code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
from ...processing_utils import ProcessorMixin
class __snake_case ( lowercase_ ):
__lowerCamelCase : Union[str, Any] = ["""image_processor""", """feature_extractor"""]
__lowerCamelCase : Tuple = """TvltImageProcessor"""
__lowerCamelCase : Optional[Any] = """TvltFeatureExtractor"""
def __init__( self , snake_case__ , snake_case__ ) -> Optional[int]:
'''simple docstring'''
super().__init__(image_processor=__UpperCamelCase , feature_extractor=__UpperCamelCase )
UpperCAmelCase : Dict =image_processor
UpperCAmelCase : Union[str, Any] =feature_extractor
def __call__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=False , *snake_case__ , **snake_case__ , ) -> Optional[Any]:
'''simple docstring'''
if images is None and audio is None:
raise ValueError('''You need to specify either an `images` or `audio` input to process.''' )
UpperCAmelCase : str =None
if images is not None:
UpperCAmelCase : Any =self.image_processor(__UpperCamelCase , mask_pixel=__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
if images_mixed is not None:
UpperCAmelCase : Dict =self.image_processor(__UpperCamelCase , is_mixed=__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
if audio is not None:
UpperCAmelCase : Dict =self.feature_extractor(
__UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , mask_audio=__UpperCamelCase , **__UpperCamelCase )
UpperCAmelCase : Optional[Any] ={}
if audio is not None:
output_dict.update(__UpperCamelCase )
if images is not None:
output_dict.update(__UpperCamelCase )
if images_mixed_dict is not None:
output_dict.update(__UpperCamelCase )
return output_dict
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : List[Any] =self.image_processor.model_input_names
UpperCAmelCase : Union[str, Any] =self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 348
|
"""simple docstring"""
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _UpperCAmelCase :
def __init__( self :List[Any] , __UpperCamelCase :Tuple , __UpperCamelCase :List[str]=13 , __UpperCamelCase :Any=30 , __UpperCamelCase :int=2 , __UpperCamelCase :Union[str, Any]=3 , __UpperCamelCase :Union[str, Any]=True , __UpperCamelCase :Optional[int]=True , __UpperCamelCase :List[str]=32 , __UpperCamelCase :List[Any]=5 , __UpperCamelCase :Dict=4 , __UpperCamelCase :List[str]=37 , __UpperCamelCase :str="gelu" , __UpperCamelCase :Union[str, Any]=0.1 , __UpperCamelCase :List[Any]=0.1 , __UpperCamelCase :Tuple=10 , __UpperCamelCase :Tuple=0.02 , __UpperCamelCase :int=None , ):
A = parent
A = batch_size
A = image_size
A = patch_size
A = num_channels
A = is_training
A = use_labels
A = hidden_size
A = num_hidden_layers
A = num_attention_heads
A = intermediate_size
A = hidden_act
A = hidden_dropout_prob
A = attention_probs_dropout_prob
A = type_sequence_label_size
A = initializer_range
A = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
A = (image_size // patch_size) ** 2
A = num_patches + 1
def lowerCamelCase ( self :Any ):
A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A = None
if self.use_labels:
A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A = self.get_config()
return config, pixel_values, labels
def lowerCamelCase ( self :Union[str, Any] ):
return ViTMSNConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def lowerCamelCase ( self :Dict , __UpperCamelCase :Dict , __UpperCamelCase :Any , __UpperCamelCase :Any ):
A = ViTMSNModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :List[str] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Optional[Any] ):
A = self.type_sequence_label_size
A = ViTMSNForImageClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = model(__UpperCamelCase , labels=__UpperCamelCase )
print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" )
print("Labels: {labels}" )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A = 1
A = ViTMSNForImageClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase ( self :Optional[Any] ):
A = self.prepare_config_and_inputs()
A, A, A = config_and_inputs
A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
UpperCamelCase = (
{'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowerCamelCase ( self :Optional[int] ):
A = ViTMSNModelTester(self )
A = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 )
def lowerCamelCase ( self :Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="ViTMSN does not use inputs_embeds" )
def lowerCamelCase ( self :Union[str, Any] ):
pass
def lowerCamelCase ( self :int ):
A, A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def lowerCamelCase ( self :Tuple ):
A, A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A = model_class(__UpperCamelCase )
A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A = [*signature.parameters.keys()]
A = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def lowerCamelCase ( self :List[str] ):
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def lowerCamelCase ( self :Dict ):
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase )
@slow
def lowerCamelCase ( self :List[Any] ):
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A = ViTMSNModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def A__ ( ):
A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _UpperCAmelCase ( unittest.TestCase ):
@cached_property
def lowerCamelCase ( self :Union[str, Any] ):
return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None
@slow
def lowerCamelCase ( self :Any ):
torch.manual_seed(2 )
A = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(__UpperCamelCase )
A = self.default_image_processor
A = prepare_img()
A = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
A = model(**__UpperCamelCase )
# verify the logits
A = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __UpperCamelCase )
A = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
| 292
| 0
|
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _lowerCAmelCase:
"""simple docstring"""
def __init__( self , _lowerCamelCase ):
UpperCamelCase_: int = num_of_nodes
UpperCamelCase_: Dict = []
UpperCamelCase_: Union[str, Any] = {}
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
self.m_edges.append([u_node, v_node, weight] )
def _a ( self , _lowerCamelCase ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _a ( self , _lowerCamelCase ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
UpperCamelCase_: Any = self.find_component(__lowerCAmelCase )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
if component_size[u_node] <= component_size[v_node]:
UpperCamelCase_: Tuple = v_node
component_size[v_node] += component_size[u_node]
self.set_component(__lowerCAmelCase )
elif component_size[u_node] >= component_size[v_node]:
UpperCamelCase_: Tuple = self.find_component(__lowerCAmelCase )
component_size[u_node] += component_size[v_node]
self.set_component(__lowerCAmelCase )
def _a ( self ):
UpperCamelCase_: Optional[Any] = []
UpperCamelCase_: Tuple = 0
UpperCamelCase_: Optional[int] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
UpperCamelCase_: int = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = edge
UpperCamelCase_: int = self.m_component[u]
UpperCamelCase_: List[str] = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
UpperCamelCase_: Dict = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[Any] = edge
UpperCamelCase_: Any = self.m_component[u]
UpperCamelCase_: List[Any] = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' )
num_of_components -= 1
UpperCamelCase_: Dict = [-1] * self.m_num_of_nodes
print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' )
def snake_case () -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 360
|
import unittest
from transformers import RoFormerTokenizer, RoFormerTokenizerFast
from transformers.testing_utils import require_rjieba, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_rjieba
@require_tokenizers
class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Optional[int] =RoFormerTokenizer
a : int =RoFormerTokenizerFast
a : int =True
a : Optional[int] =True
def _a ( self ):
super().setUp()
def _a ( self , **_lowerCamelCase ):
return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **_lowerCamelCase )
def _a ( self , **_lowerCamelCase ):
return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: Optional[int] = '永和服装饰品有限公司,今天天气非常好'
UpperCamelCase_: Any = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好'
return input_text, output_text
def _a ( self ):
UpperCamelCase_: int = self.get_tokenizer()
UpperCamelCase_ ,UpperCamelCase_: int = self.get_chinese_input_output_texts()
UpperCamelCase_: Tuple = tokenizer.tokenize(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , output_text.split() )
UpperCamelCase_: Dict = tokens + [tokenizer.unk_token]
UpperCamelCase_: Dict = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
def _a ( self ):
UpperCamelCase_: Optional[Any] = self.get_rust_tokenizer()
UpperCamelCase_ ,UpperCamelCase_: Tuple = self.get_chinese_input_output_texts()
UpperCamelCase_: Optional[Any] = tokenizer.tokenize(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , output_text.split() )
UpperCamelCase_: str = tokens + [tokenizer.unk_token]
UpperCamelCase_: Optional[Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
def _a ( self ):
pass
def _a ( self ):
pass
def _a ( self ):
pass
| 292
| 0
|
'''simple docstring'''
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
__lowercase = logging.getLogger(__name__)
class a__:
'''simple docstring'''
def __init__( self):
"""simple docstring"""
lowerCAmelCase = False
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
if not self.initialized:
lowerCAmelCase = RagRetriever(
_a , question_encoder_tokenizer=_a , generator_tokenizer=_a , index=_a , init_retrieval=_a , )
lowerCAmelCase = True
def a_ ( self):
"""simple docstring"""
self.retriever.index.init_index()
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = self.retriever._main_retrieve(_a , _a)
return doc_ids, retrieved_doc_embeds
class a__( UpperCamelCase__ ):
'''simple docstring'''
def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None):
"""simple docstring"""
if index is not None and index.is_initialized() and len(_a) > 0:
raise ValueError(
"""When using Ray for distributed fine-tuning, """
"""you'll need to provide the paths instead, """
"""as the dataset and the index are loaded """
"""separately. More info in examples/rag/use_own_knowledge_dataset.py """)
super().__init__(
_a , question_encoder_tokenizer=_a , generator_tokenizer=_a , index=_a , init_retrieval=_a , )
lowerCAmelCase = retrieval_workers
if len(self.retrieval_workers) > 0:
ray.get(
[
worker.create_rag_retriever.remote(_a , _a , _a , _a)
for worker in self.retrieval_workers
])
def a_ ( self):
"""simple docstring"""
logger.info("""initializing retrieval""")
if len(self.retrieval_workers) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers])
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
if len(self.retrieval_workers) > 0:
# Select a random retrieval actor.
lowerCAmelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers) - 1)]
lowerCAmelCase = ray.get(random_worker.retrieve.remote(_a , _a))
else:
lowerCAmelCase = self._main_retrieve(_a , _a)
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_a)
@classmethod
def a_ ( cls , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase):
"""simple docstring"""
return super(_a , cls).get_tokenizers(_a , _a , **_a)
@classmethod
def a_ ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = kwargs.pop("""config""" , _a) or RagConfig.from_pretrained(_a , **_a)
lowerCAmelCase = RagTokenizer.from_pretrained(_a , config=_a)
lowerCAmelCase = rag_tokenizer.question_encoder
lowerCAmelCase = rag_tokenizer.generator
if indexed_dataset is not None:
lowerCAmelCase = """custom"""
lowerCAmelCase = CustomHFIndex(config.retrieval_vector_size , _a)
else:
lowerCAmelCase = cls._build_index(_a)
return cls(
_a , question_encoder_tokenizer=_a , generator_tokenizer=_a , retrieval_workers=_a , index=_a , )
| 272
|
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class lowercase ( unittest.TestCase ):
_a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def a__ ( self , _a , _a , _a ) -> int:
_A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a )
return generator, ["Something to write", "Something else"]
def a__ ( self , _a , _a ) -> Dict:
_A : Any = generator("""Something there""" )
self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) )
_A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
_A : Optional[int] = generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a )
self.assertEqual(
_a , [
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] , )
with self.assertRaises(_a ):
generator(4 )
@require_torch
def a__ ( self ) -> List[str]:
_A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" )
# do_sample=False necessary for reproducibility
_A : Dict = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
_A : Any = 3
_A : Any = generator(
"""Something there""" , num_return_sequences=_a , num_beams=_a , )
_A : Optional[int] = [
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """"""},
]
self.assertEqual(_a , _a )
_A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a )
self.assertEqual(
_a , [
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
] , )
_A : Dict = generator.model.config.eos_token_id
_A : List[str] = """<pad>"""
_A : Dict = generator(
["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , )
self.assertEqual(
_a , [
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
] , )
@require_tf
def a__ ( self ) -> int:
_A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" )
# do_sample=False necessary for reproducibility
_A : str = generator("""Something there""" , do_sample=_a )
self.assertEqual(_a , [{"""generated_text""": """"""}] )
| 26
| 0
|
"""simple docstring"""
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
def snake_case (A_ :str , A_ :str ):
'''simple docstring'''
a : Any = RobertaPreLayerNormConfig.from_pretrained(
A_ , architectures=['RobertaPreLayerNormForMaskedLM'] )
# convert state_dict
a : Optional[int] = torch.load(hf_hub_download(repo_id=A_ , filename='pytorch_model.bin' ) )
a : Any = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('roberta.' ):
a : List[str] = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ):
continue
a : str = tensor_value
a : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=A_ , config=A_ , state_dict=A_ )
model.save_pretrained(A_ )
# convert tokenizer
a : str = AutoTokenizer.from_pretrained(A_ )
tokenizer.save_pretrained(A_ )
if __name__ == "__main__":
_UpperCamelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_UpperCamelCase : Optional[int] = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 360
|
"""simple docstring"""
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 186
| 0
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = "dandelin/vilt-b32-finetuned-vqa"
SCREAMING_SNAKE_CASE : str = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
SCREAMING_SNAKE_CASE : Any = "image_qa"
SCREAMING_SNAKE_CASE : str = AutoProcessor
SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForVisualQuestionAnswering
SCREAMING_SNAKE_CASE : Optional[int] = ["image", "text"]
SCREAMING_SNAKE_CASE : List[Any] = ["text"]
def __init__( self : Optional[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[Any]:
requires_backends(self , ['''vision'''] )
super().__init__(*_UpperCamelCase , **_UpperCamelCase )
def snake_case__( self : str , _UpperCamelCase : "Image" , _UpperCamelCase : str ) ->Union[str, Any]:
return self.pre_processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' )
def snake_case__( self : Optional[int] , _UpperCamelCase : Dict ) ->int:
with torch.no_grad():
return self.model(**_UpperCamelCase ).logits
def snake_case__( self : Optional[Any] , _UpperCamelCase : Tuple ) ->Tuple:
snake_case_ = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 8
|
from statistics import mean
import numpy as np
def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> list:
__snake_case: List[Any] = 0
# Number of processes finished
__snake_case: Union[str, Any] = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
__snake_case: Dict = [0] * no_of_process
# List to include calculation results
__snake_case: Tuple = [0] * no_of_process
# Sort by arrival time.
__snake_case: int = [burst_time[i] for i in np.argsort(SCREAMING_SNAKE_CASE__)]
__snake_case: Any = [process_name[i] for i in np.argsort(SCREAMING_SNAKE_CASE__)]
arrival_time.sort()
while no_of_process > finished_process_count:
__snake_case: Tuple = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
__snake_case: Any = arrival_time[i]
__snake_case: List[Any] = 0
# Index showing the location of the process being performed
__snake_case: Union[str, Any] = 0
# Saves the current response ratio.
__snake_case: Optional[Any] = 0
for i in range(0 , SCREAMING_SNAKE_CASE__):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
__snake_case: Tuple = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
__snake_case: Union[str, Any] = temp
__snake_case: Optional[int] = i
# Calculate the turn around time
__snake_case: Optional[Any] = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
__snake_case: Optional[int] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> list:
__snake_case: Union[str, Any] = [0] * no_of_process
for i in range(0 , SCREAMING_SNAKE_CASE__):
__snake_case: Optional[int] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
__UpperCAmelCase : Optional[Any] = 5
__UpperCAmelCase : Tuple = ["A", "B", "C", "D", "E"]
__UpperCAmelCase : str = [1, 2, 3, 4, 5]
__UpperCAmelCase : Dict = [1, 2, 3, 4, 5]
__UpperCAmelCase : List[str] = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
__UpperCAmelCase : List[str] = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time")
for i in range(0, no_of_process):
print(
f'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'
f'{turn_around_time[i]}\t\t\t{waiting_time[i]}'
)
print(f'average waiting time : {mean(waiting_time):.5f}')
print(f'average turn around time : {mean(turn_around_time):.5f}')
| 111
| 0
|
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def A ( snake_case :Any , snake_case :Union[str, Any] , snake_case :Optional[int] , snake_case :Optional[Any] ) -> Any:
# Initialise PyTorch model
__UpperCamelCase = FunnelConfig.from_json_file(lowerCAmelCase_ )
print(f'Building PyTorch model from configuration: {config}' )
__UpperCamelCase = FunnelBaseModel(lowerCAmelCase_ ) if base_model else FunnelModel(lowerCAmelCase_ )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , lowerCAmelCase_ )
if __name__ == "__main__":
UpperCamelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not."
)
UpperCamelCase : str = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 369
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase : int = {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json"
),
"distilbert-base-uncased-finetuned-sst-2-english": (
"https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "distilbert"
lowercase = {
"hidden_size": "dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
}
def __init__( self , __UpperCAmelCase=3_0522 , __UpperCAmelCase=512 , __UpperCAmelCase=False , __UpperCAmelCase=6 , __UpperCAmelCase=12 , __UpperCAmelCase=768 , __UpperCAmelCase=4 * 768 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.2 , __UpperCAmelCase=0 , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = sinusoidal_pos_embds
__UpperCamelCase = n_layers
__UpperCamelCase = n_heads
__UpperCamelCase = dim
__UpperCamelCase = hidden_dim
__UpperCamelCase = dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation
__UpperCamelCase = initializer_range
__UpperCamelCase = qa_dropout
__UpperCamelCase = seq_classif_dropout
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 263
| 0
|
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class lowerCamelCase (unittest.TestCase ):
"""simple docstring"""
def __init__( self : str , __magic_name__ : Any , __magic_name__ : Tuple=7 , __magic_name__ : List[Any]=3 , __magic_name__ : Union[str, Any]=30 , __magic_name__ : str=400 , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=None , __magic_name__ : int=True , __magic_name__ : List[str]=[0.5, 0.5, 0.5] , __magic_name__ : Optional[int]=[0.5, 0.5, 0.5] , __magic_name__ : str=True , __magic_name__ : Optional[int]=1 / 255 , __magic_name__ : Union[str, Any]=True , ) -> Dict:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
SCREAMING_SNAKE_CASE_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333}
SCREAMING_SNAKE_CASE_ = parent
SCREAMING_SNAKE_CASE_ = batch_size
SCREAMING_SNAKE_CASE_ = num_channels
SCREAMING_SNAKE_CASE_ = min_resolution
SCREAMING_SNAKE_CASE_ = max_resolution
SCREAMING_SNAKE_CASE_ = do_resize
SCREAMING_SNAKE_CASE_ = size
SCREAMING_SNAKE_CASE_ = do_normalize
SCREAMING_SNAKE_CASE_ = image_mean
SCREAMING_SNAKE_CASE_ = image_std
SCREAMING_SNAKE_CASE_ = do_rescale
SCREAMING_SNAKE_CASE_ = rescale_factor
SCREAMING_SNAKE_CASE_ = do_pad
def __A ( self : str ) -> Optional[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def __A ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Union[str, Any]=False ) -> List[str]:
if not batched:
SCREAMING_SNAKE_CASE_ = image_inputs[0]
if isinstance(__magic_name__ , Image.Image ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.size
else:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE_ = int(self.size["shortest_edge"] * h / w )
SCREAMING_SNAKE_CASE_ = self.size["shortest_edge"]
elif w > h:
SCREAMING_SNAKE_CASE_ = self.size["shortest_edge"]
SCREAMING_SNAKE_CASE_ = int(self.size["shortest_edge"] * w / h )
else:
SCREAMING_SNAKE_CASE_ = self.size["shortest_edge"]
SCREAMING_SNAKE_CASE_ = self.size["shortest_edge"]
else:
SCREAMING_SNAKE_CASE_ = []
for image in image_inputs:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
SCREAMING_SNAKE_CASE_ = max(__magic_name__ , key=lambda __magic_name__ : item[0] )[0]
SCREAMING_SNAKE_CASE_ = max(__magic_name__ , key=lambda __magic_name__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = YolosImageProcessor if is_vision_available() else None
def __A ( self : List[str] ) -> List[str]:
SCREAMING_SNAKE_CASE_ = YolosImageProcessingTester(self )
@property
def __A ( self : Optional[Any] ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self : Optional[Any] ) -> str:
SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__magic_name__ , "image_mean" ) )
self.assertTrue(hasattr(__magic_name__ , "image_std" ) )
self.assertTrue(hasattr(__magic_name__ , "do_normalize" ) )
self.assertTrue(hasattr(__magic_name__ , "do_resize" ) )
self.assertTrue(hasattr(__magic_name__ , "size" ) )
def __A ( self : List[str] ) -> Optional[Any]:
SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} )
self.assertEqual(image_processor.do_pad , __magic_name__ )
SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__magic_name__ )
self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} )
self.assertEqual(image_processor.do_pad , __magic_name__ )
def __A ( self : List[str] ) -> Optional[int]:
pass
def __A ( self : Union[str, Any] ) -> Any:
# Initialize image_processing
SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ )
SCREAMING_SNAKE_CASE_ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __A ( self : Union[str, Any] ) -> Optional[int]:
# Initialize image_processing
SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
SCREAMING_SNAKE_CASE_ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __A ( self : Optional[Any] ) -> List[Any]:
# Initialize image_processing
SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
SCREAMING_SNAKE_CASE_ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __A ( self : Tuple ) -> List[Any]:
# Initialize image_processings
SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict )
SCREAMING_SNAKE_CASE_ = self.image_processing_class(do_resize=__magic_name__ , do_normalize=__magic_name__ , do_rescale=__magic_name__ )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
SCREAMING_SNAKE_CASE_ = image_processing_a.pad(__magic_name__ , return_tensors="pt" )
SCREAMING_SNAKE_CASE_ = image_processing_a(__magic_name__ , return_tensors="pt" )
self.assertTrue(
torch.allclose(encoded_images_with_method["pixel_values"] , encoded_images["pixel_values"] , atol=1e-4 ) )
@slow
def __A ( self : Any ) -> Any:
# prepare image and target
SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
SCREAMING_SNAKE_CASE_ = json.loads(f.read() )
SCREAMING_SNAKE_CASE_ = {"image_id": 39_769, "annotations": target}
# encode them
SCREAMING_SNAKE_CASE_ = YolosImageProcessor.from_pretrained("hustvl/yolos-small" )
SCREAMING_SNAKE_CASE_ = image_processing(images=__magic_name__ , annotations=__magic_name__ , return_tensors="pt" )
# verify pixel values
SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding["pixel_values"].shape , __magic_name__ )
SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __magic_name__ , atol=1e-4 ) )
# verify area
SCREAMING_SNAKE_CASE_ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __magic_name__ ) )
# verify boxes
SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __magic_name__ )
SCREAMING_SNAKE_CASE_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __magic_name__ , atol=1e-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE_ = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __magic_name__ ) )
# verify is_crowd
SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __magic_name__ ) )
# verify class_labels
SCREAMING_SNAKE_CASE_ = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __magic_name__ ) )
# verify orig_size
SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __magic_name__ ) )
# verify size
SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __magic_name__ ) )
@slow
def __A ( self : Any ) -> int:
# prepare image, target and masks_path
SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
SCREAMING_SNAKE_CASE_ = json.loads(f.read() )
SCREAMING_SNAKE_CASE_ = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target}
SCREAMING_SNAKE_CASE_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
SCREAMING_SNAKE_CASE_ = YolosImageProcessor(format="coco_panoptic" )
SCREAMING_SNAKE_CASE_ = image_processing(images=__magic_name__ , annotations=__magic_name__ , masks_path=__magic_name__ , return_tensors="pt" )
# verify pixel values
SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding["pixel_values"].shape , __magic_name__ )
SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __magic_name__ , atol=1e-4 ) )
# verify area
SCREAMING_SNAKE_CASE_ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __magic_name__ ) )
# verify boxes
SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __magic_name__ )
SCREAMING_SNAKE_CASE_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __magic_name__ , atol=1e-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE_ = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __magic_name__ ) )
# verify is_crowd
SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __magic_name__ ) )
# verify class_labels
SCREAMING_SNAKE_CASE_ = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __magic_name__ ) )
# verify masks
SCREAMING_SNAKE_CASE_ = 822_873
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __magic_name__ )
# verify orig_size
SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __magic_name__ ) )
# verify size
SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __magic_name__ ) )
| 118
|
from functools import lru_cache
@lru_cache
def a__ ( __UpperCamelCase ):
if num < 0:
raise ValueError("Number should not be negative." )
return 1 if num in (0, 1) else num * factorial(num - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 118
| 1
|
'''simple docstring'''
import warnings
from ..trainer import Trainer
from ..utils import logging
lowerCAmelCase : Dict =logging.get_logger(__name__)
class a_ ( _lowerCAmelCase ):
def __init__( self : Optional[int] , lowercase : int=None , **lowercase : Dict ):
"""simple docstring"""
warnings.warn(
"`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` "
"instead." , lowercase , )
super().__init__(args=lowercase , **lowercase )
| 147
|
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
lowerCAmelCase : Any =logging.get_logger(__name__)
def UpperCAmelCase_ ( __lowerCamelCase : List[str] ):
if isinstance(__lowerCamelCase ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(__lowerCamelCase ,(list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(__lowerCamelCase ):
return [[videos]]
raise ValueError(F'Could not make batched video from {videos}' )
class a_ ( _lowerCAmelCase ):
__A = ["pixel_values"]
def __init__( self : List[str] , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Tuple , ):
"""simple docstring"""
super().__init__(**lowercase )
lowercase_ :Any = size if size is not None else {"shortest_edge": 256}
lowercase_ :int = get_size_dict(lowercase , default_to_square=lowercase )
lowercase_ :str = crop_size if crop_size is not None else {"height": 224, "width": 224}
lowercase_ :List[str] = get_size_dict(lowercase , param_name="crop_size" )
lowercase_ :List[str] = do_resize
lowercase_ :Any = size
lowercase_ :Union[str, Any] = do_center_crop
lowercase_ :Union[str, Any] = crop_size
lowercase_ :Optional[Any] = resample
lowercase_ :List[str] = do_rescale
lowercase_ :List[Any] = rescale_factor
lowercase_ :Dict = offset
lowercase_ :Optional[Any] = do_normalize
lowercase_ :Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowercase_ :Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Optional[Any] , ):
"""simple docstring"""
lowercase_ :List[Any] = get_size_dict(lowercase , default_to_square=lowercase )
if "shortest_edge" in size:
lowercase_ :int = get_resize_output_image_size(lowercase , size["shortest_edge"] , default_to_square=lowercase )
elif "height" in size and "width" in size:
lowercase_ :Union[str, Any] = (size["height"], size["width"])
else:
raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase )
def lowercase__ ( self : str , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : str , ):
"""simple docstring"""
lowercase_ :Any = get_size_dict(lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(lowercase , size=(size["height"], size["width"]) , data_format=lowercase , **lowercase )
def lowercase__ ( self : List[str] , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : bool = True , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] , ):
"""simple docstring"""
lowercase_ :List[str] = image.astype(np.floataa )
if offset:
lowercase_ :List[str] = image - (scale / 2)
return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase )
def lowercase__ ( self : Tuple , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Dict , ):
"""simple docstring"""
return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase )
def lowercase__ ( self : Tuple , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
"""simple docstring"""
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
if offset and not do_rescale:
raise ValueError("For offset, do_rescale must also be set to True." )
