simple docstring""" super().__init__(feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase__ = do_normalize UpperCAmelCase__ = return_attention_mask UpperCAmelCase__ = num_mel_bins UpperCAmelCase__ = hop_length UpperCAmelCase__ = win_length UpperCAmelCase__ = win_function UpperCAmelCase__ = frame_signal_scale UpperCAmelCase__ = fmin UpperCAmelCase__ = fmax UpperCAmelCase__ = mel_floor UpperCAmelCase__ = reduction_factor UpperCAmelCase__ = win_length * sampling_rate // 1_0_0_0 UpperCAmelCase__ = hop_length * sampling_rate // 1_0_0_0 UpperCAmelCase__ = optimal_fft_length(self.sample_size ) UpperCAmelCase__ = (self.n_fft // 2) + 1 UpperCAmelCase__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCAmelCase ) UpperCAmelCase__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="slaney" , mel_scale="slaney" , ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers" , __UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers" , __UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowercase_ (__UpperCAmelCase : List[np.ndarray] , __UpperCAmelCase : List[np.ndarray] , __UpperCAmelCase : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: UpperCAmelCase__ = np.array(__UpperCAmelCase , np.intaa ) UpperCAmelCase__ = [] for vector, length in zip(__UpperCAmelCase , attention_mask.sum(-1 ) ): UpperCAmelCase__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: UpperCAmelCase__ = padding_value normed_input_values.append(__UpperCAmelCase ) else: UpperCAmelCase__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowercase_ (self : Optional[int] , __UpperCAmelCase : np.ndarray , ) -> np.ndarray: """simple docstring""" UpperCAmelCase__ = spectrogram( __UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="log10" , ) return log_mel_spec.T def __call__(self : Any , __UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : str , ) -> BatchFeature: """simple docstring""" if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values." ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: UpperCAmelCase__ = self._process_audio( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) else: UpperCAmelCase__ = None if audio_target is not None: UpperCAmelCase__ = self._process_audio( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) if inputs is None: return inputs_target else: UpperCAmelCase__ = inputs_target["input_values"] UpperCAmelCase__ = inputs_target.get("attention_mask" ) if decoder_attention_mask is not None: UpperCAmelCase__ = decoder_attention_mask return inputs def lowercase_ (self : Optional[int] , __UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCAmelCase : bool = False , __UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , **__UpperCAmelCase : Any , ) -> BatchFeature: """simple docstring""" UpperCAmelCase__ = isinstance(__UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCAmelCase__ = is_batched_numpy or ( isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase__ = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ): UpperCAmelCase__ = np.asarray(__UpperCAmelCase , dtype=np.floataa ) elif isinstance(__UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): UpperCAmelCase__ = speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase__ = [speech] # needed to make pad() work on spectrogram inputs UpperCAmelCase__ = self.feature_size # convert into correct format for padding if is_target: UpperCAmelCase__ = [self._extract_mel_features(__UpperCAmelCase ) for waveform in speech] UpperCAmelCase__ = BatchFeature({"input_values": features} ) UpperCAmelCase__ = self.num_mel_bins else: UpperCAmelCase__ = BatchFeature({"input_values": speech} ) UpperCAmelCase__ = self.pad( __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = feature_size_hack # convert input values to correct format UpperCAmelCase__ = padded_inputs["input_values"] if not isinstance(input_values[0] , np.ndarray ): UpperCAmelCase__ = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): UpperCAmelCase__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(__UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): UpperCAmelCase__ = input_values.astype(np.floataa ) # convert attention_mask to correct format UpperCAmelCase__ = padded_inputs.get("attention_mask" ) if attention_mask is not None: UpperCAmelCase__ = [np.asarray(__UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: UpperCAmelCase__ = ( attention_mask if self._get_padding_strategies(__UpperCAmelCase , max_length=__UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCAmelCase__ = self.zero_mean_unit_var_norm( padded_inputs["input_values"] , attention_mask=__UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: UpperCAmelCase__ = padded_inputs.convert_to_tensors(__UpperCAmelCase ) return padded_inputs def lowercase_ (self : Tuple ) -> Dict[str, Any]: """simple docstring""" UpperCAmelCase__ = super().to_dict() # Don't serialize these as they are derived from the other properties. UpperCAmelCase__ = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
65
0
def __lowerCamelCase ( __magic_name__ : int = 50 ): a__: List[Any] =[1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
42
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __UpperCAmelCase = random.Random() def __lowerCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any]=1.0 , __magic_name__ : Any=None , __magic_name__ : int=None ): if rng is None: a__: str =global_rng a__: Dict =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : str , _a : Any , _a : Union[str, Any]=7 , _a : Any=4_0_0 , _a : Optional[int]=2_0_0_0 , _a : Tuple=1 , _a : str=0.0 , _a : Optional[Any]=1_6_0_0_0 , _a : List[str]=True , _a : Dict=8_0 , _a : List[str]=1_6 , _a : Union[str, Any]=6_4 , _a : Any="hann_window" , _a : Dict=8_0 , _a : int=7_6_0_0 , _a : List[str]=1e-10 , _a : int=True , ): a__: Tuple =parent a__: Optional[int] =batch_size a__: Dict =min_seq_length a__: Any =max_seq_length a__: Dict =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__: str =feature_size a__: List[Any] =padding_value a__: Union[str, Any] =sampling_rate a__: List[str] =do_normalize a__: Any =num_mel_bins a__: Dict =hop_length a__: Optional[int] =win_length a__: List[Any] =win_function a__: int =fmin a__: List[str] =fmax a__: List[str] =mel_floor a__: str =return_attention_mask def _lowerCamelCase ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _lowerCamelCase ( self : str , _a : List[str]=False , _a : Optional[Any]=False ): def _flatten(_a : List[str] ): return list(itertools.chain(*_a ) ) if equal_length: a__: int =floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size a__: Any =[ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a__: Optional[int] =[np.asarray(_a ) for x in speech_inputs] return speech_inputs def _lowerCamelCase ( self : int , _a : Union[str, Any]=False , _a : str=False ): if equal_length: a__: Union[str, Any] =[floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a__: Optional[Any] =[ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a__: Optional[int] =[np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase__ ( _a , unittest.TestCase ): _lowerCAmelCase = SpeechTaFeatureExtractor def _lowerCamelCase ( self : Optional[Any] ): a__: List[str] =SpeechTaFeatureExtractionTester(self ) def _lowerCamelCase ( self : Optional[int] , _a : Union[str, Any] ): self.assertTrue(np.all(np.mean(_a , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a , axis=0 ) - 1 ) < 1e-3 ) ) def _lowerCamelCase ( self : Union[str, Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus a__: Union[str, Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__: Union[str, Any] =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: Union[str, Any] =[np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input a__: Union[str, Any] =feat_extract(speech_inputs[0] , return_tensors="np" ).input_values a__: List[Any] =feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched a__: Tuple =feat_extract(_a , return_tensors="np" ).input_values a__: int =feat_extract(_a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def _lowerCamelCase ( self : int ): a__: Optional[int] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: Union[str, Any] =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: Tuple =["longest", "max_length", "do_not_pad"] a__: List[str] =[None, 1_6_0_0, None] for max_length, padding in zip(_a , _a ): a__: Optional[int] =feat_extract(_a , padding=_a , max_length=_a , return_tensors="np" ) a__: Optional[int] =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowerCamelCase ( self : Any ): a__: List[Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: Tuple =range(8_0_0 , 1_4_0_0 , 2_0_0 ) a__: List[Any] =[floats_list((1, x) )[0] for x in lengths] a__: Optional[int] =["longest", "max_length", "do_not_pad"] a__: Optional[Any] =[None, 1_6_0_0, None] for max_length, padding in zip(_a , _a ): a__: List[Any] =feat_extract(_a , max_length=_a , padding=_a ) a__: Optional[Any] =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowerCamelCase ( self : str ): a__: List[str] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: str =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: int =feat_extract( _a , truncation=_a , max_length=1_0_0_0 , padding="max_length" , return_tensors="np" ) a__: Any =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowerCamelCase ( self : Optional[int] ): a__: Optional[Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: Dict =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: int =feat_extract( _a , truncation=_a , max_length=1_0_0_0 , padding="longest" , return_tensors="np" ) a__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) a__: int =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: Tuple =feat_extract( _a , truncation=_a , max_length=2_0_0_0 , padding="longest" , return_tensors="np" ) a__: Optional[int] =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def _lowerCamelCase ( self : Any ): a__: List[Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__: Dict =np.random.rand(1_0_0 ).astype(np.floataa ) a__: str =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__: int =feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) a__: int =feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowerCamelCase ( self : Any ): # Tests that all call wrap to encode_plus and batch_encode_plus a__: int =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__: Optional[int] =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__: Any =[np.asarray(_a ) for speech_input in speech_inputs] # Test feature size a__: Dict =feature_extractor(audio_target=_a , padding=_a , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input a__: Tuple =feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values a__: str =feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched a__: List[Any] =feature_extractor(_a , return_tensors="np" ).input_values a__: Union[str, Any] =feature_extractor(_a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. a__: Optional[int] =[floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] a__: str =np.asarray(_a ) a__: int =feature_extractor(_a , return_tensors="np" ).input_values a__: int =feature_extractor(_a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def _lowerCamelCase ( self : str ): a__: str =self.feat_extract_tester.prepare_inputs_for_target() a__: Dict =self.feature_extraction_class(**self.feat_extract_dict ) a__: int =feat_extract.model_input_names[0] a__: Optional[Any] =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_a ) == len(_a ) for x, y in zip(_a , processed_features[input_name] ) ) ) a__: Any =self.feat_extract_tester.prepare_inputs_for_target(equal_length=_a ) a__: List[str] =BatchFeature({input_name: speech_inputs} , tensor_type="np" ) a__: List[Any] =processed_features[input_name] if len(batch_features_input.shape ) < 3: a__: Tuple =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): a__: Tuple =self.feat_extract_tester.prepare_inputs_for_target(equal_length=_a ) a__: int =self.feature_extraction_class(**self.feat_extract_dict ) a__: Tuple =feat_extract.model_input_names[0] a__: Optional[int] =BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) a__: Optional[int] =processed_features[input_name] if len(batch_features_input.shape ) < 3: a__: Optional[Any] =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowerCamelCase ( self : str ): a__: List[Any] =self.feature_extraction_class(**self.feat_extract_dict ) a__: Tuple =self.feat_extract_tester.prepare_inputs_for_target() a__: Optional[int] =feat_extract.model_input_names[0] a__: Optional[int] =BatchFeature({input_name: speech_inputs} ) a__: Tuple =feat_extract.num_mel_bins # hack! a__: int =feat_extract.pad(_a , padding="longest" , return_tensors="np" )[input_name] a__: Dict =feat_extract.pad(_a , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCamelCase ( self : List[str] ): a__: Dict =self.feat_extract_dict a__: Optional[Any] =True a__: Any =self.feature_extraction_class(**_a ) a__: List[str] =self.feat_extract_tester.prepare_inputs_for_target() a__: Optional[Any] =[len(_a ) for x in speech_inputs] a__: Any =feat_extract.model_input_names[0] a__: Union[str, Any] =BatchFeature({input_name: speech_inputs} ) a__: List[Any] =feat_extract.num_mel_bins # hack! a__: Any =feat_extract.pad(_a , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , _a ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _a ) def _lowerCamelCase ( self : Any ): a__: Tuple =self.feat_extract_dict a__: Dict =True a__: Tuple =self.feature_extraction_class(**_a ) a__: str =self.feat_extract_tester.prepare_inputs_for_target() a__: List[str] =[len(_a ) for x in speech_inputs] a__: Optional[int] =feat_extract.model_input_names[0] a__: Optional[Any] =BatchFeature({input_name: speech_inputs} ) a__: List[str] =min(_a ) a__: Optional[int] =feat_extract.num_mel_bins # hack! a__: Optional[Any] =feat_extract.pad( _a , padding="max_length" , max_length=_a , truncation=_a , return_tensors="np" ) self.assertIn("attention_mask" , _a ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _lowerCamelCase ( self : List[str] , _a : List[str] ): from datasets import load_dataset a__: List[Any] =load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech a__: Union[str, Any] =ds.sort("id" ).select(range(_a ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self : Tuple ): # fmt: off a__: Optional[Any] =torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on a__: Tuple =self._load_datasamples(1 ) a__: Tuple =SpeechTaFeatureExtractor() a__: Any =feature_extractor(_a , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , _a , atol=1e-6 ) ) def _lowerCamelCase ( self : int ): # fmt: off a__: List[Any] =torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on a__: List[Any] =self._load_datasamples(1 ) a__: List[str] =SpeechTaFeatureExtractor() a__: Any =feature_extractor(audio_target=_a , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , _a , atol=1e-4 ) )
42
1
from math import pi, sqrt def lowerCamelCase_ ( UpperCamelCase__ : float ) -> float: """simple docstring""" if num <= 0: raise ValueError('math domain error' ) if num > 1_71.5: raise OverflowError('math range error' ) elif num - int(UpperCamelCase__ ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(UpperCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowerCamelCase_ ( ) -> None: """simple docstring""" assert gamma(0.5 ) == sqrt(UpperCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __A = 1.0 while num: __A = float(input("Gamma of: ")) print(f'''gamma({num}) = {gamma(num)}''') print("\nEnter 0 to exit...")
90
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
0
from __future__ import annotations from math import pi def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float , lowercase : float ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
355
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''transfo-xl''' UpperCamelCase = ['''mems'''] UpperCamelCase = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Any , A_ : Optional[Any]=267735 , A_ : Optional[Any]=[20000, 40000, 200000] , A_ : Union[str, Any]=1024 , A_ : Optional[Any]=1024 , A_ : Optional[int]=16 , A_ : Any=64 , A_ : List[Any]=4096 , A_ : str=4 , A_ : int=False , A_ : List[Any]=18 , A_ : Optional[int]=1600 , A_ : Union[str, Any]=1000 , A_ : Optional[Any]=True , A_ : Optional[int]=True , A_ : List[str]=0 , A_ : int=-1 , A_ : List[Any]=True , A_ : List[Any]=0.1 , A_ : str=0.0 , A_ : Dict=True , A_ : Dict="normal" , A_ : Dict=0.01 , A_ : Optional[Any]=0.01 , A_ : Any=0.02 , A_ : int=1E-5 , A_ : List[str]=0 , **A_ : Optional[Any] , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = [] self.cutoffs.extend(A_ ) if proj_share_all_but_first: lowerCamelCase_ = [False] + [True] * len(self.cutoffs ) else: lowerCamelCase_ = [False] + [False] * len(self.cutoffs ) lowerCamelCase_ = d_model lowerCamelCase_ = d_embed lowerCamelCase_ = d_head lowerCamelCase_ = d_inner lowerCamelCase_ = div_val lowerCamelCase_ = pre_lnorm lowerCamelCase_ = n_layer lowerCamelCase_ = n_head lowerCamelCase_ = mem_len lowerCamelCase_ = same_length lowerCamelCase_ = attn_type lowerCamelCase_ = clamp_len lowerCamelCase_ = sample_softmax lowerCamelCase_ = adaptive lowerCamelCase_ = dropout lowerCamelCase_ = dropatt lowerCamelCase_ = untie_r lowerCamelCase_ = init lowerCamelCase_ = init_range lowerCamelCase_ = proj_init_std lowerCamelCase_ = init_std lowerCamelCase_ = layer_norm_epsilon super().__init__(eos_token_id=A_ , **A_ ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , A_ : Optional[int] ) -> List[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
208
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=True, __a=False, __a=False, __a=False, __a=2, __a=99, __a=0, __a=32, __a=5, __a=4, __a=0.1, __a=0.1, __a=512, __a=12, __a=2, __a=0.02, __a=3, __a=4, __a="last", __a=None, __a=None, ): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : Any = is_training _lowerCAmelCase : Union[str, Any] = use_input_lengths _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Dict = use_labels _lowerCAmelCase : Optional[Any] = gelu_activation _lowerCAmelCase : List[str] = sinusoidal_embeddings _lowerCAmelCase : Dict = causal _lowerCAmelCase : Union[str, Any] = asm _lowerCAmelCase : str = n_langs _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = n_special _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Union[str, Any] = type_vocab_size _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : List[Any] = num_labels _lowerCAmelCase : Any = num_choices _lowerCAmelCase : Tuple = summary_type _lowerCAmelCase : Union[str, Any] = use_proj _lowerCAmelCase : Tuple = scope def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : str = None if self.use_input_lengths: _lowerCAmelCase : str = ( ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length _lowerCAmelCase : Optional[Any] = None if self.use_token_type_ids: _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length], self.n_langs) _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Dict = None _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], 2).float() _lowerCAmelCase : int = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def snake_case__ ( self): '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, ) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = FlaubertModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : int = model(__a, lengths=__a, langs=__a) _lowerCAmelCase : Optional[Any] = model(__a, langs=__a) _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = FlaubertWithLMHeadModel(__a) model.to(__a) model.eval() _lowerCAmelCase : List[Any] = model(__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Dict = FlaubertForQuestionAnsweringSimple(__a) model.to(__a) model.eval() _lowerCAmelCase : Union[str, Any] = model(__a) _lowerCAmelCase : List[str] = model(__a, start_positions=__a, end_positions=__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = FlaubertForQuestionAnswering(__a) model.to(__a) model.eval() _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : str = model( __a, start_positions=__a, end_positions=__a, cls_index=__a, is_impossible=__a, p_mask=__a, ) _lowerCAmelCase : str = model( __a, start_positions=__a, end_positions=__a, cls_index=__a, is_impossible=__a, ) ((_lowerCAmelCase) , ) : List[Any] = result_with_labels.to_tuple() _lowerCAmelCase : List[Any] = model(__a, start_positions=__a, end_positions=__a) ((_lowerCAmelCase) , ) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, ()) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : int = FlaubertForSequenceClassification(__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[int] = model(__a) _lowerCAmelCase : List[Any] = model(__a, labels=__a) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Any = FlaubertForTokenClassification(__a) model.to(__a) model.eval() _lowerCAmelCase : Any = model(__a, attention_mask=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Any = self.num_choices _lowerCAmelCase : str = FlaubertForMultipleChoice(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[int] = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowerCAmelCase : Any = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowerCAmelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowerCAmelCase : Tuple = model( __a, attention_mask=__a, token_type_ids=__a, labels=__a, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[int] = config_and_inputs _lowerCAmelCase : str = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : str = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _lowerCAmelCase : List[str] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=__a) _lowerCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=__a) return inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = FlaubertModelTester(self) _lowerCAmelCase : List[str] = ConfigTester(self, config_class=__a, emb_dim=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Tuple = FlaubertModel.from_pretrained(__a) self.assertIsNotNone(__a) @slow @require_torch_gpu def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _lowerCAmelCase : Tuple = True _lowerCAmelCase : List[Any] = model_class(config=__a) _lowerCAmelCase : Dict = self._prepare_for_class(__a, __a) _lowerCAmelCase : Any = torch.jit.trace( __a, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__a, os.path.join(__a, "traced_model.pt")) _lowerCAmelCase : int = torch.jit.load(os.path.join(__a, "traced_model.pt"), map_location=__a) loaded(inputs_dict["input_ids"].to(__a), inputs_dict["attention_mask"].to(__a)) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased") _lowerCAmelCase : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(__a)[0] _lowerCAmelCase : Dict = torch.Size((1, 11, 768)) self.assertEqual(output.shape, __a) _lowerCAmelCase : str = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]]) self.assertTrue(torch.allclose(output[:, :3, :3], __a, atol=1E-4))
36
def A ( _lowerCamelCase ): '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence _lowerCAmelCase : List[str] = gray_code_sequence_string(_lowerCamelCase ) # # convert them to integers for i in range(len(_lowerCamelCase ) ): _lowerCAmelCase : List[str] = int(sequence[i] , 2 ) return sequence def A ( _lowerCamelCase ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _lowerCAmelCase : List[Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _lowerCAmelCase : Optional[int] = gray_code_sequence_string(bit_count - 1 ) _lowerCAmelCase : str = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _lowerCAmelCase : Dict = "0" + smaller_sequence[i] sequence.append(_lowerCamelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _lowerCAmelCase : Optional[Any] = "1" + smaller_sequence[i] sequence.append(_lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
36
1
def lowerCAmelCase_ ( __A = 1_000 ) -> int: '''simple docstring''' UpperCAmelCase__ = 2**power UpperCAmelCase__ = str(__A ) UpperCAmelCase__ = list(__A ) UpperCAmelCase__ = 0 for i in list_num: sum_of_num += int(__A ) return sum_of_num if __name__ == "__main__": UpperCamelCase__ = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) UpperCamelCase__ = solution(power) print('Sum of the digits is: ', result)
143
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, ) -> Any: '''simple docstring''' UpperCAmelCase__ = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } UpperCAmelCase__ , UpperCAmelCase__ = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase__ = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) assert base_extractor.is_extractable(__A ) UpperCAmelCase__ = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(__A, __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ = file_path.read_text(encoding="utf-8" ) else: UpperCAmelCase__ = output_path.read_text(encoding="utf-8" ) UpperCAmelCase__ = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } UpperCAmelCase__ = input_paths[compression_format] if input_path is None: UpperCAmelCase__ = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) UpperCAmelCase__ = Extractor.infer_extractor_format(__A ) assert extractor_format is not None UpperCAmelCase__ = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(__A, __A, __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ = file_path.read_text(encoding="utf-8" ) else: UpperCAmelCase__ = output_path.read_text(encoding="utf-8" ) UpperCAmelCase__ = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase_ ( __A, __A ) -> List[str]: '''simple docstring''' import tarfile UpperCAmelCase__ = tmp_path / "data_dot_dot" directory.mkdir() UpperCAmelCase__ = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(__A, "w" ) as f: f.add(__A, arcname=os.path.join("..", text_file.name ) ) return path @pytest.fixture def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' import tarfile UpperCAmelCase__ = tmp_path / "data_sym_link" directory.mkdir() UpperCAmelCase__ = directory / "tar_file_with_sym_link.tar" os.symlink("..", directory / "subdir", target_is_directory=__A ) with tarfile.TarFile(__A, "w" ) as f: f.add(str(directory / "subdir" ), arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log", [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")], ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } UpperCAmelCase__ = insecure_tar_files[insecure_tar_file] UpperCAmelCase__ = tmp_path / "extracted" TarExtractor.extract(__A, __A ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase__ = ( B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(__A ) assert zipfile.is_zipfile(str(__A ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__A ) # but we're right
143
1
'''simple docstring''' import sys def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =len(_lowerCAmelCase ) __lowercase =[[0 for x in range(_lowerCAmelCase )] for x in range(_lowerCAmelCase )] __lowercase =[[0 for x in range(_lowerCAmelCase )] for x in range(_lowerCAmelCase )] for chain_length in range(2 , _lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): __lowercase =a + chain_length - 1 __lowercase =sys.maxsize for c in range(_lowerCAmelCase , _lowerCAmelCase ): __lowercase =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __lowercase =cost __lowercase =c return matrix, sol def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if i == j: print('A' + str(_lowerCAmelCase ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(_lowerCAmelCase , _lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(_lowerCAmelCase , optimal_solution[i][j] + 1 , _lowerCAmelCase ) print(')' , end=' ' ) def _A ( ): """simple docstring""" __lowercase =[30, 35, 15, 5, 10, 20, 25] __lowercase =len(_lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __lowercase , __lowercase =matrix_chain_order(_lowerCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(_lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
166
'''simple docstring''' from __future__ import annotations def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =[True] * limit __lowercase =False __lowercase =False __lowercase =True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __lowercase =i * 2 while index < limit: __lowercase =False __lowercase =index + i __lowercase =[2] for i in range(3 , _lowerCAmelCase , 2 ): if is_prime[i]: primes.append(_lowerCAmelCase ) return primes def _A ( _lowerCAmelCase = 1_000_000 ): """simple docstring""" __lowercase =prime_sieve(_lowerCAmelCase ) __lowercase =0 __lowercase =0 for i in range(len(_lowerCAmelCase ) ): for j in range(i + length , len(_lowerCAmelCase ) ): __lowercase =sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __lowercase =j - i __lowercase =sol return largest if __name__ == "__main__": print(f"{solution() = }")
166
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ : Any =logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] ={ "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __lowercase (snake_case__ , snake_case__ ): """simple docstring""" _UpperCAmelCase = """convnextv2""" def __init__( self , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0.0 , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = num_channels SCREAMING_SNAKE_CASE_ : List[str] = patch_size SCREAMING_SNAKE_CASE_ : str = num_stages SCREAMING_SNAKE_CASE_ : Any = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes SCREAMING_SNAKE_CASE_ : Any = [3, 3, 9, 3] if depths is None else depths SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : List[Any] = image_size SCREAMING_SNAKE_CASE_ : Optional[int] = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE_ : str = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
365
import socket def a__ ( ): SCREAMING_SNAKE_CASE_ : Dict = socket.socket(socket.AF_INET, socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE_ : Any = socket.gethostname() SCREAMING_SNAKE_CASE_ : List[str] = 1_2_3_1_2 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file', 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: SCREAMING_SNAKE_CASE_ : Tuple = sock.recv(1_0_2_4 ) if not data: break out_file.write(A__ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
162
0
def A_ ( snake_case : int , snake_case : int ) -> int: '''simple docstring''' return 1 if input_a == input_a else 0 def A_ ( ) -> None: '''simple docstring''' assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
328
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
226
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowercase = logging.get_logger(__name__) __lowercase = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[Any] = """longformer""" def __init__( self : List[Any] , __UpperCAmelCase : Union[List[int], int] = 512 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 30522 , __UpperCAmelCase : int = 768 , __UpperCAmelCase : int = 12 , __UpperCAmelCase : int = 12 , __UpperCAmelCase : int = 3072 , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 512 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : float = 1e-12 , __UpperCAmelCase : bool = False , **__UpperCAmelCase : int , ): super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase) a : int = attention_window a : List[str] = sep_token_id a : List[Any] = bos_token_id a : int = eos_token_id a : Union[str, Any] = vocab_size a : Dict = hidden_size a : int = num_hidden_layers a : int = num_attention_heads a : Optional[int] = hidden_act a : Union[str, Any] = intermediate_size a : Tuple = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : str = max_position_embeddings a : Dict = type_vocab_size a : Optional[Any] = initializer_range a : List[Any] = layer_norm_eps a : List[str] = onnx_export class _A ( _a ): """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : "PretrainedConfig" , __UpperCAmelCase : str = "default" , __UpperCAmelCase : "List[PatchingSpec]" = None): super().__init__(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = True @property def __snake_case ( self : int): if self.task == "multiple-choice": a : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: a : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ]) @property def __snake_case ( self : Union[str, Any]): a : str = super().outputs if self.task == "default": a : Tuple = {0: "batch"} return outputs @property def __snake_case ( self : Optional[int]): return 1e-4 @property def __snake_case ( self : str): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14) def __snake_case ( self : List[str] , __UpperCAmelCase : "PreTrainedTokenizerBase" , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[TensorType] = None , ): a : str = super().generate_dummy_inputs( preprocessor=__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly a : Union[str, Any] = torch.zeros_like(inputs["input_ids"]) # make every second token global a : Dict = 1 return inputs
226
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A ) -> int: _snake_case = len(_snake_case ), len(grid[0] ) if ( min(_snake_case , _snake_case ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _snake_case = 0 count += depth_first_search(_snake_case , row + 1 , _snake_case , _snake_case ) count += depth_first_search(_snake_case , row - 1 , _snake_case , _snake_case ) count += depth_first_search(_snake_case , _snake_case , col + 1 , _snake_case ) count += depth_first_search(_snake_case , _snake_case , col - 1 , _snake_case ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
42
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase ( _snake_case : List[Any] , _snake_case : Tuple , _snake_case : int ) ->List[Any]: """simple docstring""" if openai_config_file == "": __snake_case : Dict = OpenAIGPTConfig() else: __snake_case : int = OpenAIGPTConfig.from_json_file(_snake_case ) __snake_case : Tuple = OpenAIGPTModel(_snake_case ) # Load weights from numpy load_tf_weights_in_openai_gpt(_snake_case , _snake_case , _snake_case ) # Save pytorch-model __snake_case : str = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __snake_case : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , _snake_case ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
102
0
'''simple docstring''' __snake_case : int = 8.314462 # Unit - J mol-1 K-1 def __lowerCamelCase ( __snake_case : float, __snake_case : float, __snake_case : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __lowerCamelCase ( __snake_case : float, __snake_case : float, __snake_case : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
136
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : int =tempfile.mkdtemp() # fmt: off A__ : Optional[int] =["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A__ : List[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Tuple =["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A__ : int ={"""unk_token""": """<unk>"""} A__ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) A__ : Dict ={ """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } A__ : Dict =os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , **lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , **lowerCAmelCase_ : str ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ : Dict =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ : int =[Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' A__ : int =self.get_tokenizer() A__ : Optional[int] =self.get_rust_tokenizer() A__ : Any =self.get_image_processor() A__ : int =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) A__ : Dict =CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase_ ) A__ : int =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) A__ : Optional[int] =CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : List[str] =CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ : List[Any] =self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A__ : Union[str, Any] =self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) A__ : Optional[int] =CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> str: '''simple docstring''' A__ : Optional[Any] =self.get_image_processor() A__ : int =self.get_tokenizer() A__ : Optional[int] =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Dict =self.prepare_image_inputs() A__ : List[Any] =image_processor(lowerCAmelCase_ , return_tensors="""np""" ) A__ : List[Any] =processor(images=lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ : Any =self.get_image_processor() A__ : Optional[Any] =self.get_tokenizer() A__ : int =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Any ="""lower newer""" A__ : Optional[int] =processor(text=lowerCAmelCase_ ) A__ : Optional[int] =tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' A__ : Any =self.get_image_processor() A__ : Optional[Any] =self.get_tokenizer() A__ : Union[str, Any] =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Optional[Any] ="""lower newer""" A__ : List[str] =self.prepare_image_inputs() A__ : Optional[Any] =processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Optional[Any] =self.get_image_processor() A__ : List[str] =self.get_tokenizer() A__ : Optional[int] =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Tuple =self.prepare_image_inputs() A__ : str =self.prepare_image_inputs() A__ : int =processor(images=lowerCAmelCase_ , visual_prompt=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """conditional_pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.get_image_processor() A__ : Optional[int] =self.get_tokenizer() A__ : Any =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : List[Any] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ : Tuple =processor.batch_decode(lowerCAmelCase_ ) A__ : List[Any] =tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
136
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _UpperCAmelCase ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self : Any , A : int=None , **A : str ) -> Union[str, Any]: super().__init__(features=A ) lowercase_ : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def A ( self : Dict , A : int ) -> List[Any]: import torch if isinstance(A , A ) and column: if all( isinstance(A , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(A ) return column def A ( self : int , A : Any ) -> Optional[Any]: import torch if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase_ : Any = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowercase_ : Any = {'''dtype''': torch.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase_ : Dict = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): lowercase_ : Dict = np.asarray(A ) return torch.tensor(A , **{**default_dtype, **self.torch_tensor_kwargs} ) def A ( self : Union[str, Any] , A : Optional[int] ) -> str: import torch # support for torch, tf, jax etc. if hasattr(A , '''__array__''' ) and not isinstance(A , torch.Tensor ): lowercase_ : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def A ( self : Dict , A : dict ) -> Tuple: return map_nested(self._recursive_tensorize , A , map_list=A ) def A ( self : str , A : pa.Table ) -> Mapping: lowercase_ : Optional[Any] = self.numpy_arrow_extractor().extract_row(A ) lowercase_ : str = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def A ( self : List[Any] , A : pa.Table ) -> "torch.Tensor": lowercase_ : List[str] = self.numpy_arrow_extractor().extract_column(A ) lowercase_ : str = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) lowercase_ : Optional[int] = self.recursive_tensorize(A ) lowercase_ : Any = self._consolidate(A ) return column def A ( self : List[str] , A : pa.Table ) -> Mapping: lowercase_ : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) lowercase_ : int = self.python_features_decoder.decode_batch(A ) lowercase_ : Dict = self.recursive_tensorize(A ) for column_name in batch: lowercase_ : Optional[Any] = self._consolidate(batch[column_name] ) return batch
33
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
33
1
import os import pytest from transformers.dynamic_module_utils import get_imports UpperCAmelCase_ = """ import os """ UpperCAmelCase_ = """ def foo(): import os return False """ UpperCAmelCase_ = """ def foo(): def bar(): if True: import os return False return bar() """ UpperCAmelCase_ = """ import os try: import bar except ImportError: raise ValueError() """ UpperCAmelCase_ = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ UpperCAmelCase_ = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ UpperCAmelCase_ = """ import os try: import bar except ImportError as e: raise ValueError() """ UpperCAmelCase_ = """ import os try: import bar except: raise ValueError() """ UpperCAmelCase_ = """ import os try: import bar import baz except ImportError: raise ValueError() """ UpperCAmelCase_ = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ UpperCAmelCase_ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('case' , UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' _snake_case = os.path.join(UpperCamelCase__ , 'test_file.py' ) with open(UpperCamelCase__ , 'w' ) as _tmp_file: _tmp_file.write(UpperCamelCase__ ) _snake_case = get_imports(UpperCamelCase__ ) assert parsed_imports == ["os"]
295
def lowerCamelCase__ ( ) -> int: '''simple docstring''' return 1 def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int = 200 ) -> int: '''simple docstring''' return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
295
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) a_ = logging.getLogger(__name__) @dataclass(frozen=lowerCAmelCase__ ) class __lowerCAmelCase : lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None @dataclass(frozen=lowerCAmelCase__ ) class __lowerCAmelCase : lowerCAmelCase__ = 42 lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase=False , __UpperCAmelCase = False , ): '''simple docstring''' __lowerCamelCase = hans_processors[task]() __lowerCamelCase = os.path.join( __UpperCAmelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(__UpperCAmelCase ) , __UpperCAmelCase , ) , ) __lowerCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCamelCase ,__lowerCamelCase = label_list[2], label_list[1] __lowerCamelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCamelCase = cached_features_file + '''.lock''' with FileLock(__UpperCAmelCase ): if os.path.exists(__UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) __lowerCamelCase = torch.load(__UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) __lowerCamelCase = ( processor.get_dev_examples(__UpperCAmelCase ) if evaluate else processor.get_train_examples(__UpperCAmelCase ) ) logger.info('''Training examples: %s''' , len(__UpperCAmelCase ) ) __lowerCamelCase = hans_convert_examples_to_features(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) logger.info('''Saving features into cached file %s''' , __UpperCAmelCase ) torch.save(self.features , __UpperCAmelCase ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' return self.features[i] def lowerCamelCase ( self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class __lowerCAmelCase : lowerCAmelCase__ = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 128 , __UpperCAmelCase=False , __UpperCAmelCase = False , ): '''simple docstring''' __lowerCamelCase = hans_processors[task]() __lowerCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCamelCase ,__lowerCamelCase = label_list[2], label_list[1] __lowerCamelCase = label_list __lowerCamelCase = processor.get_dev_examples(__UpperCAmelCase ) if evaluate else processor.get_train_examples(__UpperCAmelCase ) __lowerCamelCase = hans_convert_examples_to_features(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(__UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __lowerCamelCase = tf.data.Dataset.from_generator( __UpperCAmelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def lowerCamelCase ( self ): '''simple docstring''' return self.dataset def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' return self.features[i] def lowerCamelCase ( self ): '''simple docstring''' return self.label_list class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(__UpperCAmelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(__UpperCAmelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def lowerCamelCase ( self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = [] for i, line in enumerate(__UpperCAmelCase ): if i == 0: continue __lowerCamelCase = '''%s-%s''' % (set_type, line[0]) __lowerCamelCase = line[5] __lowerCamelCase = line[6] __lowerCamelCase = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __lowerCamelCase = line[0] examples.append(InputExample(guid=__UpperCAmelCase , text_a=__UpperCAmelCase , text_b=__UpperCAmelCase , label=__UpperCAmelCase , pairID=__UpperCAmelCase ) ) return examples def a__ ( _UpperCamelCase : List[InputExample] ,_UpperCamelCase : List[str] ,_UpperCamelCase : int ,_UpperCamelCase : PreTrainedTokenizer ,): __lowerCamelCase = {label: i for i, label in enumerate(_UpperCamelCase )} __lowerCamelCase = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCamelCase ) ,desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d''' % (ex_index) ) __lowerCamelCase = tokenizer( example.text_a ,example.text_b ,add_special_tokens=_UpperCamelCase ,max_length=_UpperCamelCase ,padding='''max_length''' ,truncation=_UpperCamelCase ,return_overflowing_tokens=_UpperCamelCase ,) __lowerCamelCase = label_map[example.label] if example.label in label_map else 0 __lowerCamelCase = int(example.pairID ) features.append(InputFeatures(**_UpperCamelCase ,label=_UpperCamelCase ,pairID=_UpperCamelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features a_ = { """hans""": 3, } a_ = { """hans""": HansProcessor, }
330
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING a_ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return {}, {}, {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = load_image(__UpperCAmelCase ) __lowerCamelCase = image.size __lowerCamelCase = self.image_processor(images=__UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.model(**__UpperCAmelCase ) return model_outputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = model_outputs.predicted_depth __lowerCamelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=__UpperCAmelCase ) __lowerCamelCase = prediction.squeeze().cpu().numpy() __lowerCamelCase = (output * 255 / np.max(__UpperCAmelCase )).astype('''uint8''' ) __lowerCamelCase = Image.fromarray(__UpperCAmelCase ) __lowerCamelCase = {} __lowerCamelCase = predicted_depth __lowerCamelCase = depth return output_dict
330
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : int = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : str = 'openai-gpt' __lowercase : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=4_0478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> Any: A_ = vocab_size A_ = n_positions A_ = n_embd A_ = n_layer A_ = n_head A_ = afn A_ = resid_pdrop A_ = embd_pdrop A_ = attn_pdrop A_ = layer_norm_epsilon A_ = initializer_range A_ = summary_type A_ = summary_use_proj A_ = summary_activation A_ = summary_first_dropout A_ = summary_proj_to_labels super().__init__(**__UpperCAmelCase )
353
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[1, 384, 24, 24] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self ) -> Optional[Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: A_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_labels A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __lowercase : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Tuple = False __lowercase : List[Any] = False def __A ( self ) -> Tuple: A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> Optional[int]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Tuple: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> int: pass @slow def __A ( self ) -> Dict: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = '''add''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Optional[int]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: A_ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A_ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_SCREAMING_SNAKE_CASE ) A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
0
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase : Union[str, Any] = logging.get_logger(__name__) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = question_encoder _snake_case = generator _snake_case = self.question_encoder def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if os.path.isfile(lowerCAmelCase_ ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _snake_case = os.path.join(lowerCAmelCase_ , 'question_encoder_tokenizer' ) _snake_case = os.path.join(lowerCAmelCase_ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowerCAmelCase_ ) self.generator.save_pretrained(lowerCAmelCase_ ) @classmethod def lowerCamelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer _snake_case = kwargs.pop('config' , lowerCAmelCase_ ) if config is None: _snake_case = RagConfig.from_pretrained(lowerCAmelCase_ ) _snake_case = AutoTokenizer.from_pretrained( lowerCAmelCase_ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _snake_case = AutoTokenizer.from_pretrained( lowerCAmelCase_ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowerCAmelCase_ , generator=lowerCAmelCase_ ) def __call__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.current_tokenizer(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.generator.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.generator.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.question_encoder def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.generator def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = "longest" , lowerCAmelCase_ = None , lowerCAmelCase_ = True , **lowerCAmelCase_ , ): """simple docstring""" warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowerCAmelCase_ , ) if max_length is None: _snake_case = self.current_tokenizer.model_max_length _snake_case = self( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , **lowerCAmelCase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _snake_case = self.current_tokenizer.model_max_length _snake_case = self( text_target=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , **lowerCAmelCase_ , ) _snake_case = labels['input_ids'] return model_inputs
42
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : Any = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["ChineseCLIPFeatureExtractor"] lowercase : List[Any] = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
1
"""simple docstring""" import torch from transformers import AutoModel class a ( torch.nn.Module ): """simple docstring""" def __init__( self: str , UpperCamelCase: List[str]="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(UpperCamelCase , self ).__init__() A__ = AutoModel.from_pretrained(UpperCamelCase , return_dict=UpperCamelCase ) A__ = torch.nn.CosineSimilarity(3 , 1e-0_8 ) A__ = torch.nn.Softmax(dim=1 ) def UpperCamelCase ( self: Optional[Any] , **UpperCamelCase: Optional[Any] ): """simple docstring""" return self.bert(**UpperCamelCase ).last_hidden_state def UpperCamelCase ( self: Any , UpperCamelCase: Any ): """simple docstring""" return token_embeddings.sum(2 , keepdim=UpperCamelCase ) def UpperCamelCase ( self: List[Any] , UpperCamelCase: Tuple , UpperCamelCase: int , UpperCamelCase: str=1 ): """simple docstring""" return self.softmax(T * self.cos(UpperCamelCase , UpperCamelCase ) ) def UpperCamelCase ( self: List[Any] , UpperCamelCase: Any , UpperCamelCase: Union[str, Any] ): """simple docstring""" A__ = W_supports["""sizes"""].tolist() A__ = W_supports["""start_token_id"""].item() A__ = W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] A__ = self.BERT(**UpperCamelCase ) A__ = self.BERT(**UpperCamelCase ) A__ = None A__ = None A__ = W_supports["""input_ids"""] == start_token_id A__ = W_supports["""input_ids"""] == end_token_id for i, size in enumerate(UpperCamelCase ): if i == 0: A__ = 0 else: A__ = support_sizes[i - 1] A__ = S[s : s + size][start_token_masks[s : s + size]] A__ = S[s : s + size][end_token_masks[s : s + size]] A__ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) A__ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: A__ = torch.vstack((p_starts, p_start) ) A__ = torch.vstack((p_ends, p_end) ) else: A__ = p_start A__ = p_end return p_starts, p_ends
69
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int = 50 ): A__ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
69
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : Union[str, Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : str = ["pixel_values"] def __init__( self : str , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BICUBIC , A : bool = True , A : bool = True , A : Union[int, float] = 1 / 2_55 , A : Dict[str, int] = None , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Dict , ) -> None: super().__init__(**A ) lowercase_ : Tuple = size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowercase_ : Dict = get_size_dict(A ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} lowercase_ : List[Any] = get_size_dict(A , default_to_square=A , param_name='''crop_size''' ) lowercase_ : Optional[Any] = do_resize lowercase_ : List[str] = do_rescale lowercase_ : Optional[int] = do_normalize lowercase_ : List[str] = do_center_crop lowercase_ : Union[str, Any] = crop_size lowercase_ : Optional[Any] = size lowercase_ : Optional[Any] = resample lowercase_ : Optional[Any] = rescale_factor lowercase_ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ : Tuple = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A ( self : str , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BILINEAR , A : Optional[Union[str, ChannelDimension]] = None , **A : List[str] , ) -> np.ndarray: lowercase_ : str = get_size_dict(A ) if "shortest_edge" in size: lowercase_ : Dict = get_resize_output_image_size(A , size=size['''shortest_edge'''] , default_to_square=A ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase_ : List[Any] = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(A , size=A , resample=A , data_format=A , **A ) def A ( self : str , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ) -> np.ndarray: lowercase_ : List[Any] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(A , size=(size['''height'''], size['''width''']) , data_format=A , **A ) def A ( self : Tuple , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Any ) -> np.ndarray: return rescale(A , scale=A , data_format=A , **A ) def A ( self : Optional[int] , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Tuple , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def A ( self : Dict , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : int = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : List[str] , ) -> BatchFeature: lowercase_ : str = do_resize if do_resize is not None else self.do_resize lowercase_ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : str = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : str = crop_size if crop_size is not None else self.crop_size lowercase_ : int = get_size_dict(A , param_name='''crop_size''' , default_to_square=A ) lowercase_ : Union[str, Any] = resample if resample is not None else self.resample lowercase_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : Tuple = image_mean if image_mean is not None else self.image_mean lowercase_ : Tuple = image_std if image_std is not None else self.image_std lowercase_ : Union[str, Any] = size if size is not None else self.size lowercase_ : str = get_size_dict(A ) if not is_batched(A ): lowercase_ : List[Any] = [images] if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase_ : Tuple = [to_numpy_array(A ) for image in images] if do_resize: lowercase_ : List[str] = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: lowercase_ : List[Any] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: lowercase_ : List[Any] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: lowercase_ : Dict = [self.normalize(image=A , mean=A , std=A ) for image in images] lowercase_ : List[str] = [to_channel_dimension_format(A , A ) for image in images] lowercase_ : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=A , tensor_type=A )
33
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=5_12, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(F'could not parse string as bool {string}' ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) __snake_case = parser.parse_args() __snake_case = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
176
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __lowerCamelCase : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def __init__( self : str , **__A : Optional[Any] ): requires_backends(self , ["bs4"] ) super().__init__(**__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Any = [] snake_case__ : Any = [] snake_case__ : List[str] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag snake_case__ : Union[str, Any] = parent.find_all(child.name , recursive=__A ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__A ) else next(i for i, s in enumerate(__A , 1 ) if s is child ) ) snake_case__ : Tuple = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _lowercase ( self : Optional[int] , __A : List[Any] ): snake_case__ : int = BeautifulSoup(__A , "html.parser" ) snake_case__ : int = [] snake_case__ : str = [] snake_case__ : Any = [] for element in html_code.descendants: if type(__A ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue snake_case__ : Dict = html.unescape(__A ).strip() if not text_in_this_tag: continue all_doc_strings.append(__A ) snake_case__, snake_case__ : Optional[Any] = self.xpath_soup(__A ) stringaxtag_seq.append(__A ) stringaxsubs_seq.append(__A ) if len(__A ) != len(__A ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(__A ) != len(__A ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _lowercase ( self : Optional[int] , __A : List[str] , __A : int ): snake_case__ : Optional[int] = "" for tagname, subs in zip(__A , __A ): xpath += f'''/{tagname}''' if subs != 0: xpath += f'''[{subs}]''' return xpath def __call__( self : Optional[int] , __A : Optional[Any] ): snake_case__ : int = False # Check that strings has a valid type if isinstance(__A , __A ): snake_case__ : Optional[Any] = True elif isinstance(__A , (list, tuple) ): if len(__A ) == 0 or isinstance(html_strings[0] , __A ): snake_case__ : List[str] = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " f'''but is of type {type(__A )}.''' ) snake_case__ : Optional[int] = bool(isinstance(__A , (list, tuple) ) and (isinstance(html_strings[0] , __A )) ) if not is_batched: snake_case__ : Union[str, Any] = [html_strings] # Get nodes + xpaths snake_case__ : str = [] snake_case__ : Optional[int] = [] for html_string in html_strings: snake_case__, snake_case__, snake_case__ : str = self.get_three_from_single(__A ) nodes.append(__A ) snake_case__ : List[Any] = [] for node, tag_list, sub_list in zip(__A , __A , __A ): snake_case__ : List[Any] = self.construct_xpath(__A , __A ) xpath_strings.append(__A ) xpaths.append(__A ) # return as Dict snake_case__ : str = {"nodes": nodes, "xpaths": xpaths} snake_case__ : Union[str, Any] = BatchFeature(data=__A , tensor_type=__A ) return encoded_inputs
286
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
286
1
'''simple docstring''' import re def __A ( lowerCamelCase_ ): """simple docstring""" return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" , str_ )] def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" try: SCREAMING_SNAKE_CASE : Tuple = split_input(lowerCamelCase_ ) if upper: SCREAMING_SNAKE_CASE : Optional[int] = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: SCREAMING_SNAKE_CASE : Any = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __A ( lowerCamelCase_ ): """simple docstring""" return to_simple_case(lowerCamelCase_ ) def __A ( lowerCamelCase_ ): """simple docstring""" try: SCREAMING_SNAKE_CASE : str = to_simple_case(lowerCamelCase_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return to_complex_case(lowerCamelCase_ , lowerCamelCase_ , """_""" ) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return to_complex_case(lowerCamelCase_ , lowerCamelCase_ , """-""" ) if __name__ == "__main__": __import__("""doctest""").testmod()