# All transformations expect numpy arrays.
lowercase_ :Optional[int] = to_numpy_array(lowercase )
if do_resize:
lowercase_ :Tuple = self.resize(image=lowercase , size=lowercase , resample=lowercase )
if do_center_crop:
lowercase_ :Any = self.center_crop(lowercase , size=lowercase )
if do_rescale:
lowercase_ :Optional[Any] = self.rescale(image=lowercase , scale=lowercase , offset=lowercase )
if do_normalize:
lowercase_ :Tuple = self.normalize(image=lowercase , mean=lowercase , std=lowercase )
lowercase_ :Optional[Any] = to_channel_dimension_format(lowercase , lowercase )
return image
def lowercase__ ( self : Dict , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : Optional[int] , ):
"""simple docstring"""
lowercase_ :str = do_resize if do_resize is not None else self.do_resize
lowercase_ :Optional[Any] = resample if resample is not None else self.resample
lowercase_ :Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop
lowercase_ :Dict = do_rescale if do_rescale is not None else self.do_rescale
lowercase_ :Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase_ :Dict = offset if offset is not None else self.offset
lowercase_ :Tuple = do_normalize if do_normalize is not None else self.do_normalize
lowercase_ :int = image_mean if image_mean is not None else self.image_mean
lowercase_ :Optional[int] = image_std if image_std is not None else self.image_std
lowercase_ :int = size if size is not None else self.size
lowercase_ :Optional[int] = get_size_dict(lowercase , default_to_square=lowercase )
lowercase_ :List[Any] = crop_size if crop_size is not None else self.crop_size
lowercase_ :List[str] = get_size_dict(lowercase , param_name="crop_size" )
if not valid_images(lowercase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
lowercase_ :List[str] = make_batched(lowercase )
lowercase_ :List[Any] = [
[
self._preprocess_image(
image=lowercase , do_resize=lowercase , size=lowercase , resample=lowercase , do_center_crop=lowercase , crop_size=lowercase , do_rescale=lowercase , rescale_factor=lowercase , offset=lowercase , do_normalize=lowercase , image_mean=lowercase , image_std=lowercase , data_format=lowercase , )
for img in video
]
for video in videos
]
lowercase_ :Optional[int] = {"pixel_values": videos}
return BatchFeature(data=lowercase , tensor_type=lowercase )
| 147
| 1
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A : List[Any] = {
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Tuple = ['PoolFormerFeatureExtractor']
A : List[str] = ['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : int = [
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 6
|
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ):
__lowerCAmelCase = 0
if start < end:
__lowerCAmelCase = randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = a[end]
__lowerCAmelCase = a[pivot]
__lowerCAmelCase = temp
__lowerCAmelCase , __lowerCAmelCase = _in_place_partition(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
count += _in_place_quick_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , p - 1 )
count += _in_place_quick_sort(SCREAMING_SNAKE_CASE_ , p + 1 , SCREAMING_SNAKE_CASE_ )
return count
def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ):
__lowerCAmelCase = 0
__lowerCAmelCase = randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = a[end]
__lowerCAmelCase = a[pivot]
__lowerCAmelCase = temp
__lowerCAmelCase = start - 1
for index in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
__lowerCAmelCase = new_pivot_index + 1
__lowerCAmelCase = a[new_pivot_index]
__lowerCAmelCase = a[index]
__lowerCAmelCase = temp
__lowerCAmelCase = a[new_pivot_index + 1]
__lowerCAmelCase = a[end]
__lowerCAmelCase = temp
return new_pivot_index + 1, count
UpperCamelCase__ = TemporaryFile()
UpperCamelCase__ = 100 # 1000 elements are to be sorted
UpperCamelCase__ , UpperCamelCase__ = 0, 1 # mean and standard deviation
UpperCamelCase__ = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("""The array is""")
print(X)
outfile.seek(0) # using the same array
UpperCamelCase__ = np.load(outfile)
UpperCamelCase__ = len(M) - 1
UpperCamelCase__ = _in_place_quick_sort(M, 0, r)
print(
"""No of Comparisons for 100 elements selected from a standard normal distribution"""
"""is :"""
)
print(z)
| 92
| 0
|
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def __lowercase ( snake_case_ : list[list[float]] ) ->list[list[float]]:
'''simple docstring'''
__A : str = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
__A : Union[str, Any] = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError('''This matrix has no inverse.''' )
# Creates a copy of the matrix with swapped positions of the elements
__A : Union[str, Any] = [[0.0, 0.0], [0.0, 0.0]]
__A : Dict = matrix[1][1], matrix[0][0]
__A : Union[str, Any] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(snake_case_ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
__A : Any = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError('''This matrix has no inverse.''' )
# Creating cofactor matrix
__A : Union[str, Any] = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
__A : str = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
__A : Tuple = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
__A : Union[str, Any] = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
__A : Any = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
__A : List[str] = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
__A : Optional[Any] = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
__A : Dict = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
__A : str = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
__A : List[str] = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
__A : List[Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
__A : Union[str, Any] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
__A : Union[str, Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(snake_case_ )
# Calculate the inverse of the matrix
return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
| 355
|
"""simple docstring"""
import math
from collections.abc import Iterator
from itertools import takewhile
def __lowercase ( snake_case_ : int ) ->bool:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(snake_case_ ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __lowercase ( ) ->Iterator[int]:
'''simple docstring'''
__A : int = 2
while True:
if is_prime(snake_case_ ):
yield num
num += 1
def __lowercase ( snake_case_ : int = 2000000 ) ->int:
'''simple docstring'''
return sum(takewhile(lambda snake_case_ : x < n ,prime_generator() ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 291
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case_ = logging.get_logger(__name__)
snake_case_ = {}
class A_ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__UpperCamelCase = """llama"""
__UpperCamelCase = ["""past_key_values"""]
def __init__( self :Tuple , lowercase_ :Any=3_20_00 , lowercase_ :Tuple=40_96 , lowercase_ :Any=1_10_08 , lowercase_ :int=32 , lowercase_ :str=32 , lowercase_ :Optional[Any]=None , lowercase_ :Dict="silu" , lowercase_ :Any=20_48 , lowercase_ :Tuple=0.02 , lowercase_ :Tuple=1E-6 , lowercase_ :str=True , lowercase_ :Dict=0 , lowercase_ :Optional[Any]=1 , lowercase_ :List[str]=2 , lowercase_ :Union[str, Any]=1 , lowercase_ :List[Any]=False , lowercase_ :Union[str, Any]=None , **lowercase_ :int , ) -> int:
UpperCAmelCase = vocab_size
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = hidden_size
UpperCAmelCase = intermediate_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
UpperCAmelCase = num_attention_heads
UpperCAmelCase = num_key_value_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = initializer_range
UpperCAmelCase = rms_norm_eps
UpperCAmelCase = pretraining_tp
UpperCAmelCase = use_cache
UpperCAmelCase = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , )
def UpperCAmelCase__ ( self :List[str] ) -> Any:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '
f"""got {self.rope_scaling}""" )
UpperCAmelCase = self.rope_scaling.get('type' , lowercase_ )
UpperCAmelCase = self.rope_scaling.get('factor' , lowercase_ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0:
raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 78
|
'''simple docstring'''
import torch
from torch import nn
class lowercase_ (nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int]=1 ,lowercase__ : Optional[Any]=False ):
super().__init__()
__lowercase = n_token
__lowercase = d_embed
__lowercase = d_proj
__lowercase = cutoffs + [n_token]
__lowercase = [0] + self.cutoffs
__lowercase = div_val
__lowercase = self.cutoffs[0]
__lowercase = len(self.cutoffs ) - 1
__lowercase = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
__lowercase = nn.Parameter(torch.zeros(self.n_clusters ,self.d_embed ) )
__lowercase = nn.Parameter(torch.zeros(self.n_clusters ) )
__lowercase = nn.ModuleList()
__lowercase = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs ) ):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase__ ,lowercase__ ) ) )
else:
self.out_projs.append(lowercase__ )
self.out_layers.append(nn.Linear(lowercase__ ,lowercase__ ) )
else:
for i in range(len(self.cutoffs ) ):
__lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__lowercase = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase__ ,lowercase__ ) ) )
self.out_layers.append(nn.Linear(lowercase__ ,r_idx - l_idx ) )
__lowercase = keep_order
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Any ):
if proj is None:
__lowercase = nn.functional.linear(lowercase__ ,lowercase__ ,bias=lowercase__ )
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
__lowercase = nn.functional.linear(lowercase__ ,proj.t().contiguous() )
__lowercase = nn.functional.linear(lowercase__ ,lowercase__ ,bias=lowercase__ )
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Any=None ,lowercase__ : List[str]=False ):
if labels is not None:
# Shift so that tokens < n predict n
__lowercase = hidden[..., :-1, :].contiguous()
__lowercase = labels[..., 1:].contiguous()
__lowercase = hidden.view(-1 ,hidden.size(-1 ) )
__lowercase = labels.view(-1 )
if hidden.size(0 ) != labels.size(0 ):
raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' )
else:
__lowercase = hidden.view(-1 ,hidden.size(-1 ) )
if self.n_clusters == 0:
__lowercase = self._compute_logit(lowercase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] )
if labels is not None:
__lowercase = labels != -1_0_0
__lowercase = torch.zeros_like(lowercase__ ,dtype=hidden.dtype ,device=hidden.device )
__lowercase = (
-nn.functional.log_softmax(lowercase__ ,dim=-1 )[mask].gather(1 ,labels[mask].unsqueeze(1 ) ).squeeze(1 )
)
else:
__lowercase = nn.functional.log_softmax(lowercase__ ,dim=-1 )
else:
# construct weights and biases
__lowercase , __lowercase = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
__lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__lowercase = self.out_layers[0].weight[l_idx:r_idx]
__lowercase = self.out_layers[0].bias[l_idx:r_idx]
else:
__lowercase = self.out_layers[i].weight
__lowercase = self.out_layers[i].bias
if i == 0:
__lowercase = torch.cat([weight_i, self.cluster_weight] ,dim=0 )
__lowercase = torch.cat([bias_i, self.cluster_bias] ,dim=0 )
weights.append(lowercase__ )
biases.append(lowercase__ )
__lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0]
__lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
__lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 )
if labels is None:
__lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) )
else:
__lowercase = torch.zeros_like(lowercase__ ,dtype=hidden.dtype ,device=hidden.device )
__lowercase = 0
__lowercase = [0] + self.cutoffs
for i in range(len(lowercase__ ) - 1 ):
__lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
__lowercase = (labels >= l_idx) & (labels < r_idx)
__lowercase = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
__lowercase = labels.index_select(0 ,lowercase__ ) - l_idx
__lowercase = head_logprob.index_select(0 ,lowercase__ )
__lowercase = hidden.index_select(0 ,lowercase__ )
else:
__lowercase = hidden
if i == 0:
if labels is not None:
__lowercase = head_logprob_i.gather(1 ,target_i[:, None] ).squeeze(1 )
else:
__lowercase = head_logprob[:, : self.cutoffs[0]]
else:
__lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i]
__lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
__lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 )
__lowercase = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
__lowercase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 ,target_i[:, None] ).squeeze(1 )
else:
__lowercase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
__lowercase = logprob_i
if labels is not None:
if (hasattr(self ,'''keep_order''' ) and self.keep_order) or keep_order:
out.index_copy_(0 ,lowercase__ ,-logprob_i )
else:
out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i )
offset += logprob_i.size(0 )
return out
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Union[str, Any] ):
if self.n_clusters == 0:
__lowercase = self._compute_logit(lowercase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] )
return nn.functional.log_softmax(lowercase__ ,dim=-1 )
else:
# construct weights and biases
__lowercase , __lowercase = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
__lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__lowercase = self.out_layers[0].weight[l_idx:r_idx]
__lowercase = self.out_layers[0].bias[l_idx:r_idx]
else:
__lowercase = self.out_layers[i].weight
__lowercase = self.out_layers[i].bias
if i == 0:
__lowercase = torch.cat([weight_i, self.cluster_weight] ,dim=0 )
__lowercase = torch.cat([bias_i, self.cluster_bias] ,dim=0 )
weights.append(lowercase__ )
biases.append(lowercase__ )
__lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0]
__lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
__lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) )
__lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 )
__lowercase = [0] + self.cutoffs
for i in range(len(lowercase__ ) - 1 ):
__lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
__lowercase = head_logprob[:, : self.cutoffs[0]]
else:
__lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i]
__lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
__lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 )
__lowercase = head_logprob[:, -i] + tail_logprob_i
__lowercase = logprob_i
return out
| 104
| 0
|
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ =logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
lowercase__ =[]
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""")
)
rename_keys.append(
(F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""")
)
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias"""))
rename_keys.append(
(F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""")
)
rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias"""))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""")
)
rename_keys.append(
(F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""")
)
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""",
F"""decoder.layers.{i}.encoder_attn.out_proj.weight""",
)
)
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""",
F"""decoder.layers.{i}.encoder_attn.out_proj.bias""",
)
)
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias"""))
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""")
)
rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias"""))
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""")
)
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""")
)
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias"""))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", F"""decoder.layers.{i}.sa_qcontent_proj.weight""")
)
rename_keys.append(
(F"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", F"""decoder.layers.{i}.sa_kcontent_proj.weight""")
)
rename_keys.append(
(F"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", F"""decoder.layers.{i}.sa_qpos_proj.weight""")
)
rename_keys.append(
(F"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", F"""decoder.layers.{i}.sa_kpos_proj.weight""")
)
rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.weight""", F"""decoder.layers.{i}.sa_v_proj.weight"""))
rename_keys.append(
(F"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", F"""decoder.layers.{i}.ca_qcontent_proj.weight""")
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", F"""decoder.layers.{i}.ca_kcontent_proj.weight""")
)
rename_keys.append(
(F"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", F"""decoder.layers.{i}.ca_kpos_proj.weight""")
)
rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.weight""", F"""decoder.layers.{i}.ca_v_proj.weight"""))
rename_keys.append(
(F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", F"""decoder.layers.{i}.ca_qpos_sine_proj.weight""")
)
rename_keys.append(
(F"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", F"""decoder.layers.{i}.sa_qcontent_proj.bias""")
)
rename_keys.append(
(F"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", F"""decoder.layers.{i}.sa_kcontent_proj.bias""")
)
rename_keys.append((F"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", F"""decoder.layers.{i}.sa_qpos_proj.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", F"""decoder.layers.{i}.sa_kpos_proj.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.bias""", F"""decoder.layers.{i}.sa_v_proj.bias"""))
rename_keys.append(
(F"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", F"""decoder.layers.{i}.ca_qcontent_proj.bias""")
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", F"""decoder.layers.{i}.ca_kcontent_proj.bias""")
)
rename_keys.append((F"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", F"""decoder.layers.{i}.ca_kpos_proj.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.bias""", F"""decoder.layers.{i}.ca_v_proj.bias"""))
rename_keys.append(
(F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", F"""decoder.layers.{i}.ca_qpos_sine_proj.bias""")
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
('input_proj.weight', 'input_projection.weight'),
('input_proj.bias', 'input_projection.bias'),
('query_embed.weight', 'query_position_embeddings.weight'),
('transformer.decoder.norm.weight', 'decoder.layernorm.weight'),
('transformer.decoder.norm.bias', 'decoder.layernorm.bias'),
('class_embed.weight', 'class_labels_classifier.weight'),
('class_embed.bias', 'class_labels_classifier.bias'),
('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'),
('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'),
('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'),
('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'),
('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'),
('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'),
('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'),
('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'),
('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'),
('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'),
('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'),
('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'),
('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'),
('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'),
('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'),
('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'),
]
)
def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ):
__a : Optional[Any] = state_dict.pop(lowerCAmelCase__ )
__a : int = val
def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] ):
__a : List[Any] = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
__a : Optional[int] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' )
__a : str = value
else:
__a : int = value
return new_state_dict
def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any=False ):
__a : Any = ''''''
if is_panoptic:
__a : Optional[Any] = '''conditional_detr.'''
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
__a : List[Any] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" )
__a : Tuple = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
__a : List[str] = in_proj_weight[:2_5_6, :]
__a : str = in_proj_bias[:2_5_6]
__a : Optional[Any] = in_proj_weight[2_5_6:5_1_2, :]
__a : List[Any] = in_proj_bias[2_5_6:5_1_2]
__a : Optional[Any] = in_proj_weight[-2_5_6:, :]
__a : int = in_proj_bias[-2_5_6:]
def __UpperCamelCase ( ):
__a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__a : List[str] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Dict ):
__a : Optional[Any] = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
__a : Tuple = '''resnet101'''
if "dc5" in model_name:
__a : int = True
__a : List[Any] = '''panoptic''' in model_name
if is_panoptic:
__a : Optional[Any] = 2_5_0
else:
__a : Optional[int] = 9_1
__a : str = '''huggingface/label-files'''
__a : Optional[int] = '''coco-detection-id2label.json'''
__a : Tuple = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) )
__a : List[Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
__a : int = idalabel
__a : Union[str, Any] = {v: k for k, v in idalabel.items()}
# load image processor
__a : Optional[int] = '''coco_panoptic''' if is_panoptic else '''coco_detection'''
__a : Optional[int] = ConditionalDetrImageProcessor(format=lowerCAmelCase__ )
# prepare image
__a : Union[str, Any] = prepare_img()
__a : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' )
__a : int = encoding['''pixel_values''']
logger.info(f"Converting model {model_name}..." )
# load original model from torch hub
__a : List[str] = torch.hub.load('''DeppMeng/ConditionalDETR''' , lowerCAmelCase__ , pretrained=lowerCAmelCase__ ).eval()
__a : Tuple = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
__a : Any = '''conditional_detr.''' + src
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__a : int = rename_backbone_keys(lowerCAmelCase__ )
# query, key and value matrices need special treatment
read_in_q_k_v(lowerCAmelCase__ , is_panoptic=lowerCAmelCase__ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
__a : Optional[Any] = '''conditional_detr.model.''' if is_panoptic else '''model.'''
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith('''conditional_detr''' )
and not key.startswith('''class_labels_classifier''' )
and not key.startswith('''bbox_predictor''' )
):
__a : int = state_dict.pop(lowerCAmelCase__ )
__a : Optional[Any] = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
__a : Union[str, Any] = state_dict.pop(lowerCAmelCase__ )
__a : Any = val
elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ):
continue
else:
__a : str = state_dict.pop(lowerCAmelCase__ )
__a : str = val
else:
if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ):
__a : Optional[int] = state_dict.pop(lowerCAmelCase__ )
__a : str = val
# finally, create HuggingFace model and load state dict
__a : List[Any] = ConditionalDetrForSegmentation(lowerCAmelCase__ ) if is_panoptic else ConditionalDetrForObjectDetection(lowerCAmelCase__ )
model.load_state_dict(lowerCAmelCase__ )
model.eval()
model.push_to_hub(repo_id=lowerCAmelCase__ , organization='''DepuMeng''' , commit_message='''Add model''' )
# verify our conversion
__a : Any = conditional_detr(lowerCAmelCase__ )
__a : str = model(lowerCAmelCase__ )
assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 )
# Save model and image processor
logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
image_processor.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowercase__ =argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='conditional_detr_resnet50',
type=str,
help='Name of the CONDITIONAL_DETR model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
lowercase__ =parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 355
|
from transformers import BertTokenizerFast
from .custom_tokenization import CustomTokenizer
class UpperCamelCase__ ( __lowercase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = CustomTokenizer
pass
| 90
| 0
|
"""simple docstring"""
_lowerCamelCase : List[Any] = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
A_ : Optional[Any] = set()
# keep track of all the paths to be checked
A_ : List[Any] = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
A_ : Union[str, Any] = queue.pop(0 )
# get the last node from the path
A_ : int = path[-1]
if node not in explored:
A_ : List[Any] = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
A_ : Dict = list(_UpperCAmelCase )
new_path.append(_UpperCAmelCase )
queue.append(_UpperCAmelCase )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(_UpperCAmelCase )
# in case there's no path between the 2 nodes
return []
def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
A_ : Optional[int] = [start]
A_ : List[Any] = set(_UpperCAmelCase )
# Keep tab on distances from `start` node.
A_ : List[str] = {start: 0, target: -1}
while queue:
A_ : Union[str, Any] = queue.pop(0 )
if node == target:
A_ : Union[str, Any] = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(_UpperCAmelCase )
queue.append(_UpperCAmelCase )
A_ : List[str] = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
| 167
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase : Any = {
'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'],
'processing_git': ['GitProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Dict = [
'GIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GitForCausalLM',
'GitModel',
'GitPreTrainedModel',
'GitVisionModel',
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
_lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 167
| 1
|
"""simple docstring"""
from collections.abc import Sequence
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float:
"""simple docstring"""
return sum(c * (x**i) for i, c in enumerate(_SCREAMING_SNAKE_CASE ) )
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float:
"""simple docstring"""
lowerCAmelCase__ :Dict = 0.0
for coeff in reversed(_SCREAMING_SNAKE_CASE ):
lowerCAmelCase__ :int = result * x + coeff
return result
if __name__ == "__main__":
__A = (0.0, 0.0, 5.0, 9.3, 7.0)
__A = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 363
|
"""simple docstring"""
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
__A = """0.12""" # assumed parallelism: 8
if is_torch_available():
import torch
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]:
"""simple docstring"""
if rng is None:
lowerCAmelCase__ :Dict = random.Random()
lowerCAmelCase__ :Tuple = 1
for dim in shape:
total_dims *= dim
lowerCAmelCase__ :List[Any] = []
for _ in range(_SCREAMING_SNAKE_CASE ):
values.append(rng.randint(0 , vocab_size - 1 ) )
lowerCAmelCase__ :int = np.array(_SCREAMING_SNAKE_CASE , dtype=jnp.intaa ).reshape(_SCREAMING_SNAKE_CASE )
return output
def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]:
"""simple docstring"""
lowerCAmelCase__ :Union[str, Any] = ids_tensor(_SCREAMING_SNAKE_CASE , vocab_size=2 , rng=_SCREAMING_SNAKE_CASE )
# make sure that at least one token is attended to for each batch
lowerCAmelCase__ :Any = 1
return attn_mask
@require_flax
class _lowerCAmelCase :
"""simple docstring"""
__magic_name__ :Optional[int] = None
__magic_name__ :List[str] = ()
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
lowerCAmelCase__ :Union[str, Any] = 2
lowerCAmelCase__ :List[Any] = inputs['input_ids'].shape[-1] // 2
lowerCAmelCase__ :Union[str, Any] = inputs['input_ids'][:max_batch_size, :sequence_length]
lowerCAmelCase__ :str = jnp.ones_like(__UpperCAmelCase )
lowerCAmelCase__ :int = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
lowerCAmelCase__ :List[Any] = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
lowerCAmelCase__ :Optional[Any] = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = self._get_input_ids_and_config()
lowerCAmelCase__ :int = False
lowerCAmelCase__ :List[Any] = max_length
lowerCAmelCase__ :List[Any] = 0
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ :int = model_class(__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase__ :List[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ :Optional[int] = pt_model_class(__UpperCAmelCase ).eval()
lowerCAmelCase__ :Dict = load_flax_weights_in_pytorch_model(__UpperCAmelCase , flax_model.params )
lowerCAmelCase__ :Union[str, Any] = flax_model.generate(__UpperCAmelCase ).sequences
lowerCAmelCase__ :Union[str, Any] = pt_model.generate(torch.tensor(__UpperCAmelCase , dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
lowerCAmelCase__ :Union[str, Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = self._get_input_ids_and_config()
lowerCAmelCase__ :Any = False
lowerCAmelCase__ :Any = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ :List[str] = model_class(__UpperCAmelCase )
lowerCAmelCase__ :Any = model.generate(__UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase )
lowerCAmelCase__ :List[str] = jit(model.generate )
lowerCAmelCase__ :Optional[Any] = jit_generate(__UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = self._get_input_ids_and_config()
lowerCAmelCase__ :int = True
lowerCAmelCase__ :Optional[int] = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ :Dict = model_class(__UpperCAmelCase )
lowerCAmelCase__ :int = model.generate(__UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase )
lowerCAmelCase__ :List[Any] = jit(model.generate )
lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config()
lowerCAmelCase__ :Optional[Any] = False
lowerCAmelCase__ :Dict = max_length
lowerCAmelCase__ :Dict = 2
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ :List[str] = model_class(__UpperCAmelCase )
lowerCAmelCase__ :Dict = model.generate(__UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase )
lowerCAmelCase__ :Any = jit(model.generate )
lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = self._get_input_ids_and_config()
lowerCAmelCase__ :int = False
lowerCAmelCase__ :Optional[Any] = max_length
lowerCAmelCase__ :Optional[Any] = 2
lowerCAmelCase__ :Optional[int] = 2
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ :Union[str, Any] = model_class(__UpperCAmelCase )
lowerCAmelCase__ :str = model.generate(__UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = self._get_input_ids_and_config()
lowerCAmelCase__ :Optional[int] = True
lowerCAmelCase__ :Tuple = max_length
lowerCAmelCase__ :Optional[int] = 0.8
lowerCAmelCase__ :Any = 1_0
lowerCAmelCase__ :List[Any] = 0.3
lowerCAmelCase__ :Tuple = 1
lowerCAmelCase__ :Union[str, Any] = 8
lowerCAmelCase__ :Optional[Any] = 9
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = model.generate(__UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase )
lowerCAmelCase__ :Optional[int] = jit(model.generate )
lowerCAmelCase__ :Any = jit_generate(__UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config()
lowerCAmelCase__ :Union[str, Any] = max_length
lowerCAmelCase__ :str = 1
lowerCAmelCase__ :Tuple = 8
lowerCAmelCase__ :Optional[Any] = 9
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ :str = model_class(__UpperCAmelCase )
lowerCAmelCase__ :Union[str, Any] = model.generate(__UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase )
lowerCAmelCase__ :List[str] = jit(model.generate )
lowerCAmelCase__ :Optional[int] = jit_generate(__UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self._get_input_ids_and_config()
lowerCAmelCase__ :str = max_length
lowerCAmelCase__ :Dict = 2
lowerCAmelCase__ :Dict = 1
lowerCAmelCase__ :Optional[int] = 8
lowerCAmelCase__ :Optional[Any] = 9
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase )
lowerCAmelCase__ :int = model.generate(__UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase )
lowerCAmelCase__ :Dict = jit(model.generate )
lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self._get_input_ids_and_config()
# pad attention mask on the left
lowerCAmelCase__ :Tuple = attention_mask.at[(0, 0)].set(0 )
lowerCAmelCase__ :Union[str, Any] = False
lowerCAmelCase__ :Optional[Any] = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ :Tuple = model_class(__UpperCAmelCase )
lowerCAmelCase__ :List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase )
lowerCAmelCase__ :int = jit(model.generate )
lowerCAmelCase__ :Optional[Any] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self._get_input_ids_and_config()
# pad attention mask on the left
lowerCAmelCase__ :Any = attention_mask.at[(0, 0)].set(0 )
lowerCAmelCase__ :Optional[Any] = True
lowerCAmelCase__ :Dict = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ :str = model_class(__UpperCAmelCase )
lowerCAmelCase__ :Tuple = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase )
lowerCAmelCase__ :Optional[int] = jit(model.generate )
lowerCAmelCase__ :Optional[int] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :int = self._get_input_ids_and_config()
# pad attention mask on the left
lowerCAmelCase__ :int = attention_mask.at[(0, 0)].set(0 )
lowerCAmelCase__ :Dict = 2
lowerCAmelCase__ :Optional[Any] = max_length
for model_class in self.all_generative_model_classes:
lowerCAmelCase__ :Any = model_class(__UpperCAmelCase )
lowerCAmelCase__ :List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase )
lowerCAmelCase__ :Optional[Any] = jit(model.generate )
lowerCAmelCase__ :int = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' )
lowerCAmelCase__ :List[str] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' )
lowerCAmelCase__ :Optional[int] = 'Hello world'
lowerCAmelCase__ :Union[str, Any] = tokenizer(__UpperCAmelCase , return_tensors='np' ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(__UpperCAmelCase , 'do_samples' ):
model.generate(__UpperCAmelCase , do_samples=__UpperCAmelCase )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(__UpperCAmelCase , 'foo' ):
lowerCAmelCase__ :Optional[int] = {'foo': 'bar'}
model.generate(__UpperCAmelCase , **__UpperCAmelCase )
| 254
| 0
|
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
__snake_case : Tuple = logging.get_logger(__name__)
__snake_case : str = {
"""allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""",
"""allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""",
"""allenai/longformer-large-4096-finetuned-triviaqa""": (
"""https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json"""
),
"""allenai/longformer-base-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json"""
),
"""allenai/longformer-large-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json"""
),
}
class A__(__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
_A : Optional[Any] = """longformer"""
def __init__( self , _lowercase = 512 , _lowercase = 2 , _lowercase = 1 , _lowercase = 0 , _lowercase = 2 , _lowercase = 30_522 , _lowercase = 768 , _lowercase = 12 , _lowercase = 12 , _lowercase = 3_072 , _lowercase = "gelu" , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 512 , _lowercase = 2 , _lowercase = 0.0_2 , _lowercase = 1e-12 , _lowercase = False , **_lowercase , ) -> Optional[int]:
super().__init__(pad_token_id=_lowercase , **_lowercase )
a_ : Dict = attention_window
a_ : Union[str, Any] = sep_token_id
a_ : Optional[int] = bos_token_id
a_ : int = eos_token_id
a_ : List[Any] = vocab_size
a_ : Dict = hidden_size
a_ : Optional[Any] = num_hidden_layers
a_ : Optional[int] = num_attention_heads
a_ : List[Any] = hidden_act
a_ : Any = intermediate_size
a_ : Any = hidden_dropout_prob
a_ : Tuple = attention_probs_dropout_prob
a_ : Any = max_position_embeddings
a_ : Dict = type_vocab_size
a_ : int = initializer_range
a_ : Optional[Any] = layer_norm_eps
a_ : Union[str, Any] = onnx_export
class A__(__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
def __init__( self , _lowercase , _lowercase = "default" , _lowercase = None ) -> Dict:
super().__init__(_lowercase , _lowercase , _lowercase )
a_ : Optional[int] = True
@property
def UpperCamelCase__ ( self ) -> Tuple:
if self.task == "multiple-choice":
a_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
a_ : Optional[int] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""global_attention_mask""", dynamic_axis),
] )
@property
def UpperCamelCase__ ( self ) -> Tuple:
a_ : str = super().outputs
if self.task == "default":
a_ : Any = {0: """batch"""}
return outputs
@property
def UpperCamelCase__ ( self ) -> List[str]:
return 1e-4
@property
def UpperCamelCase__ ( self ) -> List[Any]:
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 14 )
def UpperCamelCase__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Optional[Any]:
a_ : List[Any] = super().generate_dummy_inputs(
preprocessor=_lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
a_ : Any = torch.zeros_like(inputs["""input_ids"""] )
# make every second token global
a_ : Union[str, Any] = 1
return inputs
| 248
|
_lowerCamelCase ={
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.6_0_2_1_7_6_6_3_4E-1_9,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.355818,
}
def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
lowerCamelCase : Dict = (
F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n'''
F'''Valid values are: {", ".join(lowerCamelCase )}'''
)
raise ValueError(lowerCamelCase )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 287
| 0
|
"""simple docstring"""
import numpy as np
lowerCAmelCase__ = [
['''a''', '''b''', '''c''', '''d''', '''e'''],
['''f''', '''g''', '''h''', '''i''', '''k'''],
['''l''', '''m''', '''n''', '''o''', '''p'''],
['''q''', '''r''', '''s''', '''t''', '''u'''],
['''v''', '''w''', '''x''', '''y''', '''z'''],
]
class __snake_case :
def __init__( self : str ):
"""simple docstring"""
_lowerCamelCase : Dict = np.array(__lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : str ):
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = np.where(letter == self.SQUARE )
_lowerCamelCase : Tuple = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = self.SQUARE[indexa - 1, indexa - 1]
return letter
def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : str ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = message.lower()
_lowerCamelCase : Optional[int] = message.replace(''' ''' , '''''' )
_lowerCamelCase : Union[str, Any] = message.replace('''j''' , '''i''' )
_lowerCamelCase : int = np.empty((2, len(__lowerCAmelCase )) )
for letter_index in range(len(__lowerCAmelCase ) ):
_lowerCamelCase : List[Any] = self.letter_to_numbers(message[letter_index] )
_lowerCamelCase : Tuple = numbers[0]
_lowerCamelCase : Optional[int] = numbers[1]
_lowerCamelCase : Dict = first_step.reshape(2 * len(__lowerCAmelCase ) )
_lowerCamelCase : Optional[int] = ''''''
for numbers_index in range(len(__lowerCAmelCase ) ):
_lowerCamelCase : Optional[int] = int(second_step[numbers_index * 2] )
_lowerCamelCase : List[str] = int(second_step[(numbers_index * 2) + 1] )
_lowerCamelCase : Any = self.numbers_to_letter(__lowerCAmelCase , __lowerCAmelCase )
_lowerCamelCase : Dict = encoded_message + letter
return encoded_message
def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : str ):
"""simple docstring"""
_lowerCamelCase : Tuple = message.lower()
message.replace(''' ''' , '''''' )
_lowerCamelCase : Any = np.empty(2 * len(__lowerCAmelCase ) )
for letter_index in range(len(__lowerCAmelCase ) ):
_lowerCamelCase : List[str] = self.letter_to_numbers(message[letter_index] )
_lowerCamelCase : Any = numbers[0]
_lowerCamelCase : Optional[Any] = numbers[1]
_lowerCamelCase : Any = first_step.reshape((2, len(__lowerCAmelCase )) )
_lowerCamelCase : int = ''''''
for numbers_index in range(len(__lowerCAmelCase ) ):
_lowerCamelCase : Optional[int] = int(second_step[0, numbers_index] )
_lowerCamelCase : int = int(second_step[1, numbers_index] )
_lowerCamelCase : Tuple = self.numbers_to_letter(__lowerCAmelCase , __lowerCAmelCase )
_lowerCamelCase : List[str] = decoded_message + letter
return decoded_message
| 175
|
"""simple docstring"""
import argparse
lowerCAmelCase__ = '''docs/source/_static/js/custom.js'''
def snake_case_ ( A_ : List[str] ):
'''simple docstring'''
with open(A_, encoding='''utf-8''', newline='''\n''' ) as f:
_lowerCamelCase : int = f.readlines()
_lowerCamelCase : List[str] = 0
# First let's put the right version
while not lines[index].startswith('''const stableVersion =''' ):
index += 1
_lowerCamelCase : List[Any] = F'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith('''const versionMapping = {''' ):
index += 1
# We go until the end
while not lines[index].startswith('''}''' ):
index += 1
# We add the new version at the end
lines[index - 1] += F''' "v{version}": "v{version}",\n'''
with open(A_, '''w''', encoding='''utf-8''', newline='''\n''' ) as f:
f.writelines(A_ )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
lowerCAmelCase__ = parser.parse_args()
update_custom_js(args.version)
| 175
| 1
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class lowercase ( unittest.TestCase ):
def _snake_case ( self ) -> int:
lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
lowerCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) )
lowerCAmelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""]
lowerCAmelCase = {"""unk_token""": """<unk>"""}
lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowercase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(lowercase ) )
lowerCAmelCase = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"""image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
lowerCAmelCase = os.path.join(self.tmpdirname , lowercase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(lowercase , lowercase )
def _snake_case ( self , **lowercase ) -> Dict:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase )
def _snake_case ( self , **lowercase ) -> List[str]:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase )
def _snake_case ( self , **lowercase ) -> int:
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase )
def _snake_case ( self ) -> Optional[int]:
shutil.rmtree(self.tmpdirname )
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = self.get_rust_tokenizer()
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase )
lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , lowercase )
self.assertIsInstance(processor_fast.tokenizer , lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , lowercase )
self.assertIsInstance(processor_fast.image_processor , lowercase )
def _snake_case ( self ) -> Any:
lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowerCAmelCase = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 )
lowerCAmelCase = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase )
def _snake_case ( self ) -> int:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase )
lowerCAmelCase = self.prepare_image_inputs()
lowerCAmelCase = image_processor(lowercase , return_tensors="""np""" )
lowerCAmelCase = processor(images=lowercase , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self ) -> List[Any]:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase )
lowerCAmelCase = """lower newer"""
lowerCAmelCase = processor(text=lowercase )
lowerCAmelCase = tokenizer(lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self ) -> List[Any]:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase )
lowerCAmelCase = """lower newer"""
lowerCAmelCase = self.prepare_image_inputs()
lowerCAmelCase = processor(text=lowercase , images=lowercase )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(lowercase ):
processor()
def _snake_case ( self ) -> int:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase )
lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase = processor.batch_decode(lowercase )
lowerCAmelCase = tokenizer.batch_decode(lowercase )
self.assertListEqual(lowercase , lowercase )
def _snake_case ( self ) -> str:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase )
lowerCAmelCase = """lower newer"""
lowerCAmelCase = self.prepare_image_inputs()
lowerCAmelCase = processor(text=lowercase , images=lowercase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 46
|
"""simple docstring"""
import math
import sys
def A__ ( UpperCamelCase ):
A = ""
try:
with open(UpperCamelCase , "rb" ) as binary_file:
A = binary_file.read()
for dat in data:
A = F"{dat:08b}"
result += curr_byte
return result
except OSError:
print("File not accessible" )
sys.exit()
def A__ ( UpperCamelCase ):
A = {"0": "0", "1": "1"}
A, A = "", ""
A = len(UpperCamelCase )
for i in range(len(UpperCamelCase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
A = lexicon[curr_string]
result += last_match_id
A = last_match_id + "0"
if math.loga(UpperCamelCase ).is_integer():
A = {}
for curr_key in list(UpperCamelCase ):
A = lexicon.pop(UpperCamelCase )
A = new_lex
A = last_match_id + "1"
index += 1
A = ""
return result
def A__ ( UpperCamelCase , UpperCamelCase ):
A = 8
try:
with open(UpperCamelCase , "wb" ) as opened_file:
A = [
to_write[i : i + byte_length]
for i in range(0 , len(UpperCamelCase ) , UpperCamelCase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("10000000" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) )
except OSError:
print("File not accessible" )
sys.exit()
def A__ ( UpperCamelCase ):
A = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
A = data_bits[counter:]
A = data_bits[counter + 1 :]
return data_bits
def A__ ( UpperCamelCase , UpperCamelCase ):
A = read_file_binary(UpperCamelCase )
A = remove_prefix(UpperCamelCase )
A = decompress_data(UpperCamelCase )
write_file_binary(UpperCamelCase , UpperCamelCase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 292
| 0
|
def __UpperCamelCase ( _lowerCAmelCase = 10 , _lowerCAmelCase = 22 ) -> int:
"""simple docstring"""
A : Dict = range(1 , _lowerCAmelCase )
A : List[Any] = range(1 , _lowerCAmelCase )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(F"""{solution(10, 22) = }""")
| 115
|
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE_:Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_:int = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
SCREAMING_SNAKE_CASE_:Tuple = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
SCREAMING_SNAKE_CASE_:Optional[int] = {"""facebook/blenderbot_small-90M""": 512}
def __UpperCamelCase ( _lowerCAmelCase ) -> Dict:
"""simple docstring"""
A : Optional[int] = set()
A : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A : List[Any] = char
A : Optional[int] = set(_lowerCAmelCase )
return pairs
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
__lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : int = ["input_ids", "attention_mask"]
def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__="__start__", lowerCamelCase__="__end__", lowerCamelCase__="__unk__", lowerCamelCase__="__null__", **lowerCamelCase__, ):
super().__init__(unk_token=lowerCamelCase__, bos_token=lowerCamelCase__, eos_token=lowerCamelCase__, pad_token=lowerCamelCase__, **lowerCamelCase__ )
with open(lowerCamelCase__, encoding="""utf-8""" ) as vocab_handle:
A : Tuple = json.load(lowerCamelCase__ )
A : Optional[Any] = {v: k for k, v in self.encoder.items()}
with open(lowerCamelCase__, encoding="""utf-8""" ) as merges_handle:
A : str = merges_handle.read().split("""\n""" )[1:-1]
A : List[str] = [tuple(merge.split() ) for merge in merges]
A : int = dict(zip(lowerCamelCase__, range(len(lowerCamelCase__ ) ) ) )
A : Optional[int] = {}
@property
def _lowerCAmelCase ( self ):
return len(self.encoder )
def _lowerCAmelCase ( self ):
return dict(self.encoder, **self.added_tokens_encoder )
def _lowerCAmelCase ( self, lowerCamelCase__ ):
if token in self.cache:
return self.cache[token]
A : Optional[int] = re.sub("""([.,!?()])""", R""" \1""", lowerCamelCase__ )
A : List[Any] = re.sub("""(')""", R""" \1 """, lowerCamelCase__ )
A : int = re.sub(R"""\s{2,}""", """ """, lowerCamelCase__ )
if "\n" in token:
A : Dict = token.replace("""\n""", """ __newln__""" )
A : Tuple = token.split(""" """ )
A : Union[str, Any] = []
for token in tokens:
if not len(lowerCamelCase__ ):
continue
A : Optional[int] = token.lower()
A : Optional[Any] = tuple(lowerCamelCase__ )
A : int = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
A : Tuple = get_pairs(lowerCamelCase__ )
if not pairs:
words.append(lowerCamelCase__ )
continue
while True:
A : Any = min(lowerCamelCase__, key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__, float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
A , A : Any = bigram
A : Optional[Any] = []
A : Any = 0
while i < len(lowerCamelCase__ ):
try:
A : List[str] = word.index(lowerCamelCase__, lowerCamelCase__ )
new_word.extend(word[i:j] )
A : Dict = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A : Tuple = tuple(lowerCamelCase__ )
A : int = new_word
if len(lowerCamelCase__ ) == 1:
break
else:
A : Dict = get_pairs(lowerCamelCase__ )
A : Any = """@@ """.join(lowerCamelCase__ )
A : Dict = word[:-4]
A : Union[str, Any] = word
words.append(lowerCamelCase__ )
return " ".join(lowerCamelCase__ )
def _lowerCAmelCase ( self, lowerCamelCase__ ):
A : int = []
A : Optional[Any] = re.findall(R"""\S+\n?""", lowerCamelCase__ )
for token in words:
split_tokens.extend(list(self.bpe(lowerCamelCase__ ).split(""" """ ) ) )
return split_tokens
def _lowerCAmelCase ( self, lowerCamelCase__ ):
A : List[Any] = token.lower()
return self.encoder.get(lowerCamelCase__, self.encoder.get(self.unk_token ) )
def _lowerCAmelCase ( self, lowerCamelCase__ ):
return self.decoder.get(lowerCamelCase__, self.unk_token )
def _lowerCAmelCase ( self, lowerCamelCase__ ):
A : Dict = """ """.join(lowerCamelCase__ ).replace("""@@ """, """""" ).strip()
return out_string
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ):
if not os.path.isdir(lowerCamelCase__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
A : str = os.path.join(
lowerCamelCase__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
A : int = os.path.join(
lowerCamelCase__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowerCamelCase__, """w""", encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCamelCase__, ensure_ascii=lowerCamelCase__ ) + """\n""" )
A : str = 0
with open(lowerCamelCase__, """w""", encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCamelCase__ : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
""" Please check that the tokenizer is not corrupted!""" )
A : List[Any] = token_index
writer.write(""" """.join(lowerCamelCase__ ) + """\n""" )
index += 1
return vocab_file, merge_file
| 115
| 1
|
import functools
from typing import Any
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bool:
"""simple docstring"""
if not isinstance(_UpperCamelCase , _UpperCamelCase ) or len(_UpperCamelCase ) == 0:
raise ValueError('''the string should be not empty string''' )
if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not all(
isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) > 0 for item in words ):
raise ValueError('''the words should be a list of non-empty strings''' )
# Build trie
snake_case_ : dict[str, Any] = {}
snake_case_ : Dict = '''WORD_KEEPER'''
for word in words:
snake_case_ : Any = trie
for c in word:
if c not in trie_node:
snake_case_ : Union[str, Any] = {}
snake_case_ : str = trie_node[c]
snake_case_ : List[Any] = True
snake_case_ : List[Any] = len(_UpperCamelCase )
# Dynamic programming method
@functools.cache
def is_breakable(_UpperCamelCase ) -> bool:
if index == len_string:
return True
snake_case_ : int = trie
for i in range(_UpperCamelCase , _UpperCamelCase ):
snake_case_ : Optional[Any] = trie_node.get(string[i] , _UpperCamelCase )
if trie_node is None:
return False
if trie_node.get(_UpperCamelCase , _UpperCamelCase ) and is_breakable(i + 1 ):
return True
return False
return is_breakable(0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 279
|
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import is_speech_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import WhisperFeatureExtractor
if is_torch_available():
import torch
lowerCAmelCase_ = random.Random()
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]:
"""simple docstring"""
if rng is None:
snake_case_ : str = global_rng
snake_case_ : Any = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class __lowerCAmelCase ( unittest.TestCase ):
def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=400 , __magic_name__=2000 , __magic_name__=10 , __magic_name__=160 , __magic_name__=8 , __magic_name__=0.0 , __magic_name__=4000 , __magic_name__=False , __magic_name__=True , ) -> List[str]:
'''simple docstring'''
snake_case_ : Tuple = parent
snake_case_ : str = batch_size
snake_case_ : Union[str, Any] = min_seq_length
snake_case_ : Tuple = max_seq_length
snake_case_ : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
snake_case_ : Optional[int] = padding_value
snake_case_ : Union[str, Any] = sampling_rate
snake_case_ : Optional[int] = return_attention_mask
snake_case_ : str = do_normalize
snake_case_ : str = feature_size
snake_case_ : Optional[Any] = chunk_length
snake_case_ : Union[str, Any] = hop_length
def lowerCamelCase (self ) -> Optional[int]:
'''simple docstring'''
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def lowerCamelCase (self , __magic_name__=False , __magic_name__=False ) -> Optional[Any]:
'''simple docstring'''
def _flatten(__magic_name__ ):
return list(itertools.chain(*__magic_name__ ) )
if equal_length:
snake_case_ : int = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
snake_case_ : int = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
snake_case_ : str = [np.asarray(__magic_name__ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class __lowerCAmelCase ( _a, unittest.TestCase ):
lowerCamelCase_ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None
def lowerCamelCase (self ) -> Optional[int]:
'''simple docstring'''
snake_case_ : List[str] = WhisperFeatureExtractionTester(self )
def lowerCamelCase (self ) -> List[str]:
'''simple docstring'''
snake_case_ : str = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : Union[str, Any] = feat_extract_first.save_pretrained(__magic_name__ )[0]
check_json_file_has_correct_format(__magic_name__ )
snake_case_ : List[Any] = self.feature_extraction_class.from_pretrained(__magic_name__ )
snake_case_ : Optional[int] = feat_extract_first.to_dict()
snake_case_ : Dict = feat_extract_second.to_dict()
snake_case_ : List[str] = feat_extract_first.mel_filters
snake_case_ : Union[str, Any] = feat_extract_second.mel_filters
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) )
self.assertEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase (self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : List[Any] = os.path.join(__magic_name__ , '''feat_extract.json''' )
feat_extract_first.to_json_file(__magic_name__ )
snake_case_ : Optional[int] = self.feature_extraction_class.from_json_file(__magic_name__ )
snake_case_ : int = feat_extract_first.to_dict()
snake_case_ : Optional[int] = feat_extract_second.to_dict()
snake_case_ : Union[str, Any] = feat_extract_first.mel_filters
snake_case_ : str = feat_extract_second.mel_filters
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) )
self.assertEqual(__magic_name__ , __magic_name__ )
def lowerCamelCase (self ) -> int:
'''simple docstring'''
snake_case_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
snake_case_ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
snake_case_ : str = [np.asarray(__magic_name__ ) for speech_input in speech_inputs]
# Test feature size
snake_case_ : str = feature_extractor(__magic_name__ , padding='''max_length''' , return_tensors='''np''' ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames )
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size )
# Test not batched input
snake_case_ : Dict = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features
snake_case_ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) )
# Test batched
snake_case_ : int = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features
snake_case_ : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features
for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ):
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
snake_case_ : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)]
snake_case_ : List[str] = np.asarray(__magic_name__ )
snake_case_ : List[Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features
snake_case_ : Dict = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features
for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ):
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) )
# Test truncation required
snake_case_ : Any = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )]
snake_case_ : Union[str, Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs]
snake_case_ : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs]
snake_case_ : Optional[Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs_truncated]
snake_case_ : Any = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features
snake_case_ : List[Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features
for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ):
self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) )
def lowerCamelCase (self ) -> int:
'''simple docstring'''
import torch
snake_case_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
snake_case_ : Union[str, Any] = np.random.rand(100 , 32 ).astype(np.floataa )
snake_case_ : Dict = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
snake_case_ : Optional[Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
snake_case_ : Optional[Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def lowerCamelCase (self , __magic_name__ ) -> Dict:
'''simple docstring'''
snake_case_ : Optional[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' )
# automatic decoding with librispeech
snake_case_ : Optional[Any] = ds.sort('''id''' ).select(range(__magic_name__ ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
def lowerCamelCase (self ) -> str:
'''simple docstring'''
snake_case_ : str = torch.tensor(
[
0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951,
0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678,
0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554,
-0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854
] )
# fmt: on
snake_case_ : List[Any] = self._load_datasamples(1 )
snake_case_ : Union[str, Any] = WhisperFeatureExtractor()
snake_case_ : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors='''pt''' ).input_features
self.assertEqual(input_features.shape , (1, 80, 3000) )
self.assertTrue(torch.allclose(input_features[0, 0, :30] , __magic_name__ , atol=1e-4 ) )
def lowerCamelCase (self ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
snake_case_ : Optional[int] = self._load_datasamples(1 )[0]
snake_case_ : List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue
snake_case_ : Optional[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__magic_name__ )[0]
self.assertTrue(np.all(np.mean(__magic_name__ ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(__magic_name__ ) - 1 ) < 1e-3 ) )
| 279
| 1
|
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Dict = ['''image_processor''', '''tokenizer''']
lowercase__ : Optional[int] = '''ViltImageProcessor'''
lowercase__ : Optional[int] = ('''BertTokenizer''', '''BertTokenizerFast''')
def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> int:
__magic_name__ : str = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , lowerCAmelCase__ , )
__magic_name__ : str = kwargs.pop("""feature_extractor""" )
__magic_name__ : Optional[int] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : int = self.image_processor
def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchEncoding:
__magic_name__ : List[str] = self.tokenizer(
text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , )
# add pixel_values + pixel_mask
__magic_name__ : int = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
encoding.update(lowerCAmelCase__ )
return encoding
def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]:
return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]:
return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def __magic_name__ ( self ) -> int:
__magic_name__ : Dict = self.tokenizer.model_input_names
__magic_name__ : Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __magic_name__ ( self ) -> int:
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase__ , )
return self.image_processor_class
@property
def __magic_name__ ( self ) -> List[Any]:
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase__ , )
return self.image_processor
| 138
|
def UpperCamelCase ( _A ):
"""simple docstring"""
if not isinstance(_A, _A ) or number < 0:
raise ValueError("""Input must be a non-negative integer""" )
__magic_name__ : str = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 138
| 1
|
'''simple docstring'''
def _lowerCAmelCase ( __snake_case : int = 4_00_00_00 ) -> int:
__A : Optional[int] = [0, 1]
__A : Union[str, Any] = 0
while fib[i] <= n:
fib.append(fib[i] + fib[i + 1] )
if fib[i + 2] > n:
break
i += 1
__A : Optional[int] = 0
for j in range(len(__snake_case ) - 1 ):
if fib[j] % 2 == 0:
total += fib[j]
return total
if __name__ == "__main__":
print(f"""{solution() = }""")
| 190
|
'''simple docstring'''
import math
import qiskit
def _lowerCAmelCase ( __snake_case : int = 1 , __snake_case : int = 1 , __snake_case : int = 1 ) -> qiskit.result.counts.Counts:
if (
isinstance(__snake_case , __snake_case )
or isinstance(__snake_case , __snake_case )
or isinstance(__snake_case , __snake_case )
):
raise TypeError('inputs must be integers.' )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError('inputs must be positive.' )
if (
(math.floor(__snake_case ) != input_a)
or (math.floor(__snake_case ) != input_a)
or (math.floor(__snake_case ) != carry_in)
):
raise ValueError('inputs must be exact integers.' )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError('inputs must be less or equal to 2.' )
# build registers
__A : int = qiskit.QuantumRegister(4 , 'qr' )
__A : Optional[int] = qiskit.ClassicalRegister(2 , 'cr' )
# list the entries
__A : Union[str, Any] = [input_a, input_a, carry_in]
__A : Dict = qiskit.QuantumCircuit(__snake_case , __snake_case )
for i in range(0 , 3 ):
if entry[i] == 2:
quantum_circuit.h(__snake_case ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(__snake_case ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(__snake_case ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate
quantum_circuit.cx(0 , 1 )
quantum_circuit.ccx(1 , 2 , 3 )
quantum_circuit.cx(1 , 2 )
quantum_circuit.cx(0 , 1 )
quantum_circuit.measure([2, 3] , __snake_case ) # measure the last two qbits
__A : str = qiskit.Aer.get_backend('aer_simulator' )
__A : Any = qiskit.execute(__snake_case , __snake_case , shots=10_00 )
return job.result().get_counts(__snake_case )
if __name__ == "__main__":
print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
| 190
| 1
|
'''simple docstring'''
import argparse
import struct
import unittest
class lowerCAmelCase__ :
"""simple docstring"""
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : bytes ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = data
# Initialize hash values
__SCREAMING_SNAKE_CASE = [
0X6a09e667,
0Xbb67ae85,
0X3c6ef372,
0Xa54ff53a,
0X510e527f,
0X9b05688c,
0X1f83d9ab,
0X5be0cd19,
]
# Initialize round constants
__SCREAMING_SNAKE_CASE = [
0X428a2f98,
0X71374491,
0Xb5c0fbcf,
0Xe9b5dba5,
0X3956c25b,
0X59f111f1,
0X923f82a4,
0Xab1c5ed5,
0Xd807aa98,
0X12835b01,
0X243185be,
0X550c7dc3,
0X72be5d74,
0X80deb1fe,
0X9bdc06a7,
0Xc19bf174,
0Xe49b69c1,
0Xefbe4786,
0X0fc19dc6,
0X240ca1cc,
0X2de92c6f,
0X4a7484aa,
0X5cb0a9dc,
0X76f988da,
0X983e5152,
0Xa831c66d,
0Xb00327c8,
0Xbf597fc7,
0Xc6e00bf3,
0Xd5a79147,
0X06ca6351,
0X14292967,
0X27b70a85,
0X2e1b2138,
0X4d2c6dfc,
0X53380d13,
0X650a7354,
0X766a0abb,
0X81c2c92e,
0X92722c85,
0Xa2bfe8a1,
0Xa81a664b,
0Xc24b8b70,
0Xc76c51a3,
0Xd192e819,
0Xd6990624,
0Xf40e3585,
0X106aa070,
0X19a4c116,
0X1e376c08,
0X2748774c,
0X34b0bcb5,
0X391c0cb3,
0X4ed8aa4a,
0X5b9cca4f,
0X682e6ff3,
0X748f82ee,
0X78a5636f,
0X84c87814,
0X8cc70208,
0X90befffa,
0Xa4506ceb,
0Xbef9a3f7,
0Xc67178f2,
]
__SCREAMING_SNAKE_CASE = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def UpperCAmelCase__ ( __SCREAMING_SNAKE_CASE : bytes ) -> bytes:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = b"""\x80""" + (b"""\x00""" * (63 - (len(__SCREAMING_SNAKE_CASE ) + 8) % 64))
__SCREAMING_SNAKE_CASE = struct.pack(""">Q""" , (len(__SCREAMING_SNAKE_CASE ) * 8) )
return data + padding + big_endian_integer
def UpperCAmelCase__ ( self : Tuple ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
__SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , __SCREAMING_SNAKE_CASE ) )
# add 48 0-ed integers
words += [0] * 48
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
__SCREAMING_SNAKE_CASE = (
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
__SCREAMING_SNAKE_CASE = (
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
__SCREAMING_SNAKE_CASE = (
words[index - 16] + sa + words[index - 7] + sa
) % 0X100000000
# Compression
__SCREAMING_SNAKE_CASE = self.ror(__SCREAMING_SNAKE_CASE , 6 ) ^ self.ror(__SCREAMING_SNAKE_CASE , 11 ) ^ self.ror(__SCREAMING_SNAKE_CASE , 25 )
__SCREAMING_SNAKE_CASE = (e & f) ^ ((~e & 0Xffffffff) & g)
__SCREAMING_SNAKE_CASE = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X100000000
__SCREAMING_SNAKE_CASE = self.ror(__SCREAMING_SNAKE_CASE , 2 ) ^ self.ror(__SCREAMING_SNAKE_CASE , 13 ) ^ self.ror(__SCREAMING_SNAKE_CASE , 22 )
__SCREAMING_SNAKE_CASE = (a & b) ^ (a & c) ^ (b & c)
__SCREAMING_SNAKE_CASE = (sa + maj) % 0X100000000
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (
g,
f,
e,
((d + tempa) % 0X100000000),
c,
b,
a,
((tempa + tempa) % 0X100000000),
)
__SCREAMING_SNAKE_CASE = [a, b, c, d, e, f, g, h]
# Modify final values
__SCREAMING_SNAKE_CASE = [
((element + mutated_hash_values[index]) % 0X100000000)
for index, element in enumerate(self.hashes )
]
__SCREAMING_SNAKE_CASE = """""".join([hex(__SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for value in self.hashes] )
def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> int:
"""simple docstring"""
return 0Xffffffff & (value << (32 - rotations)) | (value >> rotations)
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase__ ( self : Any ) -> None:
"""simple docstring"""
import hashlib
__SCREAMING_SNAKE_CASE = bytes("""Test String""" , """utf-8""" )
self.assertEqual(SHAaaa(__SCREAMING_SNAKE_CASE ).hash , hashlib.shaaaa(__SCREAMING_SNAKE_CASE ).hexdigest() )
def a__ ( ):
"""simple docstring"""
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument(
"""-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , )
parser.add_argument(
"""-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" )
__SCREAMING_SNAKE_CASE = parser.parse_args()
__SCREAMING_SNAKE_CASE = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , """rb""" ) as f:
__SCREAMING_SNAKE_CASE = f.read()
else:
__SCREAMING_SNAKE_CASE = bytes(a__ , """utf-8""" )
print(SHAaaa(a__ ).hash )
if __name__ == "__main__":
main()
| 331
|
'''simple docstring'''
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def a__ ( a__ ):
"""simple docstring"""
return x + 2
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase__ ( self : Any ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = """x = 3"""
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE )
assert result == 3
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} )
__SCREAMING_SNAKE_CASE = """x = y"""
__SCREAMING_SNAKE_CASE = {"""y""": 5}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 5, """y""": 5} )
def UpperCAmelCase__ ( self : Optional[int] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = """y = add_two(x)"""
__SCREAMING_SNAKE_CASE = {"""x""": 3}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE )
assert result == 5
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} )
# Won't work without the tool
with CaptureStdout() as out:
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE )
assert result is None
assert "tried to execute add_two" in out.out
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = """x = 3"""
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE )
assert result == 3
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} )
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}"""
__SCREAMING_SNAKE_CASE = {"""x""": 3}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE )
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} )
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = """x = 3\ny = 5"""
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = """text = f'This is x: {x}.'"""
__SCREAMING_SNAKE_CASE = {"""x""": 3}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """text""": """This is x: 3."""} )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = """if x <= 3:\n y = 2\nelse:\n y = 5"""
__SCREAMING_SNAKE_CASE = {"""x""": 3}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 2} )
__SCREAMING_SNAKE_CASE = {"""x""": 8}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 8, """y""": 5} )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]"""
__SCREAMING_SNAKE_CASE = {"""x""": 3}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , [3, 5] )
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = """y = x"""
__SCREAMING_SNAKE_CASE = {"""x""": 3}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE )
assert result == 3
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 3} )
def UpperCAmelCase__ ( self : Any ) -> Tuple:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]\ntest_list[1]"""
__SCREAMING_SNAKE_CASE = {"""x""": 3}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE )
assert result == 5
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} )
__SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']"""
__SCREAMING_SNAKE_CASE = {"""x""": 3}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE )
assert result == 5
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = """x = 0\nfor i in range(3):\n x = i"""
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""range""": range} , state=__SCREAMING_SNAKE_CASE )
assert result == 2
self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 2, """i""": 2} )
| 331
| 1
|
'''simple docstring'''
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
a_ : Tuple = {
"""User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"""
""" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582"""
}
def a_ ( __snake_case : str = "dhaka" , __snake_case : int = 5 ) -> int:
"""simple docstring"""
lowerCamelCase_ =min(__snake_case , 50 ) # Prevent abuse!
lowerCamelCase_ ={
'''q''': query,
'''tbm''': '''isch''',
'''hl''': '''en''',
'''ijn''': '''0''',
}
lowerCamelCase_ =requests.get('''https://www.google.com/search''' , params=__snake_case , headers=__snake_case )
lowerCamelCase_ =BeautifulSoup(html.text , '''html.parser''' )
lowerCamelCase_ =''''''.join(
re.findall(r'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) )
lowerCamelCase_ =json.dumps(__snake_case )
lowerCamelCase_ =json.loads(__snake_case )
lowerCamelCase_ =re.findall(
r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , __snake_case , )
if not matched_google_image_data:
return 0
lowerCamelCase_ =re.sub(
r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(__snake_case ) , )
lowerCamelCase_ =re.findall(
r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , __snake_case , )
for index, fixed_full_res_image in enumerate(__snake_case ):
if index >= max_images:
return index
lowerCamelCase_ =bytes(__snake_case , '''ascii''' ).decode(
'''unicode-escape''' )
lowerCamelCase_ =bytes(__snake_case , '''ascii''' ).decode(
'''unicode-escape''' )
lowerCamelCase_ =urllib.request.build_opener()
lowerCamelCase_ =[
(
'''User-Agent''',
'''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'''
''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''',
)
]
urllib.request.install_opener(__snake_case )
lowerCamelCase_ =F'''query_{query.replace(' ' , '_' )}'''
if not os.path.exists(__snake_case ):
os.makedirs(__snake_case )
urllib.request.urlretrieve( # noqa: S310
__snake_case , F'''{path_name}/original_size_img_{index}.jpg''' )
return index
if __name__ == "__main__":
try:
a_ : Any = download_images_from_google_query(sys.argv[1])
print(F"""{image_count} images were downloaded to disk.""")
except IndexError:
print("""Please provide a search term.""")
raise
| 75
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ : Union[str, Any] = {
"""configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""],
"""convert_funnel_original_tf_checkpoint_to_pytorch""": [],
"""tokenization_funnel""": ["""FunnelTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = ["""FunnelTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Optional[int] = [
"""FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FunnelBaseModel""",
"""FunnelForMaskedLM""",
"""FunnelForMultipleChoice""",
"""FunnelForPreTraining""",
"""FunnelForQuestionAnswering""",
"""FunnelForSequenceClassification""",
"""FunnelForTokenClassification""",
"""FunnelModel""",
"""FunnelPreTrainedModel""",
"""load_tf_weights_in_funnel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Optional[Any] = [
"""TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFFunnelBaseModel""",
"""TFFunnelForMaskedLM""",
"""TFFunnelForMultipleChoice""",
"""TFFunnelForPreTraining""",
"""TFFunnelForQuestionAnswering""",
"""TFFunnelForSequenceClassification""",
"""TFFunnelForTokenClassification""",
"""TFFunnelModel""",
"""TFFunnelPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
a_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 75
| 1
|
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
__snake_case = (DDIMParallelScheduler,)
__snake_case = (('''eta''', 0.0), ('''num_inference_steps''', 50))
def __lowerCAmelCase ( self : Optional[int] , **__UpperCAmelCase : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = {
'''num_train_timesteps''': 1_000,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''clip_sample''': True,
}
config.update(**lowerCAmelCase_ )
return config
def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[str] ) ->int:
"""simple docstring"""
a = self.scheduler_classes[0]
a = self.get_scheduler_config(**lowerCAmelCase_ )
a = scheduler_class(**lowerCAmelCase_ )
a , a = 10, 0.0
a = self.dummy_model()
a = self.dummy_sample_deter
scheduler.set_timesteps(lowerCAmelCase_ )
for t in scheduler.timesteps:
a = model(lowerCAmelCase_ , lowerCAmelCase_ )
a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample
return sample
def __lowerCAmelCase ( self : Tuple ) ->str:
"""simple docstring"""
for timesteps in [100, 500, 1_000]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) ->Any:
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowerCAmelCase_ )
a = self.scheduler_classes[0]
a = self.get_scheduler_config(steps_offset=1 )
a = scheduler_class(**lowerCAmelCase_ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def __lowerCAmelCase ( self : str ) ->str:
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]:
"""simple docstring"""
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , )
def __lowerCAmelCase ( self : Tuple ) ->Dict:
"""simple docstring"""
for t in [1, 10, 49]:
self.check_over_forward(time_step=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[int] ) ->str:
"""simple docstring"""
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) ->List[Any]:
"""simple docstring"""
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=lowerCAmelCase_ , eta=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) ->Optional[int]:
"""simple docstring"""
a = self.scheduler_classes[0]
a = self.get_scheduler_config()
a = scheduler_class(**lowerCAmelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5
def __lowerCAmelCase ( self : Tuple ) ->Tuple:
"""simple docstring"""
a = self.scheduler_classes[0]
a = self.get_scheduler_config()
a = scheduler_class(**lowerCAmelCase_ )
a , a = 10, 0.0
scheduler.set_timesteps(lowerCAmelCase_ )
a = self.dummy_model()
a = self.dummy_sample_deter
a = self.dummy_sample_deter + 0.1
a = self.dummy_sample_deter - 0.1
a = samplea.shape[0]
a = torch.stack([samplea, samplea, samplea] , dim=0 )
a = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ )
a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
a = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCAmelCase_ )
a = torch.sum(torch.abs(lowerCAmelCase_ ) )
a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 1147.7904 ) < 1e-2
assert abs(result_mean.item() - 0.4982 ) < 1e-3
def __lowerCAmelCase ( self : int ) ->Tuple:
"""simple docstring"""
a = self.full_loop()
a = torch.sum(torch.abs(lowerCAmelCase_ ) )
a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 172.0067 ) < 1e-2
assert abs(result_mean.item() - 0.223967 ) < 1e-3
def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
a = self.full_loop(prediction_type='''v_prediction''' )
a = torch.sum(torch.abs(lowerCAmelCase_ ) )
a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 52.5302 ) < 1e-2
assert abs(result_mean.item() - 0.0684 ) < 1e-3
def __lowerCAmelCase ( self : Optional[Any] ) ->Any:
"""simple docstring"""
a = self.full_loop(set_alpha_to_one=lowerCAmelCase_ , beta_start=0.01 )
a = torch.sum(torch.abs(lowerCAmelCase_ ) )
a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 149.8295 ) < 1e-2
assert abs(result_mean.item() - 0.1951 ) < 1e-3
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
a = self.full_loop(set_alpha_to_one=lowerCAmelCase_ , beta_start=0.01 )
a = torch.sum(torch.abs(lowerCAmelCase_ ) )
a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 149.0784 ) < 1e-2
assert abs(result_mean.item() - 0.1941 ) < 1e-3
| 364
|
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase__ = 10
UpperCAmelCase__ = 256
def _a ( a :List[str] ) -> Optional[MinHash]:
if len(a ) < MIN_NUM_TOKENS:
return None
a = MinHash(num_perm=a )
for token in set(a ):
min_hash.update(token.encode() )
return min_hash
def _a ( a :str ) -> Set[str]:
return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0}
class lowercase_ :
'''simple docstring'''
def __init__( self : Any , *,
__UpperCAmelCase : float = 0.85 , ) ->Dict:
"""simple docstring"""
a = duplication_jaccard_threshold
a = NUM_PERM
a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
a = defaultdict(__UpperCAmelCase )
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None:
"""simple docstring"""
a = self._index.query(__UpperCAmelCase )
if code_key in self._index.keys:
print(F"""Duplicate key {code_key}""" )
return
self._index.insert(__UpperCAmelCase , __UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase )
def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]:
"""simple docstring"""
a = []
for base, duplicates in self._duplicate_clusters.items():
a = [base] + list(__UpperCAmelCase )
# reformat the cluster to be a list of dict
a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster]
duplicate_clusters.append(__UpperCAmelCase )
return duplicate_clusters
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None:
"""simple docstring"""
a = self.get_duplicate_clusters()
with open(__UpperCAmelCase , '''w''' ) as f:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def _a ( a :List[Any] ) -> List[Any]:
a , a = element
a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def _a ( a :Type[Dataset] ) -> List[Any]:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ):
if data is not None:
yield data
def _a ( a :Type[Dataset] , a :float ) -> str:
a = DuplicationIndex(duplication_jaccard_threshold=a )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ):
di.add(a , a )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def _a ( a :str , a :str ) -> float:
a = get_tokens(a )
a = get_tokens(a )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase__ = None
def _a ( a :Tuple , a :Tuple ) -> Any:
a = []
for elementa in cluster:
a = _shared_dataset[elementa['''base_index''']]['''content''']
for elementa in extremes:
a = _shared_dataset[elementa['''base_index''']]['''content''']
if jaccard_similarity(a , a ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
a = 1
extremes.append(a )
return extremes
def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]:
global _shared_dataset
a = dataset
a = []
a = partial(_find_cluster_extremes_shared , jaccard_threshold=a )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
a , a , ) , total=len(a ) , ):
extremes_list.append(a )
return extremes_list
def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
a = make_duplicate_clusters(a , a )
a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster}
a = {}
a = find_extremes(a , a , a )
for extremes in extremes_clusters:
for element in extremes:
a = element
a = duplicate_indices - set(extreme_dict.keys() )
a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
a = element['''base_index'''] in extreme_dict
if element["is_extreme"]:
a = extreme_dict[element['''base_index''']]['''copies''']
print(F"""Original dataset size: {len(a )}""" )
print(F"""Number of duplicate clusters: {len(a )}""" )
print(F"""Files in duplicate cluster: {len(a )}""" )
print(F"""Unique files in duplicate cluster: {len(a )}""" )
print(F"""Filtered dataset size: {len(a )}""" )
return ds_filter, duplicate_clusters
| 26
| 0
|
'''simple docstring'''
A__: List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
A__: str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
A__: Tuple = {
0: '''Sunday''',
1: '''Monday''',
2: '''Tuesday''',
3: '''Wednesday''',
4: '''Thursday''',
5: '''Friday''',
6: '''Saturday''',
}
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int ) -> Any:
assert len(str(_lowerCamelCase ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
_a : Tuple =year // 100
_a : List[str] =(5 * (century % 4) + 2) % 7
_a : str =year % 100
_a : str =centurian % 12
_a : Optional[int] =(
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
_a : int =(
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
_a : Union[str, Any] =(dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 276
|
UpperCamelCase = [0, 2, 4, 6, 8]
UpperCamelCase = [1, 3, 5, 7, 9]
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] , _lowerCamelCase : int):
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
lowercase__ : str = 0
for digit in range(10):
lowercase__ : str = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 10 , _lowerCamelCase , _lowerCamelCase)
return result
lowercase__ : Dict = 0
for digita in range(10):
lowercase__ : int = digita
if (remainder + digita) % 2 == 0:
lowercase__ : Optional[Any] = ODD_DIGITS
else:
lowercase__ : str = EVEN_DIGITS
for digita in other_parity_digits:
lowercase__ : List[str] = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCamelCase , _lowerCamelCase , )
return result
def lowercase_ ( _lowerCamelCase : int = 9):
lowercase__ : Tuple = 0
for length in range(1 , max_power + 1):
result += reversible_numbers(_lowerCamelCase , 0 , [0] * length , _lowerCamelCase)
return result
if __name__ == "__main__":
print(f"{solution() = }")
| 87
| 0
|
"""simple docstring"""
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
lowerCamelCase_ : str = logging.get_logger(__name__)
lowerCamelCase_ : Dict[Optional[str], Type[Formatter]] = {}
lowerCamelCase_ : Dict[Optional[str], str] = {}
lowerCamelCase_ : Dict[Optional[str], Exception] = {}
def _A ( lowercase , lowercase , lowercase = None , ):
"""simple docstring"""
a =aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' )
a =formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' )
a =format_type
def _A ( lowercase , lowercase , lowercase = None ):
"""simple docstring"""
a =aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
a =unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=["""python"""])
_register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""])
_register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""])
_register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""])
_register_formatter(CustomFormatter, """custom""")
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""])
else:
lowerCamelCase_ : Dict = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""")
_register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""])
else:
lowerCamelCase_ : Tuple = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""")
_register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, """jax""", aliases=[])
else:
lowerCamelCase_ : Optional[int] = ValueError("""JAX needs to be installed to be able to return JAX arrays.""")