323
'''simple docstring''' from manim import * class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE : List[str] = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE : Optional[int] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : str = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Tuple = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : List[Any] = Text("""CPU""" , font_size=24 ) SCREAMING_SNAKE_CASE : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = Text("""GPU""" , font_size=24 ) SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Text("""Model""" , font_size=24 ) SCREAMING_SNAKE_CASE : List[str] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i, rect in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = fill.copy().set_fill(lowerCamelCase_ , opacity=0.8 ) target.move_to(lowerCamelCase_ ) model_arr.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(lowerCamelCase_ ) self.add(*lowerCamelCase_ , *lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Optional[int] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Dict = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : List[Any] = Text("""Disk""" , font_size=24 ) SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE : Optional[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(lowerCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = Square(0.3 ) input.set_fill(lowerCamelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , lowerCamelCase_ , buff=0.5 ) self.play(Write(lowerCamelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=lowerCamelCase_ , buff=0.02 ) self.play(MoveToTarget(lowerCamelCase_ ) ) self.play(FadeOut(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : int = Arrow(start=lowerCamelCase_ , end=lowerCamelCase_ , color=lowerCamelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , lowerCamelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) SCREAMING_SNAKE_CASE : Optional[int] = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=3 ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02} self.play( Write(lowerCamelCase_ ) , Circumscribe(model_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_cpu_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) SCREAMING_SNAKE_CASE : Optional[int] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , lowerCamelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) SCREAMING_SNAKE_CASE : Any = AnimationGroup( FadeOut(lowerCamelCase_ , run_time=0.5 ) , MoveToTarget(lowerCamelCase_ , run_time=0.5 ) , FadeIn(lowerCamelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(lowerCamelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: SCREAMING_SNAKE_CASE : Optional[Any] = 0.7 self.play( Circumscribe(model_arr[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_arr[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = a_c SCREAMING_SNAKE_CASE : Optional[Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(lowerCamelCase_ ) , FadeOut(lowerCamelCase_ , run_time=0.5 ) , ) SCREAMING_SNAKE_CASE : int = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=3 ) , MoveToTarget(lowerCamelCase_ ) ) self.wait()
323
1
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] )-> Tuple: lowerCamelCase__ : str ={} def snake_case ( self : Union[str, Any] )-> None: print(self.vertex ) for i in self.vertex: print(lowerCamelCase, ''' -> ''', ''' -> '''.join([str(lowerCamelCase ) for j in self.vertex[i]] ) ) def snake_case ( self : Dict, lowerCamelCase : int, lowerCamelCase : int )-> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCamelCase ) else: # else make a new vertex lowerCamelCase__ : int =[to_vertex] def snake_case ( self : List[Any] )-> None: # visited array for storing already visited nodes lowerCamelCase__ : Dict =[False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCamelCase, lowerCamelCase ) def snake_case ( self : str, lowerCamelCase : int, lowerCamelCase : list )-> None: # mark start vertex as visited lowerCamelCase__ : Optional[int] =True print(lowerCamelCase, end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCamelCase, lowerCamelCase ) if __name__ == "__main__": _lowercase : List[str] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
272
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : Union[str, Any] )-> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case ( self : str )-> Any: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''', from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=lowerCamelCase, from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[int] =controlnet_params lowerCamelCase__ : Dict ='''bird''' lowerCamelCase__ : List[str] =jax.device_count() lowerCamelCase__ : Optional[Any] =pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Dict =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) lowerCamelCase__ : List[Any] =pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCamelCase__ : Optional[int] =jax.random.PRNGKey(0 ) lowerCamelCase__ : Dict =jax.random.split(lowerCamelCase, jax.device_count() ) lowerCamelCase__ : Tuple =replicate(lowerCamelCase ) lowerCamelCase__ : Tuple =shard(lowerCamelCase ) lowerCamelCase__ : Optional[int] =shard(lowerCamelCase ) lowerCamelCase__ : Tuple =pipe( prompt_ids=lowerCamelCase, image=lowerCamelCase, params=lowerCamelCase, prng_seed=lowerCamelCase, num_inference_steps=50, jit=lowerCamelCase, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : Any =images[0, 253:256, 253:256, -1] lowerCamelCase__ : Optional[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Dict =jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def snake_case ( self : Optional[int] )-> Optional[int]: lowerCamelCase__ , lowerCamelCase__ : Dict =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''', from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : List[Any] =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=lowerCamelCase, from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[Any] =controlnet_params lowerCamelCase__ : int ='''Chef in the kitchen''' lowerCamelCase__ : Optional[Any] =jax.device_count() lowerCamelCase__ : Any =pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Any =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) lowerCamelCase__ : List[Any] =pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCamelCase__ : Tuple =jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] =jax.random.split(lowerCamelCase, jax.device_count() ) lowerCamelCase__ : int =replicate(lowerCamelCase ) lowerCamelCase__ : List[Any] =shard(lowerCamelCase ) lowerCamelCase__ : int =shard(lowerCamelCase ) lowerCamelCase__ : Tuple =pipe( prompt_ids=lowerCamelCase, image=lowerCamelCase, params=lowerCamelCase, prng_seed=lowerCamelCase, num_inference_steps=50, jit=lowerCamelCase, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : List[str] =images[0, 253:256, 253:256, -1] lowerCamelCase__ : int =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Any =jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
272
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : float | Decimal , _lowerCAmelCase : float = 10**-10 ) -> float: A_ : Dict = a while True: A_ : Union[str, Any] = Decimal(_lowerCAmelCase ) - ( Decimal(eval(_lowerCAmelCase ) ) / Decimal(eval(str(diff(_lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCAmelCase ) ) < precision: # noqa: S307 return float(_lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
300
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''input_features''', '''attention_mask'''] def __init__( self :int , snake_case :int=80 , snake_case :Optional[int]=16_000 , snake_case :Tuple=0.0 , snake_case :Optional[int]=10 , snake_case :Optional[Any]=25 , snake_case :Dict="hamming_window" , snake_case :Tuple=32768.0 , snake_case :str=0.97 , snake_case :List[str]=1.0 , snake_case :Dict=True , snake_case :str=True , snake_case :Optional[Any]=False , **snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) A_ : Union[str, Any] = feature_size A_ : int = sampling_rate A_ : str = padding_value A_ : int = hop_length A_ : List[str] = win_length A_ : Any = frame_signal_scale A_ : str = preemphasis_coeff A_ : List[str] = mel_floor A_ : str = normalize_means A_ : Any = normalize_vars A_ : Optional[Any] = win_function A_ : Dict = return_attention_mask A_ : List[str] = win_length * sampling_rate // 1_000 A_ : List[str] = hop_length * sampling_rate // 1_000 A_ : List[str] = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self :Any , snake_case :np.array ): '''simple docstring''' if self.win_function == "hamming_window": A_ : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) else: A_ : List[str] = window_function(window_length=self.sample_size , name=self.win_function ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) A_ : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=snake_case , preemphasis=self.preemphasis_coeff , mel_filters=snake_case , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :str ): '''simple docstring''' if self.normalize_means: A_ : int = x[:input_length].mean(axis=0 ) A_ : Any = np.subtract(snake_case , snake_case ) if self.normalize_vars: A_ : List[Any] = x[:input_length].std(axis=0 ) A_ : Optional[int] = np.divide(snake_case , snake_case ) if input_length < x.shape[0]: A_ : Optional[int] = padding_value # make sure array is in float32 A_ : Union[str, Any] = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[np.ndarray] , snake_case :Optional[np.ndarray] = None ): '''simple docstring''' A_ : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case , snake_case , self.padding_value ) for x, n in zip(snake_case , snake_case )] def __call__( self :int , snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case :Union[bool, str, PaddingStrategy] = False , snake_case :Optional[int] = None , snake_case :bool = False , snake_case :Optional[int] = None , snake_case :Optional[bool] = None , snake_case :Optional[Union[str, TensorType]] = None , snake_case :Optional[int] = None , **snake_case :Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) A_ : Optional[int] = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A_ : Optional[Any] = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[Any] = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): A_ : int = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Tuple = [raw_speech] # extract fbank features A_ : int = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding A_ : Union[str, Any] = BatchFeature({"input_features": features} ) A_ : str = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format A_ : Optional[int] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , snake_case ): A_ : Union[str, Any] = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_features] A_ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: A_ : Any = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A_ : Dict = ( np.array(snake_case , dtype=np.intaa ) if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A_ : Optional[int] = self.normalize( padded_inputs["input_features"] , attention_mask=snake_case ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
300
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_lowercase ) class _UpperCamelCase ( _lowercase ): '''simple docstring''' lowerCAmelCase__ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCAmelCase__ = Features({"""text""": Value("""string""" )} ) lowerCAmelCase__ = Features({} ) lowerCAmelCase__ = """text""" @property def __lowerCamelCase ( self : Any): '''simple docstring''' return {self.text_column: "text"}
359
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """spiece.model"""} lowerCamelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } lowerCamelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) lowerCamelCase = 0 lowerCamelCase = 1 lowerCamelCase = 2 lowerCamelCase = 3 lowerCamelCase = 4 class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = """left""" def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Any="<s>" , _lowerCAmelCase : Union[str, Any]="</s>" , _lowerCAmelCase : int="<unk>" , _lowerCAmelCase : Union[str, Any]="<sep>" , _lowerCAmelCase : Union[str, Any]="<pad>" , _lowerCAmelCase : Union[str, Any]="<cls>" , _lowerCAmelCase : List[Any]="<mask>" , _lowerCAmelCase : List[Any]=["<eop>", "<eod>"] , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : str , ): '''simple docstring''' __lowercase =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase) if isinstance(_lowerCAmelCase , _lowerCAmelCase) else mask_token __lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __lowercase =3 __lowercase =do_lower_case __lowercase =remove_space __lowercase =keep_accents __lowercase =vocab_file __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowerCAmelCase) @property def __lowerCamelCase ( self : str): '''simple docstring''' return len(self.sp_model) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase ={self.convert_ids_to_tokens(_lowerCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : str): '''simple docstring''' __lowercase =self.__dict__.copy() __lowercase =None return state def __setstate__( self : List[Any] , _lowerCAmelCase : List[str]): '''simple docstring''' __lowercase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __lowercase ={} __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Any): '''simple docstring''' if self.remove_space: __lowercase =' '.join(inputs.strip().split()) else: __lowercase =inputs __lowercase =outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: __lowercase =unicodedata.normalize('NFKD' , _lowerCAmelCase) __lowercase =''.join([c for c in outputs if not unicodedata.combining(_lowerCAmelCase)]) if self.do_lower_case: __lowercase =outputs.lower() return outputs def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : str): '''simple docstring''' __lowercase =self.preprocess_text(_lowerCAmelCase) __lowercase =self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase) __lowercase =[] for piece in pieces: if len(_lowerCAmelCase) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __lowercase =self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCAmelCase , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __lowercase =cur_pieces[1:] else: __lowercase =cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowerCAmelCase) else: new_pieces.append(_lowerCAmelCase) return new_pieces def __lowerCamelCase ( self : Any , _lowerCAmelCase : Optional[int]): '''simple docstring''' return self.sp_model.PieceToId(_lowerCAmelCase) def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[str]): '''simple docstring''' return self.sp_model.IdToPiece(_lowerCAmelCase) def __lowerCamelCase ( self : Any , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =''.join(_lowerCAmelCase).replace(_lowerCAmelCase , ' ').strip() return out_string def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : List[Any] , ): '''simple docstring''' __lowercase =kwargs.pop('use_source_tokenizer' , _lowerCAmelCase) __lowercase =self.convert_ids_to_tokens(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowercase =[] __lowercase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase)) __lowercase =[] sub_texts.append(_lowerCAmelCase) else: current_sub_text.append(_lowerCAmelCase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCAmelCase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __lowercase =''.join(_lowerCAmelCase) __lowercase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowercase =self.clean_up_tokenization(_lowerCAmelCase) return clean_text else: return text def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None): '''simple docstring''' __lowercase =[self.sep_token_id] __lowercase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None , _lowerCAmelCase : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase) if token_ids_a is not None: return ([0] * len(_lowerCAmelCase)) + [1] + ([0] * len(_lowerCAmelCase)) + [1, 1] return ([0] * len(_lowerCAmelCase)) + [1, 1] def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None): '''simple docstring''' __lowercase =[self.sep_token_id] __lowercase =[2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None): '''simple docstring''' if not os.path.isdir(_lowerCAmelCase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __lowercase =os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowerCAmelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCAmelCase , 'wb') as fi: __lowercase =self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase) return (out_vocab_file,)
48
0
'''simple docstring''' def A_ ( snake_case ): if num < 0: return False SCREAMING_SNAKE_CASE:List[str] = num SCREAMING_SNAKE_CASE:Dict = 0 while num > 0: SCREAMING_SNAKE_CASE:Union[str, Any] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
139
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Tuple = SpeechTaTokenizer __lowercase: int = False __lowercase: List[str] = True def lowerCAmelCase ( self : Any ) ->str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing snake_case_ = SpeechTaTokenizer(UpperCAmelCase_ ) snake_case_ = AddedToken("""<mask>""" , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) snake_case_ = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = """this is a test""" snake_case_ = """this is a test""" return input_text, output_text def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Tuple=20 , UpperCAmelCase_ : Dict=5 ) ->List[Any]: """simple docstring""" snake_case_ , snake_case_ = self.get_input_output_texts(UpperCAmelCase_ ) snake_case_ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) return text, ids def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" snake_case_ = """<pad>""" snake_case_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowerCAmelCase ( self : int ) ->str: """simple docstring""" snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-4] , """œ""" ) self.assertEqual(vocab_keys[-2] , """<mask>""" ) self.assertEqual(vocab_keys[-1] , """<ctc_blank>""" ) self.assertEqual(len(UpperCAmelCase_ ) , 81 ) def lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case_ = tokenizer.vocab_size snake_case_ = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case_ = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] snake_case_ = tokenizer.add_tokens(UpperCAmelCase_ ) snake_case_ = tokenizer.vocab_size snake_case_ = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_ , 0 ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_ , all_size + len(UpperCAmelCase_ ) ) snake_case_ = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=UpperCAmelCase_ ) self.assertGreaterEqual(len(UpperCAmelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) snake_case_ = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} snake_case_ = tokenizer.add_special_tokens(UpperCAmelCase_ ) snake_case_ = tokenizer.vocab_size snake_case_ = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_ , 0 ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_ , all_size_a + len(UpperCAmelCase_ ) ) snake_case_ = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=UpperCAmelCase_ ) self.assertGreaterEqual(len(UpperCAmelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = tokenizer.tokenize("""This is a test""" ) # fmt: off self.assertListEqual(UpperCAmelCase_ , [SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) snake_case_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) snake_case_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) # fmt: off self.assertListEqual(UpperCAmelCase_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on snake_case_ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) @slow def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" snake_case_ = [ """Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """ """general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """ """Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """ """models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""", """BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """ """conditioning on both left and right context in all layers.""", """The quick brown fox jumps over the lazy dog.""", ] # fmt: off snake_case_ = { """input_ids""": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="""microsoft/speecht5_asr""" , revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" , sequences=UpperCAmelCase_ , )
347
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="None", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> Optional[int]: UpperCAmelCase_: Any = parent UpperCAmelCase_: Union[str, Any] = batch_size UpperCAmelCase_: List[str] = seq_length UpperCAmelCase_: str = is_training UpperCAmelCase_: str = use_input_mask UpperCAmelCase_: List[str] = use_token_type_ids UpperCAmelCase_: Tuple = use_labels UpperCAmelCase_: Any = vocab_size UpperCAmelCase_: int = hidden_size UpperCAmelCase_: Optional[int] = num_hidden_layers UpperCAmelCase_: Optional[int] = num_attention_heads UpperCAmelCase_: Optional[int] = intermediate_size UpperCAmelCase_: Optional[Any] = hidden_act UpperCAmelCase_: Optional[Any] = hidden_dropout_prob UpperCAmelCase_: int = attention_probs_dropout_prob UpperCAmelCase_: Optional[int] = max_position_embeddings UpperCAmelCase_: Any = type_vocab_size UpperCAmelCase_: int = type_sequence_label_size UpperCAmelCase_: str = initializer_range UpperCAmelCase_: int = num_labels UpperCAmelCase_: Any = num_choices UpperCAmelCase_: List[str] = relative_attention UpperCAmelCase_: str = position_biased_input UpperCAmelCase_: List[Any] = pos_att_type UpperCAmelCase_: Optional[Any] = scope def __snake_case (self ) -> List[str]: UpperCAmelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase_: Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_: Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_: Optional[int] = None if self.use_token_type_ids: UpperCAmelCase_: str = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase_: Any = None UpperCAmelCase_: List[Any] = None UpperCAmelCase_: Dict = None if self.use_labels: UpperCAmelCase_: Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase_: Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase_: Dict = DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, initializer_range=self.initializer_range, return_dict=SCREAMING_SNAKE_CASE_, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: Dict = TFDebertaVaModel(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase_: Optional[Any] = [input_ids, input_mask] UpperCAmelCase_: Tuple = model(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCAmelCase_: str = TFDebertaVaForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCAmelCase_: Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCAmelCase_: Optional[Any] = self.num_labels UpperCAmelCase_: Optional[int] = TFDebertaVaForSequenceClassification(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCAmelCase_: List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCAmelCase_: List[Any] = self.num_labels UpperCAmelCase_: Union[str, Any] = TFDebertaVaForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCAmelCase_: Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: List[Any] = TFDebertaVaForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ): int = config_and_inputs UpperCAmelCase_: str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) A = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) A = False A = False def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Any = TFDebertaVaModelTester(self ) UpperCAmelCase_: int = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def __snake_case (self ) -> Optional[int]: self.config_tester.run_common_tests() def __snake_case (self ) -> str: UpperCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Dict: UpperCAmelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Any = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_tf class _a ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def __snake_case (self ) -> Any: pass @slow def __snake_case (self ) -> List[str]: UpperCAmelCase_: int = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) UpperCAmelCase_: str = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) UpperCAmelCase_: int = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase_: Optional[Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ )[0] UpperCAmelCase_: Dict = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4], SCREAMING_SNAKE_CASE_, atol=1E-4 )
82
a : Tuple = 'Tobias Carryer' from time import time class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=int(time() ) ) -> List[Any]: # noqa: B008 UpperCAmelCase_: List[str] = multiplier UpperCAmelCase_: Tuple = increment UpperCAmelCase_: Tuple = modulo UpperCAmelCase_: List[str] = seed def __snake_case (self ) -> Any: UpperCAmelCase_: List[str] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a : Optional[int] = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
82
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _UpperCamelCase = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _UpperCamelCase = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _UpperCamelCase = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): def UpperCamelCase__ ( self ) ->str: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def UpperCamelCase__ ( self , A_ , A_ , A_ = False , A_ = False , A_ = False , A_ = False , ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = len(references[0] ) if any(len(A_ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(A_ )] __lowerCAmelCase : Optional[int] = TER( normalized=A_ , no_punct=A_ , asian_support=A_ , case_sensitive=A_ , ) __lowerCAmelCase : Union[str, Any] = sb_ter.corpus_score(A_ , A_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
275
from collections import deque from .hash_table import HashTable class __lowercase (_UpperCAmelCase ): def __init__( self , *A_ , **A_ ) ->int: '''simple docstring''' super().__init__(*A_ , **A_ ) def UpperCamelCase__ ( self , A_ , A_ ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Dict = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(A_ ) __lowerCAmelCase : int = self.values[key] def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' return ( sum(self.charge_factor - len(A_ ) for slot in self.values ) / self.size_table * self.charge_factor ) def UpperCamelCase__ ( self , A_ , A_=None ) ->str: '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(A_ ) == 0 ): return key return super()._collision_resolution(A_ , A_ )
275
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: if is_torch_version('<' , '2.0.0' ) or not hasattr(_SCREAMING_SNAKE_CASE , '_dynamo' ): return False return isinstance(_SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True ) -> Dict: lowercase__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase__ = is_compiled_module(_SCREAMING_SNAKE_CASE ) if is_compiled: lowercase__ = model lowercase__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = model.module if not keep_fpaa_wrapper: lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'forward' ) lowercase__ = model.__dict__.pop('_original_forward' , _SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(_SCREAMING_SNAKE_CASE , '__wrapped__' ): lowercase__ = forward.__wrapped__ if forward == original_forward: break lowercase__ = forward if getattr(_SCREAMING_SNAKE_CASE , '_converted_to_transformer_engine' , _SCREAMING_SNAKE_CASE ): convert_model(_SCREAMING_SNAKE_CASE , to_transformer_engine=_SCREAMING_SNAKE_CASE ) if is_compiled: lowercase__ = model lowercase__ = compiled_model return model def __UpperCamelCase () -> Tuple: PartialState().wait_for_everyone() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: if PartialState().distributed_type == DistributedType.TPU: xm.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @contextmanager def __UpperCamelCase (**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: for key, value in kwargs.items(): lowercase__ = str(_SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: if not hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ) and not hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): lowercase__ = getattr(_SCREAMING_SNAKE_CASE , '__class__' , _SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , '__qualname__' ): return obj.__qualname__ if hasattr(_SCREAMING_SNAKE_CASE , '__name__' ): return obj.__name__ return str(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: for key, value in source.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = destination.setdefault(_SCREAMING_SNAKE_CASE , {} ) merge_dicts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: lowercase__ = value return destination def __UpperCamelCase (_SCREAMING_SNAKE_CASE = None ) -> bool: if port is None: lowercase__ = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
269
from typing import TYPE_CHECKING from ..utils import _LazyModule lowercase_ = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
269
1
from bisect import bisect from itertools import accumulate def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> str: '''simple docstring''' __lowercase= sorted(zip(lowercase__ , lowercase__ ) , key=lambda lowercase__ : x[0] / x[1] , reverse=lowercase__ ) __lowercase, __lowercase= [i[0] for i in r], [i[1] for i in r] __lowercase= list(accumulate(lowercase__ ) ) __lowercase= bisect(lowercase__ , lowercase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
295
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
295
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = """▁""" _SCREAMING_SNAKE_CASE = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } _SCREAMING_SNAKE_CASE = {"""vinai/bartpho-syllable""": 1_0_2_4} class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : Tuple="</s>" , lowerCamelCase_ : Optional[int]="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : int="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : Optional[Any]="<mask>" , lowerCamelCase_ : Optional[Dict[str, Any]] = None , **lowerCamelCase_ : str , ): """simple docstring""" UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = vocab_file UpperCamelCase = monolingual_vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCamelCase = {} UpperCamelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: UpperCamelCase = cnt cnt += 1 with open(lowerCamelCase_ , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): UpperCamelCase = line.strip().split()[0] UpperCamelCase = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: UpperCamelCase = len(self.fairseq_tokens_to_ids ) UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[Any] ): """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : str ): """simple docstring""" return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Any ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple ): """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self : int , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = """""".join(lowerCamelCase_ ).replace(lowerCamelCase_ , """ """ ).strip() return out_string def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , """wb""" ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(lowerCamelCase_ )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
165
def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' UpperCamelCase = len(UpperCamelCase_ ) UpperCamelCase = len(matrix[0] ) UpperCamelCase = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase , UpperCamelCase = matrix[i], matrix[row] UpperCamelCase = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
165
1
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : int = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = { 'facebook/blenderbot_small-90M': 5_1_2, } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES __UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = BlenderbotSmallTokenizer def __init__(self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ) -> List[str]: """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=SCREAMING_SNAKE_CASE__ , merges=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ , ) , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : Dict = add_prefix_space def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
from math import factorial, radians def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : int = 1_8 , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians SCREAMING_SNAKE_CASE_ : Tuple = radians(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = angle_in_radians SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
18
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __lowerCamelCase : """simple docstring""" snake_case__ = None def a ( self : List[Any] ) -> int: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] ) -> str: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , "feat_extract.json" ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def a ( self : str ) -> List[str]: lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE__ )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def a ( self : Optional[Any] ) -> List[str]: lowerCAmelCase__ = self.feature_extraction_class() self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
221
import random def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : List[str] ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = [], [], [] for element in data: if element < pivot: less.append(lowerCAmelCase_ ) elif element > pivot: greater.append(lowerCAmelCase_ ) else: equal.append(lowerCAmelCase_ ) return less, equal, greater def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int ): """simple docstring""" if index >= len(lowerCAmelCase_ ) or index < 0: return None lowerCAmelCase__ = items[random.randint(0 , len(lowerCAmelCase_ ) - 1 )] lowerCAmelCase__ = 0 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _partition(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = len(lowerCAmelCase_ ) lowerCAmelCase__ = len(lowerCAmelCase_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(lowerCAmelCase_ , lowerCAmelCase_ ) # must be in larger else: return quick_select(lowerCAmelCase_ , index - (m + count) )
221
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = SwinConfig() SCREAMING_SNAKE_CASE = swin_name.split("""_""" ) SCREAMING_SNAKE_CASE = name_split[1] SCREAMING_SNAKE_CASE = int(name_split[4] ) SCREAMING_SNAKE_CASE = int(name_split[3][-1] ) if model_size == "tiny": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 6, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE = 1_28 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE = 1_92 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE = 2_18_41 else: SCREAMING_SNAKE_CASE = 10_00 SCREAMING_SNAKE_CASE = """huggingface/label-files""" SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = img_size SCREAMING_SNAKE_CASE = num_classes SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size return config def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: SCREAMING_SNAKE_CASE = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": SCREAMING_SNAKE_CASE = """layernorm.weight""" if name == "norm.bias": SCREAMING_SNAKE_CASE = """layernorm.bias""" if "head" in name: SCREAMING_SNAKE_CASE = name.replace("""head""" , """classifier""" ) else: SCREAMING_SNAKE_CASE = """swin.""" + name return name def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE = key.split(""".""" ) SCREAMING_SNAKE_CASE = int(key_split[1] ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[ :dim ] SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE = val[ -dim: ] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() SCREAMING_SNAKE_CASE = get_swin_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = SwinForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) SCREAMING_SNAKE_CASE = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) SCREAMING_SNAKE_CASE = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE = timm_model(inputs["""pixel_values"""] ) SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
296
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig a : Tuple = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'tapas' def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=1024 , A=[3, 256, 256, 2, 256, 256, 10] , A=0.0_2 , A=1e-12 , A=0 , A=1_0.0 , A=0 , A=1.0 , A=None , A=1.0 , A=False , A=None , A=1.0 , A=1.0 , A=False , A=False , A="ratio" , A=None , A=None , A=64 , A=32 , A=False , A=True , A=False , A=False , A=True , A=False , A=None , A=None , **A , ) -> List[Any]: super().__init__(pad_token_id=A , **A ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : str = hidden_act UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Union[str, Any] = type_vocab_sizes UpperCAmelCase : int = initializer_range UpperCAmelCase : int = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase : Optional[Any] = positive_label_weight UpperCAmelCase : Union[str, Any] = num_aggregation_labels UpperCAmelCase : List[str] = aggregation_loss_weight UpperCAmelCase : str = use_answer_as_supervision UpperCAmelCase : int = answer_loss_importance UpperCAmelCase : Dict = use_normalized_answer_loss UpperCAmelCase : str = huber_loss_delta UpperCAmelCase : Union[str, Any] = temperature UpperCAmelCase : Optional[Any] = aggregation_temperature UpperCAmelCase : Optional[Any] = use_gumbel_for_cells UpperCAmelCase : Optional[Any] = use_gumbel_for_aggregation UpperCAmelCase : int = average_approximation_function UpperCAmelCase : Tuple = cell_selection_preference UpperCAmelCase : Dict = answer_loss_cutoff UpperCAmelCase : Optional[int] = max_num_rows UpperCAmelCase : Optional[int] = max_num_columns UpperCAmelCase : int = average_logits_per_cell UpperCAmelCase : Dict = select_one_column UpperCAmelCase : Optional[int] = allow_empty_column_selection UpperCAmelCase : Union[str, Any] = init_cell_selection_weights_to_zero UpperCAmelCase : str = reset_position_index_per_cell UpperCAmelCase : str = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase : Dict = aggregation_labels UpperCAmelCase : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , A ): UpperCAmelCase : Optional[int] = {int(A ): v for k, v in aggregation_labels.items()}
338
'''simple docstring''' import numpy as np class UpperCamelCase_ : def __init__( self ) -> int: UpperCAmelCase : str = (0, 0) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Any = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = 0 def __eq__( self , A ) -> Optional[Any]: return self.position == cell.position def _lowercase( self ) -> Tuple: print(self.position ) class UpperCamelCase_ : def __init__( self , A=(5, 5) ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = np.zeros(A ) UpperCAmelCase : int = world_size[0] UpperCAmelCase : List[str] = world_size[1] def _lowercase( self ) -> List[Any]: print(self.w ) def _lowercase( self , A ) -> Dict: UpperCAmelCase : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase : List[Any] = cell.position[0] UpperCAmelCase : Union[str, Any] = cell.position[1] UpperCAmelCase : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase : Any = current_x + n[0] UpperCAmelCase : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase : str = Cell() UpperCAmelCase : List[str] = (x, y) UpperCAmelCase : Dict = cell neighbours.append(A ) return neighbours def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Optional[int] = [] _open.append(_lowercase ) while _open: UpperCAmelCase : Any = np.argmin([n.f for n in _open] ) UpperCAmelCase : Optional[int] = _open[min_f] _closed.append(_open.pop(_lowercase ) ) if current == goal: break for n in world.get_neigbours(_lowercase ): for c in _closed: if c == n: continue UpperCAmelCase : List[str] = current.g + 1 UpperCAmelCase , UpperCAmelCase : List[str] = n.position UpperCAmelCase , UpperCAmelCase : Dict = goal.position UpperCAmelCase : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowercase ) UpperCAmelCase : Dict = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : List[str] = Gridworld() # Start position and goal a : Optional[int] = Cell() a : Optional[Any] = (0, 0) a : Optional[Any] = Cell() a : str = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : Any = 1 print(world.w)
338
1
'''simple docstring''' import itertools import math def _A (lowerCAmelCase__ :int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _A () -> List[str]: '''simple docstring''' _a = 2 while True: if is_prime(lowerCAmelCase__ ): yield num num += 1 def _A (lowerCAmelCase__ :int = 1_00_01 ) -> int: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , lowerCAmelCase__ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
168
'''simple docstring''' import math class a : def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: _a = 0.0 _a = 0.0 for i in range(len(__magic_name__ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> list[list[int | float]]: for i in range(len(__magic_name__ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _A () -> None: '''simple docstring''' _a = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _a = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _a = SelfOrganizingMap() _a = 3 _a = 0.5 for _ in range(lowerCAmelCase__ ): for j in range(len(lowerCAmelCase__ ) ): # training sample _a = training_samples[j] # Compute the winning vector _a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # Update the winning vector _a = self_organizing_map.update(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # classify test sample _a = [0, 0, 0, 1] _a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
168
1
import os def lowerCAmelCase_ ( ) -> Any: """simple docstring""" a__ : Optional[int] = os.path.join(os.path.dirname(_lowercase) , """num.txt""") with open(_lowercase) as file_hand: return str(sum(int(_lowercase) for line in file_hand))[:10] if __name__ == "__main__": print(solution())
266
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class snake_case__ (ctypes.Structure ): """simple docstring""" __lowerCAmelCase :Dict = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" if os.name == "nt": a__ : int = CursorInfo() a__ : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) a__ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) elif os.name == "posix": sys.stdout.write("""\033[?25l""") sys.stdout.flush() def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" if os.name == "nt": a__ : List[Any] = CursorInfo() a__ : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) a__ : Dict = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) elif os.name == "posix": sys.stdout.write("""\033[?25h""") sys.stdout.flush() @contextmanager def lowerCAmelCase_ ( ) -> Any: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
266
1
'''simple docstring''' from collections import namedtuple __lowercase = namedtuple('''from_to''', '''from_ to''') __lowercase = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 1_0_0_0), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.00_454, 264.172), '''cubicyard''': from_to(0.76_455, 1.30_795), '''cubicfoot''': from_to(0.028, 35.3_147), '''cup''': from_to(0.000_236_588, 4_226.75), } def snake_case__ ( _A: float , _A: str , _A: str ) -> float: '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + """, """.join(_A ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + """, """.join(_A ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
272
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def snake_case__ ( _A: jnp.ndarray , _A: int , _A: float = 1 , _A: float = 1 , _A: float = 1.0e4 , _A: bool = False , _A: float = 1.0 , ) -> jnp.ndarray: '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"Embedding dimension {embedding_dim} should be even" lowerCAmelCase = float(embedding_dim // 2 ) lowerCAmelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowerCAmelCase = min_timescale * jnp.exp(jnp.arange(_A , dtype=jnp.floataa ) * -log_timescale_increment ) lowerCAmelCase = jnp.expand_dims(_A , 1 ) * jnp.expand_dims(_A , 0 ) # scale embeddings lowerCAmelCase = scale * emb if flip_sin_to_cos: lowerCAmelCase = jnp.concatenate([jnp.cos(_A ), jnp.sin(_A )] , axis=1 ) else: lowerCAmelCase = jnp.concatenate([jnp.sin(_A ), jnp.cos(_A )] , axis=1 ) lowerCAmelCase = jnp.reshape(_A , [jnp.shape(_A )[0], embedding_dim] ) return signal class a__( nn.Module ): '''simple docstring''' UpperCAmelCase_ : int = 3_2 UpperCAmelCase_ : jnp.dtype = jnp.floataa @nn.compact def __call__( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""")(__lowerCAmelCase) lowerCAmelCase = nn.silu(__lowerCAmelCase) lowerCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""")(__lowerCAmelCase) return temb class a__( nn.Module ): '''simple docstring''' UpperCAmelCase_ : int = 3_2 UpperCAmelCase_ : bool = False UpperCAmelCase_ : float = 1 @nn.compact def __call__( self , __lowerCAmelCase): """simple docstring""" return get_sinusoidal_embeddings( __lowerCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift)
272
1
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} __lowerCAmelCase = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } __lowerCAmelCase = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Tuple = VOCAB_FILES_NAMES lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ['input_ids', 'attention_mask'] lowerCAmelCase : List[int] = [] def __init__( self : int ,_UpperCAmelCase : str ,_UpperCAmelCase : List[str]="<unk>" ,_UpperCAmelCase : str="<s>" ,_UpperCAmelCase : Any="</s>" ,_UpperCAmelCase : Any="<pad>" ,_UpperCAmelCase : Tuple="[SEP]" ,_UpperCAmelCase : int="[MASK]" ,_UpperCAmelCase : List[str]="[CLS]" ,_UpperCAmelCase : Optional[Dict[str, Any]] = None ,**_UpperCAmelCase : List[str] ,): _a : List[Any] = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else bos_token _a : Dict = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else eos_token _a : List[Any] = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else unk_token _a : List[str] = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else pad_token _a : Dict = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else cls_token _a : Optional[int] = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _a : Optional[Any] = AddedToken(_UpperCAmelCase ,lstrip=_UpperCAmelCase ,rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else mask_token _a : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase ,eos_token=_UpperCAmelCase ,unk_token=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,sep_token=_UpperCAmelCase ,mask_token=_UpperCAmelCase ,cls_token=_UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_UpperCAmelCase ,) _a : int = vocab_file _a : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) @property def __lowercase ( self : Union[str, Any] ): return self.sp_model.get_piece_size() def __lowercase ( self : str ): _a : Dict = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): _a : List[str] = self.__dict__.copy() _a : Union[str, Any] = None return state def __setstate__( self : List[Any] ,_UpperCAmelCase : Dict ): _a : List[str] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _a : Optional[Any] = {} _a : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : str ): return self.sp_model.encode(_UpperCAmelCase ,out_type=_UpperCAmelCase ) def __lowercase ( self : str ,_UpperCAmelCase : Any ): return self.sp_model.piece_to_id(_UpperCAmelCase ) def __lowercase ( self : List[Any] ,_UpperCAmelCase : Tuple ): _a : Tuple = self.sp_model.IdToPiece(_UpperCAmelCase ) return token def __lowercase ( self : Tuple ,_UpperCAmelCase : Optional[int] ): _a : Union[str, Any] = [] _a : int = '' _a : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCAmelCase ) + token _a : Dict = True _a : Tuple = [] else: current_sub_tokens.append(_UpperCAmelCase ) _a : List[str] = False out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def __lowercase ( self : List[Any] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : bool = False ,_UpperCAmelCase : bool = None ,_UpperCAmelCase : bool = True ,**_UpperCAmelCase : List[str] ,): _a : Optional[Any] = kwargs.pop('use_source_tokenizer' ,_UpperCAmelCase ) _a : List[Any] = self.convert_ids_to_tokens(_UpperCAmelCase ,skip_special_tokens=_UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _a : str = [] _a : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCAmelCase ) ) _a : Dict = [] sub_texts.append(_UpperCAmelCase ) else: current_sub_text.append(_UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _a : List[str] = re.sub(R' (\[(MASK|SEP)\])' ,R'\1' ,' '.join(_UpperCAmelCase ) ) else: _a : str = ''.join(_UpperCAmelCase ) _a : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _a : List[str] = self.clean_up_tokenization(_UpperCAmelCase ) return clean_text else: return text def __lowercase ( self : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : str = os.path.join( _UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase ,'wb' ) as fi: _a : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def __lowercase ( self : List[str] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : Any = [self.cls_token_id] _a : str = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __lowercase ( self : str ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ,_UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase ,token_ids_a=_UpperCAmelCase ,already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ): _a : Any = [self.sep_token_id] _a : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
107
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __lowerCAmelCase = pytest.mark.integration __lowerCAmelCase = {'''comet'''} __lowerCAmelCase = importlib.util.find_spec('''fairseq''') is not None __lowerCAmelCase = {'''code_eval'''} __lowerCAmelCase = os.name == '''nt''' __lowerCAmelCase = {'''bertscore''', '''frugalscore''', '''perplexity'''} __lowerCAmelCase = importlib.util.find_spec('''transformers''') is not None def __lowerCamelCase ( lowerCAmelCase_ ) -> Any: @wraps(lowerCAmelCase_ ) def wrapper(self , lowerCAmelCase_ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , lowerCAmelCase_ ) return wrapper def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]: @wraps(lowerCAmelCase_ ) def wrapper(self , lowerCAmelCase_ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , lowerCAmelCase_ ) return wrapper def __lowerCamelCase ( lowerCAmelCase_ ) -> int: @wraps(lowerCAmelCase_ ) def wrapper(self , lowerCAmelCase_ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , lowerCAmelCase_ ) return wrapper def __lowerCamelCase ( ) -> Tuple: _a : Optional[int] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) @local class __magic_name__ ( parameterized.TestCase ): lowerCAmelCase : List[str] = {} lowerCAmelCase : Optional[int] = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def __lowercase ( self : Dict ,_UpperCAmelCase : Optional[Any] ): _a : Tuple = '[...]' _a : Dict = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' ,_UpperCAmelCase ) ).module_path ) _a : Optional[int] = datasets.load.import_main_class(metric_module.__name__ ,dataset=_UpperCAmelCase ) # check parameters _a : Optional[int] = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_UpperCAmelCase ,metric_module.__name__ ): with self.use_local_metrics(): try: _a : Optional[int] = doctest.testmod(_UpperCAmelCase ,verbose=_UpperCAmelCase ,raise_on_error=_UpperCAmelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed ,0 ) self.assertGreater(results.attempted ,1 ) @slow def __lowercase ( self : Tuple ,_UpperCAmelCase : Dict ): _a : Tuple = '[...]' _a : Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' ,_UpperCAmelCase ) ).module_path ) # run doctest with self.use_local_metrics(): _a : int = doctest.testmod(_UpperCAmelCase ,verbose=_UpperCAmelCase ,raise_on_error=_UpperCAmelCase ) self.assertEqual(results.failed ,0 ) self.assertGreater(results.attempted ,1 ) @contextmanager def __lowercase ( self : List[Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : List[str] ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_UpperCAmelCase ): yield else: yield @contextmanager def __lowercase ( self : Optional[int] ): def load_local_metric(_UpperCAmelCase : Tuple ,*_UpperCAmelCase : Dict ,**_UpperCAmelCase : Tuple ): return load_metric(os.path.join('metrics' ,_UpperCAmelCase ) ,*_UpperCAmelCase ,**_UpperCAmelCase ) with patch('datasets.load_metric' ) as mock_load_metric: _a : Any = load_local_metric yield @classmethod def __lowercase ( cls : str ,_UpperCAmelCase : List[str] ): def wrapper(_UpperCAmelCase : int ): _a : Optional[Any] = contextmanager(_UpperCAmelCase ) _a : Optional[int] = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> List[str]: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class __magic_name__ ( _UpperCamelCase ): def __lowercase ( self : int ,_UpperCAmelCase : Union[str, Any] ): assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: _a : int = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]: import torch def bert_cos_score_idf(lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowerCAmelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: _a : Any = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Dict: def load_from_checkpoint(lowerCAmelCase_ ): class __magic_name__ : def __lowercase ( self : str ,_UpperCAmelCase : Dict ,*_UpperCAmelCase : int ,**_UpperCAmelCase : str ): assert len(_UpperCAmelCase ) == 2 _a : Dict = [0.19, 0.92] return scores, sum(_UpperCAmelCase ) / len(_UpperCAmelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: _a : Any = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: _a : Optional[Any] = load_from_checkpoint yield def __lowerCamelCase ( ) -> Tuple: _a : Dict = load_metric(os.path.join('metrics' , 'seqeval' ) ) _a : Optional[int] = 'ERROR' _a : Optional[Any] = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(lowerCAmelCase_ , match=re.escape(lowerCAmelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=lowerCAmelCase_ )
107
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( __snake_case ): def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=A_ , speech_processor=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , unet=A_ , scheduler=A_ , feature_extractor=A_ , ) def __UpperCamelCase( self , A_ = "auto" ): '''simple docstring''' if slice_size == "auto": UpperCamelCase : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A_ ) def __UpperCamelCase( self ): '''simple docstring''' self.enable_attention_slicing(A_ ) @torch.no_grad() def __call__( self , A_ , A_=1_6000 , A_ = 512 , A_ = 512 , A_ = 50 , A_ = 7.5 , A_ = None , A_ = 1 , A_ = 0.0 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , **A_ , ): '''simple docstring''' UpperCamelCase : Dict = self.speech_processor.feature_extractor( A_ , return_tensors="pt" , sampling_rate=A_ ).input_features.to(self.device ) UpperCamelCase : Union[str, Any] = self.speech_model.generate(A_ , max_length=48_0000 ) UpperCamelCase : List[str] = self.speech_processor.tokenizer.batch_decode(A_ , skip_special_tokens=A_ , normalize=A_ )[ 0 ] if isinstance(A_ , A_ ): UpperCamelCase : List[Any] = 1 elif isinstance(A_ , A_ ): UpperCamelCase : Tuple = len(A_ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(A_ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(A_ )}.""" ) # get prompt text embeddings UpperCamelCase : str = self.tokenizer( A_ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCamelCase : Any = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCamelCase : str = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase , UpperCamelCase , UpperCamelCase : int = text_embeddings.shape UpperCamelCase : Any = text_embeddings.repeat(1 , A_ , 1 ) UpperCamelCase : str = text_embeddings.view(bs_embed * num_images_per_prompt , A_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase : List[str] if negative_prompt is None: UpperCamelCase : Dict = [""] * batch_size elif type(A_ ) is not type(A_ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(A_ )} !=""" F""" {type(A_ )}.""" ) elif isinstance(A_ , A_ ): UpperCamelCase : Any = [negative_prompt] elif batch_size != len(A_ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(A_ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: UpperCamelCase : int = negative_prompt UpperCamelCase : str = text_input_ids.shape[-1] UpperCamelCase : Union[str, Any] = self.tokenizer( A_ , padding="max_length" , max_length=A_ , truncation=A_ , return_tensors="pt" , ) UpperCamelCase : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase : Tuple = uncond_embeddings.shape[1] UpperCamelCase : List[str] = uncond_embeddings.repeat(1 , A_ , 1 ) UpperCamelCase : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase : Tuple = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase : Optional[Any] = torch.randn(A_ , generator=A_ , device="cpu" , dtype=A_ ).to( self.device ) else: UpperCamelCase : Dict = torch.randn(A_ , generator=A_ , device=self.device , dtype=A_ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCamelCase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase : List[str] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase : Optional[Any] = {} if accepts_eta: UpperCamelCase : Tuple = eta for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : int = self.scheduler.scale_model_input(A_ , A_ ) # predict the noise residual UpperCamelCase : str = self.unet(A_ , A_ , encoder_hidden_states=A_ ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase : List[Any] = noise_pred.chunk(2 ) UpperCamelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : List[str] = self.scheduler.step(A_ , A_ , A_ , **A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase : List[str] = 1 / 0.1_82_15 * latents UpperCamelCase : List[str] = self.vae.decode(A_ ).sample UpperCamelCase : str = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase : Optional[Any] = self.numpy_to_pil(A_ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=A_ , nsfw_content_detected=A_ )
52
from __future__ import annotations import requests def A ( _SCREAMING_SNAKE_CASE ) -> dict: lowerCamelCase : Tuple = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_SCREAMING_SNAKE_CASE ).json() def A ( _SCREAMING_SNAKE_CASE = 10 ) -> list[dict]: lowerCamelCase : str = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" lowerCamelCase : Any = requests.get(_SCREAMING_SNAKE_CASE ).json()[:max_stories] return [get_hackernews_story(_SCREAMING_SNAKE_CASE ) for story_id in story_ids] def A ( _SCREAMING_SNAKE_CASE = 10 ) -> str: lowerCamelCase : str = hackernews_top_stories(_SCREAMING_SNAKE_CASE ) return "\n".join("* [{title}]({url})".format(**_SCREAMING_SNAKE_CASE ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
48