_register_unavailable_formatter(_jax_error, """jax""", aliases=[])
def _A ( lowercase ):
"""simple docstring"""
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def _A ( lowercase , **lowercase ):
"""simple docstring"""
a =get_format_type_from_alias(lowercase )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**lowercase )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
| 355
|
"""simple docstring"""
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
"""simple docstring"""
def __init__( self , __A , __A=13 , __A=[30, 30] , __A=2 , __A=3 , __A=True , __A=True , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=10 , __A=0.02 , __A=3 , __A=None , __A=8 , __A=10 , ) -> List[Any]:
a =parent
a =batch_size
a =image_size
a =patch_size
a =num_channels
a =is_training
a =use_labels
a =hidden_size
a =num_hidden_layers
a =num_attention_heads
a =intermediate_size
a =hidden_act
a =hidden_dropout_prob
a =attention_probs_dropout_prob
a =type_sequence_label_size
a =initializer_range
a =num_labels
a =scope
a =n_targets
a =num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
a =(image_size[1] // patch_size) * (image_size[0] // patch_size)
a =num_patches + 1 + self.num_detection_tokens
def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
a =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
a =None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
a =[]
for i in range(self.batch_size ):
a ={}
a =torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=__A )
a =torch.rand(self.n_targets , 4 , device=__A )
labels.append(__A )
a =self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self ) -> int:
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> List[Any]:
a =YolosModel(config=__A )
model.to(__A )
model.eval()
a =model(__A )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) )
def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Dict:
a =YolosForObjectDetection(__A )
model.to(__A )
model.eval()
a =model(pixel_values=__A )
a =model(__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
a =model(pixel_values=__A , labels=__A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
a =self.prepare_config_and_inputs()
a , a , a =config_and_inputs
a ={'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ):
"""simple docstring"""
__lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
__lowerCAmelCase = (
{"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {}
)
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=False ) -> Any:
a =super()._prepare_for_class(__A , __A , return_labels=__A )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
a =[]
for i in range(self.model_tester.batch_size ):
a ={}
a =torch.ones(
size=(self.model_tester.n_targets,) , device=__A , dtype=torch.long )
a =torch.ones(
self.model_tester.n_targets , 4 , device=__A , dtype=torch.float )
labels.append(__A )
a =labels
return inputs_dict
def SCREAMING_SNAKE_CASE ( self ) -> List[str]:
a =YolosModelTester(self )
a =ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 )
def SCREAMING_SNAKE_CASE ( self ) -> Dict:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
# YOLOS does not use inputs_embeds
pass
def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
a , a =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a =model_class(__A )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
a =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A , nn.Linear ) )
def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
a , a =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a =model_class(__A )
a =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a =[*signature.parameters.keys()]
a =['''pixel_values''']
self.assertListEqual(arg_names[:1] , __A )
def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
a =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
a , a =self.model_tester.prepare_config_and_inputs_for_common()
a =True
# in YOLOS, the seq_len is different
a =self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
a =True
a =False
a =True
a =model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
a =model(**self._prepare_for_class(__A , __A ) )
a =outputs.attentions
self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
a =True
a =model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
a =model(**self._prepare_for_class(__A , __A ) )
a =outputs.attentions
self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
a =len(__A )
# Check attention is always last and order is fine
a =True
a =True
a =model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
a =model(**self._prepare_for_class(__A , __A ) )
a =1
self.assertEqual(out_len + added_hidden_states , len(__A ) )
a =outputs.attentions
self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def SCREAMING_SNAKE_CASE ( self ) -> str:
def check_hidden_states_output(__A , __A , __A ):
a =model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
a =model(**self._prepare_for_class(__A , __A ) )
a =outputs.hidden_states
a =getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__A ) , __A )
# YOLOS has a different seq_length
a =self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
a , a =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a =True
check_hidden_states_output(__A , __A , __A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a =True
check_hidden_states_output(__A , __A , __A )
def SCREAMING_SNAKE_CASE ( self ) -> int:
a =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*__A )
@slow
def SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a =YolosModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def _A ( ):
"""simple docstring"""
a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __A ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def SCREAMING_SNAKE_CASE ( self ) -> Dict:
return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
a =YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__A )
a =self.default_image_processor
a =prepare_img()
a =image_processor(images=__A , return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
a =model(inputs.pixel_values )
# verify outputs
a =torch.Size((1, 100, 92) )
self.assertEqual(outputs.logits.shape , __A )
a =torch.tensor(
[[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=__A , )
a =torch.tensor(
[[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __A , atol=1E-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __A , atol=1E-4 ) )
# verify postprocessing
a =image_processor.post_process_object_detection(
__A , threshold=0.3 , target_sizes=[image.size[::-1]] )[0]
a =torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(__A )
a =[75, 75, 17, 63, 17]
a =torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(__A )
self.assertEqual(len(results['''scores'''] ) , 5 )
self.assertTrue(torch.allclose(results['''scores'''] , __A , atol=1E-4 ) )
self.assertSequenceEqual(results['''labels'''].tolist() , __A )
self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __A ) )
| 215
| 0
|
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] ) -> List[Any]:
__lowerCamelCase = []
for part_id in partition_order:
__lowerCamelCase = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect()
for row_idx, row in enumerate(__lowerCAmelCase ):
expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def __magic_name__ ( ) -> List[Any]:
__lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
__lowerCamelCase = spark.range(100 ).repartition(1 )
__lowerCamelCase = Spark(__lowerCAmelCase )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def __magic_name__ ( ) -> Dict:
__lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
__lowerCamelCase = spark.range(10 ).repartition(2 )
__lowerCamelCase = [1, 0]
__lowerCamelCase = _generate_iterable_examples(__lowerCAmelCase , __lowerCAmelCase ) # Reverse the partitions.
__lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , __lowerCAmelCase )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
__lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __magic_name__ ( ) -> int:
__lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
__lowerCamelCase = spark.range(10 ).repartition(1 )
__lowerCamelCase = SparkExamplesIterable(__lowerCAmelCase )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ):
assert row_id == f'''0_{i}'''
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def __magic_name__ ( ) -> Tuple:
__lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
__lowerCamelCase = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch('''numpy.random.Generator''' ) as generator_mock:
__lowerCamelCase = lambda __lowerCAmelCase : x.reverse()
__lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [2, 1, 0] )
__lowerCamelCase = SparkExamplesIterable(__lowerCAmelCase ).shuffle_data_sources(__lowerCAmelCase )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ):
__lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __magic_name__ ( ) -> Optional[Any]:
__lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
__lowerCamelCase = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
__lowerCamelCase = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
__lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [0, 2] )
for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ):
__lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
__lowerCamelCase = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
__lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [1, 3] )
for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ):
__lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __magic_name__ ( ) -> Dict:
__lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
__lowerCamelCase = spark.range(100 ).repartition(1 )
__lowerCamelCase = Spark(__lowerCAmelCase )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 270
|
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue_model_parallelism.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
] )
class lowerCAmelCase__ ( unittest.TestCase ):
def __A ( self : Optional[int] ) -> List[Any]:
if self.framework == "pytorch":
subprocess.run(
f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=SCREAMING_SNAKE_CASE__ , )
assert hasattr(self , '''env''' )
def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
# configuration for running training on smdistributed Model Parallel
__lowerCamelCase = {
'''enabled''': True,
'''processes_per_host''': 8,
}
__lowerCamelCase = {
'''enabled''': True,
'''parameters''': {
'''microbatches''': 4,
'''placement_strategy''': '''spread''',
'''pipeline''': '''interleaved''',
'''optimize''': '''speed''',
'''partitions''': 4,
'''ddp''': True,
},
}
__lowerCamelCase = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options}
__lowerCamelCase = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer'''
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=SCREAMING_SNAKE_CASE__ , instance_type=self.instance_type , debugger_hook_config=SCREAMING_SNAKE_CASE__ , hyperparameters={
**self.env.hyperparameters,
'''model_name_or_path''': self.model_name_or_path,
'''max_steps''': 5_00,
} , metric_definitions=self.env.metric_definitions , distribution=SCREAMING_SNAKE_CASE__ , py_version='''py36''' , )
def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]:
TrainingJobAnalytics(SCREAMING_SNAKE_CASE__ ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(1,)] )
def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
# create estimator
__lowerCamelCase = self.create_estimator(SCREAMING_SNAKE_CASE__ )
# run training
estimator.fit()
# result dataframe
__lowerCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
__lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__lowerCamelCase = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , SCREAMING_SNAKE_CASE__ )
| 270
| 1
|
"""simple docstring"""
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
a_ = logging.get_logger(__name__) # pylint: disable=invalid-name
a_ = 2_56
class snake_case ( _UpperCamelCase):
__UpperCamelCase = ['melgan']
def __init__( self : Tuple , a__ : SpectrogramNotesEncoder , a__ : SpectrogramContEncoder , a__ : TaFilmDecoder , a__ : DDPMScheduler , a__ : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None:
'''simple docstring'''
super().__init__()
# From MELGAN
_A = math.log(1E-5 ) # Matches MelGAN training.
_A = 4.0 # Largest value for most examples
_A = 1_28
self.register_modules(
notes_encoder=a__ , continuous_encoder=a__ , decoder=a__ , scheduler=a__ , melgan=a__ , )
def a_ ( self : str , a__ : Tuple , a__ : Union[str, Any]=(-1.0, 1.0) , a__ : List[str]=False ) -> Optional[int]:
'''simple docstring'''
_A , _A = output_range
if clip:
_A = torch.clip(a__ , self.min_value , self.max_value )
# Scale to [0, 1].
_A = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def a_ ( self : str , a__ : Optional[Any] , a__ : Union[str, Any]=(-1.0, 1.0) , a__ : str=False ) -> str:
'''simple docstring'''
_A , _A = input_range
_A = torch.clip(a__ , a__ , a__ ) if clip else outputs
# Scale to [0, 1].
_A = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def a_ ( self : List[str] , a__ : Dict , a__ : List[str] , a__ : Optional[Any] ) -> Dict:
'''simple docstring'''
_A = input_tokens > 0
_A , _A = self.notes_encoder(
encoder_input_tokens=a__ , encoder_inputs_mask=a__ )
_A , _A = self.continuous_encoder(
encoder_inputs=a__ , encoder_inputs_mask=a__ )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def a_ ( self : Optional[Any] , a__ : List[Any] , a__ : Union[str, Any] , a__ : int ) -> int:
'''simple docstring'''
_A = noise_time
if not torch.is_tensor(a__ ):
_A = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device )
elif torch.is_tensor(a__ ) and len(timesteps.shape ) == 0:
_A = timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_A = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device )
_A = self.decoder(
encodings_and_masks=a__ , decoder_input_tokens=a__ , decoder_noise_time=a__ )
return logits
@torch.no_grad()
def __call__( self : Optional[int] , a__ : List[List[int]] , a__ : Optional[torch.Generator] = None , a__ : int = 1_00 , a__ : bool = True , a__ : str = "numpy" , a__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a__ : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]:
'''simple docstring'''
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(a__ , a__ ) or callback_steps <= 0)
):
raise ValueError(
F"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
F""" {type(a__ )}.""" )
_A = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa )
_A = np.zeros([1, 0, self.n_dims] , np.floataa )
_A = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=a__ , device=self.device )
for i, encoder_input_tokens in enumerate(a__ ):
if i == 0:
_A = torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device , dtype=self.decoder.dtype )
# The first chunk has no previous context.
_A = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=a__ , device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
_A = ones
_A = self.scale_features(
a__ , output_range=[-1.0, 1.0] , clip=a__ )
_A = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=a__ , continuous_mask=a__ , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
_A = randn_tensor(
shape=encoder_continuous_inputs.shape , generator=a__ , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(a__ )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
_A = self.decode(
encodings_and_masks=a__ , input_tokens=a__ , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
_A = self.scheduler.step(a__ , a__ , a__ , generator=a__ ).prev_sample
_A = self.scale_to_features(a__ , input_range=[-1.0, 1.0] )
_A = mel[:1]
_A = mel.cpu().float().numpy()
_A = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(a__ , a__ )
logger.info("Generated segment" , a__ )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
"Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
"Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." )
if output_type == "numpy":
_A = self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
_A = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=a__ )
| 163
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a_ = {
"configuration_x_clip": [
"XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XCLIPConfig",
"XCLIPTextConfig",
"XCLIPVisionConfig",
],
"processing_x_clip": ["XCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
"XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"XCLIPModel",
"XCLIPPreTrainedModel",
"XCLIPTextModel",
"XCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_x_clip import (
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
XCLIPConfig,
XCLIPTextConfig,
XCLIPVisionConfig,
)
from .processing_x_clip import XCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_x_clip import (
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
XCLIPModel,
XCLIPPreTrainedModel,
XCLIPTextModel,
XCLIPVisionModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 163
| 1
|
"""simple docstring"""
import re
def lowerCamelCase ( _UpperCamelCase : str ) -> str:
'''simple docstring'''
if len(re.findall("""[ATCG]""" , _UpperCamelCase ) ) != len(_UpperCamelCase ):
raise ValueError("""Invalid Strand""" )
return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 115
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : int = 4_0_0_0_0_0_0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = [0, 1]
__UpperCAmelCase : Optional[Any] = 0
while fib[i] <= n:
fib.append(fib[i] + fib[i + 1] )
if fib[i + 2] > n:
break
i += 1
__UpperCAmelCase : str = 0
for j in range(len(_UpperCamelCase ) - 1 ):
if fib[j] % 2 == 0:
total += fib[j]
return total
if __name__ == "__main__":
print(F"{solution() = }")
| 115
| 1
|
UpperCAmelCase__ : dict[str, float] ={
"km/h": 1.0,
"m/s": 3.6,
"mph": 1.609_344,
"knot": 1.852,
}
UpperCAmelCase__ : dict[str, float] ={
"km/h": 1.0,
"m/s": 0.277_777_778,
"mph": 0.621_371_192,
"knot": 0.539_956_803,
}
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float:
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
lowerCamelCase =(
F"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n"""
F"""Valid values are: {", ".join(_UpperCAmelCase )}"""
)
raise ValueError(_UpperCAmelCase )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 262
|
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
UpperCAmelCase__ : List[Any] =logging.get_logger(__name__)
UpperCAmelCase__ : Dict ={'''vocab_file''': '''spiece.model'''}
UpperCAmelCase__ : Dict ={
'''vocab_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''',
}
}
UpperCAmelCase__ : List[str] ={
'''xlnet-base-cased''': None,
'''xlnet-large-cased''': None,
}
# Segments (not really needed)
UpperCAmelCase__ : Any =0
UpperCAmelCase__ : List[Any] =1
UpperCAmelCase__ : Union[str, Any] =2
UpperCAmelCase__ : Tuple =3
UpperCAmelCase__ : int =4
class __A ( a ):
__A = VOCAB_FILES_NAMES
__A = PRETRAINED_VOCAB_FILES_MAP
__A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A = """left"""
def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_="<s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<sep>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="<cls>" , UpperCAmelCase_="<mask>" , UpperCAmelCase_=["<eop>", "<eod>"] , UpperCAmelCase_ = None , **UpperCAmelCase_ , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token
lowerCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
lowerCamelCase =3
lowerCamelCase =do_lower_case
lowerCamelCase =remove_space
lowerCamelCase =keep_accents
lowerCamelCase =vocab_file
lowerCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase_ )
@property
def _snake_case ( self ):
return len(self.sp_model )
def _snake_case ( self ):
lowerCamelCase ={self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
lowerCamelCase =self.__dict__.copy()
lowerCamelCase =None
return state
def __setstate__( self , UpperCAmelCase_ ):
lowerCamelCase =d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
lowerCamelCase ={}
lowerCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _snake_case ( self , UpperCAmelCase_ ):
if self.remove_space:
lowerCamelCase =""" """.join(inputs.strip().split() )
else:
lowerCamelCase =inputs
lowerCamelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
lowerCamelCase =unicodedata.normalize("""NFKD""" , UpperCAmelCase_ )
lowerCamelCase ="""""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] )
if self.do_lower_case:
lowerCamelCase =outputs.lower()
return outputs
def _snake_case ( self , UpperCAmelCase_ ):
lowerCamelCase =self.preprocess_text(UpperCAmelCase_ )
lowerCamelCase =self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ )
lowerCamelCase =[]
for piece in pieces:
if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
lowerCamelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowerCamelCase =cur_pieces[1:]
else:
lowerCamelCase =cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCAmelCase_ )
else:
new_pieces.append(UpperCAmelCase_ )
return new_pieces
def _snake_case ( self , UpperCAmelCase_ ):
return self.sp_model.PieceToId(UpperCAmelCase_ )
def _snake_case ( self , UpperCAmelCase_ ):
return self.sp_model.IdToPiece(UpperCAmelCase_ )
def _snake_case ( self , UpperCAmelCase_ ):
lowerCamelCase ="""""".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , """ """ ).strip()
return out_string
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = True , **UpperCAmelCase_ , ):
lowerCamelCase =kwargs.pop("""use_source_tokenizer""" , UpperCAmelCase_ )
lowerCamelCase =self.convert_ids_to_tokens(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
lowerCamelCase =[]
lowerCamelCase =[]
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) )
lowerCamelCase =[]
sub_texts.append(UpperCAmelCase_ )
else:
current_sub_text.append(UpperCAmelCase_ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
lowerCamelCase ="""""".join(UpperCAmelCase_ )
lowerCamelCase =(
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
lowerCamelCase =self.clean_up_tokenization(UpperCAmelCase_ )
return clean_text
else:
return text
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ):
lowerCamelCase =[self.sep_token_id]
lowerCamelCase =[self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ )
if token_ids_a is not None:
return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1]
return ([0] * len(UpperCAmelCase_ )) + [1, 1]
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ):
lowerCamelCase =[self.sep_token_id]
lowerCamelCase =[2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ):
if not os.path.isdir(UpperCAmelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCamelCase =os.path.join(
UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase_ , """wb""" ) as fi:
lowerCamelCase =self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_ )
return (out_vocab_file,)
| 262
| 1
|
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def UpperCamelCase ( UpperCAmelCase ) ->Tuple:
"""simple docstring"""
a_ = SwinConfig(image_size=192 )
if "base" in model_name:
a_ = 6
a_ = 128
a_ = (2, 2, 18, 2)
a_ = (4, 8, 16, 32)
elif "large" in model_name:
a_ = 12
a_ = 192
a_ = (2, 2, 18, 2)
a_ = (6, 12, 24, 48)
else:
raise ValueError("Model not supported, only supports base and large variants" )
a_ = window_size
a_ = embed_dim
a_ = depths
a_ = num_heads
return config
def UpperCamelCase ( UpperCAmelCase ) ->Tuple:
"""simple docstring"""
if "encoder.mask_token" in name:
a_ = name.replace("encoder.mask_token" , "embeddings.mask_token" )
if "encoder.patch_embed.proj" in name:
a_ = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "encoder.patch_embed.norm" in name:
a_ = name.replace("encoder.patch_embed.norm" , "embeddings.norm" )
if "attn.proj" in name:
a_ = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
a_ = name.replace("attn" , "attention.self" )
if "norm1" in name:
a_ = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
a_ = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
a_ = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
a_ = name.replace("mlp.fc2" , "output.dense" )
if name == "encoder.norm.weight":
a_ = "layernorm.weight"
if name == "encoder.norm.bias":
a_ = "layernorm.bias"
if "decoder" in name:
pass
else:
a_ = "swin." + name
return name
def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Any:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
a_ = orig_state_dict.pop(UpperCAmelCase )
if "attn_mask" in key:
pass
elif "qkv" in key:
a_ = key.split("." )
a_ = int(key_split[2] )
a_ = int(key_split[4] )
a_ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
a_ = val[:dim, :]
a_ = val[
dim : dim * 2, :
]
a_ = val[-dim:, :]
else:
a_ = val[
:dim
]
a_ = val[
dim : dim * 2
]
a_ = val[
-dim:
]
else:
a_ = val
return orig_state_dict
def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Tuple:
"""simple docstring"""
a_ = torch.load(UpperCAmelCase , map_location="cpu" )["model"]
a_ = get_swin_config(UpperCAmelCase )
a_ = SwinForMaskedImageModeling(UpperCAmelCase )
model.eval()
a_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase )
model.load_state_dict(UpperCAmelCase )
a_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
a_ = ViTImageProcessor(size={"height": 192, "width": 192} )
a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw )
a_ = image_processor(images=UpperCAmelCase , return_tensors="pt" )
with torch.no_grad():
a_ = model(**UpperCAmelCase ).logits
print(outputs.keys() )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCAmelCase )
if push_to_hub:
print(F'''Pushing model and image processor for {model_name} to hub''' )
model.push_to_hub(F'''microsoft/{model_name}''' )
image_processor.push_to_hub(F'''microsoft/{model_name}''' )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='swin-base-simmim-window6-192',
type=str,
choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'],
help='Name of the Swin SimMIM model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth',
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
UpperCamelCase_ = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 243
|
"""simple docstring"""
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class snake_case ( SCREAMING_SNAKE_CASE_ ):
a_ : str = ["""vqvae"""]
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->List[str]:
super().__init__()
self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , mel=__UpperCAmelCase , vqvae=__UpperCAmelCase)
def UpperCAmelCase__ ( self) ->int:
return 50 if isinstance(self.scheduler , __UpperCAmelCase) else 10_00
@torch.no_grad()
def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=True , ) ->Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
a_ = steps or self.get_default_steps()
self.scheduler.set_timesteps(__UpperCAmelCase)
a_ = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size) == int:
a_ = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
a_ = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=__UpperCAmelCase , device=self.device , )
a_ = noise
a_ = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(__UpperCAmelCase , __UpperCAmelCase)
a_ = self.mel.audio_slice_to_image(__UpperCAmelCase)
a_ = np.frombuffer(input_image.tobytes() , dtype="uint8").reshape(
(input_image.height, input_image.width))
a_ = (input_image / 2_55) * 2 - 1
a_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device)
if self.vqvae is not None:
a_ = self.vqvae.encode(torch.unsqueeze(__UpperCAmelCase , 0)).latent_dist.sample(
generator=__UpperCAmelCase)[0]
a_ = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
a_ = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , self.scheduler.timesteps[start_step - 1])
a_ = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
a_ = int(mask_start_secs * pixels_per_second)
a_ = int(mask_end_secs * pixels_per_second)
a_ = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:]))
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])):
if isinstance(self.unet , __UpperCAmelCase):
a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase)["sample"]
else:
a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase)["sample"]
if isinstance(self.scheduler , __UpperCAmelCase):
a_ = self.scheduler.step(
model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , )["prev_sample"]
else:
a_ = self.scheduler.step(
model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase , )["prev_sample"]
if mask is not None:
if mask_start > 0:
a_ = mask[:, step, :, :mask_start]
if mask_end > 0:
a_ = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
a_ = 1 / self.vqvae.config.scaling_factor * images
a_ = self.vqvae.decode(__UpperCAmelCase)["sample"]
a_ = (images / 2 + 0.5).clamp(0 , 1)
a_ = images.cpu().permute(0 , 2 , 3 , 1).numpy()
a_ = (images * 2_55).round().astype("uint8")
a_ = list(
(Image.fromarray(_[:, :, 0]) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(__UpperCAmelCase , mode="RGB").convert("L") for _ in images))
a_ = [self.mel.image_to_audio(__UpperCAmelCase) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(__UpperCAmelCase)[:, np.newaxis, :]) , **ImagePipelineOutput(__UpperCAmelCase))
@torch.no_grad()
def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 50) ->np.ndarray:
assert isinstance(self.scheduler , __UpperCAmelCase)
self.scheduler.set_timesteps(__UpperCAmelCase)
a_ = np.array(
[np.frombuffer(image.tobytes() , dtype="uint8").reshape((1, image.height, image.width)) for image in images])
a_ = (sample / 2_55) * 2 - 1
a_ = torch.Tensor(__UpperCAmelCase).to(self.device)
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))):
a_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
a_ = self.scheduler.alphas_cumprod[t]
a_ = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
a_ = 1 - alpha_prod_t
a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase)["sample"]
a_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output
a_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
a_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def UpperCAmelCase__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->torch.Tensor:
a_ = acos(torch.dot(torch.flatten(__UpperCAmelCase) , torch.flatten(__UpperCAmelCase)) / torch.norm(__UpperCAmelCase) / torch.norm(__UpperCAmelCase))
return sin((1 - alpha) * theta) * xa / sin(__UpperCAmelCase) + sin(alpha * theta) * xa / sin(__UpperCAmelCase)
| 243
| 1
|
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=A_ ):
UpperCAmelCase__ : Union[str, Any] = ["onnx"]
def __init__(self : Tuple , *_A : Optional[int] , **_A : Any ) -> Dict:
requires_backends(self , ["onnx"] )
@classmethod
def UpperCAmelCase(cls : int , *_A : Dict , **_A : List[Any] ) -> Optional[Any]:
requires_backends(cls , ["onnx"] )
@classmethod
def UpperCAmelCase(cls : Dict , *_A : Tuple , **_A : Optional[Any] ) -> int:
requires_backends(cls , ["onnx"] )
| 356
|
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
_A = logging.get_logger(__name__)
def lowercase_ ( A__ , A__ ) -> int:
"""simple docstring"""
snake_case = RobertaPreLayerNormConfig.from_pretrained(
A__ , architectures=["RobertaPreLayerNormForMaskedLM"] )
# convert state_dict
snake_case = torch.load(hf_hub_download(repo_id=A__ , filename="pytorch_model.bin" ) )
snake_case = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta." ):
snake_case = "roberta_prelayernorm." + tensor_key[len("roberta." ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ):
continue
snake_case = tensor_value
snake_case = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=A__ , config=A__ , state_dict=A__ )
model.save_pretrained(A__ )
# convert tokenizer
snake_case = AutoTokenizer.from_pretrained(A__ )
tokenizer.save_pretrained(A__ )
if __name__ == "__main__":
_A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint-repo",
default=None,
type=str,
required=True,
help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_A = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 137
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE = {
'configuration_bigbird_pegasus': [
'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BigBirdPegasusConfig',
'BigBirdPegasusOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST',
'BigBirdPegasusForCausalLM',
'BigBirdPegasusForConditionalGeneration',
'BigBirdPegasusForQuestionAnswering',
'BigBirdPegasusForSequenceClassification',
'BigBirdPegasusModel',
'BigBirdPegasusPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 180
|
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json',
}
class a ( __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase :Any = '''resnet'''
lowerCamelCase :Any = ['''basic''', '''bottleneck''']
def __init__( self , lowerCAmelCase_=3 , lowerCAmelCase_=64 , lowerCAmelCase_=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_=[3, 4, 6, 3] , lowerCAmelCase_="bottleneck" , lowerCAmelCase_="relu" , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Union[str, Any]:
super().__init__(**lowerCAmelCase_ )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' )
_A = num_channels
_A = embedding_size
_A = hidden_sizes
_A = depths
_A = layer_type
_A = hidden_act
_A = downsample_in_first_stage
_A = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase_ ) + 1 )]
_A , _A = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
class a ( __lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase :Optional[Any] = version.parse('''1.11''' )
@property
def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def UpperCAmelCase ( self ) -> float:
return 1E-3
| 180
| 1
|
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
lowercase_ : str =GPTSanJapaneseTokenizer
lowercase_ : Optional[int] =False
lowercase_ : Dict ={'''do_clean_text''': False, '''add_prefix_space''': False}
def A__ ( self):
super().setUp()
# fmt: off
lowercase = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>''']
# fmt: on
lowercase = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀
lowercase = {'''unk_token''': '''<unk>'''}
lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''])
lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''emoji_file'''])
with open(self.vocab_file ,'''w''' ,encoding='''utf-8''') as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens]))
with open(self.emoji_file ,'''w''') as emoji_writer:
emoji_writer.write(json.dumps(_a))
def A__ ( self ,**A__):
kwargs.update(self.special_tokens_map)
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname ,**_a)
def A__ ( self ,A__):
lowercase = '''こんにちは、世界。 \nこんばんは、㔺界。😀'''
lowercase = '''こんにちは、世界。 \nこんばんは、世界。😀'''
return input_text, output_text
def A__ ( self ,A__):
lowercase , lowercase = self.get_input_output_texts(_a)
lowercase = tokenizer.encode(_a ,add_special_tokens=_a)
lowercase = tokenizer.decode(_a ,clean_up_tokenization_spaces=_a)
return text, ids
def A__ ( self):
pass # TODO add if relevant
def A__ ( self):
pass # TODO add if relevant
def A__ ( self):
pass # TODO add if relevant
def A__ ( self):
lowercase = self.get_tokenizer()
# Testing tokenization
lowercase = '''こんにちは、世界。 こんばんは、㔺界。'''
lowercase = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。''']
lowercase = tokenizer.tokenize(_a)
self.assertListEqual(_a ,_a)
# Testing conversion to ids without special tokens
lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
lowercase = tokenizer.convert_tokens_to_ids(_a)
self.assertListEqual(_a ,_a)
# Testing conversion to ids with special tokens
lowercase = tokens + [tokenizer.unk_token]
lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9]
lowercase = tokenizer.convert_tokens_to_ids(_a)
self.assertListEqual(_a ,_a)
def A__ ( self):
lowercase = self.get_tokenizer()
# Testing tokenization
lowercase = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。'''
lowercase = '''こんにちは、、、、世界。こんばんは、、、、世界。'''
lowercase = tokenizer.encode(_a)
lowercase = tokenizer.decode(_a)
self.assertEqual(_a ,_a)
@slow
def A__ ( self):
lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''')
# Testing tokenization
lowercase = '''こんにちは、世界。'''
lowercase = '''こんばんは、㔺界。😀'''
lowercase = '''こんにちは、世界。こんばんは、世界。😀'''
lowercase = tokenizer.encode(prefix_text + input_text)
lowercase = tokenizer.encode('''''' ,prefix_text=prefix_text + input_text)
lowercase = tokenizer.encode(_a ,prefix_text=_a)
lowercase = tokenizer.decode(_a)
lowercase = tokenizer.decode(_a)
lowercase = tokenizer.decode(_a)
self.assertEqual(_a ,_a)
self.assertEqual(_a ,_a)
self.assertEqual(_a ,_a)
@slow
def A__ ( self):
lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''')
# Testing tokenization
lowercase = '''こんにちは、世界。'''
lowercase = '''こんばんは、㔺界。😀'''
lowercase = len(tokenizer.encode(_a)) - 2
lowercase = len(tokenizer.encode(_a)) - 2
lowercase = [1] + [0] * (len_prefix + len_text + 1)
lowercase = [1] * (len_prefix + len_text + 1) + [0]
lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
lowercase = tokenizer(prefix_text + input_text).token_type_ids
lowercase = tokenizer('''''' ,prefix_text=prefix_text + input_text).token_type_ids
lowercase = tokenizer(_a ,prefix_text=_a).token_type_ids
self.assertListEqual(_a ,_a)
self.assertListEqual(_a ,_a)
self.assertListEqual(_a ,_a)
@slow
def A__ ( self):
lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''')
lowercase = tokenizer.encode('''あンいワ''')
lowercase = tokenizer.encode('''''' ,prefix_text='''あンいワ''')
lowercase = tokenizer.encode('''いワ''' ,prefix_text='''あン''')
self.assertEqual(tokenizer.decode(_a) ,tokenizer.decode(_a))
self.assertEqual(tokenizer.decode(_a) ,tokenizer.decode(_a))
self.assertNotEqual(_a ,_a)
self.assertNotEqual(_a ,_a)
self.assertEqual(x_token_a[1] ,x_token_a[-1]) # SEG token
self.assertEqual(x_token_a[1] ,x_token_a[3]) # SEG token
@slow
def A__ ( self):
lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''')
lowercase = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']]
lowercase = tokenizer(_a ,padding=_a)
lowercase = tokenizer.batch_encode_plus(_a ,padding=_a)
# fmt: off
lowercase = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]]
lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids ,_a)
self.assertListEqual(x_token.token_type_ids ,_a)
self.assertListEqual(x_token.attention_mask ,_a)
self.assertListEqual(x_token_a.input_ids ,_a)
self.assertListEqual(x_token_a.token_type_ids ,_a)
self.assertListEqual(x_token_a.attention_mask ,_a)
def A__ ( self):
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
def A__ ( self):
# tokenizer has no padding token
pass
| 363
|
lowercase__ :Any = 8.3_144_598
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
if temperature < 0:
raise Exception('''Temperature cannot be less than 0 K''' )
if molar_mass <= 0:
raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
lowercase__ :Optional[Any] = 300
lowercase__ :List[Any] = 28
lowercase__ :Dict = rms_speed_of_molecule(temperature, molar_mass)
print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
| 97
| 0
|
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __lowerCAmelCase ( unittest.TestCase):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , ) -> List[Any]:
'''simple docstring'''
a__ : int =size if size is not None else {"height": 1_8, "width": 1_8}
a__ : Dict =parent
a__ : Union[str, Any] =batch_size
a__ : List[Any] =num_channels
a__ : str =image_size
a__ : Any =min_resolution
a__ : Dict =max_resolution
a__ : Optional[int] =do_resize
a__ : List[str] =size
a__ : Union[str, Any] =do_normalize
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04],
[-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase):
_lowercase : Dict = ImageGPTImageProcessor if is_vision_available() else None
def _lowercase ( self ) -> str:
'''simple docstring'''
a__ : Tuple =ImageGPTImageProcessingTester(self )
@property
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self ) -> Dict:
'''simple docstring'''
a__ : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "clusters" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
def _lowercase ( self ) -> Any:
'''simple docstring'''
a__ : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} )
a__ : Optional[Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} )
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
a__ : Dict =self.image_processing_class(**self.image_processor_dict )
a__ : Optional[Any] =json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase__ , obj[key] ) )
else:
self.assertEqual(obj[key] , lowerCAmelCase__ )
def _lowercase ( self ) -> str:
'''simple docstring'''
a__ : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
a__ : Tuple =os.path.join(lowerCAmelCase__ , "image_processor.json" )
image_processor_first.to_json_file(lowerCAmelCase__ )
a__ : List[Any] =self.image_processing_class.from_json_file(lowerCAmelCase__ ).to_dict()
a__ : Tuple =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase__ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase__ )
def _lowercase ( self ) -> str:
'''simple docstring'''
a__ : Optional[int] =self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowerCAmelCase__ )
a__ : List[Any] =self.image_processing_class.from_pretrained(lowerCAmelCase__ ).to_dict()
a__ : List[Any] =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowerCAmelCase__ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowerCAmelCase__ )
@unittest.skip("ImageGPT requires clusters at initialization" )
def _lowercase ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
def _A ( ):
"""simple docstring"""
a__ : Optional[int] =load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" )
a__ : Union[str, Any] =Image.open(dataset[4]["file"] )
a__ : Any =Image.open(dataset[5]["file"] )
a__ : str =[imagea, imagea]
return images
@require_vision
@require_torch
class __lowerCAmelCase ( unittest.TestCase):
@slow
def _lowercase ( self ) -> List[Any]:
'''simple docstring'''
a__ : Tuple =ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" )