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __lowercase ): '''simple docstring''' __UpperCAmelCase : Any = (KDPMaDiscreteScheduler,) __UpperCAmelCase : Dict = 1_0 def __UpperCAmelCase ( self , **_a ): __a = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**UpperCAmelCase__ ) return config def __UpperCAmelCase ( self ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def __UpperCAmelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__ ) def __UpperCAmelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCAmelCase__ ) def __UpperCAmelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__ ) def __UpperCAmelCase ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __a = self.dummy_model() __a = self.dummy_sample_deter * scheduler.init_noise_sigma __a = sample.to(UpperCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __a = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) __a = model(UpperCAmelCase__ , UpperCAmelCase__ ) __a = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __a = output.prev_sample __a = torch.sum(torch.abs(UpperCAmelCase__ ) ) __a = torch.mean(torch.abs(UpperCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def __UpperCAmelCase ( self ): if torch_device == "mps": return __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __a = self.dummy_model() __a = self.dummy_sample_deter * scheduler.init_noise_sigma __a = sample.to(UpperCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __a = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) __a = model(UpperCAmelCase__ , UpperCAmelCase__ ) __a = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __a = output.prev_sample __a = torch.sum(torch.abs(UpperCAmelCase__ ) ) __a = torch.mean(torch.abs(UpperCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def __UpperCAmelCase ( self ): if torch_device == "mps": return __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase__ ) __a = self.dummy_model() __a = self.dummy_sample_deter.to(UpperCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __a = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) __a = model(UpperCAmelCase__ , UpperCAmelCase__ ) __a = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __a = output.prev_sample __a = torch.sum(torch.abs(UpperCAmelCase__ ) ) __a = torch.mean(torch.abs(UpperCAmelCase__ ) ) if str(UpperCAmelCase__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel A__ = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } A__ = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def _UpperCAmelCase ( snake_case , snake_case=False ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = create_model( """HTSAT-tiny""" , """roberta""" , snake_case , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=snake_case , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = {} _lowerCAmelCase = R""".*sequential.(\d+).*""" _lowerCAmelCase = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _lowerCAmelCase = key.replace(snake_case , snake_case ) if re.match(snake_case , snake_case ): # replace sequential layers with list _lowerCAmelCase = re.match(snake_case , snake_case ).group(1 ) _lowerCAmelCase = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(snake_case )//3}.linear.' ) elif re.match(snake_case , snake_case ): _lowerCAmelCase = int(re.match(snake_case , snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _lowerCAmelCase = 1 if projecton_layer == 0 else 2 _lowerCAmelCase = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value _lowerCAmelCase = value _lowerCAmelCase = mixed_qkv.size(0 ) // 3 _lowerCAmelCase = mixed_qkv[:qkv_dim] _lowerCAmelCase = mixed_qkv[qkv_dim : qkv_dim * 2] _lowerCAmelCase = mixed_qkv[qkv_dim * 2 :] _lowerCAmelCase = query_layer _lowerCAmelCase = key_layer _lowerCAmelCase = value_layer else: _lowerCAmelCase = value return model_state_dict def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case=False ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = init_clap(snake_case , enable_fusion=snake_case ) clap_model.eval() _lowerCAmelCase = clap_model.state_dict() _lowerCAmelCase = rename_state_dict(snake_case ) _lowerCAmelCase = ClapConfig() _lowerCAmelCase = enable_fusion _lowerCAmelCase = ClapModel(snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(snake_case , strict=snake_case ) model.save_pretrained(snake_case ) transformers_config.save_pretrained(snake_case ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") A__ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
82
def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = 1 for i in range(1 , num + 1 ): fact *= i return fact def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = 0 while number > 0: _lowerCAmelCase = number % 10 sum_of_digits += last_digit _lowerCAmelCase = number // 10 # Removing the last_digit from the given number return sum_of_digits def _UpperCAmelCase ( snake_case = 1_00 ): """simple docstring""" _lowerCAmelCase = factorial(snake_case ) _lowerCAmelCase = split_and_add(snake_case ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
82
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["image_processor", "tokenizer"] lowercase_ = "LayoutLMv2ImageProcessor" lowercase_ = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__(self : Any , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase_ , ) lowerCamelCase__: List[str] =kwargs.pop("feature_extractor") lowerCamelCase__: Optional[int] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def __call__(self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase_ : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase_ : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : int , ) ->BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True.") if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True.") if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.") # first, apply the image processor lowerCamelCase__: List[str] =self.image_processor(images=UpperCAmelCase_ , return_tensors=UpperCAmelCase_) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase__: Union[str, Any] =features["words"] lowerCamelCase__: int =self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) # add pixel values lowerCamelCase__: Dict =features.pop("pixel_values") if return_overflowing_tokens is True: lowerCamelCase__: Optional[int] =self.get_overflowing_images(UpperCAmelCase_ , encoded_inputs["overflow_to_sample_mapping"]) lowerCamelCase__: Tuple =images return encoded_inputs def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[int] =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F""" {len(UpperCAmelCase_)} and {len(UpperCAmelCase_)}""") return images_with_overflow def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict) ->Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : int) ->List[str]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Any: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase_ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase_ , ) return self.image_processor
364
def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if isinstance(__a , __a ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(__a , __a ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" lowerCamelCase__: Optional[int] =False if num < 0: lowerCamelCase__: Optional[Any] =True lowerCamelCase__: List[Any] =-num lowerCamelCase__: list[int] =[] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__a ) for e in binary ) return "0b" + "".join(str(__a ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
273
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __snake_case :Optional[Any] = '''src/transformers''' __snake_case :List[Any] = '''docs/source/en/tasks''' def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): with open(_UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a = f.readlines() # Find the start prompt. __a = 0 while not lines[start_index].startswith(_UpperCAmelCase ): start_index += 1 start_index += 1 __a = start_index while not lines[end_index].startswith(_UpperCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __snake_case :Dict = direct_transformers_import(TRANSFORMERS_PATH) __snake_case :List[str] = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __snake_case :Optional[int] = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def __snake_case ( _UpperCAmelCase ): __a = TASK_GUIDE_TO_MODELS[task_guide] __a = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_UpperCAmelCase , set() ) __a = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def __snake_case ( _UpperCAmelCase , _UpperCAmelCase=False ): __a , __a , __a , __a = _find_text_in_file( filename=os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) __a = get_model_list_for_task(_UpperCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ''' to fix this.''' ) if __name__ == "__main__": __snake_case :Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __snake_case :List[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
49
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __UpperCamelCase ( _A : List[str] , _A : Union[str, Any] , _A : Any , _A : Optional[int] ) ->List[str]: """simple docstring""" lowerCamelCase_ =s.rsplit(_A , _A ) return new.join(_A ) def __UpperCamelCase ( _A : List[Any] ) ->Dict: """simple docstring""" # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def __UpperCamelCase ( _A : str ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ ={} lowerCamelCase_ =["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase_ =key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowerCamelCase_ =key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowerCamelCase_ =rreplace(_A , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowerCamelCase_ =rreplace(_A , """.b""" , """.bias""" , 1 ) lowerCamelCase_ =value.float() return upgrade @torch.no_grad() def __UpperCamelCase ( _A : Optional[int] , _A : Union[str, Any] , _A : List[Any]=None , _A : Dict=True ) ->Optional[int]: """simple docstring""" from dall_e import Encoder lowerCamelCase_ =Encoder() if os.path.exists(_A ): lowerCamelCase_ =torch.load(_A ) else: lowerCamelCase_ =torch.hub.load_state_dict_from_url(_A ) if isinstance(_A , _A ): lowerCamelCase_ =ckpt.state_dict() encoder.load_state_dict(_A ) if config_path is not None: lowerCamelCase_ =FlavaImageCodebookConfig.from_pretrained(_A ) else: lowerCamelCase_ =FlavaImageCodebookConfig() lowerCamelCase_ =FlavaImageCodebook(_A ).eval() lowerCamelCase_ =encoder.state_dict() lowerCamelCase_ =upgrade_state_dict(_A ) hf_model.load_state_dict(_A ) lowerCamelCase_ =hf_model.state_dict() lowerCamelCase_ =count_parameters(_A ) lowerCamelCase_ =count_parameters(_A ) assert torch.allclose(_A , _A , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(_A ) else: return hf_state_dict if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __A : List[Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
154
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class UpperCAmelCase ( unittest.TestCase): _lowerCamelCase : List[Any] = MODEL_FOR_CAUSAL_LM_MAPPING _lowerCamelCase : Any = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt" ) # Using `do_sample=False` to force deterministic output UpperCamelCase__ = text_generator("This is a test", do_sample=a_ ) self.assertEqual( a_, [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], ) UpperCamelCase__ = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( a_, [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ], ) UpperCamelCase__ = text_generator("This is a test", do_sample=a_, num_return_sequences=2, return_tensors=a_ ) self.assertEqual( a_, [ {"generated_token_ids": ANY(a_ )}, {"generated_token_ids": ANY(a_ )}, ], ) UpperCamelCase__ = text_generator.model.config.eos_token_id UpperCamelCase__ = "<pad>" UpperCamelCase__ = text_generator( ["This is a test", "This is a second test"], do_sample=a_, num_return_sequences=2, batch_size=2, return_tensors=a_, ) self.assertEqual( a_, [ [ {"generated_token_ids": ANY(a_ )}, {"generated_token_ids": ANY(a_ )}, ], [ {"generated_token_ids": ANY(a_ )}, {"generated_token_ids": ANY(a_ )}, ], ], ) @require_tf def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf" ) # Using `do_sample=False` to force deterministic output UpperCamelCase__ = text_generator("This is a test", do_sample=a_ ) self.assertEqual( a_, [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], ) UpperCamelCase__ = text_generator(["This is a test", "This is a second test"], do_sample=a_ ) self.assertEqual( a_, [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ], ) def lowercase_ ( self : Union[str, Any], a_ : Optional[Any], a_ : Any, a_ : List[str] ): """simple docstring""" UpperCamelCase__ = TextGenerationPipeline(model=a_, tokenizer=a_ ) return text_generator, ["This is a test", "Another test"] def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = "Hello I believe in" UpperCamelCase__ = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2" ) UpperCamelCase__ = text_generator(a_ ) self.assertEqual( a_, [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}], ) UpperCamelCase__ = text_generator(a_, stop_sequence=" fe" ) self.assertEqual(a_, [{"generated_text": "Hello I believe in fe"}] ) def lowercase_ ( self : int, a_ : Dict, a_ : Optional[Any] ): """simple docstring""" UpperCamelCase__ = text_generator.model UpperCamelCase__ = text_generator.tokenizer UpperCamelCase__ = text_generator("This is a test" ) self.assertEqual(a_, [{"generated_text": ANY(a_ )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) UpperCamelCase__ = text_generator("This is a test", return_full_text=a_ ) self.assertEqual(a_, [{"generated_text": ANY(a_ )}] ) self.assertNotIn("This is a test", outputs[0]["generated_text"] ) UpperCamelCase__ = pipeline(task="text-generation", model=a_, tokenizer=a_, return_full_text=a_ ) UpperCamelCase__ = text_generator("This is a test" ) self.assertEqual(a_, [{"generated_text": ANY(a_ )}] ) self.assertNotIn("This is a test", outputs[0]["generated_text"] ) UpperCamelCase__ = text_generator("This is a test", return_full_text=a_ ) self.assertEqual(a_, [{"generated_text": ANY(a_ )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) UpperCamelCase__ = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=a_ ) self.assertEqual( a_, [ [{"generated_text": ANY(a_ )}, {"generated_text": ANY(a_ )}], [{"generated_text": ANY(a_ )}, {"generated_text": ANY(a_ )}], ], ) if text_generator.tokenizer.pad_token is not None: UpperCamelCase__ = text_generator( ["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=a_ ) self.assertEqual( a_, [ [{"generated_text": ANY(a_ )}, {"generated_text": ANY(a_ )}], [{"generated_text": ANY(a_ )}, {"generated_text": ANY(a_ )}], ], ) with self.assertRaises(a_ ): UpperCamelCase__ = text_generator("test", return_full_text=a_, return_text=a_ ) with self.assertRaises(a_ ): UpperCamelCase__ = text_generator("test", return_full_text=a_, return_tensors=a_ ) with self.assertRaises(a_ ): UpperCamelCase__ = text_generator("test", return_text=a_, return_tensors=a_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCamelCase__ = text_generator("" ) self.assertEqual(a_, [{"generated_text": ANY(a_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCamelCase__ = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCamelCase__ = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 500, max_new_tokens=20 ) UpperCamelCase__ = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(a_ ): text_generator( "This is a test" * 500, handle_long_generation="hole", max_new_tokens=tokenizer.model_max_length + 10, ) @require_torch @require_accelerate @require_torch_gpu def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch # Classic `model_kwargs` UpperCamelCase__ = pipeline( model="hf-internal-testing/tiny-random-bloom", model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa}, ) self.assertEqual(pipe.model.device, torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloataa ) UpperCamelCase__ = pipe("This is a test" ) self.assertEqual( a_, [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ], ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCamelCase__ = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device, torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloataa ) UpperCamelCase__ = pipe("This is a test" ) self.assertEqual( a_, [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ], ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCamelCase__ = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto" ) self.assertEqual(pipe.model.device, torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype, torch.floataa ) UpperCamelCase__ = pipe("This is a test" ) self.assertEqual( a_, [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ], ) @require_torch @require_torch_gpu def lowercase_ ( self : Tuple ): """simple docstring""" import torch UpperCamelCase__ = pipeline(model="hf-internal-testing/tiny-random-bloom", device=0, torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def lowercase_ ( self : Any ): """simple docstring""" import torch UpperCamelCase__ = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.floataa ) pipe("This is a test", do_sample=a_, top_p=0.5 ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = "Hello world" UpperCamelCase__ = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": UpperCamelCase__ = logging.get_logger("transformers.generation.tf_utils" ) else: UpperCamelCase__ = logging.get_logger("transformers.generation.utils" ) UpperCamelCase__ = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(a_ ) as cl: UpperCamelCase__ = text_generator(a_, max_length=10, max_new_tokens=1 ) self.assertIn(a_, cl.out ) # The user only sets one -> no warning with CaptureLogger(a_ ) as cl: UpperCamelCase__ = text_generator(a_, max_new_tokens=1 ) self.assertNotIn(a_, cl.out ) with CaptureLogger(a_ ) as cl: UpperCamelCase__ = text_generator(a_, max_length=10 ) self.assertNotIn(a_, cl.out )
360
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, a_ : VQModel, a_ : UNetaDModel, a_ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self : Union[str, Any], a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : float = 0.0, a_ : int = 50, a_ : Optional[str] = "pil", a_ : bool = True, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual UpperCamelCase__ = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ = self.vqvae.decode(a_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
31
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase : _a = 42 _a = None @staticmethod def A__ ( ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError def A__ ( self , lowerCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def A__ ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def A__ ( cls ) -> List[str]: '''simple docstring''' return F'''`pip install {cls.pip_package or cls.name}`''' class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = 'optuna' @staticmethod def A__ ( ) -> str: '''simple docstring''' return is_optuna_available() def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_optuna(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Optional[int]: '''simple docstring''' return default_hp_space_optuna(lowerCAmelCase ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = 'ray' _a = '\'ray[tune]\'' @staticmethod def A__ ( ) -> List[Any]: '''simple docstring''' return is_ray_available() def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) -> Tuple: '''simple docstring''' return run_hp_search_ray(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_ray(lowerCAmelCase ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = 'sigopt' @staticmethod def A__ ( ) -> Any: '''simple docstring''' return is_sigopt_available() def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) -> Any: '''simple docstring''' return run_hp_search_sigopt(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' return default_hp_space_sigopt(lowerCAmelCase ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = 'wandb' @staticmethod def A__ ( ) -> str: '''simple docstring''' return is_wandb_available() def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) -> List[str]: '''simple docstring''' return run_hp_search_wandb(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' return default_hp_space_wandb(lowerCAmelCase ) lowercase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def a ( ) -> List[str]: """simple docstring""" _lowercase =[backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__A ) > 0: _lowercase =available_backends[0].name if len(__A ) > 1: logger.info( F'''{len(__A )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
205
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase (__A , __A): """simple docstring""" _a = u for i in range(1 , __A): _a = temp * (u - i) return temp def lowerCAmelCase (): """simple docstring""" _a = int(input('''enter the numbers of values: ''')) _a = [] for _ in range(__A): y.append([]) for i in range(__A): for j in range(__A): y[i].append(__A) _a = 0 print('''enter the values of parameters in a list: ''') _a = list(map(__A , input().split())) print('''enter the values of corresponding parameters: ''') for i in range(__A): _a = float(input()) _a = int(input('''enter the value to interpolate: ''')) _a = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A): for j in range(n - i): _a = y[j + 1][i - 1] - y[j][i - 1] _a = y[0][0] for i in range(1 , __A): summ += (ucal(__A , __A) * y[0][i]) / math.factorial(__A) print(F'''the value at {value} is {summ}''') if __name__ == "__main__": main()
211
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCamelCase = { """roberta-base""": 512, """roberta-large""": 512, """roberta-large-mnli""": 512, """distilroberta-base""": 512, """roberta-base-openai-detector""": 512, """roberta-large-openai-detector""": 512, } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = RobertaTokenizer def __init__( self : List[str] , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[str]="replace" , _UpperCAmelCase : Tuple="<s>" , _UpperCAmelCase : Union[str, Any]="</s>" , _UpperCAmelCase : List[str]="</s>" , _UpperCAmelCase : Union[str, Any]="<s>" , _UpperCAmelCase : Union[str, Any]="<unk>" , _UpperCAmelCase : Dict="<pad>" , _UpperCAmelCase : List[str]="<mask>" , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _UpperCAmelCase ) != add_prefix_space: UpperCAmelCase_ = getattr(_UpperCAmelCase , pre_tok_state.pop("type" ) ) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**_UpperCAmelCase ) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = "post_processor" UpperCAmelCase_ = getattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) if tokenizer_component_instance: UpperCAmelCase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase_ = tuple(state["sep"] ) if "cls" in state: UpperCAmelCase_ = tuple(state["cls"] ) UpperCAmelCase_ = False if state.get("add_prefix_space" , _UpperCAmelCase ) != add_prefix_space: UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = True if state.get("trim_offsets" , _UpperCAmelCase ) != trim_offsets: UpperCAmelCase_ = trim_offsets UpperCAmelCase_ = True if changes_to_apply: UpperCAmelCase_ = getattr(_UpperCAmelCase , state.pop("type" ) ) UpperCAmelCase_ = component_class(**_UpperCAmelCase ) setattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) @property def lowercase__ ( self : int ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Tuple , _UpperCAmelCase : int ) -> str: '''simple docstring''' UpperCAmelCase_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else value UpperCAmelCase_ = value def lowercase__ ( self : List[Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : str ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase_ = kwargs.get("is_split_into_words" , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , *_UpperCAmelCase : Any , **_UpperCAmelCase : Optional[Any] ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase_ = kwargs.get("is_split_into_words" , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase_ = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any]=None ) -> int: '''simple docstring''' UpperCAmelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : Tuple , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
241
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCamelCase = """src/diffusers""" lowerCamelCase = """.""" # This is to make sure the diffusers module imported is the one in the repo. lowerCamelCase = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCamelCase = spec.loader.load_module() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return line.startswith(lowerCAmelCase__ ) or len(lowerCAmelCase__ ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , lowerCAmelCase__ ) is not None def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = object_name.split("." ) UpperCAmelCase_ = 0 # First let's find the module where our object lives. UpperCAmelCase_ = parts[i] while i < len(lowerCAmelCase__ ) and not os.path.isfile(os.path.join(lowerCAmelCase__ , f"""{module}.py""" ) ): i += 1 if i < len(lowerCAmelCase__ ): UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , parts[i] ) if i >= len(lowerCAmelCase__ ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(lowerCAmelCase__ , f"""{module}.py""" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ = f.readlines() # Now let's find the class / func in the code! UpperCAmelCase_ = "" UpperCAmelCase_ = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase__ ) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase__ ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCAmelCase_ = line_index while line_index < len(lowerCAmelCase__ ) and _should_continue(lines[line_index] , lowerCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase_ = lines[start_index:line_index] return "".join(lowerCAmelCase__ ) lowerCamelCase = re.compile(r"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") lowerCamelCase = re.compile(r"""^\s*(\S+)->(\S+)(\s+.*|$)""") lowerCamelCase = re.compile(r"""<FILL\s+[^>]*>""") def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = code.split("\n" ) UpperCAmelCase_ = 0 while idx < len(lowerCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase__ ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = len(get_indent(lowerCAmelCase__ ) ) > 0 if has_indent: UpperCAmelCase_ = f"""class Bla:\n{code}""" UpperCAmelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowerCAmelCase__ ) UpperCAmelCase_ = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = style_docstrings_in_code(lowerCAmelCase__ ) return result[len("class Bla:\n" ) :] if has_indent else result def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): with open(lowerCAmelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [] UpperCAmelCase_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase__ ): UpperCAmelCase_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = search.groups() UpperCAmelCase_ = find_code_in_diffusers(lowerCAmelCase__ ) UpperCAmelCase_ = get_indent(lowerCAmelCase__ ) UpperCAmelCase_ = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCAmelCase_ = theoretical_indent UpperCAmelCase_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCAmelCase_ = True while line_index < len(lowerCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase__ ): break UpperCAmelCase_ = lines[line_index] UpperCAmelCase_ = _should_continue(lowerCAmelCase__ , lowerCAmelCase__ ) and re.search(f"""^{indent}# End copy""" , lowerCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase_ = lines[start_index:line_index] UpperCAmelCase_ = "".join(lowerCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies UpperCAmelCase_ = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(lowerCAmelCase__ ) is None] UpperCAmelCase_ = "\n".join(lowerCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase__ ) > 0: UpperCAmelCase_ = replace_pattern.replace("with" , "" ).split("," ) UpperCAmelCase_ = [_re_replace_pattern.search(lowerCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = pattern.groups() UpperCAmelCase_ = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if option.strip() == "all-casing": UpperCAmelCase_ = re.sub(obja.lower() , obja.lower() , lowerCAmelCase__ ) UpperCAmelCase_ = re.sub(obja.upper() , obja.upper() , lowerCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCAmelCase_ = blackify(lines[start_index - 1] + theoretical_code ) UpperCAmelCase_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCAmelCase_ = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCAmelCase_ = start_index + 1 if overwrite and len(lowerCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowerCAmelCase__ ) return diffs def a__ ( lowerCAmelCase__ = False ): UpperCAmelCase_ = glob.glob(os.path.join(lowerCAmelCase__ , "**/*.py" ) , recursive=lowerCAmelCase__ ) UpperCAmelCase_ = [] for filename in all_files: UpperCAmelCase_ = is_copy_consistent(lowerCAmelCase__ , lowerCAmelCase__ ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(lowerCAmelCase__ ) > 0: UpperCAmelCase_ = "\n".join(lowerCAmelCase__ ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCamelCase = parser.parse_args() check_copies(args.fix_and_overwrite)
241
1
import requests lowerCAmelCase__ : Any ='''''' # <-- Put your OpenWeatherMap appid here! lowerCAmelCase__ : Tuple ='''https://api.openweathermap.org/data/2.5/''' def __lowercase ( a__ = "Chicago" , a__ = APPID ) -> dict: return requests.get(URL_BASE + 'weather' , params=locals() ).json() def __lowercase ( a__ = "Kolkata, India" , a__ = APPID ) -> dict: return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def __lowercase ( a__ = 55.68 , a__ = 12.57 , a__ = APPID ) -> dict: return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: lowerCAmelCase__ : List[Any] =input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
257
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCAmelCase__ : List[Any] =input('''Enter image url: ''').strip() print(F'''Downloading image from {url} ...''') lowerCAmelCase__ : int =BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image lowerCAmelCase__ : Union[str, Any] =soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] lowerCAmelCase__ : int =requests.get(image_url).content lowerCAmelCase__ : Optional[int] =F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, '''wb''') as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
257
1