a__ : List[Any] =prepare_images()
# test non-batched
a__ : List[str] =image_processing(images[0] , return_tensors="pt" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) )
a__ : Any =[3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase__ )
# test batched
a__ : Optional[Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) )
a__ : Tuple =[3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase__ )
| 95
|
def _A ( SCREAMING_SNAKE_CASE : list ):
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
raise ValueError("Input series is not valid, valid series - [2, 4, 6]" )
if len(SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("Input list must be a non empty list" )
if len(SCREAMING_SNAKE_CASE ) == 1:
return True
a__ : Union[str, Any] =series[1] - series[0]
for index in range(len(SCREAMING_SNAKE_CASE ) - 1 ):
if series[index + 1] - series[index] != common_diff:
return False
return True
def _A ( SCREAMING_SNAKE_CASE : list ):
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
raise ValueError("Input series is not valid, valid series - [2, 4, 6]" )
if len(SCREAMING_SNAKE_CASE ) == 0:
raise ValueError("Input list must be a non empty list" )
a__ : Any =0
for val in series:
answer += val
return answer / len(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 95
| 1
|
'''simple docstring'''
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class A ( _a ,unittest.TestCase ):
lowercase_ = DebertaTokenizer
lowercase_ = True
lowercase_ = DebertaTokenizerFast
def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_a = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
_a = dict(zip(_snake_case , range(len(_snake_case ) ) ) )
_a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
_a = {'''unk_token''': '''[UNK]'''}
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_snake_case ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(_snake_case ) )
def __lowerCAmelCase ( self : str , **lowerCAmelCase_ : List[str] ) -> int:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case )
def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
_a = '''lower newer'''
_a = '''lower newer'''
return input_text, output_text
def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
_a = self.get_tokenizer()
_a = '''lower newer'''
_a = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
_a = tokenizer.tokenize(_snake_case )
self.assertListEqual(_snake_case , _snake_case )
_a = tokens + [tokenizer.unk_token]
_a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case )
def __lowerCAmelCase ( self : Optional[Any] ) -> int:
"""simple docstring"""
_a = self.get_tokenizer()
_a = tokenizer('''Hello''' , '''World''' )
_a = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , _snake_case )
@slow
def __lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
_a = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
_a = tokenizer.encode('''sequence builders''' , add_special_tokens=_snake_case )
_a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_snake_case )
_a = tokenizer.encode(
'''sequence builders''' , add_special_tokens=_snake_case , add_prefix_space=_snake_case )
_a = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=_snake_case , add_prefix_space=_snake_case )
_a = tokenizer.build_inputs_with_special_tokens(_snake_case )
_a = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
_a = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
_a = tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
_a = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
_a = tokenizer(_snake_case , padding=_snake_case )
_a = [tokenizer.decode(_snake_case , skip_special_tokens=_snake_case ) for seq in encoding['''input_ids''']]
# fmt: off
_a = {
'''input_ids''': [
[1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
_a = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , _snake_case )
for expected, decoded in zip(_snake_case , _snake_case ):
self.assertEqual(_snake_case , _snake_case )
| 357
|
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
_snake_case : Optional[Any] = '0.12' # assumed parallelism: 8
@require_flax
@is_staging_test
class A ( unittest.TestCase ):
@classmethod
def __lowerCAmelCase ( cls : Tuple ) -> int:
"""simple docstring"""
_a = TOKEN
HfFolder.save_token(lowerCAmelCase_ )
@classmethod
def __lowerCAmelCase ( cls : Tuple ) -> Optional[int]:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def __lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_a = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
_a = FlaxBertModel(lowerCAmelCase_ )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
_a = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' )
_a = flatten_dict(unfreeze(model.params ) )
_a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
_a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(lowerCAmelCase_ , 1e-3 , msg=F'{key} not identical' )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(lowerCAmelCase_ , repo_id='''test-model-flax''' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token )
_a = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' )
_a = flatten_dict(unfreeze(model.params ) )
_a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
_a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(lowerCAmelCase_ , 1e-3 , msg=F'{key} not identical' )
def __lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
_a = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
_a = FlaxBertModel(lowerCAmelCase_ )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
_a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
_a = flatten_dict(unfreeze(model.params ) )
_a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
_a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(lowerCAmelCase_ , 1e-3 , msg=F'{key} not identical' )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
lowerCAmelCase_ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token )
_a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
_a = flatten_dict(unfreeze(model.params ) )
_a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
_a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(lowerCAmelCase_ , 1e-3 , msg=F'{key} not identical' )
def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
_a = True
_a = flatten_dict(modela.params )
_a = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
_a = False
return models_are_equal
@require_flax
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
_a = FlaxBertModel(lowerCAmelCase_ )
_a = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) )
with self.assertRaises(lowerCAmelCase_ ):
_a = FlaxBertModel.from_pretrained(lowerCAmelCase_ )
_a = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ )
self.assertTrue(check_models_equal(lowerCAmelCase_ , lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
_a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
_a = FlaxBertModel(lowerCAmelCase_ )
_a = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , max_shard_size='''10KB''' )
with self.assertRaises(lowerCAmelCase_ ):
_a = FlaxBertModel.from_pretrained(lowerCAmelCase_ )
_a = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ )
self.assertTrue(check_models_equal(lowerCAmelCase_ , lowerCAmelCase_ ) )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
_a = '''bert'''
_a = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(lowerCAmelCase_ ):
_a = FlaxBertModel.from_pretrained(lowerCAmelCase_ )
_a = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple ) -> Tuple:
"""simple docstring"""
_a = '''bert'''
_a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(lowerCAmelCase_ ):
_a = FlaxBertModel.from_pretrained(lowerCAmelCase_ )
_a = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
| 179
| 0
|
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Any=99 , UpperCAmelCase_ : Optional[int]=36 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[str]=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[str]=512 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : int=6 , UpperCAmelCase_ : Dict=6 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Any]=1_000 , ) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Tuple =parent
lowerCamelCase__: Union[str, Any] =batch_size
lowerCamelCase__: Dict =num_channels
lowerCamelCase__: int =image_size
lowerCamelCase__: List[Any] =patch_size
lowerCamelCase__: Union[str, Any] =text_seq_length
lowerCamelCase__: str =is_training
lowerCamelCase__: Dict =use_input_mask
lowerCamelCase__: Optional[Any] =use_token_type_ids
lowerCamelCase__: List[str] =use_labels
lowerCamelCase__: int =vocab_size
lowerCamelCase__: Optional[Any] =hidden_size
lowerCamelCase__: Tuple =num_hidden_layers
lowerCamelCase__: Optional[Any] =num_attention_heads
lowerCamelCase__: Optional[int] =intermediate_size
lowerCamelCase__: Union[str, Any] =hidden_act
lowerCamelCase__: Union[str, Any] =hidden_dropout_prob
lowerCamelCase__: Dict =attention_probs_dropout_prob
lowerCamelCase__: Any =max_position_embeddings
lowerCamelCase__: Tuple =type_vocab_size
lowerCamelCase__: str =type_sequence_label_size
lowerCamelCase__: Optional[Any] =initializer_range
lowerCamelCase__: Optional[int] =coordinate_size
lowerCamelCase__: Any =shape_size
lowerCamelCase__: Optional[Any] =num_labels
lowerCamelCase__: Optional[int] =num_choices
lowerCamelCase__: int =scope
lowerCamelCase__: str =range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
lowerCamelCase__: str =text_seq_length
lowerCamelCase__: List[Any] =(image_size // patch_size) ** 2 + 1
lowerCamelCase__: List[Any] =self.text_seq_length + self.image_seq_length
def SCREAMING_SNAKE_CASE_ (self : Any) ->Any:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size)
lowerCamelCase__: Union[str, Any] =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox)
# Ensure that bbox is legal
for i in range(bbox.shape[0]):
for j in range(bbox.shape[1]):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowerCamelCase__: Dict =bbox[i, j, 3]
lowerCamelCase__: Union[str, Any] =bbox[i, j, 1]
lowerCamelCase__: str =t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowerCamelCase__: Tuple =bbox[i, j, 2]
lowerCamelCase__: Any =bbox[i, j, 0]
lowerCamelCase__: Optional[Any] =t
lowerCamelCase__: str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
lowerCamelCase__: Union[str, Any] =None
if self.use_input_mask:
lowerCamelCase__: Optional[int] =random_attention_mask([self.batch_size, self.text_seq_length])
lowerCamelCase__: Any =None
if self.use_token_type_ids:
lowerCamelCase__: Any =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size)
lowerCamelCase__: str =None
lowerCamelCase__: List[Any] =None
if self.use_labels:
lowerCamelCase__: Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowerCamelCase__: Tuple =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels)
lowerCamelCase__: str =LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =LayoutLMvaModel(config=UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
# text + image
lowerCamelCase__: Optional[int] =model(UpperCAmelCase_ , pixel_values=UpperCAmelCase_)
lowerCamelCase__: Tuple =model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_)
lowerCamelCase__: Any =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_)
lowerCamelCase__: int =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
# text only
lowerCamelCase__: str =model(UpperCAmelCase_)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size))
# image only
lowerCamelCase__: int =model(pixel_values=UpperCAmelCase_)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Any =self.num_labels
lowerCamelCase__: Optional[Any] =LayoutLMvaForSequenceClassification(UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
lowerCamelCase__: int =model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Tuple =self.num_labels
lowerCamelCase__: List[str] =LayoutLMvaForTokenClassification(config=UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
lowerCamelCase__: Union[str, Any] =model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels))
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =LayoutLMvaForQuestionAnswering(config=UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
lowerCamelCase__: Union[str, Any] =model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
): List[Any] =config_and_inputs
lowerCamelCase__: List[str] ={
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = False
lowercase_ = False
lowercase_ = False
lowercase_ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowercase_ = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any) ->Optional[int]:
'''simple docstring'''
return True
def SCREAMING_SNAKE_CASE_ (self : int) ->Dict:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =LayoutLMvaModelTester(self)
lowerCamelCase__: Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]=False) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Any =copy.deepcopy(UpperCAmelCase_)
if model_class in get_values(UpperCAmelCase_):
lowerCamelCase__: Union[str, Any] ={
k: v.unsqueeze(1).expand(-1 , self.model_tester.num_choices , -1).contiguous()
if isinstance(UpperCAmelCase_ , torch.Tensor) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(UpperCAmelCase_):
lowerCamelCase__: Optional[int] =torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_)
elif model_class in get_values(UpperCAmelCase_):
lowerCamelCase__: int =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_)
lowerCamelCase__: int =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_)
elif model_class in [
*get_values(UpperCAmelCase_),
]:
lowerCamelCase__: Union[str, Any] =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_)
elif model_class in [
*get_values(UpperCAmelCase_),
]:
lowerCamelCase__: int =torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase_ , )
return inputs_dict
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int:
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : str) ->str:
'''simple docstring'''
lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase__: Union[str, Any] =type
self.model_tester.create_and_check_model(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__: int =LayoutLMvaModel.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
def lowerCAmelCase_ ( ) -> Dict:
"""simple docstring"""
lowerCamelCase__: str =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE_ (self : Any) ->str:
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base").to(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =self.default_image_processor
lowerCamelCase__: List[Any] =prepare_img()
lowerCamelCase__: Union[str, Any] =image_processor(images=UpperCAmelCase_ , return_tensors="pt").pixel_values.to(UpperCAmelCase_)
lowerCamelCase__: Any =torch.tensor([[1, 2]])
lowerCamelCase__: str =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0)
# forward pass
lowerCamelCase__: Tuple =model(
input_ids=input_ids.to(UpperCAmelCase_) , bbox=bbox.to(UpperCAmelCase_) , pixel_values=pixel_values.to(UpperCAmelCase_) , )
# verify the logits
lowerCamelCase__: str =torch.Size((1, 199, 768))
self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_)
lowerCamelCase__: Dict =torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]]).to(UpperCAmelCase_)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1E-4))
| 10
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase: List[Any] = logging.get_logger(__name__)
lowerCAmelCase: List[Any] = {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json',
'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json',
}
class a__( lowerCamelCase__ ):
lowercase__ = """roberta"""
def __init__( self : Tuple , __snake_case : List[str]=5_02_65 , __snake_case : int=7_68 , __snake_case : Union[str, Any]=12 , __snake_case : Dict=12 , __snake_case : Tuple=30_72 , __snake_case : Optional[Any]="gelu" , __snake_case : str=0.1 , __snake_case : Any=0.1 , __snake_case : str=5_12 , __snake_case : int=2 , __snake_case : Any=0.02 , __snake_case : int=1e-1_2 , __snake_case : str=1 , __snake_case : Union[str, Any]=0 , __snake_case : Tuple=2 , __snake_case : Optional[int]="absolute" , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=None , **__snake_case : str , ):
super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
a : List[str] = vocab_size
a : str = hidden_size
a : Tuple = num_hidden_layers
a : Dict = num_attention_heads
a : List[Any] = hidden_act
a : str = intermediate_size
a : Union[str, Any] = hidden_dropout_prob
a : Optional[Any] = attention_probs_dropout_prob
a : Any = max_position_embeddings
a : Optional[int] = type_vocab_size
a : str = initializer_range
a : List[Any] = layer_norm_eps
a : Optional[int] = position_embedding_type
a : Dict = use_cache
a : Any = classifier_dropout
class a__( lowerCamelCase__ ):
@property
def lowercase_ ( self : int ):
if self.task == "multiple-choice":
a : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
a : str = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 297
| 0
|
import requests
UpperCamelCase_ = '''YOUR API KEY'''
def lowerCamelCase_ ( _a : str , _a : str = giphy_api_key ):
'''simple docstring'''
UpperCAmelCase_ : List[Any] = """+""".join(query.split() )
UpperCAmelCase_ : str = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
UpperCAmelCase_ : Dict = requests.get(_a ).json()["""data"""]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('''\n'''.join(get_gifs('''space ship''')))
| 59
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCamelCase_ = logging.get_logger(__name__)
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : str = ["pixel_values"]
def __init__( self: Optional[Any] ,lowerCamelCase_: bool = True ,lowerCamelCase_: Optional[Dict[str, int]] = None ,lowerCamelCase_: PILImageResampling = PILImageResampling.BICUBIC ,lowerCamelCase_: bool = True ,lowerCamelCase_: bool = True ,lowerCamelCase_: Union[int, float] = 1 / 255 ,lowerCamelCase_: Dict[str, int] = None ,lowerCamelCase_: bool = True ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,**lowerCamelCase_: Union[str, Any] ,) -> None:
super().__init__(**lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = size if size is not None else {"""height""": 224, """width""": 224}
UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
UpperCAmelCase_ : Tuple = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ,param_name="""crop_size""" )
UpperCAmelCase_ : Union[str, Any] = do_resize
UpperCAmelCase_ : Union[str, Any] = do_rescale
UpperCAmelCase_ : str = do_normalize
UpperCAmelCase_ : Optional[int] = do_center_crop
UpperCAmelCase_ : str = crop_size
UpperCAmelCase_ : List[str] = size
UpperCAmelCase_ : Any = resample
UpperCAmelCase_ : Tuple = rescale_factor
UpperCAmelCase_ : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
UpperCAmelCase_ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def A__ ( self: List[Any] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Dict[str, int] ,lowerCamelCase_: PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: Optional[int] ,) -> np.ndarray:
UpperCAmelCase_ : Tuple = get_size_dict(lowerCamelCase_ )
if "shortest_edge" in size:
UpperCAmelCase_ : Optional[Any] = get_resize_output_image_size(lowerCamelCase_ ,size=size["""shortest_edge"""] ,default_to_square=lowerCamelCase_ )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
UpperCAmelCase_ : Tuple = (size["""height"""], size["""width"""])
else:
raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' )
return resize(lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ )
def A__ ( self: List[Any] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Dict[str, int] ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: str ,) -> np.ndarray:
UpperCAmelCase_ : Dict = get_size_dict(lowerCamelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(lowerCamelCase_ ,size=(size["""height"""], size["""width"""]) ,data_format=lowerCamelCase_ ,**lowerCamelCase_ )
def A__ ( self: Optional[int] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: float ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: List[str] ) -> np.ndarray:
return rescale(lowerCamelCase_ ,scale=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ )
def A__ ( self: List[str] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Union[float, List[float]] ,lowerCamelCase_: Union[float, List[float]] ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: Union[str, Any] ,) -> np.ndarray:
return normalize(lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ )
def A__ ( self: Any ,lowerCamelCase_: ImageInput ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Dict[str, int] = None ,lowerCamelCase_: PILImageResampling = None ,lowerCamelCase_: bool = None ,lowerCamelCase_: int = None ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Optional[float] = None ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[str, TensorType]] = None ,lowerCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST ,**lowerCamelCase_: List[str] ,) -> BatchFeature:
UpperCAmelCase_ : Tuple = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ : str = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ,default_to_square=lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = resample if resample is not None else self.resample
UpperCAmelCase_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ : Optional[Any] = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ : int = image_std if image_std is not None else self.image_std
UpperCAmelCase_ : Dict = size if size is not None else self.size
UpperCAmelCase_ : List[str] = get_size_dict(lowerCamelCase_ )
if not is_batched(lowerCamelCase_ ):
UpperCAmelCase_ : Optional[int] = [images]
if not valid_images(lowerCamelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
UpperCAmelCase_ : Tuple = [to_numpy_array(lowerCamelCase_ ) for image in images]
if do_resize:
UpperCAmelCase_ : int = [self.resize(image=lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ) for image in images]
if do_center_crop:
UpperCAmelCase_ : Optional[int] = [self.center_crop(image=lowerCamelCase_ ,size=lowerCamelCase_ ) for image in images]
if do_rescale:
UpperCAmelCase_ : str = [self.rescale(image=lowerCamelCase_ ,scale=lowerCamelCase_ ) for image in images]
if do_normalize:
UpperCAmelCase_ : Dict = [self.normalize(image=lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ) for image in images]
UpperCAmelCase_ : Dict = [to_channel_dimension_format(lowerCamelCase_ ,lowerCamelCase_ ) for image in images]
UpperCAmelCase_ : Tuple = {"""pixel_values""": images}
return BatchFeature(data=lowerCamelCase_ ,tensor_type=lowerCamelCase_ )
| 59
| 1
|
'''simple docstring'''
from __future__ import annotations
import math
def _UpperCamelCase ( __A , __A ) -> list:
'''simple docstring'''
if len(__A ) != 2 or len(a[0] ) != 2 or len(__A ) != 2 or len(b[0] ) != 2:
raise Exception("Matrices are not 2x2" )
UpperCamelCase__ = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def _UpperCamelCase ( __A , __A ) -> str:
'''simple docstring'''
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__A ) )
]
def _UpperCamelCase ( __A , __A ) -> Union[str, Any]:
'''simple docstring'''
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__A ) )
]
def _UpperCamelCase ( __A ) -> tuple[list, list, list, list]:
'''simple docstring'''
if len(__A ) % 2 != 0 or len(a[0] ) % 2 != 0:
raise Exception("Odd matrices are not supported!" )
UpperCamelCase__ = len(__A )
UpperCamelCase__ = matrix_length // 2
UpperCamelCase__ = [[a[i][j] for j in range(__A , __A )] for i in range(__A )]
UpperCamelCase__ = [
[a[i][j] for j in range(__A , __A )] for i in range(__A , __A )
]
UpperCamelCase__ = [[a[i][j] for j in range(__A )] for i in range(__A )]
UpperCamelCase__ = [[a[i][j] for j in range(__A )] for i in range(__A , __A )]
return top_left, top_right, bot_left, bot_right
def _UpperCamelCase ( __A ) -> tuple[int, int]:
'''simple docstring'''
return len(__A ), len(matrix[0] )
def _UpperCamelCase ( __A ) -> None:
'''simple docstring'''
print("\n".join(str(__A ) for line in matrix ) )
def _UpperCamelCase ( __A , __A ) -> list:
'''simple docstring'''
if matrix_dimensions(__A ) == (2, 2):
return default_matrix_multiplication(__A , __A )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = split_matrix(__A )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = split_matrix(__A )
UpperCamelCase__ = actual_strassen(__A , matrix_subtraction(__A , __A ) )
UpperCamelCase__ = actual_strassen(matrix_addition(__A , __A ) , __A )
UpperCamelCase__ = actual_strassen(matrix_addition(__A , __A ) , __A )
UpperCamelCase__ = actual_strassen(__A , matrix_subtraction(__A , __A ) )
UpperCamelCase__ = actual_strassen(matrix_addition(__A , __A ) , matrix_addition(__A , __A ) )
UpperCamelCase__ = actual_strassen(matrix_subtraction(__A , __A ) , matrix_addition(__A , __A ) )
UpperCamelCase__ = actual_strassen(matrix_subtraction(__A , __A ) , matrix_addition(__A , __A ) )
UpperCamelCase__ = matrix_addition(matrix_subtraction(matrix_addition(__A , __A ) , __A ) , __A )
UpperCamelCase__ = matrix_addition(__A , __A )
UpperCamelCase__ = matrix_addition(__A , __A )
UpperCamelCase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__A , __A ) , __A ) , __A )
# construct the new matrix from our 4 quadrants
UpperCamelCase__ = []
for i in range(len(__A ) ):
new_matrix.append(top_left[i] + top_right[i] )
for i in range(len(__A ) ):
new_matrix.append(bot_left[i] + bot_right[i] )
return new_matrix
def _UpperCamelCase ( __A , __A ) -> list:
'''simple docstring'''
if matrix_dimensions(__A )[1] != matrix_dimensions(__A )[0]:
UpperCamelCase__ = (
"Unable to multiply these matrices, please check the dimensions.\n"
F'''Matrix A: {matrixa}\n'''
F'''Matrix B: {matrixa}'''
)
raise Exception(__A )
UpperCamelCase__ = matrix_dimensions(__A )
UpperCamelCase__ = matrix_dimensions(__A )
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
UpperCamelCase__ = max(*__A , *__A )
UpperCamelCase__ = int(math.pow(2 , math.ceil(math.loga(__A ) ) ) )
UpperCamelCase__ = matrixa
UpperCamelCase__ = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0 , __A ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __A ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __A ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
UpperCamelCase__ = actual_strassen(__A , __A )
# Removing the additional zeros
for i in range(0 , __A ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __A ):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
a__ : int = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
a__ : str = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]]
print(strassen(matrixa, matrixa))
| 80
|
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
_snake_case = logging.get_logger(__name__)
_snake_case = OrderedDict(
[
("audio-spectrogram-transformer", "ASTFeatureExtractor"),
("beit", "BeitFeatureExtractor"),
("chinese_clip", "ChineseCLIPFeatureExtractor"),
("clap", "ClapFeatureExtractor"),
("clip", "CLIPFeatureExtractor"),
("clipseg", "ViTFeatureExtractor"),
("conditional_detr", "ConditionalDetrFeatureExtractor"),
("convnext", "ConvNextFeatureExtractor"),
("cvt", "ConvNextFeatureExtractor"),
("data2vec-audio", "Wav2Vec2FeatureExtractor"),
("data2vec-vision", "BeitFeatureExtractor"),
("deformable_detr", "DeformableDetrFeatureExtractor"),
("deit", "DeiTFeatureExtractor"),
("detr", "DetrFeatureExtractor"),
("dinat", "ViTFeatureExtractor"),
("donut-swin", "DonutFeatureExtractor"),
("dpt", "DPTFeatureExtractor"),
("encodec", "EncodecFeatureExtractor"),
("flava", "FlavaFeatureExtractor"),
("glpn", "GLPNFeatureExtractor"),
("groupvit", "CLIPFeatureExtractor"),
("hubert", "Wav2Vec2FeatureExtractor"),
("imagegpt", "ImageGPTFeatureExtractor"),
("layoutlmv2", "LayoutLMv2FeatureExtractor"),
("layoutlmv3", "LayoutLMv3FeatureExtractor"),
("levit", "LevitFeatureExtractor"),
("maskformer", "MaskFormerFeatureExtractor"),
("mctct", "MCTCTFeatureExtractor"),
("mobilenet_v1", "MobileNetV1FeatureExtractor"),
("mobilenet_v2", "MobileNetV2FeatureExtractor"),
("mobilevit", "MobileViTFeatureExtractor"),
("nat", "ViTFeatureExtractor"),
("owlvit", "OwlViTFeatureExtractor"),
("perceiver", "PerceiverFeatureExtractor"),
("poolformer", "PoolFormerFeatureExtractor"),
("regnet", "ConvNextFeatureExtractor"),
("resnet", "ConvNextFeatureExtractor"),
("segformer", "SegformerFeatureExtractor"),
("sew", "Wav2Vec2FeatureExtractor"),
("sew-d", "Wav2Vec2FeatureExtractor"),
("speech_to_text", "Speech2TextFeatureExtractor"),
("speecht5", "SpeechT5FeatureExtractor"),
("swiftformer", "ViTFeatureExtractor"),
("swin", "ViTFeatureExtractor"),
("swinv2", "ViTFeatureExtractor"),
("table-transformer", "DetrFeatureExtractor"),
("timesformer", "VideoMAEFeatureExtractor"),
("tvlt", "TvltFeatureExtractor"),
("unispeech", "Wav2Vec2FeatureExtractor"),
("unispeech-sat", "Wav2Vec2FeatureExtractor"),
("van", "ConvNextFeatureExtractor"),
("videomae", "VideoMAEFeatureExtractor"),
("vilt", "ViltFeatureExtractor"),
("vit", "ViTFeatureExtractor"),
("vit_mae", "ViTFeatureExtractor"),
("vit_msn", "ViTFeatureExtractor"),
("wav2vec2", "Wav2Vec2FeatureExtractor"),
("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"),
("wavlm", "Wav2Vec2FeatureExtractor"),
("whisper", "WhisperFeatureExtractor"),
("xclip", "CLIPFeatureExtractor"),
("yolos", "YolosFeatureExtractor"),
]
)
_snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowerCAmelCase_ ( snake_case_ ):
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
_A : List[str] = model_type_to_module_name(snake_case_ )
_A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" )
try:
return getattr(snake_case_,snake_case_ )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_A : List[Any] = importlib.import_module("""transformers""" )
if hasattr(snake_case_,snake_case_ ):
return getattr(snake_case_,snake_case_ )
return None
def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,):
_A : Optional[int] = get_file_from_repo(
snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,)
if resolved_config_file is None:
logger.info(
"""Could not locate the feature extractor configuration file, will try to use the model config instead.""" )
return {}
with open(snake_case_,encoding="""utf-8""" ) as reader:
return json.load(snake_case_ )
class lowercase :
def __init__( self ) -> List[Any]:
raise EnvironmentError(
"""AutoFeatureExtractor is designed to be instantiated """
"""using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" )
@classmethod
@replace_list_option_in_docstrings(_a )
def a__ ( cls , _a , **_a ) -> Any:
_A : Tuple = kwargs.pop("""config""" , _a )
_A : Tuple = kwargs.pop("""trust_remote_code""" , _a )
_A : List[Any] = True
_A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a )
_A : Tuple = config_dict.get("""feature_extractor_type""" , _a )
_A : int = None
if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ):
_A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""]
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(_a , _a ):
_A : int = AutoConfig.from_pretrained(_a , **_a )
# It could be in `config.feature_extractor_type``
_A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a )
if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map:
_A : Tuple = config.auto_map["""AutoFeatureExtractor"""]
if feature_extractor_class is not None:
_A : Optional[Any] = feature_extractor_class_from_name(_a )
_A : List[Any] = feature_extractor_auto_map is not None
_A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING
_A : Optional[int] = resolve_trust_remote_code(
_a , _a , _a , _a )
if has_remote_code and trust_remote_code:
_A : Dict = get_class_from_dynamic_module(
_a , _a , **_a )
_A : str = kwargs.pop("""code_revision""" , _a )
if os.path.isdir(_a ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(_a , **_a )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(_a , **_a )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(_a ) in FEATURE_EXTRACTOR_MAPPING:
_A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )]
return feature_extractor_class.from_dict(_a , **_a )
raise ValueError(
F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a '''
F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following '''
F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' )
@staticmethod
def a__ ( _a , _a ) -> Optional[int]:
FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
| 26
| 0
|
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def _SCREAMING_SNAKE_CASE ( UpperCamelCase ):
"""simple docstring"""
lowerCAmelCase__ : str = []
embed.append(
(
f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""",
f"""stage{idx}.patch_embed.proj.weight""",
) )
embed.append(
(
f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""",
f"""stage{idx}.patch_embed.proj.bias""",
) )
embed.append(
(
f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""",
f"""stage{idx}.patch_embed.norm.weight""",
) )
embed.append(
(
f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""",
f"""stage{idx}.patch_embed.norm.bias""",
) )
return embed
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCAmelCase__ : Tuple = []
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""",
f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""",
f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""",
f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""",
f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""",
f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""",
f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""",
f"""stage{idx}.blocks.{cnt}.attn.proj.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""",
f"""stage{idx}.blocks.{cnt}.attn.proj.bias""",
) )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") )
return attention_weights
def _SCREAMING_SNAKE_CASE ( UpperCamelCase ):
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = []
token.append((f"""cvt.encoder.stages.{idx}.cls_token""", """stage2.cls_token""") )
return token
def _SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
lowerCAmelCase__ : Any = []
head.append(("""layernorm.weight""", """norm.weight""") )
head.append(("""layernorm.bias""", """norm.bias""") )
head.append(("""classifier.weight""", """head.weight""") )
head.append(("""classifier.bias""", """head.bias""") )
return head
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCAmelCase__ : List[str] = 'imagenet-1k-id2label.json'
lowerCAmelCase__ : Dict = 1000
lowerCAmelCase__ : Union[str, Any] = 'huggingface/label-files'
lowerCAmelCase__ : str = num_labels
lowerCAmelCase__ : str = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type="""dataset""" ) ) , """r""" ) )
lowerCAmelCase__ : Tuple = {int(_UpperCAmelCase ): v for k, v in idalabel.items()}
lowerCAmelCase__ : Optional[Any] = idalabel
lowerCAmelCase__ : str = {v: k for k, v in idalabel.items()}
lowerCAmelCase__ : Dict = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13":
lowerCAmelCase__ : Tuple = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21":
lowerCAmelCase__ : str = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
lowerCAmelCase__ : Dict = [2, 2, 20]
lowerCAmelCase__ : Any = [3, 12, 16]
lowerCAmelCase__ : Tuple = [192, 768, 1024]
lowerCAmelCase__ : str = CvtForImageClassification(_UpperCAmelCase )
lowerCAmelCase__ : List[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" )
lowerCAmelCase__ : int = image_size
lowerCAmelCase__ : int = torch.load(_UpperCAmelCase , map_location=torch.device("""cpu""" ) )
lowerCAmelCase__ : List[Any] = OrderedDict()
lowerCAmelCase__ : Union[str, Any] = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
lowerCAmelCase__ : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase )
lowerCAmelCase__ : Tuple = list_of_state_dict + embeddings(_UpperCAmelCase )
for cnt in range(config.depth[idx] ):
lowerCAmelCase__ : Optional[int] = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase__ : str = list_of_state_dict + final()
for gg in list_of_state_dict:
print(_UpperCAmelCase )
for i in range(len(_UpperCAmelCase ) ):
lowerCAmelCase__ : List[str] = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(_UpperCAmelCase )
model.save_pretrained(_UpperCAmelCase )
image_processor.save_pretrained(_UpperCAmelCase )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'''--cvt_model''',
default='''cvt-w24''',
type=str,
help='''Name of the cvt model you\'d like to convert.''',
)
parser.add_argument(
'''--image_size''',
default=384,
type=int,
help='''Input Image Size''',
)
parser.add_argument(
'''--cvt_file_name''',
default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''',
type=str,
help='''Input Image Size''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
_lowerCAmelCase = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 350
|
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( UpperCamelCase ):
"""simple docstring"""
if any(not isinstance(UpperCamelCase , UpperCamelCase ) or x < 0 for x in sequence ):
raise TypeError("""Sequence must be list of non-negative integers""" )
for _ in range(len(UpperCamelCase ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(UpperCamelCase , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 184
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__snake_case : Optional[int] = logging.get_logger(__name__)
class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = 'maskformer-swin'
SCREAMING_SNAKE_CASE = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: int=224 , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: int=3 , _SCREAMING_SNAKE_CASE: List[Any]=96 , _SCREAMING_SNAKE_CASE: Union[str, Any]=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE: Any=[3, 6, 12, 24] , _SCREAMING_SNAKE_CASE: List[str]=7 , _SCREAMING_SNAKE_CASE: List[str]=4.0 , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: Any=0.0 , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: str="gelu" , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.02 , _SCREAMING_SNAKE_CASE: str=1e-5 , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: str=None , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> List[str]:
"""simple docstring"""
super().__init__(**_SCREAMING_SNAKE_CASE)
__lowerCAmelCase : int = image_size
__lowerCAmelCase : Any = patch_size
__lowerCAmelCase : Tuple = num_channels
__lowerCAmelCase : Any = embed_dim
__lowerCAmelCase : Any = depths
__lowerCAmelCase : Dict = len(_SCREAMING_SNAKE_CASE)
__lowerCAmelCase : List[Any] = num_heads
__lowerCAmelCase : Tuple = window_size
__lowerCAmelCase : Dict = mlp_ratio
__lowerCAmelCase : Any = qkv_bias
__lowerCAmelCase : Union[str, Any] = hidden_dropout_prob
__lowerCAmelCase : int = attention_probs_dropout_prob
__lowerCAmelCase : Tuple = drop_path_rate
__lowerCAmelCase : int = hidden_act
__lowerCAmelCase : Optional[int] = use_absolute_embeddings
__lowerCAmelCase : List[str] = layer_norm_eps
__lowerCAmelCase : Any = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__lowerCAmelCase : Optional[Any] = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE) - 1))
__lowerCAmelCase : Any = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(_SCREAMING_SNAKE_CASE) + 1)]
__lowerCAmelCase , __lowerCAmelCase : List[str] = get_aligned_output_features_output_indices(
out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names)
| 269
|
"""simple docstring"""
import re
def _lowercase ( __snake_case ) -> str:
if len(re.findall("[ATCG]" ,__snake_case ) ) != len(__snake_case ):
raise ValueError("Invalid Strand" )
return dna.translate(dna.maketrans("ATCG" ,"TAGC" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 269
| 1
|
'''simple docstring'''
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class A ( unittest.TestCase ):
def __init__( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Optional[int]=18 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : Tuple=4_00 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : List[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : List[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : List[str]=False , ) -> Tuple:
"""simple docstring"""
_a = size if size is not None else {'''height''': 20, '''width''': 20}
_a = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = min_resolution
_a = max_resolution
_a = do_resize
_a = size
_a = do_center_crop
_a = crop_size
_a = do_normalize
_a = image_mean
_a = image_std
_a = do_reduce_labels
def __lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def snake_case_ ():
'''simple docstring'''
_a = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
_a = Image.open(dataset[0]['''file'''] )
_a = Image.open(dataset[1]['''file'''] )
return image, map
def snake_case_ ():
'''simple docstring'''
_a = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
_a = Image.open(ds[0]['''file'''] )
_a = Image.open(ds[1]['''file'''] )
_a = Image.open(ds[2]['''file'''] )
_a = Image.open(ds[3]['''file'''] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class A ( _a ,unittest.TestCase ):
lowercase_ = BeitImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
_a = BeitImageProcessingTester(self )
@property
def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''size''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , '''image_std''' ) )
def __lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
_a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase_ )
_a = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCAmelCase_ )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , Image.Image )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , np.ndarray )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , torch.Tensor )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def __lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ )