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class a__ : _SCREAMING_SNAKE_CASE : Tuple = None def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) _lowercase : Optional[Any] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : Optional[int] = os.path.join(_UpperCamelCase , "feat_extract.json" ) feat_extract_first.to_json_file(_UpperCamelCase ) _lowercase : List[Any] = self.feature_extraction_class.from_json_file(_UpperCamelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : str = feat_extract_first.save_pretrained(_UpperCamelCase )[0] check_json_file_has_correct_format(_UpperCamelCase ) _lowercase : Any = self.feature_extraction_class.from_pretrained(_UpperCamelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = self.feature_extraction_class() self.assertIsNotNone(_UpperCamelCase )
199
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = IFImgaImgSuperResolutionPipeline _SCREAMING_SNAKE_CASE : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} _SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) _SCREAMING_SNAKE_CASE : Optional[int] = PipelineTesterMixin.required_optional_params - {'latents'} def _lowerCamelCase ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ): """simple docstring""" if str(_UpperCamelCase ).startswith("mps" ): _lowercase : Tuple = torch.manual_seed(_UpperCamelCase ) else: _lowercase : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _lowercase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _lowercase : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _lowercase : List[str] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCamelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowerCamelCase ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
199
1
import comet # From: unbabel-comet import torch import datasets _lowerCAmelCase : Union[str, Any] = datasets.logging.get_logger(__name__) _lowerCAmelCase : List[Any] = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' _lowerCAmelCase : Tuple = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' _lowerCAmelCase : Any = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence" ), "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :List[str] ): '''simple docstring''' if self.config_name == "default": A_ : Optional[Any] = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) ) else: A_ : Any = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Tuple , snake_case :Union[str, Any] , snake_case :Optional[Any] , snake_case :str=None , snake_case :str=False ): '''simple docstring''' if gpus is None: A_ : Tuple = 1 if torch.cuda.is_available() else 0 A_ : Tuple = {"src": sources, "mt": predictions, "ref": references} A_ : Union[str, Any] = [dict(zip(snake_case , snake_case ) ) for t in zip(*data.values() )] A_ , A_ : List[Any] = self.scorer.predict(snake_case , gpus=snake_case , progress_bar=snake_case ) return {"mean_score": mean_score, "scores": scores}
300
import numpy as np def a_ ( __lowercase : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
282
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : Optional[Any] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class UpperCamelCase_ ( a_ ): _A : str = 'lxmert' _A : Dict = {} def __init__( self , snake_case__=3_05_22 , snake_case__=7_68 , snake_case__=12 , snake_case__=95_00 , snake_case__=16_00 , snake_case__=4_00 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=5_12 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=9 , snake_case__=5 , snake_case__=5 , snake_case__=20_48 , snake_case__=4 , snake_case__=6.67 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , **snake_case__ , ) -> int: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = num_qa_labels UpperCAmelCase = num_object_labels UpperCAmelCase = num_attr_labels UpperCAmelCase = l_layers UpperCAmelCase = x_layers UpperCAmelCase = r_layers UpperCAmelCase = visual_feat_dim UpperCAmelCase = visual_pos_dim UpperCAmelCase = visual_loss_normalizer UpperCAmelCase = task_matched UpperCAmelCase = task_mask_lm UpperCAmelCase = task_obj_predict UpperCAmelCase = task_qa UpperCAmelCase = visual_obj_loss UpperCAmelCase = visual_attr_loss UpperCAmelCase = visual_feat_loss UpperCAmelCase = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**snake_case__ )
350
"""simple docstring""" def _lowerCAmelCase ( ): '''simple docstring''' return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
248
0
"""simple docstring""" from __future__ import annotations A: Dict = tuple[int, int, int] A: Optional[Any] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase A: List[str] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- A: str = "EGZWVONAHDCLFQMSIPJBYUKXTR" A: List[str] = "FOBHMDKEXQNRAULPGSJVTYICZW" A: Any = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- A: str = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- A: Dict = "RMDJXFUWGISLHVTCQNKYPBEZOA" A: Optional[int] = "SGLCPQWZHKXAREONTFBVIYJUDM" A: Optional[int] = "HVSICLTYKQUBXDWAJZOMFGPREN" A: List[str] = "RZWQHFMVDBKICJLNTUXAGYPSOE" A: Optional[int] = "LFKIJODBEGAMQPXVUHYSTCZRWN" A: Optional[Any] = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def _snake_case ( UpperCamelCase : RotorPositionT , UpperCamelCase : RotorSelectionT , UpperCamelCase : str ): # Checks if there are 3 unique rotors if (unique_rotsel := len(set(UpperCamelCase ) )) < 3: UpperCAmelCase : Union[str, Any] = F"Please use 3 unique rotors (not {unique_rotsel})" raise Exception(UpperCamelCase ) # Checks if rotor positions are valid UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = rotpos if not 0 < rotorposa <= len(UpperCamelCase ): UpperCAmelCase : Optional[Any] = F"First rotor position is not within range of 1..26 ({rotorposa}" raise ValueError(UpperCamelCase ) if not 0 < rotorposa <= len(UpperCamelCase ): UpperCAmelCase : List[Any] = F"Second rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(UpperCamelCase ) if not 0 < rotorposa <= len(UpperCamelCase ): UpperCAmelCase : List[Any] = F"Third rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(UpperCamelCase ) # Validates string and returns dict UpperCAmelCase : Optional[Any] = _plugboard(UpperCamelCase ) return rotpos, rotsel, pbdict def _snake_case ( UpperCamelCase : str ): # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : List[str] = F"Plugboard setting isn't type string ({type(UpperCamelCase )})" raise TypeError(UpperCamelCase ) elif len(UpperCamelCase ) % 2 != 0: UpperCAmelCase : Union[str, Any] = F"Odd number of symbols ({len(UpperCamelCase )})" raise Exception(UpperCamelCase ) elif pbstring == "": return {} pbstring.replace(""" """ , """""" ) # Checks if all characters are unique UpperCAmelCase : str = set() for i in pbstring: if i not in abc: UpperCAmelCase : str = F"'{i}' not in list of symbols" raise Exception(UpperCamelCase ) elif i in tmppbl: UpperCAmelCase : Dict = F"Duplicate symbol ({i})" raise Exception(UpperCamelCase ) else: tmppbl.add(UpperCamelCase ) del tmppbl # Created the dictionary UpperCAmelCase : Dict = {} for j in range(0 , len(UpperCamelCase ) - 1 , 2 ): UpperCAmelCase : Optional[int] = pbstring[j + 1] UpperCAmelCase : List[str] = pbstring[j] return pb def _snake_case ( UpperCamelCase : str , UpperCamelCase : RotorPositionT , UpperCamelCase : RotorSelectionT = (rotora, rotora, rotora) , UpperCamelCase : str = "" , ): UpperCAmelCase : Optional[int] = text.upper() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = _validator( UpperCamelCase , UpperCamelCase , plugb.upper() ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = rotor_position UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 UpperCAmelCase : int = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: UpperCAmelCase : Optional[int] = plugboard[symbol] # rotor ra -------------------------- UpperCAmelCase : List[str] = abc.index(UpperCamelCase ) + rotorposa UpperCAmelCase : Tuple = rotora[index % len(UpperCamelCase )] # rotor rb -------------------------- UpperCAmelCase : List[Any] = abc.index(UpperCamelCase ) + rotorposa UpperCAmelCase : Optional[int] = rotora[index % len(UpperCamelCase )] # rotor rc -------------------------- UpperCAmelCase : Dict = abc.index(UpperCamelCase ) + rotorposa UpperCAmelCase : Union[str, Any] = rotora[index % len(UpperCamelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher UpperCAmelCase : Union[str, Any] = reflector[symbol] # 2nd rotors UpperCAmelCase : str = abc[rotora.index(UpperCamelCase ) - rotorposa] UpperCAmelCase : int = abc[rotora.index(UpperCamelCase ) - rotorposa] UpperCAmelCase : Optional[Any] = abc[rotora.index(UpperCamelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: UpperCAmelCase : Any = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(UpperCamelCase ): UpperCAmelCase : Dict = 0 rotorposa += 1 if rotorposa >= len(UpperCamelCase ): UpperCAmelCase : Tuple = 0 rotorposa += 1 if rotorposa >= len(UpperCamelCase ): UpperCAmelCase : List[str] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(UpperCamelCase ) return "".join(UpperCamelCase ) if __name__ == "__main__": A: Dict = "This is my Python script that emulates the Enigma machine from WWII." A: Union[str, Any] = (1, 1, 1) A: int = "pictures" A: List[Any] = (rotora, rotora, rotora) A: Any = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
109
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: List[str] = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ ( unittest.TestCase ): def __init__( self , _A , _A=3 , _A=3_2 , _A=3 , _A=1_0 , _A=[1_0, 2_0, 3_0, 4_0] , _A=[1, 1, 2, 1] , _A=True , _A=True , _A="relu" , _A=3 , _A=None , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase__ ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase__ ) __lowerCAmelCase = model(lowerCAmelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase__ ) __lowerCAmelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class a__ ( a__ , unittest.TestCase ): _a : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _a : List[Any] = False _a : Tuple = False _a : Any = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase__ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" def check_hidden_states_output(_A , _A , _A ): __lowerCAmelCase = model_class(lowerCAmelCase__ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __lowerCAmelCase = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(_A , **_A ): return model(pixel_values=lowerCAmelCase__ , **lowerCAmelCase__ ) with self.subTest("JIT Enabled" ): __lowerCAmelCase = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( ): __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase__ , return_tensors="np" ) __lowerCAmelCase = model(**lowerCAmelCase__ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
363
from sklearn.metrics import mean_squared_error import datasets UpperCamelCase__ = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ UpperCamelCase__ = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ UpperCamelCase__ = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=None , _A="uniform_average" , _A=True ): """simple docstring""" __lowerCAmelCase = mean_squared_error( _A , _A , sample_weight=_A , multioutput=_A , squared=_A ) return {"mse": mse}
102
0
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def a ( __a="ro" , __a="en" , __a="wmt16" , __a=None ) -> None: '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) UpperCamelCase__ :int = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) UpperCamelCase__ :Tuple = datasets.load_dataset(__a , __a ) if save_dir is None: UpperCamelCase__ :Any = f'''{dataset}-{pair}''' UpperCamelCase__ :Dict = Path(__a ) save_dir.mkdir(exist_ok=__a ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets UpperCamelCase__ :Dict = '''val''' if split == '''validation''' else split UpperCamelCase__ :List[Any] = save_dir.joinpath(f'''{fn}.source''' ) UpperCamelCase__ :int = save_dir.joinpath(f'''{fn}.target''' ) UpperCamelCase__ :Union[str, Any] = src_path.open('''w+''' ) UpperCamelCase__ :Tuple = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): UpperCamelCase__ :Union[str, Any] = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
97
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = { '''nielsr/canine-s''': 2_048, } # Unicode defines 1,114,112 total “codepoints” _A = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _A = 0 _A = 0xe0_00 _A = 0xe0_01 _A = 0xe0_02 _A = 0xe0_03 _A = 0xe0_04 # Maps special codepoints to human-readable names. _A = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _A = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A ( __UpperCAmelCase ): __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=chr(UpperCamelCase__ ), UpperCamelCase__=False, UpperCamelCase__=2048, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else bos_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else eos_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else sep_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else cls_token lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else mask_token super().__init__( bos_token=UpperCamelCase__, eos_token=UpperCamelCase__, sep_token=UpperCamelCase__, cls_token=UpperCamelCase__, pad_token=UpperCamelCase__, mask_token=UpperCamelCase__, add_prefix_space=UpperCamelCase__, model_max_length=UpperCamelCase__, **UpperCamelCase__, ) # Creates a mapping for looking up the IDs of special symbols. lowerCAmelCase_ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowerCAmelCase_ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowerCAmelCase_ = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowerCAmelCase_ = UNICODE_VOCAB_SIZE lowerCAmelCase_ = len(self._special_codepoints ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._unicode_vocab_size def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return list(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" try: return ord(UpperCamelCase__ ) except TypeError: raise ValueError(f"invalid token: '{token}'" ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase__ ) except TypeError: raise ValueError(f"invalid id: {index}" ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return "".join(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] lowerCAmelCase_ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__, token_ids_a=UpperCamelCase__, already_has_special_tokens=UpperCamelCase__ ) lowerCAmelCase_ = [1] + ([0] * len(UpperCamelCase__ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase__ )) + [1] return result def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] lowerCAmelCase_ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" return ()
278
0
"""simple docstring""" import numpy as np def lowercase__ ( snake_case_ :np.ndarray ): return 1 / (1 + np.exp(-vector )) def lowercase__ ( snake_case_ :np.ndarray ): return vector * sigmoid(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
86
0
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __snake_case ( UpperCAmelCase_ : List[str] ): return getitem, k def __snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ): return setitem, k, v def __snake_case ( UpperCAmelCase_ : Optional[Any] ): return delitem, k def __snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : Optional[int] ): try: return fun(UpperCAmelCase_ , *UpperCAmelCase_ ), None except Exception as e: return None, e a_ : List[str] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a_ : int = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a_ : Tuple = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a_ : Optional[Any] = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a_ : int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ : List[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = HashMap(initial_block_size=4 ) lowerCamelCase_ = {} for _, (fun, *args) in enumerate(UpperCAmelCase_ ): lowerCamelCase_ ,lowerCamelCase_ = _run_operation(UpperCAmelCase_ , UpperCAmelCase_ , *UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ = _run_operation(UpperCAmelCase_ , UpperCAmelCase_ , *UpperCAmelCase_ ) assert my_res == py_res assert str(UpperCAmelCase_ ) == str(UpperCAmelCase_ ) assert set(UpperCAmelCase_ ) == set(UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) assert set(my.items() ) == set(py.items() ) def __snake_case ( ): def is_public(UpperCAmelCase_ : str ) -> bool: return not name.startswith("_" ) lowerCamelCase_ = {name for name in dir({} ) if is_public(UpperCAmelCase_ )} lowerCamelCase_ = {name for name in dir(HashMap() ) if is_public(UpperCAmelCase_ )} assert dict_public_names > hash_public_names
55
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): _A : str = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ): _A : Tuple = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )] if matches and all(UpperCamelCase__ ): return True return False def _UpperCAmelCase (UpperCamelCase__ : str ): def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ): for rule, replacement in rules: if _match(UpperCamelCase__ , UpperCamelCase__ ): return replacement return val return replace def _UpperCAmelCase (): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , UpperCamelCase__ )), (("transformer", "wte", "embedding"), P("mp" , UpperCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , UpperCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _UpperCAmelCase (UpperCamelCase__ : List[str] ): _A : int = _get_partition_rules() _A : Optional[int] = _replacement_rules(UpperCamelCase__ ) _A : Optional[int] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )} _A : List[str] = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase__ ) )
11
0
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __A = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') __A = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') __A = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: __A = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __A = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
350
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =1 _lowerCAmelCase =3 _lowerCAmelCase =(32, 32) _lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _lowerCAmelCase =unet.half() _lowerCAmelCase =text_encoder.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , ) _lowerCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
341
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCamelCase__ = ["bert-base-uncased", "bert-base-cased"] UpperCamelCase__ = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class A ( tf.keras.Model ): def __init__(self : List[Any] , __UpperCAmelCase : Any ) -> Any: """simple docstring""" super().__init__() UpperCAmelCase__ = tokenizer UpperCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = TFAutoModel.from_config(SCREAMING_SNAKE_CASE_ ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : List[Any] ) -> str: """simple docstring""" UpperCAmelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = self.bert(**SCREAMING_SNAKE_CASE_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class A ( unittest.TestCase ): def lowercase_ (self : List[str] ) -> Union[str, Any]: """simple docstring""" super().setUp() UpperCAmelCase__ = [ BertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCAmelCase__ = [TFBertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , use_fast_bert_tokenizer=SCREAMING_SNAKE_CASE_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase__ = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we\'re going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCAmelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowercase_ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors="tf" , padding="longest" ) UpperCAmelCase__ = tf_tokenizer(SCREAMING_SNAKE_CASE_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def lowercase_ (self : Optional[Any] ) -> List[str]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase__ = tf_tokenizer(self.paired_sentences ) UpperCAmelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def lowercase_ (self : int ) -> Tuple: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase__ = tf.function(SCREAMING_SNAKE_CASE_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase__ = tf.constant(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = compiled_tokenizer(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = tf_tokenizer(SCREAMING_SNAKE_CASE_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase_ (self : List[Any] ) -> List[str]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase__ = ModelToSave(tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase__ = Path(SCREAMING_SNAKE_CASE_ ) / "saved.model" model.save(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = tf.keras.models.load_model(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = loaded_model(SCREAMING_SNAKE_CASE_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
65
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : Optional[int] , __magic_name__ : int , __magic_name__ : int=13 , __magic_name__ : List[Any]=32 , __magic_name__ : int=2 , __magic_name__ : Any=3 , __magic_name__ : Optional[int]=16 , __magic_name__ : Any=[1, 2, 1] , __magic_name__ : Tuple=[2, 2, 4] , __magic_name__ : str=2 , __magic_name__ : List[Any]=2.0 , __magic_name__ : Any=True , __magic_name__ : List[Any]=0.0 , __magic_name__ : List[str]=0.0 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : int=False , __magic_name__ : List[Any]=True , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : str=1e-5 , __magic_name__ : List[str]=True , __magic_name__ : Optional[int]=None , __magic_name__ : Union[str, Any]=True , __magic_name__ : List[str]=10 , __magic_name__ : Tuple=8 , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = patch_norm SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = encoder_stride def __A ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def __A ( self : str ) -> Optional[int]: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = SwinvaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ = model(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : int ) -> List[str]: SCREAMING_SNAKE_CASE_ = SwinvaForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = SwinvaForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : str ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCamelCase__ = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : str ) -> int: SCREAMING_SNAKE_CASE_ = SwinvaModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) def __A ( self : Union[str, Any] ) -> Tuple: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def __A ( self : List[Any] ) -> int: pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def __A ( self : Any ) -> List[Any]: pass def __A ( self : Any ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self : int ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self : str ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ = outputs.attentions SCREAMING_SNAKE_CASE_ = len(self.model_tester.depths ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = config.window_size**2 SCREAMING_SNAKE_CASE_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) SCREAMING_SNAKE_CASE_ = len(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): SCREAMING_SNAKE_CASE_ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states SCREAMING_SNAKE_CASE_ = 2 self.assertEqual(out_len + added_hidden_states , len(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __A ( self : List[str] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ = outputs.hidden_states SCREAMING_SNAKE_CASE_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length SCREAMING_SNAKE_CASE_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) SCREAMING_SNAKE_CASE_ = outputs.reshaped_hidden_states self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = reshaped_hidden_states[0].shape SCREAMING_SNAKE_CASE_ = ( reshaped_hidden_states[0].view(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) def __A ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def __A ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def __A ( self : Optional[int] ) -> Tuple: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = SwinvaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : List[Any] ) -> Dict: return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def __A ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE_ = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_SCREAMING_SNAKE_CASE ) # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
355
from collections import deque class lowerCamelCase : """simple docstring""" def __init__( self : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> None: SCREAMING_SNAKE_CASE_ = process_name # process name SCREAMING_SNAKE_CASE_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time SCREAMING_SNAKE_CASE_ = arrival_time SCREAMING_SNAKE_CASE_ = burst_time # remaining burst time SCREAMING_SNAKE_CASE_ = 0 # total time of the process wait in ready queue SCREAMING_SNAKE_CASE_ = 0 # time from arrival time to completion time class lowerCamelCase : """simple docstring""" def __init__( self : Tuple , __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : deque[Process] , __magic_name__ : int , ) -> None: # total number of mlfq's queues SCREAMING_SNAKE_CASE_ = number_of_queues # time slice of queues that round robin algorithm applied SCREAMING_SNAKE_CASE_ = time_slices # unfinished process is in this ready_queue SCREAMING_SNAKE_CASE_ = queue # current time SCREAMING_SNAKE_CASE_ = current_time # finished process is in this sequence queue SCREAMING_SNAKE_CASE_ = deque() def __A ( self : Dict ) -> list[str]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __A ( self : Tuple , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __A ( self : str , __magic_name__ : deque[Process] ) -> list[int]: return [q.burst_time for q in queue] def __A ( self : Optional[Any] , __magic_name__ : Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __A ( self : Optional[Any] , __magic_name__ : deque[Process] ) -> deque[Process]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of finished process while len(__magic_name__ ) != 0: SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__magic_name__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 SCREAMING_SNAKE_CASE_ = 0 # set the process's turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # set the completion time SCREAMING_SNAKE_CASE_ = self.current_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __A ( self : Any , __magic_name__ : deque[Process] , __magic_name__ : int ) -> tuple[deque[Process], deque[Process]]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__magic_name__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time SCREAMING_SNAKE_CASE_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__magic_name__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished SCREAMING_SNAKE_CASE_ = 0 # set the finish time SCREAMING_SNAKE_CASE_ = self.current_time # update the process' turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __A ( self : Any ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A : Dict = Process("P1", 0, 53) A : str = Process("P2", 0, 17) A : List[Any] = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Dict = 3 A : Any = [17, 25] A : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) A : Union[str, Any] = Process("P1", 0, 53) A : Any = Process("P2", 0, 17) A : Dict = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Optional[int] = 3 A : int = [17, 25] A : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) A : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A : Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
305
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCAmelCase = ["""bert-base-uncased""", """bert-base-cased"""] UpperCAmelCase = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class A_ ( tf.keras.Model ): '''simple docstring''' def __init__( self , snake_case ): super().__init__() lowercase = tokenizer lowercase = AutoConfig.from_pretrained(snake_case ) lowercase = TFAutoModel.from_config(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.tokenizer(snake_case ) lowercase = self.bert(**snake_case ) return out["pooler_output"] @require_tf @require_tensorflow_text class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() lowercase = [ BertTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowercase = [TFBertTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case , use_fast_bert_tokenizer=snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] lowercase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowercase = tokenizer(snake_case , return_tensors='tf' , padding='longest' ) lowercase = tf_tokenizer(snake_case ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for tf_tokenizer in self.tf_tokenizers: lowercase = tf_tokenizer(self.paired_sentences ) lowercase = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for tf_tokenizer in self.tf_tokenizers: lowercase = tf.function(snake_case ) for test_inputs in (self.test_sentences, self.paired_sentences): lowercase = tf.constant(snake_case ) lowercase = compiled_tokenizer(snake_case ) lowercase = tf_tokenizer(snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for tf_tokenizer in self.tf_tokenizers: lowercase = ModelToSave(tokenizer=snake_case ) lowercase = tf.convert_to_tensor(self.test_sentences ) lowercase = model(snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase = Path(snake_case ) / "saved.model" model.save(snake_case ) lowercase = tf.keras.models.load_model(snake_case ) lowercase = loaded_model(snake_case ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
195