_a = []
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
_a = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched
_a = image_processing(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test not batched input (PIL images)
_a , _a = prepare_semantic_single_inputs()
_a = image_processing(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched input (PIL images)
_a , _a = prepare_semantic_batch_inputs()
_a = image_processing(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
2,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
def __lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
_a = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
_a , _a = prepare_semantic_single_inputs()
_a = image_processing(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 1_50 )
_a = True
_a = image_processing(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
| 179
|
'''simple docstring'''
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def snake_case_ (UpperCamelCase : Dict ):
'''simple docstring'''
_a = {}
_a = job['''started_at''']
_a = job['''completed_at''']
_a = date_parser.parse(UpperCamelCase )
_a = date_parser.parse(UpperCamelCase )
_a = round((end_datetime - start_datetime).total_seconds() / 60.0 )
_a = start
_a = end
_a = duration_in_min
return job_info
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int=None ):
'''simple docstring'''
_a = None
if token is not None:
_a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'Bearer {token}'}
_a = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'
_a = requests.get(UpperCamelCase , headers=UpperCamelCase ).json()
_a = {}
try:
job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase ) for job in result['''jobs''']} )
_a = math.ceil((result['''total_count'''] - 100) / 100 )
for i in range(UpperCamelCase ):
_a = requests.get(url + f'&page={i + 2}' , headers=UpperCamelCase ).json()
job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase ) for job in result['''jobs''']} )
return job_time
except Exception:
print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' )
return {}
if __name__ == "__main__":
_snake_case : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
_snake_case : Tuple = parser.parse_args()
_snake_case : int = get_job_time(args.workflow_run_id)
_snake_case : int = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(F'''{k}: {v['duration']}''')
| 179
| 1
|
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class __a ( __lowerCamelCase ):
def __lowercase ( self : Tuple ):
'''simple docstring'''
UpperCamelCase__ : List[str] = pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type , pa.intaa() )
def __lowercase ( self : List[str] ):
'''simple docstring'''
with self.assertRaises(__lowercase ):
UpperCamelCase__ : Tuple = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() )
def __lowercase ( self : Union[str, Any] ):
'''simple docstring'''
with self.assertRaises(__lowercase ):
UpperCamelCase__ : List[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) )
def __lowercase ( self : Dict ):
'''simple docstring'''
UpperCamelCase__ : int = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def __lowercase ( self : List[Any] ):
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
UpperCamelCase__ : List[str] = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) )
def __lowercase ( self : Union[str, Any] ):
'''simple docstring'''
UpperCamelCase__ : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def __lowercase ( self : Optional[int] ):
'''simple docstring'''
UpperCamelCase__ : Union[str, Any] = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) )
self.assertEqual(arr.type , pa.string() )
def __lowercase ( self : Any ):
'''simple docstring'''
UpperCamelCase__ : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) )
def __lowercase ( self : int ):
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
UpperCamelCase__ : Any = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) )
def __lowercase ( self : Optional[Any] ):
'''simple docstring'''
UpperCamelCase__ : int = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) )
def __lowercase ( self : Dict ):
'''simple docstring'''
UpperCamelCase__ : Optional[Any] = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) )
self.assertEqual(arr.type , pa.string() )
@require_pil
def __lowercase ( self : Dict ):
'''simple docstring'''
import PIL.Image
UpperCamelCase__ : str = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) )
with patch(
"datasets.arrow_writer.cast_to_python_objects" , side_effect=__lowercase ) as mock_cast_to_python_objects:
UpperCamelCase__ : Union[str, Any] = pa.array(TypedSequence([{"path": None, "bytes": B"image_bytes"}, pil_image] , type=Image() ) )
UpperCamelCase__ : Any = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn("optimize_list_casting" , __lowercase )
self.assertFalse(kwargs["optimize_list_casting"] )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
UpperCamelCase__ : List[Any] = pa.BufferReader(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , pa.Buffer ) else pa.memory_map(__lowerCAmelCase )
UpperCamelCase__ : Tuple = pa.ipc.open_stream(__lowerCAmelCase )
UpperCamelCase__ : pa.Table = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] )
@pytest.mark.parametrize(
"fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]:
UpperCamelCase__ : str = pa.BufferOutputStream()
UpperCamelCase__ : int = pa.schema(__lowerCAmelCase ) if fields else None
with ArrowWriter(stream=__lowerCAmelCase , schema=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase ) as writer:
writer.write({"col_1": "foo", "col_2": 1} )
writer.write({"col_1": "bar", "col_2": 2} )
UpperCamelCase__ : Optional[Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCamelCase__ : str = {'''col_1''': pa.string(), '''col_2''': pa.intaa()}
assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def SCREAMING_SNAKE_CASE ( ) -> int:
UpperCamelCase__ : Optional[Any] = pa.BufferOutputStream()
UpperCamelCase__ : Optional[Any] = Features({"labels": ClassLabel(names=["neg", "pos"] )} )
with ArrowWriter(stream=__lowerCAmelCase , features=__lowerCAmelCase ) as writer:
writer.write({"labels": 0} )
writer.write({"labels": 1} )
UpperCamelCase__ : int = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
UpperCamelCase__ : Tuple = pa.BufferReader(output.getvalue() )
UpperCamelCase__ : Dict = pa.ipc.open_stream(__lowerCAmelCase )
UpperCamelCase__ : pa.Table = f.read_all()
UpperCamelCase__ : str = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(__lowerCAmelCase )
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
UpperCamelCase__ : Union[str, Any] = pa.BufferOutputStream()
with ArrowWriter(
stream=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase , hash_salt="split_name" , check_duplicates=__lowerCAmelCase , ) as writer:
with pytest.raises(__lowerCAmelCase ):
writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] )
UpperCamelCase__ : Any = writer.finalize()
@pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[int]:
UpperCamelCase__ : Any = pa.BufferOutputStream()
with ArrowWriter(
stream=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase , hash_salt="split_name" , check_duplicates=__lowerCAmelCase , ) as writer:
with pytest.raises(__lowerCAmelCase ):
writer.write({"col_1": "foo", "col_2": 1} , key=10 )
writer.write({"col_1": "bar", "col_2": 2} , key=10 )
UpperCamelCase__ : Tuple = writer.finalize()
@pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str:
UpperCamelCase__ : Dict = pa.BufferOutputStream()
with ArrowWriter(
stream=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase , hash_salt="split_name" , check_duplicates=__lowerCAmelCase , ) as writer:
writer.write({"col_1": "foo", "col_2": 1} , key=1 )
writer.write({"col_1": "bar", "col_2": 2} , key=2 )
UpperCamelCase__ : List[Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] )
@pytest.mark.parametrize(
"fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str:
UpperCamelCase__ : Optional[Any] = pa.BufferOutputStream()
UpperCamelCase__ : Optional[int] = pa.schema(__lowerCAmelCase ) if fields else None
with ArrowWriter(stream=__lowerCAmelCase , schema=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase ) as writer:
writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} )
writer.write_batch({"col_1": [], "col_2": []} )
UpperCamelCase__ : Optional[int] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCamelCase__ : Optional[int] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()}
assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] )
@pytest.mark.parametrize(
"fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
UpperCamelCase__ : Tuple = pa.BufferOutputStream()
UpperCamelCase__ : str = pa.schema(__lowerCAmelCase ) if fields else None
with ArrowWriter(stream=__lowerCAmelCase , schema=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase ) as writer:
writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) )
UpperCamelCase__ : int = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCamelCase__ : str = {'''col_1''': pa.string(), '''col_2''': pa.intaa()}
assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] )
@pytest.mark.parametrize(
"fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]:
UpperCamelCase__ : List[str] = pa.BufferOutputStream()
UpperCamelCase__ : Optional[int] = pa.schema(__lowerCAmelCase ) if fields else None
with ArrowWriter(stream=__lowerCAmelCase , schema=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase ) as writer:
writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) )
writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) )
UpperCamelCase__ : Union[str, Any] = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCamelCase__ : List[Any] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()}
assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def SCREAMING_SNAKE_CASE ( ) -> Dict:
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase__ : Optional[int] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()}
UpperCamelCase__ : Dict = os.path.join(__lowerCAmelCase , "test.arrow" )
with ArrowWriter(path=__lowerCAmelCase , schema=pa.schema(__lowerCAmelCase ) ) as writer:
writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} )
UpperCamelCase__ : Tuple = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata )
_check_output(__lowerCAmelCase , 1 )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]:
if pa.types.is_list(__lowerCAmelCase ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
if isinstance(lst[0] , __lowerCAmelCase ):
change_first_primitive_element_in_list(lst[0] , __lowerCAmelCase )
else:
UpperCamelCase__ : List[Any] = value
@pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] )
@pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str:
UpperCamelCase__ : Dict = pa.array(TypedSequence(__lowerCAmelCase , optimized_int_type=__lowerCAmelCase ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
"col, expected_dtype" , [
("attention_mask", pa.inta()),
("special_tokens_mask", pa.inta()),
("token_type_ids", pa.inta()),
("input_ids", pa.intaa()),
("other", pa.intaa()),
] , )
@pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int:
UpperCamelCase__ : List[str] = pa.array(OptimizedTypedSequence(__lowerCAmelCase , col=__lowerCAmelCase ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
UpperCamelCase__ : Tuple = copy.deepcopy(__lowerCAmelCase )
UpperCamelCase__ : int = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(__lowerCAmelCase , __lowerCAmelCase )
UpperCamelCase__ : Optional[Any] = pa.array(OptimizedTypedSequence(__lowerCAmelCase , col=__lowerCAmelCase ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize("raise_exception" , [False, True] )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
UpperCamelCase__ : Optional[Any] = str(tmp_path / "dataset-train.arrow" )
try:
with ArrowWriter(path=__lowerCAmelCase ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
UpperCamelCase__ : int = '''mock://dataset-train.arrow'''
with ArrowWriter(path=__lowerCAmelCase , storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs , type(__lowerCAmelCase ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({"col_1": "foo", "col_2": 1} )
writer.write({"col_1": "bar", "col_2": 2} )
UpperCamelCase__ : str = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(__lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( ) -> List[str]:
UpperCamelCase__ : Optional[Any] = pa.BufferOutputStream()
with ParquetWriter(stream=__lowerCAmelCase ) as writer:
writer.write({"col_1": "foo", "col_2": 1} )
writer.write({"col_1": "bar", "col_2": 2} )
UpperCamelCase__ : Any = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
UpperCamelCase__ : str = pa.BufferReader(output.getvalue() )
UpperCamelCase__ : pa.Table = pq.read_table(__lowerCAmelCase )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize("embed_local_files" , [False, True] )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Any:
import PIL.Image
UpperCamelCase__ : Dict = str(tmp_path / "test_image_rgb.jpg" )
PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__lowerCAmelCase , format="png" )
UpperCamelCase__ : Tuple = pa.BufferOutputStream()
with ParquetWriter(
stream=__lowerCAmelCase , features=Features({"image": Image()} ) , embed_local_files=__lowerCAmelCase ) as writer:
writer.write({"image": image_path} )
writer.finalize()
UpperCamelCase__ : List[Any] = pa.BufferReader(output.getvalue() )
UpperCamelCase__ : pa.Table = pq.read_table(__lowerCAmelCase )
UpperCamelCase__ : Optional[Any] = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out["image"][0]["path"] , __lowerCAmelCase )
with open(__lowerCAmelCase , "rb" ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def SCREAMING_SNAKE_CASE ( ) -> Dict:
UpperCamelCase__ : Optional[Any] = pa.schema([pa.field("col_1" , pa.string() , nullable=__lowerCAmelCase )] )
UpperCamelCase__ : Tuple = pa.BufferOutputStream()
with ArrowWriter(stream=__lowerCAmelCase ) as writer:
writer._build_writer(inferred_schema=__lowerCAmelCase )
assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
| 189
|
import json
import os
from pathlib import Path
import pytest
from datasets.download.download_config import DownloadConfig
from datasets.download.download_manager import DownloadManager
from datasets.utils.file_utils import hash_url_to_filename
A__ = '''http://www.mocksite.com/file1.txt'''
A__ = '''"text": ["foo", "foo"]'''
A__ = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8'''
class a :
__lowerCAmelCase : Optional[int] = 2_00
__lowerCAmelCase : List[str] = {"""Content-Length""": """100"""}
__lowerCAmelCase : Dict = {}
def __lowerCamelCase ( self :Dict ,**__lowercase :List[Any] ):
return [bytes(__lowercase ,'''utf-8''' )]
def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]:
"""simple docstring"""
return MockResponse()
@pytest.mark.parametrize('''urls_type''' , [str, list, dict] )
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
"""simple docstring"""
import requests
monkeypatch.setattr(__lowerCAmelCase , '''request''' , __lowerCAmelCase )
snake_case__ : Union[str, Any] = URL
if issubclass(__lowerCAmelCase , __lowerCAmelCase ):
snake_case__ : Optional[Any] = url
elif issubclass(__lowerCAmelCase , __lowerCAmelCase ):
snake_case__ : int = [url]
elif issubclass(__lowerCAmelCase , __lowerCAmelCase ):
snake_case__ : int = {'''train''': url}
snake_case__ : Dict = '''dummy'''
snake_case__ : Any = '''downloads'''
snake_case__ : int = tmp_path
snake_case__ : Any = DownloadConfig(
cache_dir=os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , use_etag=__lowerCAmelCase , )
snake_case__ : Tuple = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase )
snake_case__ : List[Any] = dl_manager.download(__lowerCAmelCase )
snake_case__ : Union[str, Any] = urls
for downloaded_paths in [downloaded_paths]:
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
snake_case__ : Optional[int] = [downloaded_paths]
snake_case__ : Dict = [urls]
elif isinstance(__lowerCAmelCase , __lowerCAmelCase ):
assert "train" in downloaded_paths.keys()
snake_case__ : str = downloaded_paths.values()
snake_case__ : List[str] = urls.values()
assert downloaded_paths
for downloaded_path, input_url in zip(__lowerCAmelCase , __lowerCAmelCase ):
assert downloaded_path == dl_manager.downloaded_paths[input_url]
snake_case__ : List[Any] = Path(__lowerCAmelCase )
snake_case__ : Any = downloaded_path.parts
assert parts[-1] == HASH
assert parts[-2] == cache_subdir
assert downloaded_path.exists()
snake_case__ : List[str] = downloaded_path.read_text()
assert content == CONTENT
snake_case__ : List[str] = downloaded_path.with_suffix('''.json''' )
assert metadata_downloaded_path.exists()
snake_case__ : str = json.loads(metadata_downloaded_path.read_text() )
assert metadata_content == {"url": URL, "etag": None}
@pytest.mark.parametrize('''paths_type''' , [str, list, dict] )
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any:
"""simple docstring"""
snake_case__ : Any = str(__lowerCAmelCase )
if issubclass(__lowerCAmelCase , __lowerCAmelCase ):
snake_case__ : Tuple = filename
elif issubclass(__lowerCAmelCase , __lowerCAmelCase ):
snake_case__ : Dict = [filename]
elif issubclass(__lowerCAmelCase , __lowerCAmelCase ):
snake_case__ : Dict = {'''train''': filename}
snake_case__ : Any = '''dummy'''
snake_case__ : Any = xz_file.parent
snake_case__ : List[str] = '''extracted'''
snake_case__ : Dict = DownloadConfig(
cache_dir=__lowerCAmelCase , use_etag=__lowerCAmelCase , )
snake_case__ : Dict = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase )
snake_case__ : str = dl_manager.extract(__lowerCAmelCase )
snake_case__ : int = paths
for extracted_paths in [extracted_paths]:
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
snake_case__ : Dict = [extracted_paths]
snake_case__ : Optional[Any] = [paths]
elif isinstance(__lowerCAmelCase , __lowerCAmelCase ):
assert "train" in extracted_paths.keys()
snake_case__ : int = extracted_paths.values()
snake_case__ : int = paths.values()
assert extracted_paths
for extracted_path, input_path in zip(__lowerCAmelCase , __lowerCAmelCase ):
assert extracted_path == dl_manager.extracted_paths[input_path]
snake_case__ : Optional[int] = Path(__lowerCAmelCase )
snake_case__ : int = extracted_path.parts
assert parts[-1] == hash_url_to_filename(__lowerCAmelCase , etag=__lowerCAmelCase )
assert parts[-2] == extracted_subdir
assert extracted_path.exists()
snake_case__ : List[Any] = extracted_path.read_text()
snake_case__ : List[str] = text_file.read_text()
assert extracted_file_content == expected_file_content
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
"""simple docstring"""
assert path.endswith('''.jsonl''' )
for num_items, line in enumerate(__lowerCAmelCase , start=1 ):
snake_case__ : Any = json.loads(line.decode('''utf-8''' ) )
assert item.keys() == {"col_1", "col_2", "col_3"}
assert num_items == 4
@pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] )
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
"""simple docstring"""
snake_case__ : Any = request.getfixturevalue(__lowerCAmelCase )
snake_case__ : Union[str, Any] = DownloadManager()
for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ):
_test_jsonl(__lowerCAmelCase , __lowerCAmelCase )
assert num_jsonl == 2
@pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] )
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
"""simple docstring"""
snake_case__ : Union[str, Any] = request.getfixturevalue(__lowerCAmelCase )
snake_case__ : Optional[int] = DownloadManager()
for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ):
for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ):
_test_jsonl(__lowerCAmelCase , __lowerCAmelCase )
assert num_tar == 1
assert num_jsonl == 2
def _lowerCAmelCase ( __lowerCAmelCase ) -> str:
"""simple docstring"""
snake_case__ : Any = DownloadManager()
for num_file, file in enumerate(dl_manager.iter_files(__lowerCAmelCase ) , start=1 ):
assert os.path.basename(__lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt")
assert num_file == 2
| 230
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase_ : int = {
'configuration_clipseg': [
'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP',
'CLIPSegConfig',
'CLIPSegTextConfig',
'CLIPSegVisionConfig',
],
'processing_clipseg': ['CLIPSegProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ : List[str] = [
'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST',
'CLIPSegModel',
'CLIPSegPreTrainedModel',
'CLIPSegTextModel',
'CLIPSegVisionModel',
'CLIPSegForImageSegmentation',
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 363
|
"""simple docstring"""
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCamelCase_ : Dict = logging.get_logger(__name__)
@add_end_docstrings(_SCREAMING_SNAKE_CASE )
class __A ( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
def __init__( self , **__A ) -> Dict:
super().__init__(**__A )
if self.framework == "tf":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
requires_backends(self , '''vision''' )
self.check_model_type(__A )
def __call__( self , __A , __A = None , **__A , ) -> List[str]:
if "text_queries" in kwargs:
a =kwargs.pop('''text_queries''' )
if isinstance(__A , (str, Image.Image) ):
a ={'''image''': image, '''candidate_labels''': candidate_labels}
else:
a =image
a =super().__call__(__A , **__A )
return results
def SCREAMING_SNAKE_CASE ( self , **__A ) -> Optional[Any]:
a ={}
if "threshold" in kwargs:
a =kwargs['''threshold''']
if "top_k" in kwargs:
a =kwargs['''top_k''']
return {}, {}, postprocess_params
def SCREAMING_SNAKE_CASE ( self , __A ) -> str:
a =load_image(inputs['''image'''] )
a =inputs['''candidate_labels''']
if isinstance(__A , __A ):
a =candidate_labels.split(''',''' )
a =torch.tensor([[image.height, image.width]] , dtype=torch.intaa )
for i, candidate_label in enumerate(__A ):
a =self.tokenizer(__A , return_tensors=self.framework )
a =self.image_processor(__A , return_tensors=self.framework )
yield {
"is_last": i == len(__A ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def SCREAMING_SNAKE_CASE ( self , __A ) -> List[Any]:
a =model_inputs.pop('''target_size''' )
a =model_inputs.pop('''candidate_label''' )
a =model_inputs.pop('''is_last''' )
a =self.model(**__A )
a ={'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs}
return model_outputs
def SCREAMING_SNAKE_CASE ( self , __A , __A=0.1 , __A=None ) -> List[str]:
a =[]
for model_output in model_outputs:
a =model_output['''candidate_label''']
a =BaseModelOutput(__A )
a =self.image_processor.post_process_object_detection(
outputs=__A , threshold=__A , target_sizes=model_output['''target_size'''] )[0]
for index in outputs["scores"].nonzero():
a =outputs['''scores'''][index].item()
a =self._get_bounding_box(outputs['''boxes'''][index][0] )
a ={'''score''': score, '''label''': label, '''box''': box}
results.append(__A )
a =sorted(__A , key=lambda __A : x["score"] , reverse=__A )
if top_k:
a =results[:top_k]
return results
def SCREAMING_SNAKE_CASE ( self , __A ) -> Dict[str, int]:
if self.framework != "pt":
raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' )
a , a , a , a =box.int().tolist()
a ={
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 215
| 0
|
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
UpperCAmelCase : Tuple = datasets.logging.get_logger(__name__)
UpperCAmelCase : Union[str, Any] = """\
@InProceedings{moosavi2019minimum,
author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},
title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},
year = {2019},
booktitle = {Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)},
publisher = {Association for Computational Linguistics},
address = {Florence, Italy},
}
@inproceedings{10.3115/1072399.1072405,
author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},
title = {A Model-Theoretic Coreference Scoring Scheme},
year = {1995},
isbn = {1558604022},
publisher = {Association for Computational Linguistics},
address = {USA},
url = {https://doi.org/10.3115/1072399.1072405},
doi = {10.3115/1072399.1072405},
booktitle = {Proceedings of the 6th Conference on Message Understanding},
pages = {45–52},
numpages = {8},
location = {Columbia, Maryland},
series = {MUC6 ’95}
}
@INPROCEEDINGS{Bagga98algorithmsfor,
author = {Amit Bagga and Breck Baldwin},
title = {Algorithms for Scoring Coreference Chains},
booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},
year = {1998},
pages = {563--566}
}
@INPROCEEDINGS{Luo05oncoreference,
author = {Xiaoqiang Luo},
title = {On coreference resolution performance metrics},
booktitle = {In Proc. of HLT/EMNLP},
year = {2005},
pages = {25--32},
publisher = {URL}
}
@inproceedings{moosavi-strube-2016-coreference,
title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",
author = \"Moosavi, Nafise Sadat and
Strube, Michael\",
booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",
month = aug,
year = \"2016\",
address = \"Berlin, Germany\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/P16-1060\",
doi = \"10.18653/v1/P16-1060\",
pages = \"632--642\",
}
"""
UpperCAmelCase : int = """\
CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which
implements of the common evaluation metrics including MUC [Vilain et al, 1995],
B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],
LEA [Moosavi and Strube, 2016] and the averaged CoNLL score
(the average of the F1 values of MUC, B-cubed and CEAFe)
[Denis and Baldridge, 2009a; Pradhan et al., 2011].
This wrapper of CoVal currently only work with CoNLL line format:
The CoNLL format has one word per line with all the annotation for this word in column separated by spaces:
Column Type Description
1 Document ID This is a variation on the document filename
2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
3 Word number
4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.
5 Part-of-Speech
6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.
7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"
8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.
9 Word sense This is the word sense of the word in Column 3.
10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.
11 Named Entities These columns identifies the spans representing various named entities.
12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.
N Coreference Coreference chain information encoded in a parenthesis structure.
More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html
Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md
CoVal code was written by @ns-moosavi.
Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py
The test suite is taken from https://github.com/conll/reference-coreference-scorers/
Mention evaluation and the test suite are added by @andreasvc.
Parsing CoNLL files is developed by Leo Born.
"""
UpperCAmelCase : Tuple = """
Calculates coreference evaluation metrics.
Args:
predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.
Each prediction is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.
Each reference is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
keep_singletons: After extracting all mentions of key or system files,
mentions whose corresponding coreference chain is of size one,
are considered as singletons. The default evaluation mode will include
singletons in evaluations if they are included in the key or the system files.
By setting 'keep_singletons=False', all singletons in the key and system files
will be excluded from the evaluation.
NP_only: Most of the recent coreference resolvers only resolve NP mentions and
leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.
min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.
Minimum spans are determined using the MINA algorithm.
Returns:
'mentions': mentions
'muc': MUC metric [Vilain et al, 1995]
'bcub': B-cubed [Bagga and Baldwin, 1998]
'ceafe': CEAFe [Luo et al., 2005]
'lea': LEA [Moosavi and Strube, 2016]
'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)
Examples:
>>> coval = datasets.load_metric('coval')
>>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',
... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',
... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',
... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',
... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',
... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']
>>> references = [words]
>>> predictions = [words]
>>> results = coval.compute(predictions=predictions, references=references)
>>> print(results) # doctest:+ELLIPSIS
{'mentions/recall': 1.0,[...] 'conll_score': 100.0}
"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="dummy_doc" ) -> int:
'''simple docstring'''
lowercase_ = {doc: key_lines}
lowercase_ = {doc: sys_lines}
lowercase_ = {}
lowercase_ = 0
lowercase_ = 0
lowercase_ = 0
lowercase_ = 0
lowercase_ = 0
lowercase_ = 0
lowercase_ = reader.get_doc_mentions(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
lowercase_ = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase )
lowercase_ = reader.get_doc_mentions(__lowerCAmelCase , sys_doc_lines[doc] , __lowerCAmelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
lowercase_ = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase )
if remove_nested:
lowercase_ = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
lowercase_ = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
lowercase_ = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"""Number of removed nested coreferring mentions in the key """
F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
"""Number of resulting singleton clusters in the key """
F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
"""files, respectively""" )
return doc_coref_infos
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
lowercase_ = get_coref_infos(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
lowercase_ = {}
lowercase_ = 0
lowercase_ = 0
for name, metric in metrics:
lowercase_ = evaluator.evaluate_documents(__lowerCAmelCase , __lowerCAmelCase , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} )
logger.info(
name.ljust(10 ) , F'''Recall: {recall * 1_00:.2f}''' , F''' Precision: {precision * 1_00:.2f}''' , F''' F1: {fa * 1_00:.2f}''' , )
if conll_subparts_num == 3:
lowercase_ = (conll / 3) * 1_00
logger.info(F'''CoNLL score: {conll:.2f}''' )
output_scores.update({"""conll_score""": conll} )
return output_scores
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = False
for line in key_lines:
if not line.startswith("""#""" ):
if len(line.split() ) > 6:
lowercase_ = line.split()[5]
if not parse_col == "-":
lowercase_ = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""")),
"""references""": datasets.Sequence(datasets.Value("""string""")),
}) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[
"""https://github.com/ns-moosavi/coval""",
"""https://www.aclweb.org/anthology/P16-1060""",
"""http://www.conll.cemantix.org/2012/data.html""",
] , )
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Union[str, Any]=False):
"""simple docstring"""
lowercase_ = [
('''mentions''', evaluator.mentions),
('''muc''', evaluator.muc),
('''bcub''', evaluator.b_cubed),
('''ceafe''', evaluator.ceafe),
('''lea''', evaluator.lea),
]
if min_span:
lowercase_ = util.check_gold_parse_annotation(__lowerCAmelCase)
if not has_gold_parse:
raise NotImplementedError("""References should have gold parse annotation to use \'min_span\'.""")
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
lowercase_ = evaluate(
key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , )
return score
| 136
|
'''simple docstring'''
from math import pow
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ):
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
lowercase__ : Optional[Any] = int(pow(UpperCAmelCase , UpperCAmelCase ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
lowercase__ , lowercase__ : Dict = backtrack(
UpperCAmelCase , UpperCAmelCase , current_number + 1 , UpperCAmelCase , UpperCAmelCase )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
lowercase__ , lowercase__ : str = backtrack(
UpperCAmelCase , UpperCAmelCase , current_number + 1 , UpperCAmelCase , UpperCAmelCase )
return current_sum, solutions_count
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ):
if not (1 <= needed_sum <= 1000 and 2 <= power <= 10):
raise ValueError(
'''Invalid input\n'''
'''needed_sum must be between 1 and 1000, power between 2 and 10.''' )
return backtrack(UpperCAmelCase , UpperCAmelCase , 1 , 0 , 0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 198
| 0
|
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: int = int(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = t // 36_00, (t // 60) % 60, t % 60
return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}"
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=3_00 ):
# docstyle-ignore
return f"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n "
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Optional[Any] = "<table border=\"1\" class=\"dataframe\">\n"
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += f" <th>{i}</th>\n"
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
SCREAMING_SNAKE_CASE_: Optional[Any] = f"{elt:.6f}" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else str(_UpperCAmelCase )
html_code += f" <td>{elt}</td>\n"
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class __lowercase :
"""simple docstring"""
_UpperCAmelCase : List[str] = 5
_UpperCAmelCase : Optional[Any] = 0.2
def __init__( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional["NotebookTrainingTracker"] = None , lowerCAmelCase__ : int = 300 , ):
SCREAMING_SNAKE_CASE_: int = total
SCREAMING_SNAKE_CASE_: List[str] = "" if prefix is None else prefix
SCREAMING_SNAKE_CASE_: Dict = leave
SCREAMING_SNAKE_CASE_: Tuple = parent
SCREAMING_SNAKE_CASE_: Optional[int] = width
SCREAMING_SNAKE_CASE_: Any = None
SCREAMING_SNAKE_CASE_: Optional[Any] = None
SCREAMING_SNAKE_CASE_: List[Any] = None
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : str = None):
SCREAMING_SNAKE_CASE_: Optional[int] = value
if comment is not None:
SCREAMING_SNAKE_CASE_: str = comment
if self.last_value is None:
SCREAMING_SNAKE_CASE_: str = time.time()
SCREAMING_SNAKE_CASE_: Dict = value
SCREAMING_SNAKE_CASE_: Dict = None
SCREAMING_SNAKE_CASE_: Optional[int] = self.warmup
SCREAMING_SNAKE_CASE_: Dict = 1
self.update_bar(lowerCAmelCase__)
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total):
if self.first_calls > 0:
self.first_calls -= 1
SCREAMING_SNAKE_CASE_: List[str] = time.time()
SCREAMING_SNAKE_CASE_: Optional[Any] = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
SCREAMING_SNAKE_CASE_: int = self.elapsed_time / (value - self.start_value)
else:
SCREAMING_SNAKE_CASE_: Dict = None
if value >= self.total:
SCREAMING_SNAKE_CASE_: int = self.total
SCREAMING_SNAKE_CASE_: Optional[Any] = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
SCREAMING_SNAKE_CASE_: Dict = self.average_time_per_item * (self.total - value)
self.update_bar(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Dict = value
SCREAMING_SNAKE_CASE_: str = current_time
if self.average_time_per_item is None:
SCREAMING_SNAKE_CASE_: Optional[Any] = 1
else:
SCREAMING_SNAKE_CASE_: List[Any] = max(int(self.update_every / self.average_time_per_item) , 1)
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any=None):
SCREAMING_SNAKE_CASE_: Dict = " " * (len(str(self.total)) - len(str(lowerCAmelCase__))) + str(lowerCAmelCase__)
if self.elapsed_time is None:
SCREAMING_SNAKE_CASE_: List[str] = F"[{spaced_value}/{self.total} : < :"
elif self.predicted_remaining is None:
SCREAMING_SNAKE_CASE_: str = F"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}"
else:
SCREAMING_SNAKE_CASE_: Optional[Any] = (
F"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <"
F" {format_time(self.predicted_remaining)}"
)
self.label += F", {1/self.average_time_per_item:.2f} it/s"
self.label += "]" if self.comment is None or len(self.comment) == 0 else F", {self.comment}]"
self.display()
def _SCREAMING_SNAKE_CASE ( self : Tuple):
SCREAMING_SNAKE_CASE_: Dict = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width)
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
SCREAMING_SNAKE_CASE_: Dict = disp.display(disp.HTML(self.html_code) , display_id=lowerCAmelCase__)
else:
self.output.update(disp.HTML(self.html_code))
def _SCREAMING_SNAKE_CASE ( self : Dict):
if self.parent is None and self.output is not None:
self.output.update(disp.HTML(""))
class __lowercase ( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=None):
super().__init__(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Union[str, Any] = None if column_names is None else [column_names]
SCREAMING_SNAKE_CASE_: int = None
def _SCREAMING_SNAKE_CASE ( self : List[str]):
SCREAMING_SNAKE_CASE_: List[str] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width)
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table)
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
SCREAMING_SNAKE_CASE_: Any = disp.display(disp.HTML(self.html_code) , display_id=lowerCAmelCase__)
else:
self.output.update(disp.HTML(self.html_code))
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : str):
if self.inner_table is None:
SCREAMING_SNAKE_CASE_: int = [list(values.keys()), list(values.values())]
else:
SCREAMING_SNAKE_CASE_: Union[str, Any] = self.inner_table[0]
if len(self.inner_table) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[Any] = columns
self.inner_table.append([values[c] for c in columns])
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Tuple=300):
SCREAMING_SNAKE_CASE_: Dict = NotebookProgressBar(lowerCAmelCase__ , prefix=lowerCAmelCase__ , parent=self , width=lowerCAmelCase__)
return self.child_bar
def _SCREAMING_SNAKE_CASE ( self : Tuple):
SCREAMING_SNAKE_CASE_: Optional[int] = None
self.display()
class __lowercase ( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self : int):
SCREAMING_SNAKE_CASE_: Tuple = None
SCREAMING_SNAKE_CASE_: Tuple = None
SCREAMING_SNAKE_CASE_: int = False
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Dict):
SCREAMING_SNAKE_CASE_: Tuple = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step"
SCREAMING_SNAKE_CASE_: Any = 0
SCREAMING_SNAKE_CASE_: Optional[int] = 0
SCREAMING_SNAKE_CASE_: Tuple = [self.first_column] + ["Training Loss"]
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append("Validation Loss")
SCREAMING_SNAKE_CASE_: Tuple = NotebookTrainingTracker(state.max_steps , lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , **lowerCAmelCase__ : Any):
SCREAMING_SNAKE_CASE_: Tuple = int(state.epoch) if int(state.epoch) == state.epoch else F"{state.epoch:.2f}"
self.training_tracker.update(
state.global_step + 1 , comment=F"Epoch {epoch}/{state.num_train_epochs}" , force_update=self._force_next_update , )
SCREAMING_SNAKE_CASE_: Tuple = False
def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=None , **lowerCAmelCase__ : Optional[Any]):
if not has_length(lowerCAmelCase__):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
SCREAMING_SNAKE_CASE_: Tuple = self.training_tracker.add_child(len(lowerCAmelCase__))
else:
SCREAMING_SNAKE_CASE_: Any = NotebookProgressBar(len(lowerCAmelCase__))
self.prediction_bar.update(1)
else:
self.prediction_bar.update(self.prediction_bar.value + 1)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : str , **lowerCAmelCase__ : Dict):
if self.prediction_bar is not None:
self.prediction_bar.close()
SCREAMING_SNAKE_CASE_: Union[str, Any] = None
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Dict):
# Only for when there is no evaluation
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
SCREAMING_SNAKE_CASE_: int = {"Training Loss": logs["loss"]}
# First column is necessarily Step sine we're not in epoch eval strategy
SCREAMING_SNAKE_CASE_: Any = state.global_step
self.training_tracker.write_line(lowerCAmelCase__)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Tuple):
if self.training_tracker is not None:
SCREAMING_SNAKE_CASE_: Dict = {"Training Loss": "No log", "Validation Loss": "No log"}
for log in reversed(state.log_history):
if "loss" in log:
SCREAMING_SNAKE_CASE_: List[Any] = log["loss"]
break
if self.first_column == "Epoch":
SCREAMING_SNAKE_CASE_: Dict = int(state.epoch)
else:
SCREAMING_SNAKE_CASE_: Optional[Any] = state.global_step
SCREAMING_SNAKE_CASE_: Optional[int] = "eval"
for k in metrics:
if k.endswith("_loss"):
SCREAMING_SNAKE_CASE_: Union[str, Any] = re.sub(R"\_loss$" , "" , lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Tuple = metrics.pop("total_flos" , lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[str] = metrics.pop("epoch" , lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: int = metrics.pop(F"{metric_key_prefix}_runtime" , lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[Any] = metrics.pop(F"{metric_key_prefix}_samples_per_second" , lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Dict = metrics.pop(F"{metric_key_prefix}_steps_per_second" , lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[Any] = metrics.pop(F"{metric_key_prefix}_jit_compilation_time" , lowerCAmelCase__)
for k, v in metrics.items():
if k == F"{metric_key_prefix}_loss":
SCREAMING_SNAKE_CASE_: Optional[Any] = v
else:
SCREAMING_SNAKE_CASE_: List[str] = k.split("_")
SCREAMING_SNAKE_CASE_: Any = " ".join([part.capitalize() for part in splits[1:]])
SCREAMING_SNAKE_CASE_: Optional[Any] = v
self.training_tracker.write_line(lowerCAmelCase__)
self.training_tracker.remove_child()