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __SCREAMING_SNAKE_CASE : Dict = get_logger(__name__) class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[str] , A : Optional[str] = None ): _UpperCAmelCase : Dict = ( os.path.join(A , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCAmelCase : Union[str, Any] = Extractor def _A ( self : Tuple , A : str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCAmelCase : Dict = os.path.abspath(A ) return os.path.join(self.extract_dir , hash_url_to_filename(A ) ) def _A ( self : int , A : str , A : bool ): return force_extract or ( not os.path.isfile(A ) and not (os.path.isdir(A ) and os.listdir(A )) ) def _A ( self : Optional[int] , A : str , A : bool = False ): _UpperCAmelCase : Union[str, Any] = self.extractor.infer_extractor_format(A ) if not extractor_format: return input_path _UpperCAmelCase : Optional[Any] = self._get_output_path(A ) if self._do_extract(A , A ): self.extractor.extract(A , A , A ) return output_path class lowerCamelCase_ (snake_case__ ): '''simple docstring''' @classmethod @abstractmethod def _A ( cls : str , A : Union[Path, str] , **A : Dict ): ... @staticmethod @abstractmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): ... class lowerCamelCase_ (snake_case__ , snake_case__ ): '''simple docstring''' __UpperCamelCase: List[bytes] = [] @staticmethod def _A ( A : Union[Path, str] , A : int ): with open(A , "rb" ) as f: return f.read(A ) @classmethod def _A ( cls : Any , A : Union[Path, str] , A : bytes = b"" ): if not magic_number: _UpperCAmelCase : Any = max(len(A ) for cls_magic_number in cls.magic_numbers ) try: _UpperCAmelCase : int = cls.read_magic_number(A , A ) except OSError: return False return any(magic_number.startswith(A ) for cls_magic_number in cls.magic_numbers ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' @classmethod def _A ( cls : str , A : Union[Path, str] , **A : List[Any] ): return tarfile.is_tarfile(A ) @staticmethod def _A ( A : Union[str, Any] , A : str ): def resolved(A : str ) -> str: return os.path.realpath(os.path.abspath(A ) ) def badpath(A : str , A : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(A , A ) ).startswith(A ) def badlink(A : str , A : str ) -> bool: # Links are interpreted relative to the directory containing the link _UpperCAmelCase : List[str] = resolved(os.path.join(A , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=A ) _UpperCAmelCase : Optional[int] = resolved(A ) for finfo in members: if badpath(finfo.name , A ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(A , A ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(A , A ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): os.makedirs(A , exist_ok=A ) _UpperCAmelCase : int = tarfile.open(A ) tar_file.extractall(A , members=TarExtractor.safemembers(A , A ) ) tar_file.close() class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Union[str, Any] = [b"\x1F\x8B"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): with gzip.open(A , "rb" ) as gzip_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def _A ( cls : Dict , A : Union[Path, str] , A : bytes = b"" ): if super().is_extractable(A , magic_number=A ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(A , "rb" ) as fp: _UpperCAmelCase : Tuple = _EndRecData(A ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCAmelCase : Dict = fp.read(A ) # CD is where we expect it to be if len(A ) == sizeCentralDir: _UpperCAmelCase : Any = struct.unpack(A , A ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): os.makedirs(A , exist_ok=A ) with zipfile.ZipFile(A , "r" ) as zip_file: zip_file.extractall(A ) zip_file.close() class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): with lzma.open(A ) as compressed_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(A , exist_ok=A ) _UpperCAmelCase : List[str] = rarfile.RarFile(A ) rf.extractall(A ) rf.close() class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = [b"\x28\xb5\x2F\xFD"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd _UpperCAmelCase : Optional[Any] = zstd.ZstdDecompressor() with open(A , "rb" ) as ifh, open(A , "wb" ) as ofh: dctx.copy_stream(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[Any] = [b"\x42\x5A\x68"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): with bza.open(A , "rb" ) as compressed_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(A , exist_ok=A ) with pyazr.SevenZipFile(A , "r" ) as archive: archive.extractall(A ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = [b"\x04\x22\x4D\x18"] @staticmethod def _A ( A : Union[Path, str] , A : Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(A , "rb" ) as compressed_file: with open(A , "wb" ) as extracted_file: shutil.copyfileobj(A , A ) class lowerCamelCase_ : '''simple docstring''' __UpperCamelCase: Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _A ( cls : List[Any] ): return max( len(A ) for extractor in cls.extractors.values() if issubclass(A , A ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _A ( A : Union[Path, str] , A : int ): try: return MagicNumberBaseExtractor.read_magic_number(A , magic_number_length=A ) except OSError: return b"" @classmethod def _A ( cls : Optional[Any] , A : Union[Path, str] , A : bool = False ): warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead." , category=A , ) _UpperCAmelCase : Union[str, Any] = cls.infer_extractor_format(A ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _A ( cls : Dict , A : Union[Path, str] ): # <Added version="2.4.0"/> _UpperCAmelCase : Optional[int] = cls._get_magic_number_max_length() _UpperCAmelCase : str = cls._read_magic_number(A , A ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(A , magic_number=A ): return extractor_format @classmethod def _A ( cls : List[str] , A : Union[Path, str] , A : Union[Path, str] , A : Optional[str] = None , A : Optional[BaseExtractor] = "deprecated" , ): os.makedirs(os.path.dirname(A ) , exist_ok=A ) # Prevent parallel extractions _UpperCAmelCase : Tuple = str(Path(A ).with_suffix(".lock" ) ) with FileLock(A ): shutil.rmtree(A , ignore_errors=A ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(A , A ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead." , category=A , ) _UpperCAmelCase : Tuple = extractor if extractor != "deprecated" else extractor_format else: _UpperCAmelCase : Tuple = cls.extractors[extractor_format] return extractor.extract(A , A ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0." , category=A , ) for extractor in cls.extractors.values(): if extractor.is_extractable(A ): return extractor.extract(A , A )
31
0
__lowerCAmelCase = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
356
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __lowerCAmelCase = logging.getLogger(__name__) def snake_case_ ( snake_case , snake_case ) -> Optional[int]: lowercase__: Optional[int] = np.argmax(snake_case , axis=1 ) return np.sum(outputs == labels ) def snake_case_ ( snake_case ) -> Dict: with open(snake_case , encoding='utf_8' ) as f: lowercase__: str = csv.reader(snake_case ) lowercase__: int = [] next(snake_case ) # skip the first line for line in tqdm(snake_case ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def snake_case_ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Tuple: lowercase__: List[Any] = [] for dataset in encoded_datasets: lowercase__: Dict = len(snake_case ) lowercase__: int = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowercase__: int = np.zeros((n_batch, 2) , dtype=np.intaa ) lowercase__: Optional[int] = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) lowercase__: Optional[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(snake_case ): lowercase__: List[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase__: List[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase__: Union[str, Any] = with_conta lowercase__: List[Any] = with_conta lowercase__: Any = len(snake_case ) - 1 lowercase__: Dict = len(snake_case ) - 1 lowercase__: Optional[Any] = with_conta lowercase__: Tuple = with_conta lowercase__: int = mc_label lowercase__: Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(snake_case ) for t in all_inputs ) ) return tensor_datasets def snake_case_ ( ) -> Union[str, Any]: lowercase__: Optional[Any] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=snake_case , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=snake_case , type=snake_case , required=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=snake_case , default='' ) parser.add_argument('--eval_dataset' , type=snake_case , default='' ) parser.add_argument('--seed' , type=snake_case , default=42 ) parser.add_argument('--num_train_epochs' , type=snake_case , default=3 ) parser.add_argument('--train_batch_size' , type=snake_case , default=8 ) parser.add_argument('--eval_batch_size' , type=snake_case , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=snake_case , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=snake_case , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=snake_case , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=snake_case , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=snake_case , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=snake_case , default=0.0_1 ) parser.add_argument('--lm_coef' , type=snake_case , default=0.9 ) parser.add_argument('--n_valid' , type=snake_case , default=3_74 ) parser.add_argument('--server_ip' , type=snake_case , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=snake_case , default='' , help='Can be used for distant debugging.' ) lowercase__: List[str] = parser.parse_args() print(snake_case ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowercase__: Any = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowercase__: Tuple = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(snake_case , snake_case ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowercase__: Any = ['_start_', '_delimiter_', '_classify_'] lowercase__: Any = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(snake_case ) lowercase__: int = tokenizer.convert_tokens_to_ids(snake_case ) lowercase__: int = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(snake_case ) ) model.to(snake_case ) # Load and encode the datasets def tokenize_and_encode(snake_case ): if isinstance(snake_case , snake_case ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(snake_case ) ) elif isinstance(snake_case , snake_case ): return obj return [tokenize_and_encode(snake_case ) for o in obj] logger.info('Encoding dataset...' ) lowercase__: Dict = load_rocstories_dataset(args.train_dataset ) lowercase__: Dict = load_rocstories_dataset(args.eval_dataset ) lowercase__: str = (train_dataset, eval_dataset) lowercase__: Any = tokenize_and_encode(snake_case ) # Compute the max input length for the Transformer lowercase__: Optional[Any] = model.config.n_positions // 2 - 2 lowercase__: Optional[int] = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowercase__: List[str] = min(snake_case , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowercase__: str = pre_process_datasets(snake_case , snake_case , snake_case , *snake_case ) lowercase__ , lowercase__: Optional[Any] = tensor_datasets[0], tensor_datasets[1] lowercase__: List[str] = TensorDataset(*snake_case ) lowercase__: Dict = RandomSampler(snake_case ) lowercase__: Optional[int] = DataLoader(snake_case , sampler=snake_case , batch_size=args.train_batch_size ) lowercase__: str = TensorDataset(*snake_case ) lowercase__: str = SequentialSampler(snake_case ) lowercase__: Optional[Any] = DataLoader(snake_case , sampler=snake_case , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowercase__: Union[str, Any] = args.max_steps lowercase__: Tuple = args.max_steps // (len(snake_case ) // args.gradient_accumulation_steps) + 1 else: lowercase__: Optional[Any] = len(snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs lowercase__: str = list(model.named_parameters() ) lowercase__: Any = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowercase__: str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowercase__: Tuple = AdamW(snake_case , lr=args.learning_rate , eps=args.adam_epsilon ) lowercase__: Tuple = get_linear_schedule_with_warmup( snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=snake_case ) if args.do_train: lowercase__ , lowercase__ , lowercase__: int = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowercase__: str = 0 lowercase__: Optional[Any] = 0 lowercase__: List[Any] = tqdm(snake_case , desc='Training' ) for step, batch in enumerate(snake_case ): lowercase__: Union[str, Any] = tuple(t.to(snake_case ) for t in batch ) lowercase__ , lowercase__ , lowercase__ , lowercase__: List[Any] = batch lowercase__: List[str] = model(snake_case , mc_token_ids=snake_case , lm_labels=snake_case , mc_labels=snake_case ) lowercase__: Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowercase__: Union[str, Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowercase__: Tuple = 'Training loss: {:.2e} lr: {:.2e}'.format(snake_case , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowercase__: Any = model.module if hasattr(snake_case , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowercase__: Tuple = os.path.join(args.output_dir , snake_case ) lowercase__: List[str] = os.path.join(args.output_dir , snake_case ) torch.save(model_to_save.state_dict() , snake_case ) model_to_save.config.to_json_file(snake_case ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowercase__: Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowercase__: Any = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(snake_case ) if args.do_eval: model.eval() lowercase__ , lowercase__: Optional[Any] = 0, 0 lowercase__ , lowercase__: List[Any] = 0, 0 for batch in tqdm(snake_case , desc='Evaluating' ): lowercase__: str = tuple(t.to(snake_case ) for t in batch ) lowercase__ , lowercase__ , lowercase__ , lowercase__: Union[str, Any] = batch with torch.no_grad(): lowercase__ , lowercase__ , lowercase__ , lowercase__: Any = model( snake_case , mc_token_ids=snake_case , lm_labels=snake_case , mc_labels=snake_case ) lowercase__: Dict = mc_logits.detach().cpu().numpy() lowercase__: Tuple = mc_labels.to('cpu' ).numpy() lowercase__: Dict = accuracy(snake_case , snake_case ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowercase__: Optional[int] = eval_loss / nb_eval_steps lowercase__: Optional[int] = eval_accuracy / nb_eval_examples lowercase__: int = tr_loss / nb_tr_steps if args.do_train else None lowercase__: Optional[Any] = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowercase__: Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(snake_case , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , snake_case , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
288
0
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
241
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def __lowerCamelCase ( __UpperCamelCase ) -> str: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) lowerCAmelCase_ : str = precision lowerCAmelCase_ : Tuple = ceil(precision / 14 ) lowerCAmelCase_ : Optional[int] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Any = 13591409 lowerCAmelCase_ : List[str] = Decimal(__UpperCamelCase ) for k in range(1 , __UpperCamelCase ): lowerCAmelCase_ : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(__UpperCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowercase__ = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
241
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "vivit" def __init__( self : str , __lowerCamelCase : List[Any]=224 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Tuple=[2, 16, 16] , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Optional[Any]=768 , __lowerCamelCase : Any=12 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Any="gelu_fast" , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : int=0.0 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Any=1e-06 , __lowerCamelCase : Dict=True , **__lowerCamelCase : Any , ) -> List[str]: SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = num_frames SCREAMING_SNAKE_CASE__ = tubelet_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = qkv_bias super().__init__(**__lowerCamelCase )
218
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) _SCREAMING_SNAKE_CASE : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCAmelCase_ ( _A ): '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE__ = model_type_to_module_name(_A ) SCREAMING_SNAKE_CASE__ = importlib.import_module(F'''.{module_name}''' , '''transformers.models''' ) try: return getattr(_A , _A ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_A , '''__name__''' , _A ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE__ = importlib.import_module('''transformers''' ) if hasattr(_A , _A ): return getattr(_A , _A ) return None def UpperCAmelCase_ ( _A , _A = None , _A = False , _A = False , _A = None , _A = None , _A = None , _A = False , **_A , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_file_from_repo( _A , _A , cache_dir=_A , force_download=_A , resume_download=_A , proxies=_A , use_auth_token=_A , revision=_A , local_files_only=_A , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(_A , encoding='''utf-8''' ) as reader: return json.load(_A ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[Any] ) -> int: raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__lowerCamelCase ) def lowercase_ ( cls : Optional[int] , __lowerCamelCase : Any , **__lowerCamelCase : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ = kwargs.pop('''config''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''trust_remote_code''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = ImageProcessingMixin.get_image_processor_dict(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = config_dict.get('''image_processor_type''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE__ = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: SCREAMING_SNAKE_CASE__ = config_dict.pop('''feature_extractor_type''' , __lowerCamelCase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) SCREAMING_SNAKE_CASE__ = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE__ = config_dict['''auto_map''']['''AutoFeatureExtractor'''] SCREAMING_SNAKE_CASE__ = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # It could be in `config.image_processor_type`` SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , '''image_processor_type''' , __lowerCamelCase ) if hasattr(__lowerCamelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: SCREAMING_SNAKE_CASE__ = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: SCREAMING_SNAKE_CASE__ = image_processor_class_from_name(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processor_auto_map is not None SCREAMING_SNAKE_CASE__ = image_processor_class is not None or type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING SCREAMING_SNAKE_CASE__ = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE__ = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''code_revision''' , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: SCREAMING_SNAKE_CASE__ = IMAGE_PROCESSOR_MAPPING[type(__lowerCamelCase )] return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowercase_ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ) -> str: IMAGE_PROCESSOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase )
218
1
from sklearn.metrics import matthews_corrcoef import datasets __A = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' __A = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' __A = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> str: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(_A , _A , sample_weight=_A ) ), }
90
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ : Any = logging.get_logger(__name__) class _UpperCAmelCase ( __a): __a : Optional[Any] = ["""pixel_values"""] def __init__( self , _A = True , _A = None , _A = PILImageResampling.BICUBIC , _A = True , _A = None , _A = True , _A = 1 / 2_55 , _A = True , _A = IMAGENET_DEFAULT_MEAN , _A = IMAGENET_DEFAULT_STD , **_A , ) -> None: '''simple docstring''' super().__init__(**_A ) _UpperCAmelCase : List[Any] = size if size is not None else {"""shortest_edge""": 2_24} _UpperCAmelCase : Optional[Any] = get_size_dict(_A , default_to_square=_A ) _UpperCAmelCase : int = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} _UpperCAmelCase : List[Any] = get_size_dict(_A , param_name="""crop_size""" ) _UpperCAmelCase : Any = do_resize _UpperCAmelCase : Optional[int] = size _UpperCAmelCase : List[str] = resample _UpperCAmelCase : Optional[Any] = do_center_crop _UpperCAmelCase : int = crop_size _UpperCAmelCase : Optional[int] = do_rescale _UpperCAmelCase : Optional[int] = rescale_factor _UpperCAmelCase : Any = do_normalize _UpperCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __snake_case ( self , _A , _A , _A = PILImageResampling.BICUBIC , _A = None , **_A , ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = get_size_dict(_A , default_to_square=_A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _UpperCAmelCase : Any = int((2_56 / 2_24) * size["""shortest_edge"""] ) _UpperCAmelCase : Tuple = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) _UpperCAmelCase : Tuple = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _A , size=(size_dict["""height"""], size_dict["""width"""]) , resample=_A , data_format=_A , **_A ) def __snake_case ( self , _A , _A , _A = None , **_A , ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase : List[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_A , size=(size["""height"""], size["""width"""]) , data_format=_A , **_A ) def __snake_case ( self , _A , _A , _A = None , **_A , ) -> np.ndarray: '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def __snake_case ( self , _A , _A , _A , _A = None , **_A , ) -> np.ndarray: '''simple docstring''' return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __snake_case ( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = ChannelDimension.FIRST , **_A , ) -> BatchFeature: '''simple docstring''' _UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Union[str, Any] = resample if resample is not None else self.resample _UpperCAmelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCAmelCase : Tuple = size if size is not None else self.size _UpperCAmelCase : int = get_size_dict(_A , default_to_square=_A ) _UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : Union[str, Any] = get_size_dict(_A , param_name="""crop_size""" ) _UpperCAmelCase : Optional[int] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase : Any = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCAmelCase : Optional[Any] = [self.resize(_A , _A , _A ) for image in images] if do_center_crop: _UpperCAmelCase : Optional[int] = [self.center_crop(_A , _A ) for image in images] if do_rescale: _UpperCAmelCase : Tuple = [self.rescale(_A , _A ) for image in images] if do_normalize: _UpperCAmelCase : List[Any] = [self.normalize(_A , _A , _A ) for image in images] _UpperCAmelCase : Dict = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCAmelCase : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_A , tensor_type=_A )
246
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _snake_case : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case : Any = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=8 ): __snake_case : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __snake_case : List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a (__a ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : DDPMScheduler , lowerCamelCase : VQModel , ) -> str: super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) __snake_case : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : Tuple ) -> List[Any]: if latents is None: __snake_case : Optional[Any] = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __snake_case : str = latents.to(a__ ) __snake_case : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def __snake_case ( self : int , lowerCamelCase : Optional[Any]=0 ) -> List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) __snake_case : Optional[Any] = torch.device(F'cuda:{gpu_id}' ) __snake_case : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __snake_case ( self : Dict , lowerCamelCase : List[Any]=0 ) -> List[str]: if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) __snake_case : str = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __snake_case : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __snake_case , __snake_case : Tuple = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. __snake_case : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case ( self : Tuple ) -> int: if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self : int , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : torch.FloatTensor , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 100 , lowerCamelCase : float = 4.0 , lowerCamelCase : int = 1 , lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , ) -> int: __snake_case : Any = self._execution_device __snake_case : Optional[int] = guidance_scale > 1.0 if isinstance(a__ , a__ ): __snake_case : List[Any] = torch.cat(a__ , dim=0 ) if isinstance(a__ , a__ ): __snake_case : Any = torch.cat(a__ , dim=0 ) if isinstance(a__ , a__ ): __snake_case : Union[str, Any] = torch.cat(a__ , dim=0 ) __snake_case : List[str] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __snake_case : str = image_embeds.repeat_interleave(a__ , dim=0 ) __snake_case : int = negative_image_embeds.repeat_interleave(a__ , dim=0 ) __snake_case : Dict = hint.repeat_interleave(a__ , dim=0 ) __snake_case : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) __snake_case : List[str] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) self.scheduler.set_timesteps(a__ , device=a__ ) __snake_case : Dict = self.scheduler.timesteps __snake_case : Dict = self.movq.config.latent_channels __snake_case , __snake_case : Union[str, Any] = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) # create initial latent __snake_case : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , a__ , a__ , a__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Any = {"image_embeds": image_embeds, "hint": hint} __snake_case : int = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: __snake_case , __snake_case : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) __snake_case , __snake_case : Optional[int] = noise_pred.chunk(2 ) __snake_case , __snake_case : List[str] = variance_pred.chunk(2 ) __snake_case : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __snake_case : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __snake_case , __snake_case : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing __snake_case : Tuple = self.movq.decode(a__ , force_not_quantize=a__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __snake_case : Union[str, Any] = image * 0.5 + 0.5 __snake_case : str = image.clamp(0 , 1 ) __snake_case : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : int = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
360
import logging from transformers.configuration_utils import PretrainedConfig _snake_case : Optional[Any] = logging.getLogger(__name__) class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Tuple = "masked_bert" def __init__( self : Optional[int] , lowerCamelCase : Any=30522 , lowerCamelCase : Tuple=768 , lowerCamelCase : str=12 , lowerCamelCase : Dict=12 , lowerCamelCase : List[str]=3072 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : Any=0.1 , lowerCamelCase : Any=0.1 , lowerCamelCase : List[Any]=512 , lowerCamelCase : int=2 , lowerCamelCase : str=0.02 , lowerCamelCase : List[str]=1E-12 , lowerCamelCase : Any=0 , lowerCamelCase : Dict="topK" , lowerCamelCase : List[Any]="constant" , lowerCamelCase : Dict=0.0 , **lowerCamelCase : List[Any] , ) -> Dict: super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) __snake_case : Optional[Any] = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : str = intermediate_size __snake_case : Tuple = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[str] = max_position_embeddings __snake_case : Union[str, Any] = type_vocab_size __snake_case : Any = initializer_range __snake_case : str = layer_norm_eps __snake_case : str = pruning_method __snake_case : int = mask_init __snake_case : Any = mask_scale
134
0
import pytest import datasets # Import fixture modules as plugins a__ : Tuple = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def UpperCAmelCase_( a__ , a__ ): """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def UpperCAmelCase_( a__ ): """simple docstring""" config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=a__ ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = tmp_path_factory.getbasetemp() / '''cache''' SCREAMING_SNAKE_CASE : int = test_hf_cache_home / '''datasets''' SCREAMING_SNAKE_CASE : List[str] = test_hf_cache_home / '''metrics''' SCREAMING_SNAKE_CASE : Union[str, Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(a__ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(a__ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(a__ ) ) SCREAMING_SNAKE_CASE : int = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(a__ ) ) SCREAMING_SNAKE_CASE : Dict = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(a__ ) ) @pytest.fixture(autouse=a__ , scope='''session''' ) def UpperCAmelCase_( ): """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , a__ ) @pytest.fixture def UpperCAmelCase_( a__ ): """simple docstring""" monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , a__ )
313
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = KandinskyImgaImgPipeline __SCREAMING_SNAKE_CASE : str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] __SCREAMING_SNAKE_CASE : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] __SCREAMING_SNAKE_CASE : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->int: return 32 @property def __lowerCAmelCase ( self ) ->List[str]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Tuple: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 100 @property def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Dict = MultilingualCLIP(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ) ->Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : str = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Dict = pipeline( _lowerCamelCase , image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=64 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> Any: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope lowercase_ = vocab_size - 1 def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = self.get_config() return config, input_ids, input_mask, token_labels def A__ ( self ) -> List[Any]: '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.prepare_config_and_inputs() lowercase_ = True return config, input_ids, input_mask, token_labels def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = GPTNeoXModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = True lowercase_ = GPTNeoXModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = GPTNeoXForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.num_labels lowercase_ = GPTNeoXForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.num_labels lowercase_ = GPTNeoXForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = self.num_labels lowercase_ = GPTNeoXForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = True lowercase_ = GPTNeoXForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() # first forward pass lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase ) lowercase_ = output_from_no_past["hidden_states"][0] lowercase_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )["hidden_states"][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCAmelCase__ = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = GPTNeoXModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=64 , num_attention_heads=8 ) def A__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> int: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ = None self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def A__ ( self ) -> Optional[int]: '''simple docstring''' pass @parameterized.expand([("linear",), ("dynamic",)] ) def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = GPTNeoXModel(UpperCAmelCase ) original_model.to(UpperCAmelCase ) original_model.eval() lowercase_ = original_model(UpperCAmelCase ).last_hidden_state lowercase_ = original_model(UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"type": scaling_type, "factor": 10.0} lowercase_ = GPTNeoXModel(UpperCAmelCase ) scaled_model.to(UpperCAmelCase ) scaled_model.eval() lowercase_ = scaled_model(UpperCAmelCase ).last_hidden_state lowercase_ = scaled_model(UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: lowercase_ = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(UpperCAmelCase ) lowercase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(UpperCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowercase_ = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" lowercase_ = model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=20 ) lowercase_ = tokenizer.batch_decode(UpperCAmelCase )[0] self.assertEqual(UpperCAmelCase , UpperCAmelCase )
353
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """RUCAIBox/mvp""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = MvpTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = "post_processor" lowercase_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["sep"] ) if "cls" in state: lowercase_ = tuple(state["cls"] ) lowercase_ = False if state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("trim_offsets" , UpperCAmelCase ) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(UpperCAmelCase , state.pop("type" ) ) lowercase_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value lowercase_ = value def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: '''simple docstring''' lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
297
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case : Tuple ={ 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] =[ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] __snake_case : Optional[int] =[ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] __snake_case : Optional[int] =[ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): __snake_case : Union[str, Any] =[ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __snake_case : Optional[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
129
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =(DPMSolverSDEScheduler,) snake_case_ =10 def lowerCAmelCase__ (self ,**__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[str] = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__lowerCamelCase ) return config def lowerCAmelCase__ (self ) -> int: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] ,[0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__lowerCamelCase ,beta_end=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : List[str] = self.scheduler_classes[0] lowerCAmelCase__ : str = self.get_scheduler_config() lowerCAmelCase__ : Optional[Any] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = self.dummy_model() lowerCAmelCase__ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Union[str, Any] = sample.to(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : Dict = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Any = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase__ : List[Any] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Tuple = sample.to(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : Optional[Any] = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Any = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : str = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ,device=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = self.dummy_model() lowerCAmelCase__ : List[Any] = self.dummy_sample_deter.to(__lowerCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Any = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = output.prev_sample lowerCAmelCase__ : List[str] = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : str = self.scheduler_classes[0] lowerCAmelCase__ : List[Any] = self.get_scheduler_config() lowerCAmelCase__ : Union[str, Any] = scheduler_class(**__lowerCamelCase ,use_karras_sigmas=__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ,device=__lowerCamelCase ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter.to(__lowerCamelCase ) * scheduler.init_noise_sigma lowerCAmelCase__ : Union[str, Any] = sample.to(__lowerCamelCase ) for t in scheduler.timesteps: lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : str = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Tuple = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : str = output.prev_sample lowerCAmelCase__ : Tuple = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
129
1
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __snake_case : List[Any] = logging.getLogger(__name__) def _lowercase ( __snake_case ,__snake_case ) -> Dict: # save results if os.path.exists(__snake_case ): if os.path.exists(os.path.join(__snake_case ,"config.json" ) ) and os.path.isfile( os.path.join(__snake_case ,"config.json" ) ): os.remove(os.path.join(__snake_case ,"config.json" ) ) if os.path.exists(os.path.join(__snake_case ,"pytorch_model.bin" ) ) and os.path.isfile( os.path.join(__snake_case ,"pytorch_model.bin" ) ): os.remove(os.path.join(__snake_case ,"pytorch_model.bin" ) ) else: os.makedirs(__snake_case ) model.save_pretrained(__snake_case ) def _lowercase ( __snake_case ,__snake_case=False ) -> Optional[Any]: __lowerCAmelCase : int = 2 if unlogit: __lowerCAmelCase : int = torch.pow(__snake_case ,__snake_case ) __lowerCAmelCase : List[Any] = p * torch.log(__snake_case ) __lowerCAmelCase : int = 0 return -plogp.sum(dim=-1 ) def _lowercase ( __snake_case ) -> List[Any]: logger.info("lv, h >\t" + "\t".join(F"""{x + 1}""" for x in range(len(__snake_case ) ) ) ) for row in range(len(__snake_case ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case=True ,__snake_case=True ,__snake_case=None ,__snake_case=False ) -> int: __lowerCAmelCase , __lowerCAmelCase : Tuple = model.config.num_hidden_layers, model.config.num_attention_heads __lowerCAmelCase : List[Any] = torch.zeros(__snake_case ,__snake_case ).to(args.device ) __lowerCAmelCase : List[Any] = torch.zeros(__snake_case ,__snake_case ).to(args.device ) if head_mask is None: __lowerCAmelCase : Dict = torch.ones(__snake_case ,__snake_case ).to(args.device ) head_mask.requires_grad_(requires_grad=__snake_case ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __lowerCAmelCase : List[str] = None __lowerCAmelCase : str = 0.0 __lowerCAmelCase : Tuple = 0.0 for step, inputs in enumerate(tqdm(__snake_case ,desc="Iteration" ,disable=args.local_rank not in [-1, 0] ) ): __lowerCAmelCase : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((__lowerCAmelCase) , ) : Union[str, Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __lowerCAmelCase : Any = model(__snake_case ,labels=__snake_case ,head_mask=__snake_case ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__snake_case ): __lowerCAmelCase : Any = entropy(attn.detach() ,__snake_case ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__snake_case ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __lowerCAmelCase : int = 2 __lowerCAmelCase : Optional[Any] = torch.pow(torch.pow(__snake_case ,__snake_case ).sum(-1 ) ,1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: __lowerCAmelCase : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(__snake_case ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(__snake_case ) logger.info("Head ranked by importance scores" ) __lowerCAmelCase : str = torch.zeros(head_importance.numel() ,dtype=torch.long ,device=args.device ) __lowerCAmelCase : Dict = torch.arange( head_importance.numel() ,device=args.device ) __lowerCAmelCase : Dict = head_ranks.view_as(__snake_case ) print_ad_tensor(__snake_case ) return attn_entropy, head_importance, total_loss def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = compute_heads_importance(__snake_case ,__snake_case ,__snake_case ,compute_entropy=__snake_case ) __lowerCAmelCase : Any = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" ,__snake_case ,original_score * args.masking_threshold ) __lowerCAmelCase : List[Any] = torch.ones_like(__snake_case ) __lowerCAmelCase : Optional[int] = max(1 ,int(new_head_mask.numel() * args.masking_amount ) ) __lowerCAmelCase : str = original_score while current_score >= original_score * args.masking_threshold: __lowerCAmelCase : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __lowerCAmelCase : List[Any] = float("Inf" ) __lowerCAmelCase : Tuple = head_importance.view(-1 ).sort()[1] if len(__snake_case ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads __lowerCAmelCase : str = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" ,str(current_heads_to_mask.tolist() ) ) __lowerCAmelCase : Dict = new_head_mask.view(-1 ) __lowerCAmelCase : List[Any] = 0.0 __lowerCAmelCase : Optional[int] = new_head_mask.view_as(__snake_case ) __lowerCAmelCase : int = new_head_mask.clone().detach() print_ad_tensor(__snake_case ) # Compute metric and head importance again __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = compute_heads_importance( __snake_case ,__snake_case ,__snake_case ,compute_entropy=__snake_case ,head_mask=__snake_case ) __lowerCAmelCase : List[str] = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" ,__snake_case ,new_head_mask.sum() ,new_head_mask.sum() / new_head_mask.numel() * 100 ,) logger.info("Final head mask" ) print_ad_tensor(__snake_case ) np.save(os.path.join(args.output_dir ,"head_mask.npy" ) ,head_mask.detach().cpu().numpy() ) return head_mask def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Optional[int]: __lowerCAmelCase : Optional[Any] = datetime.now() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = compute_heads_importance( __snake_case ,__snake_case ,__snake_case ,compute_entropy=__snake_case ,compute_importance=__snake_case ,head_mask=__snake_case ) __lowerCAmelCase : List[Any] = 1 / loss __lowerCAmelCase : List[str] = datetime.now() - before_time __lowerCAmelCase : Dict = sum(p.numel() for p in model.parameters() ) __lowerCAmelCase : Any = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__snake_case ) ) } for k, v in heads_to_prune.items(): if isinstance(__snake_case ,__snake_case ): __lowerCAmelCase : List[Any] = [ v, ] assert sum(len(__snake_case ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__snake_case ) __lowerCAmelCase : Any = sum(p.numel() for p in model.parameters() ) __lowerCAmelCase : str = datetime.now() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[Any] = compute_heads_importance( __snake_case ,__snake_case ,__snake_case ,compute_entropy=__snake_case ,compute_importance=__snake_case ,head_mask=__snake_case ,actually_pruned=__snake_case ,) __lowerCAmelCase : Tuple = 1 / loss __lowerCAmelCase : Dict = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" ,__snake_case ,__snake_case ,pruned_num_params / original_num_params * 100 ,) logger.info("Pruning: score with masking: %f score with pruning: %f" ,__snake_case ,__snake_case ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" ,original_time / new_time * 100 ) save_model(__snake_case ,args.output_dir ) def _lowercase ( ) -> Optional[Any]: __lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" ,default=__snake_case ,type=__snake_case ,required=__snake_case ,help="The input data dir. Should contain the .tsv files (or other data files) for the task." ,) parser.add_argument( "--model_name_or_path" ,default=__snake_case ,type=__snake_case ,required=__snake_case ,help="Path to pretrained model or model identifier from huggingface.co/models" ,) parser.add_argument( "--output_dir" ,default=__snake_case ,type=__snake_case ,required=__snake_case ,help="The output directory where the model predictions and checkpoints will be written." ,) # Other parameters parser.add_argument( "--config_name" ,default="" ,type=__snake_case ,help="Pretrained config name or path if not the same as model_name_or_path" ,) parser.add_argument( "--tokenizer_name" ,default="" ,type=__snake_case ,help="Pretrained tokenizer name or path if not the same as model_name_or_path" ,) parser.add_argument( "--cache_dir" ,default=__snake_case ,type=__snake_case ,help="Where do you want to store the pre-trained models downloaded from s3" ,) parser.add_argument( "--data_subset" ,type=__snake_case ,default=-1 ,help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" ,action="store_true" ,help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" ,action="store_true" ,help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" ,action="store_true" ,help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" ,action="store_true" ,help="Don't normalize all importance scores between 0 and 1" ,) parser.add_argument( "--try_masking" ,action="store_true" ,help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" ,default=0.9 ,type=__snake_case ,help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." ,) parser.add_argument( "--masking_amount" ,default=0.1 ,type=__snake_case ,help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" ,default="acc" ,type=__snake_case ,help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" ,default=128 ,type=__snake_case ,help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) ,) parser.add_argument("--batch_size" ,default=1 ,type=__snake_case ,help="Batch size." ) parser.add_argument("--seed" ,type=__snake_case ,default=42 ) parser.add_argument("--local_rank" ,type=__snake_case ,default=-1 ,help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" ,action="store_true" ,help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" ,type=__snake_case ,default="" ,help="Can be used for distant debugging." ) parser.add_argument("--server_port" ,type=__snake_case ,default="" ,help="Can be used for distant debugging." ) __lowerCAmelCase : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) ,redirect_output=__snake_case ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __lowerCAmelCase : Dict = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) __lowerCAmelCase : List[str] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __lowerCAmelCase : List[Any] = torch.device("cuda" ,args.local_rank ) __lowerCAmelCase : Union[str, Any] = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device ,args.n_gpu ,bool(args.local_rank != -1 ) ) ) __lowerCAmelCase : Dict = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __lowerCAmelCase : str = nn.parallel.DistributedDataParallel( __snake_case ,device_ids=[args.local_rank] ,output_device=args.local_rank ,find_unused_parameters=__snake_case ) elif args.n_gpu > 1: __lowerCAmelCase : Tuple = nn.DataParallel(__snake_case ) # Print/save training arguments os.makedirs(args.output_dir ,exist_ok=__snake_case ) torch.save(__snake_case ,os.path.join(args.output_dir ,"run_args.bin" ) ) logger.info("Training/evaluation parameters %s" ,__snake_case ) # Prepare dataset __lowerCAmelCase : List[Any] = np.concatenate( [ np.loadtxt(args.data_dir ,dtype=np.intaa ), ] ) __lowerCAmelCase : Dict = (torch.from_numpy(__snake_case ),) __lowerCAmelCase : Optional[Any] = TensorDataset(*__snake_case ) __lowerCAmelCase : List[str] = RandomSampler(__snake_case ) __lowerCAmelCase : List[str] = DataLoader(__snake_case ,sampler=__snake_case ,batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__snake_case ,__snake_case ,__snake_case ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __lowerCAmelCase : Tuple = mask_heads(__snake_case ,__snake_case ,__snake_case ) prune_heads(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if __name__ == "__main__": main()
58
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : List[str] = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
58
1
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ): lowercase__: Any = timeit.default_timer() lowercase__: int = func(*__UpperCAmelCase , **__UpperCAmelCase ) lowercase__: Any = timeit.default_timer() - starttime return delta lowercase__: Dict = func.__name__ return wrapper def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase=1_0_0 , __UpperCAmelCase=None ) -> List[Any]: lowercase__: Optional[Any] = [] lowercase__: Any = seq_shapes or {} for i in range(__UpperCAmelCase ): lowercase__: Any = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): lowercase__: Dict = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": lowercase__: Any = '''The small grey turtle was surprisingly fast when challenged.''' else: lowercase__: Optional[Any] = np.random.randint(1_0 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): lowercase__: Optional[int] = v.feature lowercase__: Any = seq_shapes[k] lowercase__: List[str] = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) lowercase__: Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1_0_0 , __UpperCAmelCase=None ) -> List[str]: lowercase__: Any = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: lowercase__: int = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) lowercase__, lowercase__: Any = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) lowercase__: int = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
177
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> tuple: if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
177
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ ={ 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
325
from __future__ import annotations import typing from collections import Counter def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter() for base in range(1, max_perimeter + 1 ): for perpendicular in range(__lowerCamelCase, max_perimeter + 1 ): _SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase__ (__lowerCamelCase = 1000 ): _SCREAMING_SNAKE_CASE : Union[str, Any] = pythagorean_triple(__lowerCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
325
1
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants a__ : List[str] = 3_0_0 # TEMPERATURE (unit = K) def _UpperCamelCase ( __A , __A , __A , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
80
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _UpperCamelCase ( __A , __A , __A=1024 , __A=1024 , __A=False , **__A ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = AutoTokenizer.from_pretrained(__A ) UpperCamelCase__ = SeqaSeqDataset(__A , __A , __A , __A , type_path="train" , **__A ) UpperCamelCase__ = tok.pad_token_id def get_lens(__A ): UpperCamelCase__ = tqdm( DataLoader(__A , batch_size=512 , num_workers=8 , shuffle=__A , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCamelCase__ = [] for batch in dl: UpperCamelCase__ = batch["input_ids"].ne(__A ).sum(1 ).tolist() UpperCamelCase__ = batch["labels"].ne(__A ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__A , __A ): max_lens.append(max(__A , __A ) ) else: max_lens.extend(__A ) return max_lens UpperCamelCase__ = get_lens(__A ) UpperCamelCase__ = SeqaSeqDataset(__A , __A , __A , __A , type_path="val" , **__A ) UpperCamelCase__ = get_lens(__A ) pickle_save(__A , train_ds.len_file ) pickle_save(__A , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
80
1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence __snake_case : Dict = gray_code_sequence_string(__SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(__SCREAMING_SNAKE_CASE ) ): __snake_case : List[Any] = int(sequence[i] , 2 ) return sequence def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __snake_case : Optional[Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __snake_case : int = gray_code_sequence_string(bit_count - 1 ) __snake_case : Union[str, Any] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __snake_case : Any = """0""" + smaller_sequence[i] sequence.append(__SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __snake_case : str = """1""" + smaller_sequence[i] sequence.append(__SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
20
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' __snake_case : Optional[int] = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } __snake_case , __snake_case : Tuple = input_paths_and_base_extractors[compression_format] if input_path is None: __snake_case : Tuple = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE ) __snake_case : List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : List[str] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : int = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __snake_case : Union[str, Any] = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } __snake_case : int = input_paths[compression_format] if input_path is None: __snake_case : int = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) __snake_case : Any = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE ) assert extractor_format is not None __snake_case : Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case : Union[str, Any] = file_path.read_text(encoding="""utf-8""" ) else: __snake_case : Union[str, Any] = output_path.read_text(encoding="""utf-8""" ) __snake_case : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import tarfile __snake_case : List[str] = tmp_path / """data_dot_dot""" directory.mkdir() __snake_case : Optional[Any] = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' import tarfile __snake_case : Dict = tmp_path / """data_sym_link""" directory.mkdir() __snake_case : Tuple = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE ) with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' __snake_case : Any = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } __snake_case : int = insecure_tar_files[insecure_tar_file] __snake_case : Optional[int] = tmp_path / """extracted""" TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __snake_case : Optional[Any] = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 __snake_case : List[str] = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__SCREAMING_SNAKE_CASE ) assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
20
1
from math import pow def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowerCamelCase__ : Union[str, Any] = int(pow(_UpperCAmelCase , _UpperCAmelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = backtrack( _UpperCAmelCase , _UpperCAmelCase , current_number + 1 , _UpperCAmelCase , _UpperCAmelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowerCamelCase__ , lowerCamelCase__ : str = backtrack( _UpperCAmelCase , _UpperCAmelCase , current_number + 1 , _UpperCAmelCase , _UpperCAmelCase ) return current_sum, solutions_count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int: if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(_UpperCAmelCase , _UpperCAmelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
50
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" return x + 2 class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) lowercase__ = """x = y""" lowercase__ = {"""y""": 5} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = """y = add_two(x)""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = """x = 3""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def lowerCamelCase__ (self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = """x = 3\ny = 5""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = """text = f'This is x: {x}.'""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" lowercase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) lowercase__ = {"""x""": 8} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = """y = x""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowercase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase__ = {"""x""": 3} lowercase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = """x = 0\nfor i in range(3):\n x = i""" lowercase__ = {} lowercase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
305
0
from typing import Dict, Optional import numpy as np import datasets _lowerCamelCase : int = '''\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n''' _lowerCamelCase : Dict = '''\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n''' _lowerCamelCase : List[Any] = '''\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}''' def _a ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE__ : bool = False , ) -> Dict: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): SCREAMING_SNAKE_CASE__ : List[Any] = new_id # turn into Numpy arrays SCREAMING_SNAKE_CASE__ : int = np.array(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ : List[Any] = np.array(__SCREAMING_SNAKE_CASE ) if reduce_labels: SCREAMING_SNAKE_CASE__ : int = 2_55 SCREAMING_SNAKE_CASE__ : Dict = label - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 2_55 SCREAMING_SNAKE_CASE__ : int = label != ignore_index SCREAMING_SNAKE_CASE__ : int = np.not_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ : List[Any] = pred_label[mask] SCREAMING_SNAKE_CASE__ : str = np.array(__SCREAMING_SNAKE_CASE )[mask] SCREAMING_SNAKE_CASE__ : List[str] = pred_label[pred_label == label] SCREAMING_SNAKE_CASE__ : str = np.histogram(__SCREAMING_SNAKE_CASE , bins=__SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] SCREAMING_SNAKE_CASE__ : Tuple = np.histogram(__SCREAMING_SNAKE_CASE , bins=__SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.histogram(__SCREAMING_SNAKE_CASE , bins=__SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _a ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE__ : bool = False , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = np.zeros((num_labels,) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.zeros((num_labels,) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.zeros((num_labels,) , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ : Tuple = intersect_and_union( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE__ : bool = False , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = total_intersect_and_union( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # compute metrics SCREAMING_SNAKE_CASE__ : Tuple = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() SCREAMING_SNAKE_CASE__ : List[Any] = total_area_intersect / total_area_union SCREAMING_SNAKE_CASE__ : List[Any] = total_area_intersect / total_area_label SCREAMING_SNAKE_CASE__ : Optional[int] = np.nanmean(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.nanmean(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = all_acc SCREAMING_SNAKE_CASE__ : Dict = iou SCREAMING_SNAKE_CASE__ : Union[str, Any] = acc if nan_to_num is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = {metric: np.nan_to_num(__SCREAMING_SNAKE_CASE , nan=__SCREAMING_SNAKE_CASE ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): """simple docstring""" def A_ ( self : Optional[Any] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ), reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ], ) def A_ ( self : Dict, _UpperCAmelCase : int, _UpperCAmelCase : Tuple, _UpperCAmelCase : int, _UpperCAmelCase : bool, _UpperCAmelCase : Optional[int] = None, _UpperCAmelCase : Optional[Dict[int, int]] = None, _UpperCAmelCase : bool = False, ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = mean_iou( results=_lowerCAmelCase, gt_seg_maps=_lowerCAmelCase, num_labels=_lowerCAmelCase, ignore_index=_lowerCAmelCase, nan_to_num=_lowerCAmelCase, label_map=_lowerCAmelCase, reduce_labels=_lowerCAmelCase, ) return iou_result
370
def _a ( SCREAMING_SNAKE_CASE__ : int = 50_00_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = set() SCREAMING_SNAKE_CASE__ : Dict = int((limit - 24) ** (1 / 2) ) SCREAMING_SNAKE_CASE__ : Any = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE__ ) ) ) for primea in primes: SCREAMING_SNAKE_CASE__ : Optional[int] = primea * primea for primea in primes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: SCREAMING_SNAKE_CASE__ : List[str] = primea * primea * primea * primea SCREAMING_SNAKE_CASE__ : Optional[int] = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE__ ) return len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"{solution() = }")
191
0