SCREAMING_SNAKE_CASE_: Any = None
# Evaluation takes a long time so we should force the next update.
SCREAMING_SNAKE_CASE_: Union[str, Any] = True
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Union[str, Any]):
self.training_tracker.update(
state.global_step , comment=F"Epoch {int(state.epoch)}/{state.num_train_epochs}" , force_update=lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Union[str, Any] = None
| 127
|
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase : Tuple = logging.get_logger(__name__)
lowerCAmelCase : Any = {
"""b0""": efficientnet.EfficientNetBa,
"""b1""": efficientnet.EfficientNetBa,
"""b2""": efficientnet.EfficientNetBa,
"""b3""": efficientnet.EfficientNetBa,
"""b4""": efficientnet.EfficientNetBa,
"""b5""": efficientnet.EfficientNetBa,
"""b6""": efficientnet.EfficientNetBa,
"""b7""": efficientnet.EfficientNetBa,
}
lowerCAmelCase : str = {
"""b0""": {
"""hidden_dim""": 1280,
"""width_coef""": 1.0,
"""depth_coef""": 1.0,
"""image_size""": 224,
"""dropout_rate""": 0.2,
"""dw_padding""": [],
},
"""b1""": {
"""hidden_dim""": 1280,
"""width_coef""": 1.0,
"""depth_coef""": 1.1,
"""image_size""": 240,
"""dropout_rate""": 0.2,
"""dw_padding""": [16],
},
"""b2""": {
"""hidden_dim""": 1408,
"""width_coef""": 1.1,
"""depth_coef""": 1.2,
"""image_size""": 260,
"""dropout_rate""": 0.3,
"""dw_padding""": [5, 8, 16],
},
"""b3""": {
"""hidden_dim""": 1536,
"""width_coef""": 1.2,
"""depth_coef""": 1.4,
"""image_size""": 300,
"""dropout_rate""": 0.3,
"""dw_padding""": [5, 18],
},
"""b4""": {
"""hidden_dim""": 1792,
"""width_coef""": 1.4,
"""depth_coef""": 1.8,
"""image_size""": 380,
"""dropout_rate""": 0.4,
"""dw_padding""": [6],
},
"""b5""": {
"""hidden_dim""": 2048,
"""width_coef""": 1.6,
"""depth_coef""": 2.2,
"""image_size""": 456,
"""dropout_rate""": 0.4,
"""dw_padding""": [13, 27],
},
"""b6""": {
"""hidden_dim""": 2304,
"""width_coef""": 1.8,
"""depth_coef""": 2.6,
"""image_size""": 528,
"""dropout_rate""": 0.5,
"""dw_padding""": [31],
},
"""b7""": {
"""hidden_dim""": 2560,
"""width_coef""": 2.0,
"""depth_coef""": 3.1,
"""image_size""": 600,
"""dropout_rate""": 0.5,
"""dw_padding""": [18],
},
}
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Dict = EfficientNetConfig()
SCREAMING_SNAKE_CASE_: Any = CONFIG_MAP[model_name]["hidden_dim"]
SCREAMING_SNAKE_CASE_: Optional[Any] = CONFIG_MAP[model_name]["width_coef"]
SCREAMING_SNAKE_CASE_: List[Any] = CONFIG_MAP[model_name]["depth_coef"]
SCREAMING_SNAKE_CASE_: Union[str, Any] = CONFIG_MAP[model_name]["image_size"]
SCREAMING_SNAKE_CASE_: Optional[int] = CONFIG_MAP[model_name]["dropout_rate"]
SCREAMING_SNAKE_CASE_: Dict = CONFIG_MAP[model_name]["dw_padding"]
SCREAMING_SNAKE_CASE_: str = "huggingface/label-files"
SCREAMING_SNAKE_CASE_: str = "imagenet-1k-id2label.json"
SCREAMING_SNAKE_CASE_: int = 10_00
SCREAMING_SNAKE_CASE_: int = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) )
SCREAMING_SNAKE_CASE_: int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE_: Any = idalabel
SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in idalabel.items()}
return config
def A_ ( ):
SCREAMING_SNAKE_CASE_: Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg"
SCREAMING_SNAKE_CASE_: int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw )
return im
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: int = CONFIG_MAP[model_name]["image_size"]
SCREAMING_SNAKE_CASE_: Optional[Any] = EfficientNetImageProcessor(
size={"height": size, "width": size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_UpperCAmelCase , )
return preprocessor
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Optional[int] = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )]
SCREAMING_SNAKE_CASE_: Optional[Any] = sorted(set(_UpperCAmelCase ) )
SCREAMING_SNAKE_CASE_: int = len(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Optional[int] = {b: str(_UpperCAmelCase ) for b, i in zip(_UpperCAmelCase , range(_UpperCAmelCase ) )}
SCREAMING_SNAKE_CASE_: List[Any] = []
rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") )
rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") )
rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") )
rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") )
rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") )
for b in block_names:
SCREAMING_SNAKE_CASE_: List[str] = block_name_mapping[b]
rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight") )
rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight") )
rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias") )
rename_keys.append(
(f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") )
rename_keys.append(
(f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") )
rename_keys.append(
(f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") )
rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") )
rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") )
rename_keys.append(
(f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") )
rename_keys.append(
(f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") )
rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") )
rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") )
rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") )
rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") )
rename_keys.append(
(f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight") )
rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight") )
rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias") )
rename_keys.append(
(f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean") )
rename_keys.append(
(f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var") )
rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") )
rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") )
rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") )
rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") )
rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") )
SCREAMING_SNAKE_CASE_: Optional[Any] = {}
for item in rename_keys:
if item[0] in original_param_names:
SCREAMING_SNAKE_CASE_: str = "efficientnet." + item[1]
SCREAMING_SNAKE_CASE_: List[str] = "classifier.weight"
SCREAMING_SNAKE_CASE_: Optional[Any] = "classifier.bias"
return key_mapping
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
for key, value in tf_params.items():
if "normalization" in key:
continue
SCREAMING_SNAKE_CASE_: List[str] = key_mapping[key]
if "_conv" in key and "kernel" in key:
SCREAMING_SNAKE_CASE_: str = torch.from_numpy(_UpperCAmelCase ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
SCREAMING_SNAKE_CASE_: Tuple = torch.from_numpy(np.transpose(_UpperCAmelCase ) )
else:
SCREAMING_SNAKE_CASE_: List[str] = torch.from_numpy(_UpperCAmelCase )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_UpperCAmelCase )
@torch.no_grad()
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Any = model_classes[model_name](
include_top=_UpperCAmelCase , weights="imagenet" , input_tensor=_UpperCAmelCase , input_shape=_UpperCAmelCase , pooling=_UpperCAmelCase , classes=10_00 , classifier_activation="softmax" , )
SCREAMING_SNAKE_CASE_: Tuple = original_model.trainable_variables
SCREAMING_SNAKE_CASE_: Dict = original_model.non_trainable_variables
SCREAMING_SNAKE_CASE_: List[Any] = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
SCREAMING_SNAKE_CASE_: str = param.numpy()
SCREAMING_SNAKE_CASE_: Union[str, Any] = list(tf_params.keys() )
# Load HuggingFace model
SCREAMING_SNAKE_CASE_: Any = get_efficientnet_config(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: List[str] = EfficientNetForImageClassification(_UpperCAmelCase ).eval()
SCREAMING_SNAKE_CASE_: str = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print("Converting parameters..." )
SCREAMING_SNAKE_CASE_: Tuple = rename_keys(_UpperCAmelCase )
replace_params(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# Initialize preprocessor and preprocess input image
SCREAMING_SNAKE_CASE_: Optional[Any] = convert_image_processor(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: int = preprocessor(images=prepare_img() , return_tensors="pt" )
# HF model inference
hf_model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE_: Union[str, Any] = hf_model(**_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Any = outputs.logits.detach().numpy()
# Original model inference
SCREAMING_SNAKE_CASE_: Dict = False
SCREAMING_SNAKE_CASE_: Optional[int] = CONFIG_MAP[model_name]["image_size"]
SCREAMING_SNAKE_CASE_: int = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
SCREAMING_SNAKE_CASE_: Tuple = image.img_to_array(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: List[str] = np.expand_dims(_UpperCAmelCase , axis=0 )
SCREAMING_SNAKE_CASE_: str = original_model.predict(_UpperCAmelCase )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ), "The predicted logits are not the same."
print("Model outputs match!" )
if save_model:
# Create folder to save model
if not os.path.isdir(_UpperCAmelCase ):
os.mkdir(_UpperCAmelCase )
# Save converted model and image processor
hf_model.save_pretrained(_UpperCAmelCase )
preprocessor.save_pretrained(_UpperCAmelCase )
if push_to_hub:
# Push model and image processor to hub
print(f"Pushing converted {model_name} to the hub..." )
SCREAMING_SNAKE_CASE_: Optional[Any] = f"efficientnet-{model_name}"
preprocessor.push_to_hub(_UpperCAmelCase )
hf_model.push_to_hub(_UpperCAmelCase )
if __name__ == "__main__":
lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""b0""",
type=str,
help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""hf_model""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""")
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
lowerCAmelCase : Any = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 127
| 1
|
"""simple docstring"""
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
_a = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt')
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any] = 16000) -> int:
'''simple docstring'''
__lowercase = int(round(sample_rate * max_length))
if len(_UpperCAmelCase) <= sample_length:
return wav
__lowercase = randint(0, len(_UpperCAmelCase) - sample_length - 1)
return wav[random_offset : random_offset + sample_length]
@dataclass
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : Optional[str] = field(default=A__ ,metadata={"help": "Name of a dataset from the datasets package"} )
__UpperCAmelCase : Optional[str] = field(
default=A__ ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
__UpperCAmelCase : Optional[str] = field(
default=A__ ,metadata={"help": "A file containing the training audio paths and labels."} )
__UpperCAmelCase : Optional[str] = field(
default=A__ ,metadata={"help": "A file containing the validation audio paths and labels."} )
__UpperCAmelCase : str = field(
default="train" ,metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to \'train\'"
} ,)
__UpperCAmelCase : str = field(
default="validation" ,metadata={
"help": (
"The name of the training data set split to use (via the datasets library). Defaults to \'validation\'"
)
} ,)
__UpperCAmelCase : str = field(
default="audio" ,metadata={"help": "The name of the dataset column containing the audio data. Defaults to \'audio\'"} ,)
__UpperCAmelCase : str = field(
default="label" ,metadata={"help": "The name of the dataset column containing the labels. Defaults to \'label\'"} )
__UpperCAmelCase : Optional[int] = field(
default=A__ ,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} ,)
__UpperCAmelCase : Optional[int] = field(
default=A__ ,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} ,)
__UpperCAmelCase : float = field(
default=2_0 ,metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} ,)
@dataclass
class _lowerCAmelCase :
"""simple docstring"""
__UpperCAmelCase : str = field(
default="facebook/wav2vec2-base" ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ,)
__UpperCAmelCase : Optional[str] = field(
default=A__ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__UpperCAmelCase : Optional[str] = field(
default=A__ ,metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} )
__UpperCAmelCase : str = field(
default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,)
__UpperCAmelCase : Optional[str] = field(
default=A__ ,metadata={"help": "Name or path of preprocessor config."} )
__UpperCAmelCase : bool = field(
default=A__ ,metadata={"help": "Whether to freeze the feature encoder layers of the model."} )
__UpperCAmelCase : bool = field(
default=A__ ,metadata={"help": "Whether to generate an attention mask in the feature extractor."} )
__UpperCAmelCase : bool = field(
default=A__ ,metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} ,)
__UpperCAmelCase : Optional[bool] = field(
default=A__ ,metadata={"help": "Whether to freeze the feature extractor layers of the model."} )
__UpperCAmelCase : bool = field(
default=A__ ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,)
def _lowercase ( self : Optional[Any] ):
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
"The argument `--freeze_feature_extractor` is deprecated and "
"will be removed in a future version. Use `--freeze_feature_encoder`"
"instead. Setting `freeze_feature_encoder==True`.", UpperCAmelCase__, )
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
"The argument `--freeze_feature_extractor` is deprecated and "
"should not be used in combination with `--freeze_feature_encoder`."
"Only make use of `--freeze_feature_encoder`." )
def _A ( ) -> List[Any]:
'''simple docstring'''
__lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowercase ,__lowercase ,__lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
__lowercase ,__lowercase ,__lowercase = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_audio_classification", _UpperCAmelCase, _UpperCAmelCase)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__lowercase = training_args.get_process_log_level()
logger.setLevel(_UpperCAmelCase)
transformers.utils.logging.set_verbosity(_UpperCAmelCase)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """
+ F"""distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}""")
logger.info(F"""Training/evaluation parameters {training_args}""")
# Set seed before initializing model.
set_seed(training_args.seed)
# Detecting last checkpoint.
__lowercase = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
__lowercase = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to train from scratch.")
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch.")
# Initialize our dataset and prepare it for the audio classification task.
__lowercase = DatasetDict()
__lowercase = load_dataset(
data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name, use_auth_token=True if model_args.use_auth_token else None, )
__lowercase = load_dataset(
data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name, use_auth_token=True if model_args.use_auth_token else None, )
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F"""--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. """
"Make sure to set `--audio_column_name` to the correct audio column - one of "
F"""{", ".join(raw_datasets["train"].column_names)}.""")
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F"""--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. """
"Make sure to set `--label_column_name` to the correct text column - one of "
F"""{", ".join(raw_datasets["train"].column_names)}.""")
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
__lowercase = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path, return_attention_mask=model_args.attention_mask, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
__lowercase = raw_datasets.cast_column(
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate))
__lowercase = feature_extractor.model_input_names[0]
def train_transforms(UpperCamelCase_ : Union[str, Any]):
__lowercase = []
for audio in batch[data_args.audio_column_name]:
__lowercase = random_subsample(
audio["array"], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate)
subsampled_wavs.append(_UpperCAmelCase)
__lowercase = feature_extractor(_UpperCAmelCase, sampling_rate=feature_extractor.sampling_rate)
__lowercase = {model_input_name: inputs.get(_UpperCAmelCase)}
__lowercase = list(batch[data_args.label_column_name])
return output_batch
def val_transforms(UpperCamelCase_ : Any):
__lowercase = [audio["array"] for audio in batch[data_args.audio_column_name]]
__lowercase = feature_extractor(_UpperCAmelCase, sampling_rate=feature_extractor.sampling_rate)
__lowercase = {model_input_name: inputs.get(_UpperCAmelCase)}
__lowercase = list(batch[data_args.label_column_name])
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
__lowercase = raw_datasets["train"].features[data_args.label_column_name].names
__lowercase ,__lowercase = {}, {}
for i, label in enumerate(_UpperCAmelCase):
__lowercase = str(_UpperCAmelCase)
__lowercase = label
# Load the accuracy metric from the datasets package
__lowercase = evaluate.load("accuracy")
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(UpperCamelCase_ : Tuple):
__lowercase = np.argmax(eval_pred.predictions, axis=1)
return metric.compute(predictions=_UpperCAmelCase, references=eval_pred.label_ids)
__lowercase = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCAmelCase), labelaid=_UpperCAmelCase, idalabel=_UpperCAmelCase, finetuning_task="audio-classification", cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
__lowercase = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=_UpperCAmelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, )
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
__lowercase = (
raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
)
# Set the training transforms
raw_datasets["train"].set_transform(_UpperCAmelCase, output_all_columns=_UpperCAmelCase)
if training_args.do_eval:
if data_args.max_eval_samples is not None:
__lowercase = (
raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
)
# Set the validation transforms
raw_datasets["eval"].set_transform(_UpperCAmelCase, output_all_columns=_UpperCAmelCase)
# Initialize our trainer
__lowercase = Trainer(
model=_UpperCAmelCase, args=_UpperCAmelCase, train_dataset=raw_datasets["train"] if training_args.do_train else None, eval_dataset=raw_datasets["eval"] if training_args.do_eval else None, compute_metrics=_UpperCAmelCase, tokenizer=_UpperCAmelCase, )
# Training
if training_args.do_train:
__lowercase = None
if training_args.resume_from_checkpoint is not None:
__lowercase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__lowercase = last_checkpoint
__lowercase = trainer.train(resume_from_checkpoint=_UpperCAmelCase)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
__lowercase = trainer.evaluate()
trainer.log_metrics("eval", _UpperCAmelCase)
trainer.save_metrics("eval", _UpperCAmelCase)
# Write model card and (optionally) push to hub
__lowercase = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "audio-classification",
"dataset": data_args.dataset_name,
"tags": ["audio-classification"],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_UpperCAmelCase)
else:
trainer.create_model_card(**_UpperCAmelCase)
if __name__ == "__main__":
main()
| 17
|
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [
'encoder.version',
'decoder.version',
'model.encoder.version',
'model.decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'encoder.embed_positions._float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None):
SCREAMING_SNAKE_CASE = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE = key.replace('moe_layer.experts.0' , F'''ffn.experts.expert_{expert_idx}''')
else:
SCREAMING_SNAKE_CASE = key.replace('moe_layer.experts.' , 'ffn.experts.expert_')
if "gate" in key:
SCREAMING_SNAKE_CASE = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier')
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace('.fc2.' , '.ffn.fc2.')
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace('.fc1.' , '.ffn.fc1.')
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE = key.replace('.encoder_attn.' , '.cross_attention.')
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm')
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace('final_layer_norm' , 'ff_layer_norm')
SCREAMING_SNAKE_CASE = state_dict[old_key]
return new_dict
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = WEIGHTS_NAME):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase)
for expert in range(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = switch_checkpoint_path + F'''-rank-{expert}.pt'''
if os.path.isfile(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase)['model']
remove_ignore_keys_(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = rename_fairseq_keys(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = os.path.join(
_UpperCAmelCase , weights_name.replace('.bin' , F'''-{len(_UpperCAmelCase)+1:05d}-of-???.bin'''))
torch.save(_UpperCAmelCase , _UpperCAmelCase)
sharded_state_dicts.append(expert_state.keys())
total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size(
expert_state[list(_UpperCAmelCase)[0]].dtype)
# Add the last block
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , weights_name.replace('.bin' , F'''-{len(_UpperCAmelCase)+1:05d}-of-???.bin'''))
SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + '-shared.pt')['model']
remove_ignore_keys_(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = rename_fairseq_keys(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = shared_weights['decoder.embed_tokens.weight']
sharded_state_dicts.append(shared_weights.keys())
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(_UpperCAmelCase) == 1:
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase)
torch.save(_UpperCAmelCase , _UpperCAmelCase)
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(_UpperCAmelCase , _UpperCAmelCase)
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE = {}
for idx, shard in enumerate(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = weights_name.replace('.bin' , F'''-{idx+1:05d}-of-{len(_UpperCAmelCase):05d}.bin''')
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin'''))
os.rename(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
for key in shard:
SCREAMING_SNAKE_CASE = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE = {'total_size': total_size}
SCREAMING_SNAKE_CASE = {'metadata': metadata, 'weight_map': weight_map}
with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase) , 'w' , encoding='utf-8') as f:
SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n'
f.write(_UpperCAmelCase)
return metadata, index
if __name__ == "__main__":
a_ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
a_ : Optional[Any] = parser.parse_args()
a_ , a_ : Optional[Any] = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_28,
args.dtype,
)
a_ : List[Any] = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28
)
config.save_pretrained(args.pytorch_dump_folder_path)
a_ : int = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path)
| 137
| 0
|
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
lowercase_ = numpy.array([0, 0])
lowercase_ = numpy.array([0.5, 0.8_660_254])
lowercase_ = numpy.array([1, 0])
lowercase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def _snake_case( SCREAMING_SNAKE_CASE__ : list[numpy.ndarray] , SCREAMING_SNAKE_CASE__ : int ) -> list[numpy.ndarray]:
'''simple docstring'''
A__ = initial_vectors
for _ in range(SCREAMING_SNAKE_CASE__ ):
A__ = iteration_step(SCREAMING_SNAKE_CASE__ )
return vectors
def _snake_case( SCREAMING_SNAKE_CASE__ : list[numpy.ndarray] ) -> list[numpy.ndarray]:
'''simple docstring'''
A__ = []
for i, start_vector in enumerate(vectors[:-1] ):
A__ = vectors[i + 1]
new_vectors.append(SCREAMING_SNAKE_CASE__ )
A__ = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def _snake_case( SCREAMING_SNAKE_CASE__ : numpy.ndarray , SCREAMING_SNAKE_CASE__ : float ) -> numpy.ndarray:
'''simple docstring'''
A__ = numpy.radians(SCREAMING_SNAKE_CASE__ )
A__ , A__ = numpy.cos(SCREAMING_SNAKE_CASE__ ), numpy.sin(SCREAMING_SNAKE_CASE__ )
A__ = numpy.array(((c, -s), (s, c)) )
return numpy.dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def _snake_case( SCREAMING_SNAKE_CASE__ : list[numpy.ndarray] ) -> None:
'''simple docstring'''
A__ = plt.gca()
axes.set_aspect('equal' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
A__ , A__ = zip(*SCREAMING_SNAKE_CASE__ )
plt.plot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase_ = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 282
|
from jiwer import compute_measures
import datasets
lowercase_ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"
lowercase_ = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n"
lowercase_ = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
"""simple docstring"""
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
'predictions': datasets.Value('string',id='sequence' ),
'references': datasets.Value('string',id='sequence' ),
} ),codebase_urls=['https://github.com/jitsi/jiwer/'],reference_urls=[
'https://en.wikipedia.org/wiki/Word_error_rate',
],)
def snake_case__ ( self : int,lowercase_ : Any=None,lowercase_ : List[str]=None,lowercase_ : Dict=False )-> Optional[int]:
'''simple docstring'''
if concatenate_texts:
return compute_measures(lowercase_,lowercase_ )["wer"]
else:
A__ = 0
A__ = 0
for prediction, reference in zip(lowercase_,lowercase_ ):
A__ = compute_measures(lowercase_,lowercase_ )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 282
| 1
|
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class snake_case__(unittest.TestCase ):
"""simple docstring"""
def snake_case ( self : Optional[Any] ):
lowercase__ : int = tempfile.mkdtemp()
lowercase__ : Tuple = BlipImageProcessor()
lowercase__ : Optional[Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
lowercase__ : List[Any] = BlipProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
processor.save_pretrained(self.tmpdirname )
def snake_case ( self : str , **SCREAMING_SNAKE_CASE : Dict ):
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ).tokenizer
def snake_case ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE : Dict ):
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ).image_processor
def snake_case ( self : int ):
shutil.rmtree(self.tmpdirname )
def snake_case ( self : Optional[int] ):
lowercase__ : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowercase__ : str = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def snake_case ( self : str ):
lowercase__ : Optional[Any] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase__ : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowercase__ : str = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 )
lowercase__ : Tuple = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE )
def snake_case ( self : List[Any] ):
lowercase__ : List[Any] = self.get_image_processor()
lowercase__ : Dict = self.get_tokenizer()
lowercase__ : str = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
lowercase__ : List[str] = self.prepare_image_inputs()
lowercase__ : List[Any] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="np" )
lowercase__ : List[Any] = processor(images=SCREAMING_SNAKE_CASE , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def snake_case ( self : Optional[int] ):
lowercase__ : Tuple = self.get_image_processor()
lowercase__ : List[Any] = self.get_tokenizer()
lowercase__ : Union[str, Any] = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
lowercase__ : Dict = "lower newer"
lowercase__ : Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE )
lowercase__ : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def snake_case ( self : Dict ):
lowercase__ : Union[str, Any] = self.get_image_processor()
lowercase__ : Union[str, Any] = self.get_tokenizer()
lowercase__ : List[Any] = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
lowercase__ : int = "lower newer"
lowercase__ : Optional[int] = self.prepare_image_inputs()
lowercase__ : List[Any] = processor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE ):
processor()
def snake_case ( self : Union[str, Any] ):
lowercase__ : Tuple = self.get_image_processor()
lowercase__ : Dict = self.get_tokenizer()
lowercase__ : Tuple = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
lowercase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase__ : Dict = processor.batch_decode(SCREAMING_SNAKE_CASE )
lowercase__ : Optional[int] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def snake_case ( self : List[Any] ):
lowercase__ : Tuple = self.get_image_processor()
lowercase__ : Union[str, Any] = self.get_tokenizer()
lowercase__ : List[str] = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
lowercase__ : List[Any] = "lower newer"
lowercase__ : List[Any] = self.prepare_image_inputs()
lowercase__ : Any = processor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 130
|
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class snake_case__(_UpperCamelCase ):
"""simple docstring"""
def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[Any] ):
warnings.warn(
"The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use PerceiverImageProcessor instead." , SCREAMING_SNAKE_CASE , )
super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
| 130
| 1
|
def UpperCamelCase ( _A : str )-> str:
"""simple docstring"""
A__ = ""
for ch in key:
if ch == " " or ch not in key_no_dups and ch.isalpha():
key_no_dups += ch
return key_no_dups
def UpperCamelCase ( _A : str )-> dict[str, str]:
"""simple docstring"""
A__ = [chr(i + 65 ) for i in range(26 )]
# Remove duplicate characters from key
A__ = remove_duplicates(key.upper() )
A__ = len(_A )
# First fill cipher with key characters
A__ = {alphabet[i]: char for i, char in enumerate(_A )}
# Then map remaining characters in alphabet to
# the alphabet from the beginning
for i in range(len(_A ) , 26 ):
A__ = alphabet[i - offset]
# Ensure we are not mapping letters to letters previously mapped
while char in key:
offset -= 1
A__ = alphabet[i - offset]
A__ = char
return cipher_alphabet
def UpperCamelCase ( _A : str , _A : dict[str, str] )-> str:
"""simple docstring"""
return "".join(cipher_map.get(_A , _A ) for ch in message.upper() )
def UpperCamelCase ( _A : str , _A : dict[str, str] )-> str:
"""simple docstring"""
A__ = {v: k for k, v in cipher_map.items()}
return "".join(rev_cipher_map.get(_A , _A ) for ch in message.upper() )
def UpperCamelCase ( )-> None:
"""simple docstring"""
A__ = input("Enter message to encode or decode: " ).strip()
A__ = input("Enter keyword: " ).strip()
A__ = input("Encipher or decipher? E/D:" ).strip()[0].lower()
try:
A__ = {"e": encipher, "d": decipher}[option]
except KeyError:
raise KeyError("invalid input option" )
A__ = create_cipher_map(_A )
print(func(_A , _A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 198
|
from __future__ import annotations
from random import random
class UpperCamelCase :
def __init__( self , UpperCAmelCase__ = None ):
A__ = value
A__ = random()
A__ = None
A__ = None
def __repr__( self ):
from pprint import pformat
if self.left is None and self.right is None:
return F"""'{self.value}: {self.prior:.5}'"""
else:
return pformat(
{F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 )
def __str__( self ):
A__ = str(self.value ) + " "
A__ = str(self.left or "" )
A__ = str(self.right or "" )
return value + left + right
def UpperCamelCase ( _A : Node | None , _A : int )-> tuple[Node | None, Node | None]:
"""simple docstring"""
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
A__ , A__ = split(root.left , _A )
return left, root
else:
A__ , A__ = split(root.right , _A )
return root, right
def UpperCamelCase ( _A : Node | None , _A : Node | None )-> Node | None:
"""simple docstring"""
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
A__ = merge(left.right , _A )
return left
else:
A__ = merge(_A , right.left )
return right
def UpperCamelCase ( _A : Node | None , _A : int )-> Node | None:
"""simple docstring"""
A__ = Node(_A )
A__ , A__ = split(_A , _A )
return merge(merge(_A , _A ) , _A )
def UpperCamelCase ( _A : Node | None , _A : int )-> Node | None:
"""simple docstring"""
A__ , A__ = split(_A , value - 1 )
A__ , A__ = split(_A , _A )
return merge(_A , _A )
def UpperCamelCase ( _A : Node | None )-> None:
"""simple docstring"""
if not root: # None
return
else:
inorder(root.left )
print(root.value , end="," )
inorder(root.right )
def UpperCamelCase ( _A : Node | None , _A : str )-> Node | None:
"""simple docstring"""
for arg in args.split():
if arg[0] == "+":
A__ = insert(_A , int(arg[1:] ) )
elif arg[0] == "-":
A__ = erase(_A , int(arg[1:] ) )
else:
print("Unknown command" )
return root
def UpperCamelCase ( )-> None:
"""simple docstring"""
A__ = None
print(
"enter numbers to create a tree, + value to add value into treap, "
"- value to erase all nodes with value. 'q' to quit. " )
A__ = input()
while args != "q":
A__ = interact_treap(_A , _A )
print(_A )
A__ = input()
print("good by!" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 198
| 1
|
"""simple docstring"""
from . import __version__
# Backward compatibility imports, to make sure all those objects can be found in file_utils
from .utils import (
CLOUDFRONT_DISTRIB_PREFIX,
CONFIG_NAME,
DISABLE_TELEMETRY,
DUMMY_INPUTS,
DUMMY_MASK,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
FEATURE_EXTRACTOR_NAME,
FLAX_WEIGHTS_NAME,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MODEL_CARD_NAME,
MULTIPLE_CHOICE_DUMMY_INPUTS,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
SENTENCEPIECE_UNDERLINE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TORCH_FX_REQUIRED_VERSION,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
USE_JAX,
USE_TF,
USE_TORCH,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
DummyObject,
EntryNotFoundError,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
TensorType,
_LazyModule,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_property,
copy_func,
default_cache_path,
define_sagemaker_information,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
get_torch_version,
has_file,
http_user_agent,
is_apex_available,
is_bsa_available,
is_coloredlogs_available,
is_datasets_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_librosa_available,
is_offline_mode,
is_onnx_available,
is_pandas_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_tensor,
is_tensorflow_probability_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_training_run_on_sagemaker,
is_vision_available,
replace_return_docstrings,
requires_backends,
to_numpy,
to_py_obj,
torch_only_method,
)
| 269
|
"""simple docstring"""
import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
__snake_case : Optional[int] = 50_000
__snake_case : Dict = 5_000
__snake_case , __snake_case : Union[str, Any] = os.path.split(__file__)
__snake_case : Any = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json'))
@get_duration
def _lowercase ( __snake_case ,__snake_case ) -> Dict:
for i in range(__snake_case ):
__lowerCAmelCase : Union[str, Any] = dataset[i]
@get_duration
def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Dict:
for i in range(0 ,len(__snake_case ) ,__snake_case ):
__lowerCAmelCase : List[str] = dataset[i : i + batch_size]
@get_duration
def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Dict:
with dataset.formatted_as(type=__snake_case ):
for i in range(__snake_case ):
__lowerCAmelCase : Union[str, Any] = dataset[i]
@get_duration
def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ) -> str:
with dataset.formatted_as(type=__snake_case ):
for i in range(0 ,__snake_case ,__snake_case ):
__lowerCAmelCase : Optional[int] = dataset[i : i + batch_size]
def _lowercase ( ) -> Union[str, Any]:
__lowerCAmelCase : Optional[int] = {"num examples": SPEED_TEST_N_EXAMPLES}
__lowerCAmelCase : Optional[int] = [
(read, {"length": SMALL_TEST}),
(read, {"length": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}),
(read_formatted, {"type": "numpy", "length": SMALL_TEST}),
(read_formatted, {"type": "pandas", "length": SMALL_TEST}),
(read_formatted, {"type": "torch", "length": SMALL_TEST}),
(read_formatted, {"type": "tensorflow", "length": SMALL_TEST}),
(read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}),
(read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}),
]
__lowerCAmelCase : Any = [
(read, {"length": SMALL_TEST}),
(read, {"length": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}),
(read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}),
(read_formatted, {"type": "numpy", "length": SMALL_TEST}),
(read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}),
(read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}),
]
with tempfile.TemporaryDirectory() as tmp_dir:
print("generating dataset" )
__lowerCAmelCase : int = datasets.Features(
{"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} )
__lowerCAmelCase : str = generate_example_dataset(
os.path.join(__snake_case ,"dataset.arrow" ) ,__snake_case ,num_examples=__snake_case ,seq_shapes={"list": (100,)} ,)
print("first set of iterations" )
for func, kwargs in functions:
print(func.__name__ ,str(__snake_case ) )
__lowerCAmelCase : str = func(__snake_case ,**__snake_case )
print("shuffling dataset" )
__lowerCAmelCase : Optional[int] = dataset.shuffle()
print("Second set of iterations (after shuffling" )
for func, kwargs in functions_shuffled:
print("shuffled " ,func.__name__ ,str(__snake_case ) )
__lowerCAmelCase : List[str] = func(
__snake_case ,**__snake_case )
with open(__snake_case ,"wb" ) as f:
f.write(json.dumps(__snake_case ).encode("utf-8" ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_iterating()
| 269
| 1
|
"""simple docstring"""
def _A (__a ) -> int:
"""simple docstring"""
if not isinstance(__a , __a ) or number < 0:
raise ValueError('''Input must be a non-negative integer''' )
SCREAMING_SNAKE_CASE_ : int = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318
|
"""simple docstring"""
from scipy.stats import pearsonr
import datasets
UpperCAmelCase_ : List[Any] = """
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
"""
UpperCAmelCase_ : Optional[int] = """
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results['pearsonr'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
['p-value', 'pearsonr']
>>> print(round(results['pearsonr'], 2))
-0.74
>>> print(round(results['p-value'], 2))
0.15
"""
UpperCAmelCase_ : Tuple = """
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[Any]):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''float'''),
'''references''': datasets.Value('''float'''),
}) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=False):
'''simple docstring'''
if return_pvalue:
SCREAMING_SNAKE_CASE_ : int = pearsonr(lowercase_ , lowercase_)
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(lowercase_ , lowercase_)[0])}
| 318
| 1
|
import string
def A ( _SCREAMING_SNAKE_CASE ) -> None:
for key in range(len(string.ascii_uppercase ) ):
lowerCamelCase : Optional[int] = ""
for symbol in message:
if symbol in string.ascii_uppercase:
lowerCamelCase : Any = string.ascii_uppercase.find(_SCREAMING_SNAKE_CASE )
lowerCamelCase : Optional[int] = num - key
if num < 0:
lowerCamelCase : Union[str, Any] = num + len(string.ascii_uppercase )
lowerCamelCase : str = translated + string.ascii_uppercase[num]
else:
lowerCamelCase : Optional[Any] = translated + symbol
print(f'''Decryption using Key #{key}: {translated}''' )
def A ( ) -> None:
lowerCamelCase : List[Any] = input("Encrypted message: " )
lowerCamelCase : int = message.upper()
decrypt(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 48
|
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
_UpperCamelCase = iter(lowercase )
while True:
_UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) )
if not chunk:
return
yield chunk
def a__ ( lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
_UpperCamelCase = ''''''
if len(lowercase ) < 2:
return dirty
for i in range(len(lowercase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowercase ) & 1:
clean += "X"
return clean
def a__ ( lowercase : str ) -> list[str]:
"""simple docstring"""
_UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_UpperCamelCase = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowercase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowercase )
return table
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = prepare_input(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 324
| 0
|
'''simple docstring'''
def _lowercase ( __A ,__A ,__A ,__A ,__A ,):
'''simple docstring'''
__UpperCamelCase = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError("""All input parameters must be positive""" )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError("""Relative densities cannot be greater than one""" )
else:
__UpperCamelCase = 1 - (matter_density + radiation_density + dark_energy)
__UpperCamelCase = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
__UpperCamelCase = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
a__ : Optional[Any] = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1e-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 243
|
'''simple docstring'''
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class UpperCAmelCase__ ( UpperCAmelCase_):
def __init__( self , lowercase=0.01 , lowercase=1_0_0_0 ) -> List[Any]:
__UpperCamelCase = p_stop
__UpperCamelCase = max_length
def __iter__( self ) -> Dict:
__UpperCamelCase = 0
__UpperCamelCase = False
while not stop and count < self.max_length:
yield count
count += 1
__UpperCamelCase = random.random() < self.p_stop
class UpperCAmelCase__ ( unittest.TestCase):
def __lowerCamelCase ( self , lowercase , lowercase , lowercase=False , lowercase=True ) -> List[str]:
__UpperCamelCase = [
BatchSamplerShard(lowercase , 2 , lowercase , split_batches=lowercase , even_batches=lowercase )
for i in range(2 )
]
__UpperCamelCase = [list(lowercase ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(lowercase ) for shard in batch_sampler_shards] , [len(lowercase ) for e in expected] )
self.assertListEqual(lowercase , lowercase )
def __lowerCamelCase ( self ) -> Optional[Any]:
# Check the shards when the dataset is a round multiple of total batch size.
__UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
__UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase )
# Expected shouldn't change
self.check_batch_sampler_shards(lowercase , lowercase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
__UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
__UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
__UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
__UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
__UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
__UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowercase , lowercase )
# Check the shards when the dataset is very small.
__UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(lowercase , lowercase )
__UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [[], []]
self.check_batch_sampler_shards(lowercase , lowercase )
def __lowerCamelCase ( self ) -> Dict:
# Check the shards when the dataset is a round multiple of batch size.
__UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
__UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase )
# Expected shouldn't change
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
# Check the shards when the dataset is not a round multiple of batch size.
__UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
__UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
__UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
__UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
# Check the shards when the dataset is very small.
__UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
__UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [[], []]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase )
def __lowerCamelCase ( self ) -> Optional[Any]:
# Check the shards when the dataset is a round multiple of total batch size.
__UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
__UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase )
# Expected shouldn't change
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
__UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
__UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
__UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
__UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
__UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
__UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]],
[[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]],
]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
# Check the shards when the dataset is very small.
__UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [[[0, 1]], []]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
__UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase )
__UpperCamelCase = [[], []]
self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase )
def __lowerCamelCase ( self ) -> str:
# Check the shards when the dataset is a round multiple of batch size.
__UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
__UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase )
# Expected shouldn't change
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
# Check the shards when the dataset is not a round multiple of batch size.
__UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
__UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
__UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
__UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]],
[[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]],
]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
# Check the shards when the dataset is very small.
__UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [[[0, 1]], []]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
__UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = [[], []]
self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase )
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]]
__UpperCamelCase = [BatchSamplerShard(lowercase , 2 , lowercase , even_batches=lowercase ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase=False , lowercase=2 , lowercase=False ) -> List[str]:
random.seed(lowercase )
__UpperCamelCase = list(lowercase )
__UpperCamelCase = [
IterableDatasetShard(
lowercase , batch_size=lowercase , drop_last=lowercase , num_processes=lowercase , process_index=lowercase , split_batches=lowercase , )
for i in range(lowercase )
]
__UpperCamelCase = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(lowercase )
iterable_dataset_lists.append(list(lowercase ) )
__UpperCamelCase = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
__UpperCamelCase = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(lowercase ) , len(lowercase ) )
self.assertTrue(len(lowercase ) % shard_batch_size == 0 )
__UpperCamelCase = []
for idx in range(0 , len(lowercase ) , lowercase ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(lowercase ) < len(lowercase ):
reference += reference
self.assertListEqual(lowercase , reference[: len(lowercase )] )
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = 4_2
__UpperCamelCase = RandomIterableDataset()
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
# Edge case with a very small dataset
__UpperCamelCase = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=lowercase )
__UpperCamelCase = SkipBatchSampler(lowercase , 2 )
self.assertListEqual(list(lowercase ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase = DataLoader(list(range(1_6 ) ) , batch_size=4 )
__UpperCamelCase = skip_first_batches(lowercase , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] )
def __lowerCamelCase ( self ) -> Tuple:
__UpperCamelCase = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 )
for idx, _ in enumerate(lowercase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(lowercase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def __lowerCamelCase ( self ) -> Tuple:
Accelerator()
__UpperCamelCase = DataLoaderDispatcher(range(1_6 ) , batch_size=4 )
for idx, _ in enumerate(lowercase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(lowercase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 243
| 1
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 69
|
"""simple docstring"""
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__UpperCamelCase = '''src/transformers'''
# This is to make sure the transformers module imported is the one in the repo.
__UpperCamelCase = direct_transformers_import(PATH_TO_TRANSFORMERS)
__UpperCamelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
__UpperCamelCase = re.compile(r'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''')
__UpperCamelCase = {
'''DecisionTransformerConfig''',
'''EncoderDecoderConfig''',
'''MusicgenConfig''',
'''RagConfig''',
'''SpeechEncoderDecoderConfig''',
'''TimmBackboneConfig''',
'''VisionEncoderDecoderConfig''',
'''VisionTextDualEncoderConfig''',
'''LlamaConfig''',
}
def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]:
snake_case_ = None
# source code of `config_class`
snake_case_ = inspect.getsource(UpperCAmelCase )
snake_case_ = _re_checkpoint.findall(UpperCAmelCase )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith('/' ):
snake_case_ = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
snake_case_ = f'https://huggingface.co/{ckpt_name}'
if ckpt_link == ckpt_link_from_name:
snake_case_ = ckpt_name
break
return checkpoint
def UpperCAmelCase ( ) -> Union[str, Any]:
snake_case_ = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
snake_case_ = get_checkpoint_from_config_class(UpperCAmelCase )
snake_case_ = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(UpperCAmelCase )
if len(UpperCAmelCase ) > 0:
snake_case_ = '\n'.join(sorted(UpperCAmelCase ) )
raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 69
| 1
|
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
}
__UpperCamelCase = {
'''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''},
'''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''},
}
__UpperCamelCase = {
'''ctrl''': 256,
}
__UpperCamelCase = {
'''Pregnancy''': 16_8629,
'''Christianity''': 7675,
'''Explain''': 10_6423,
'''Fitness''': 6_3440,
'''Saving''': 6_3163,
'''Ask''': 2_7171,
'''Ass''': 9_5985,
'''Joke''': 16_3509,
'''Questions''': 4_5622,
'''Thoughts''': 4_9605,
'''Retail''': 5_2342,
'''Feminism''': 16_4338,
'''Writing''': 1_1992,
'''Atheism''': 19_2263,
'''Netflix''': 4_8616,
'''Computing''': 3_9639,
'''Opinion''': 4_3213,
'''Alone''': 4_4967,
'''Funny''': 5_8917,
'''Gaming''': 4_0358,
'''Human''': 4088,
'''India''': 1331,
'''Joker''': 7_7138,
'''Diet''': 3_6206,
'''Legal''': 1_1859,
'''Norman''': 4939,
'''Tip''': 7_2689,
'''Weight''': 5_2343,
'''Movies''': 4_6273,
'''Running''': 2_3425,
'''Science''': 2090,
'''Horror''': 3_7793,
'''Confession''': 6_0572,
'''Finance''': 1_2250,
'''Politics''': 1_6360,
'''Scary''': 19_1985,
'''Support''': 1_2654,
'''Technologies''': 3_2516,
'''Teenage''': 6_6160,
'''Event''': 3_2769,
'''Learned''': 6_7460,
'''Notion''': 18_2770,
'''Wikipedia''': 3_7583,
'''Books''': 6665,
'''Extract''': 7_6050,
'''Confessions''': 10_2701,
'''Conspiracy''': 7_5932,
'''Links''': 6_3674,
'''Narcissus''': 15_0425,
'''Relationship''': 5_4766,
'''Relationships''': 13_4796,
'''Reviews''': 4_1671,
'''News''': 4256,
'''Translation''': 2_6820,
'''multilingual''': 12_8406,
}
def UpperCAmelCase ( UpperCAmelCase ) -> Union[str, Any]:
snake_case_ = set()
snake_case_ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
snake_case_ = char
snake_case_ = set(a_ )
return pairs
class UpperCamelCase ( a_ ):
SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE_ = CONTROL_CODES
def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__="<unk>", **lowerCAmelCase__) -> int:
super().__init__(unk_token=lowercase_, **lowercase_)
with open(lowercase_, encoding='utf-8') as vocab_handle:
snake_case_ = json.load(lowercase_)
snake_case_ = {v: k for k, v in self.encoder.items()}
with open(lowercase_, encoding='utf-8') as merges_handle:
snake_case_ = merges_handle.read().split('\n')[1:-1]
snake_case_ = [tuple(merge.split()) for merge in merges]
snake_case_ = dict(zip(lowercase_, range(len(lowercase_))))
snake_case_ = {}
@property
def a_ ( self) -> Any:
return len(self.encoder)
def a_ ( self) -> List[str]:
return dict(self.encoder, **self.added_tokens_encoder)
def a_ ( self, lowerCAmelCase__) -> List[str]:
if token in self.cache:
return self.cache[token]
snake_case_ = tuple(lowercase_)
snake_case_ = tuple(list(word[:-1]) + [word[-1] + '</w>'])
snake_case_ = get_pairs(lowercase_)
if not pairs:
return token
while True:
snake_case_ = min(lowercase_, key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowercase_, float('inf')))
if bigram not in self.bpe_ranks:
break
snake_case_ , snake_case_ = bigram
snake_case_ = []
snake_case_ = 0
while i < len(lowercase_):
try:
snake_case_ = word.index(lowercase_, lowercase_)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
snake_case_ = j
if word[i] == first and i < len(lowercase_) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
snake_case_ = tuple(lowercase_)
snake_case_ = new_word
if len(lowercase_) == 1:
break
else:
snake_case_ = get_pairs(lowercase_)
snake_case_ = '@@ '.join(lowercase_)
snake_case_ = word[:-4]
snake_case_ = word
return word
def a_ ( self, lowerCAmelCase__) -> Optional[Any]:
snake_case_ = []
snake_case_ = re.findall(R'\S+\n?', lowercase_)
for token in words:
split_tokens.extend(list(self.bpe(lowercase_).split(' ')))
return split_tokens
def a_ ( self, lowerCAmelCase__) -> Optional[Any]:
return self.encoder.get(lowercase_, self.encoder.get(self.unk_token))
def a_ ( self, lowerCAmelCase__) -> str:
return self.decoder.get(lowercase_, self.unk_token)
def a_ ( self, lowerCAmelCase__) -> Optional[Any]:
snake_case_ = ' '.join(lowercase_).replace('@@ ', '').strip()
return out_string
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]:
if not os.path.isdir(lowercase_):
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
return
snake_case_ = os.path.join(
lowercase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
snake_case_ = os.path.join(
lowercase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'])
with open(lowercase_, 'w', encoding='utf-8') as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=lowercase_, ensure_ascii=lowercase_) + '\n')
snake_case_ = 0
with open(lowercase_, 'w', encoding='utf-8') as writer:
writer.write('#version: 0.2\n')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCAmelCase__: kv[1]):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
' Please check that the tokenizer is not corrupted!')
snake_case_ = token_index
writer.write(' '.join(lowercase_) + '\n')
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 364
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings''']
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 312
| 0
|
"""simple docstring"""
__a = "Tobias Carryer"
from time import time
class lowerCamelCase :
'''simple docstring'''
def __init__( self: int , snake_case: Any , snake_case: Any , snake_case: Optional[Any] , snake_case: List[Any]=int(time() ) ) -> Optional[Any]: # noqa: B008
snake_case_ :Any = multiplier
snake_case_ :Union[str, Any] = increment
snake_case_ :Union[str, Any] = modulo
snake_case_ :Any = seed
def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]:
snake_case_ :Optional[int] = (self.multiplier * self.seed + self.increment) % self.modulo
return self.seed
if __name__ == "__main__":
# Show the LCG in action.
__a = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31)
while True:
print(lcg.next_number())
| 66
|
import unittest
import numpy as np
import torch
from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __lowercase (unittest.TestCase ):
@property
def UpperCamelCase__ ( self ) ->Tuple:
'''simple docstring'''
torch.manual_seed(0 )
__lowerCAmelCase : List[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCamelCase__ ( self ) ->int:
'''simple docstring'''
__lowerCAmelCase : List[str] = self.dummy_uncond_unet
__lowerCAmelCase : Any = PNDMScheduler()
__lowerCAmelCase : Dict = PNDMPipeline(unet=A_ , scheduler=A_ )
pndm.to(A_ )
pndm.set_progress_bar_config(disable=A_ )
__lowerCAmelCase : Optional[Any] = torch.manual_seed(0 )
__lowerCAmelCase : Any = pndm(generator=A_ , num_inference_steps=20 , output_type='''numpy''' ).images
__lowerCAmelCase : Optional[Any] = torch.manual_seed(0 )
__lowerCAmelCase : List[Any] = pndm(generator=A_ , num_inference_steps=20 , output_type='''numpy''' , return_dict=A_ )[0]
__lowerCAmelCase : Tuple = image[0, -3:, -3:, -1]
__lowerCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class __lowercase (unittest.TestCase ):
def UpperCamelCase__ ( self ) ->Optional[Any]:
'''simple docstring'''
__lowerCAmelCase : Optional[int] = '''google/ddpm-cifar10-32'''
__lowerCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained(A_ )
__lowerCAmelCase : int = PNDMScheduler()
__lowerCAmelCase : Any = PNDMPipeline(unet=A_ , scheduler=A_ )
pndm.to(A_ )
pndm.set_progress_bar_config(disable=A_ )
__lowerCAmelCase : Tuple = torch.manual_seed(0 )
__lowerCAmelCase : Any = pndm(generator=A_ , output_type='''numpy''' ).images
__lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCAmelCase : List[Any] = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 275
| 0
|
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class A ( A_ ):
def __init__(self , *lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ):
super().__init__(*lowerCAmelCase , **lowerCAmelCase )
__lowercase= eval_examples
__lowercase= post_process_function
def _A (self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase = "eval" ):
__lowercase= self.eval_dataset if eval_dataset is None else eval_dataset
__lowercase= self.get_eval_dataloader(lowerCAmelCase )
__lowercase= self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__lowercase= self.compute_metrics
__lowercase= None
__lowercase= self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
__lowercase= time.time()
try:
__lowercase= eval_loop(
lowerCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase , metric_key_prefix=lowerCAmelCase , )
finally:
__lowercase= compute_metrics
__lowercase= self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
lowerCAmelCase , lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
__lowercase= self.post_process_function(lowerCAmelCase , lowerCAmelCase , output.predictions )
__lowercase= self.compute_metrics(lowerCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'{metric_key_prefix}_' ):
__lowercase= metrics.pop(lowerCAmelCase )
metrics.update(output.metrics )
else:
__lowercase= output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowerCAmelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
__lowercase= self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase )
return metrics
def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase = "test" ):
__lowercase= self.get_test_dataloader(lowerCAmelCase )
# Temporarily disable metric computation, we will do it in the loop here.
__lowercase= self.compute_metrics
__lowercase= None
__lowercase= self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
__lowercase= time.time()
try:
__lowercase= eval_loop(
lowerCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase , metric_key_prefix=lowerCAmelCase , )
finally:
__lowercase= compute_metrics
__lowercase= self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
lowerCAmelCase , lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
__lowercase= self.post_process_function(lowerCAmelCase , lowerCAmelCase , output.predictions , 'predict' )
__lowercase= self.compute_metrics(lowerCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'{metric_key_prefix}_' ):
__lowercase= metrics.pop(lowerCAmelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase )
| 304
|
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''',
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class A ( A_ ):
UpperCamelCase_ : Optional[int] ='''blenderbot-small'''
UpperCamelCase_ : Optional[Any] =['''past_key_values''']
UpperCamelCase_ : Optional[int] ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__(self , lowerCAmelCase=5_0_2_6_5 , lowerCAmelCase=5_1_2 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=5_1_2 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1 , lowerCAmelCase=False , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , lowerCAmelCase=2 , **lowerCAmelCase , ):
__lowercase= vocab_size
__lowercase= max_position_embeddings
__lowercase= d_model
__lowercase= encoder_ffn_dim
__lowercase= encoder_layers
__lowercase= encoder_attention_heads
__lowercase= decoder_ffn_dim
__lowercase= decoder_layers
__lowercase= decoder_attention_heads
__lowercase= dropout
__lowercase= attention_dropout
__lowercase= activation_dropout
__lowercase= activation_function
__lowercase= init_std
__lowercase= encoder_layerdrop
__lowercase= decoder_layerdrop
__lowercase= use_cache
__lowercase= encoder_layers
__lowercase= scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , )
class A ( A_ ):
@property
def _A (self ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase= OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
__lowercase= {0: 'batch'}
__lowercase= {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__lowercase= {0: 'batch', 1: 'decoder_sequence'}
__lowercase= {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' )
elif self.task == "causal-lm":
# TODO: figure this case out.
__lowercase= OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
__lowercase, __lowercase= self.num_layers
for i in range(lowerCAmelCase ):
__lowercase= {0: 'batch', 2: 'past_sequence + sequence'}
__lowercase= {0: 'batch', 2: 'past_sequence + sequence'}
else:
__lowercase= OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}),
('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}),
] )
return common_inputs
@property
def _A (self ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase= super().outputs
else:
__lowercase= super(lowerCAmelCase , self ).outputs
if self.use_past:
__lowercase, __lowercase= self.num_layers
for i in range(lowerCAmelCase ):
__lowercase= {0: 'batch', 2: 'past_sequence + sequence'}
__lowercase= {0: 'batch', 2: 'past_sequence + sequence'}
return common_outputs
def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ):
__lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
# Generate decoder inputs
__lowercase= seq_length if not self.use_past else 1
__lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
__lowercase= {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
__lowercase= dict(**lowerCAmelCase , **lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
__lowercase, __lowercase= common_inputs['input_ids'].shape
__lowercase= common_inputs['decoder_input_ids'].shape[1]
__lowercase, __lowercase= self.num_attention_heads
__lowercase= (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase= decoder_seq_length + 3
__lowercase= (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
__lowercase= torch.cat(
[common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase )] , dim=1 )
__lowercase= []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
__lowercase, __lowercase= self.num_layers
__lowercase= min(lowerCAmelCase , lowerCAmelCase )
__lowercase= max(lowerCAmelCase , lowerCAmelCase ) - min_num_layers
__lowercase= 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder'
for _ in range(lowerCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowerCAmelCase ),
torch.zeros(lowerCAmelCase ),
torch.zeros(lowerCAmelCase ),
torch.zeros(lowerCAmelCase ),
) )
# TODO: test this.
__lowercase= encoder_shape if remaining_side_name == 'encoder' else decoder_shape
for _ in range(lowerCAmelCase , lowerCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) )
return common_inputs
def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ):
__lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
__lowercase, __lowercase= common_inputs['input_ids'].shape
# Not using the same length for past_key_values
__lowercase= seqlen + 2
__lowercase, __lowercase= self.num_layers
__lowercase, __lowercase= self.num_attention_heads
__lowercase= (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase= common_inputs['attention_mask'].dtype
__lowercase= torch.cat(
[common_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 )
__lowercase= [
(torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase )
]
return common_inputs
def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ):
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase= compute_effective_axis_dimension(
lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase= tokenizer.num_special_tokens_to_add(lowerCAmelCase )
__lowercase= compute_effective_axis_dimension(
lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase= [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size
__lowercase= dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase ) )
return common_inputs
def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase= self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase )
elif self.task == "causal-lm":
__lowercase= self._generate_dummy_inputs_for_causal_lm(
lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase )
else:
__lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase )
return common_inputs
def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase= super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
else:
__lowercase= super(lowerCAmelCase , self )._flatten_past_key_values_(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
| 304
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_snake_case = {
'''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['''VisionEncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['''TFVisionEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['''FlaxVisionEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
_snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 283
|
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCAmelCase_ ( UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__A : List[Any] = BioGptTokenizer
__A : Optional[int] = False
def _snake_case ( self ):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowerCamelCase : Union[str, Any] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
lowerCamelCase : str = dict(zip(__A , range(len(__A ) ) ) )
lowerCamelCase : Dict = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" ) as fp:
fp.write(json.dumps(__A ) )
with open(self.merges_file , "w" ) as fp:
fp.write("\n".join(__A ) )
def _snake_case ( self , __A ):
"""simple docstring"""
lowerCamelCase : Dict = "lower newer"
lowerCamelCase : Union[str, Any] = "lower newer"
return input_text, output_text
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : List[str] = BioGptTokenizer(self.vocab_file , self.merges_file )
lowerCamelCase : Optional[int] = "lower"
lowerCamelCase : Any = ["low", "er</w>"]
lowerCamelCase : List[str] = tokenizer.tokenize(__A )
self.assertListEqual(__A , __A )
lowerCamelCase : Union[str, Any] = tokens + ["<unk>"]
lowerCamelCase : List[str] = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A )
@slow
def _snake_case ( self ):
"""simple docstring"""
lowerCamelCase : List[str] = BioGptTokenizer.from_pretrained("microsoft/biogpt" )
lowerCamelCase : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=__A )
lowerCamelCase : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=__A )
lowerCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__A )
lowerCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__A , __A )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 283
| 1
|
from math import factorial
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]:
"""simple docstring"""
if n < k or k < 0:
raise ValueError('''Please enter positive integers for n and k where n >= k''' )
return factorial(_lowercase ) // (factorial(_lowercase ) * factorial(n - k ))
if __name__ == "__main__":
print(
"""The number of five-card hands possible from a standard""",
F'''fifty-two card deck is: {combinations(52, 5)}\n''',
)
print(
"""If a class of 40 students must be arranged into groups of""",
F'''4 for group projects, there are {combinations(40, 4)} ways''',
"""to arrange them.\n""",
)
print(
"""If 10 teams are competing in a Formula One race, there""",
F'''are {combinations(10, 3)} ways that first, second and''',
"""third place can be awarded.""",
)
| 359
|
_lowerCamelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 3.6,
"mph": 1.609_344,
"knot": 1.852,
}
_lowerCamelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 0.277_777_778,
"mph": 0.621_371_192,
"knot": 0.539_956_803,
}
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float:
"""simple docstring"""
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
A__ = (
f"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n"""
f"""Valid values are: {", ".join(lowercase_ )}"""
)
raise ValueError(lowercase_ )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 231
| 0
|
"""simple docstring"""
import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
__snake_case = {
"""bart""": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"""bert""": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""bert-base-cased-finetuned-mrpc""": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""dpr""": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"""gpt2""": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""xlnet""": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""xlm""": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""xlm-roberta""": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""transfo-xl""": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""openai-gpt""": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""roberta""": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""layoutlm""": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"""roberta-large-mnli""": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""camembert""": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""flaubert""": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""distilbert""": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""distilbert-base-distilled-squad""": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""lxmert""": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""lxmert-visual-feature-encoder""": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""ctrl""": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""albert""": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""t5""": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""electra""": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""wav2vec2""": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def __lowerCAmelCase ( lowercase : Any , lowercase : str , lowercase : Any , lowercase : Union[str, Any] , lowercase : Any=False , lowercase : str=True ) -> Optional[int]:
"""simple docstring"""
if model_type not in MODEL_CLASSES:
raise ValueError(F'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' )
snake_case ,snake_case ,snake_case ,snake_case : Optional[int] = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
snake_case : Any = cached_file(lowercase , lowercase , force_download=not use_cached_models )
snake_case : Optional[int] = config_class.from_json_file(lowercase )
snake_case : Union[str, Any] = True
snake_case : Union[str, Any] = True
print(F'Building TensorFlow model from configuration: {config}' )
snake_case : Union[str, Any] = model_class(lowercase )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
snake_case : Optional[int] = cached_file(
lowercase , lowercase , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
snake_case : Optional[Any] = load_pytorch_checkpoint_in_tfa_model(lowercase , lowercase )
if compare_with_pt_model:
snake_case : Optional[Any] = tf_model(tf_model.dummy_inputs , training=lowercase ) # build the network
snake_case : List[str] = torch.load(lowercase , map_location="cpu" )
snake_case : str = pt_model_class.from_pretrained(
pretrained_model_name_or_path=lowercase , config=lowercase , state_dict=lowercase )
with torch.no_grad():
snake_case : Any = pt_model(**pt_model.dummy_inputs )
snake_case : Union[str, Any] = pto[0].numpy()
snake_case : Optional[int] = tfo[0].numpy()
snake_case : List[str] = np.amax(np.abs(np_pt - np_tf ) )
print(F'Max absolute difference between models outputs {diff}' )
assert diff <= 2e-2, F'Error, model absolute difference is >2e-2: {diff}'
# Save pytorch-model
print(F'Save TensorFlow model to {tf_dump_path}' )
tf_model.save_weights(lowercase , save_format="h5" )
def __lowerCAmelCase ( lowercase : int , lowercase : Any , lowercase : str=None , lowercase : Optional[int]=None , lowercase : Dict=False , lowercase : Optional[Any]=False , lowercase : Optional[int]=False , lowercase : Union[str, Any]=False , ) -> Any:
"""simple docstring"""
if args_model_type is None:
snake_case : Any = list(MODEL_CLASSES.keys() )
else:
snake_case : Optional[Any] = [args_model_type]
for j, model_type in enumerate(lowercase , start=1 ):
print("=" * 100 )
print(F' Converting model type {j}/{len(lowercase )}: {model_type}' )
print("=" * 100 )
if model_type not in MODEL_CLASSES:
raise ValueError(F'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' )
snake_case ,snake_case ,snake_case ,snake_case ,snake_case : Union[str, Any] = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
snake_case : Dict = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
snake_case : Union[str, Any] = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(lowercase , lowercase ) , start=1 ):
print("-" * 100 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F' Skipping finetuned checkpoint {model_shortcut_name}' )
continue
snake_case : Dict = model_shortcut_name
elif only_convert_finetuned_models:
print(F' Skipping not finetuned checkpoint {model_shortcut_name}' )
continue
print(
F' Converting checkpoint {i}/{len(lowercase )}: {model_shortcut_name} - model_type {model_type}' )
print("-" * 100 )
if config_shortcut_name in aws_config_map:
snake_case : List[str] = cached_file(lowercase , lowercase , force_download=not use_cached_models )
else:
snake_case : str = config_shortcut_name
if model_shortcut_name in aws_model_maps:
snake_case : List[str] = cached_file(lowercase , lowercase , force_download=not use_cached_models )
else:
snake_case : Union[str, Any] = model_shortcut_name
if os.path.isfile(lowercase ):
snake_case : Dict = "converted_model"
convert_pt_checkpoint_to_tf(
model_type=lowercase , pytorch_checkpoint_path=lowercase , config_file=lowercase , tf_dump_path=os.path.join(lowercase , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=lowercase , )
if remove_cached_files:
os.remove(lowercase )
os.remove(lowercase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file."""
)
parser.add_argument(
"""--model_type""",
default=None,
type=str,
help=(
F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and '''
"""convert all the models from AWS."""
),
)
parser.add_argument(
"""--pytorch_checkpoint_path""",
default=None,
type=str,
help=(
"""Path to the PyTorch checkpoint path or shortcut name to download from AWS. """
"""If not given, will download and convert all the checkpoints from AWS."""
),
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
help=(
"""The config json file corresponding to the pre-trained model. \n"""
"""This specifies the model architecture. If not given and """
"""--pytorch_checkpoint_path is not given or is a shortcut name """
"""use the configuration associated to the shortcut name on the AWS"""
),
)
parser.add_argument(
"""--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions."""
)
parser.add_argument(
"""--use_cached_models""",
action="""store_true""",
help="""Use cached models if possible instead of updating to latest checkpoint versions.""",
)
parser.add_argument(
"""--remove_cached_files""",
action="""store_true""",
help="""Remove pytorch models after conversion (save memory when converting in batches).""",
)
parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""")
__snake_case = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 203
|
"""simple docstring"""
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
__snake_case = logging.getLogger(__name__)
class _lowerCAmelCase ( snake_case_ ):
__UpperCAmelCase : Optional[int] = '''token-classification'''
def __init__( self , UpperCamelCase__ ) -> List[Any]:
'''simple docstring'''
if type(UpperCamelCase__ ) == dict:
snake_case : Optional[int] = Namespace(**UpperCamelCase__ )
snake_case : Optional[int] = import_module("tasks" )
try:
snake_case : Optional[int] = getattr(UpperCamelCase__ , hparams.task_type )
snake_case : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '
F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' )
snake_case : str = self.token_classification_task.get_labels(hparams.labels )
snake_case : Union[str, Any] = CrossEntropyLoss().ignore_index
super().__init__(UpperCamelCase__ , len(self.labels ) , self.mode )
def lowerCamelCase ( self , **UpperCamelCase__ ) -> Any:
'''simple docstring'''
return self.model(**UpperCamelCase__ )
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple:
'''simple docstring'''
snake_case : Optional[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
snake_case : Optional[int] = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
snake_case : List[Any] = self(**UpperCamelCase__ )
snake_case : Union[str, Any] = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def lowerCamelCase ( self ) -> Optional[int]:
'''simple docstring'''
snake_case : Optional[Any] = self.hparams
for mode in ["train", "dev", "test"]:
snake_case : Optional[Any] = self._feature_file(UpperCamelCase__ )
if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , UpperCamelCase__ )
snake_case : List[str] = torch.load(UpperCamelCase__ )
else:
logger.info("Creating features from dataset file at %s" , args.data_dir )
snake_case : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase__ )
snake_case : Dict = self.token_classification_task.convert_examples_to_features(
UpperCamelCase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase__ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("Saving features into cached file %s" , UpperCamelCase__ )
torch.save(UpperCamelCase__ , UpperCamelCase__ )
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> DataLoader:
'''simple docstring'''
snake_case : Optional[Any] = self._feature_file(UpperCamelCase__ )
logger.info("Loading features from cached file %s" , UpperCamelCase__ )
snake_case : Any = torch.load(UpperCamelCase__ )
snake_case : Tuple = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
snake_case : List[str] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
snake_case : Tuple = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
snake_case : Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
snake_case : Optional[int] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , batch_size=UpperCamelCase__ )
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
"""Compute validation""" ""
snake_case : Any = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
snake_case : Optional[int] = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
snake_case : Optional[int] = self(**UpperCamelCase__ )
snake_case ,snake_case : str = outputs[:2]
snake_case : Optional[int] = logits.detach().cpu().numpy()
snake_case : str = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def lowerCamelCase ( self , UpperCamelCase__ ) -> Any:
'''simple docstring'''
snake_case : Dict = torch.stack([x["val_loss"] for x in outputs] ).mean()
snake_case : List[str] = np.concatenate([x["pred"] for x in outputs] , axis=0 )
snake_case : Any = np.argmax(UpperCamelCase__ , axis=2 )
snake_case : Dict = np.concatenate([x["target"] for x in outputs] , axis=0 )
snake_case : Tuple = dict(enumerate(self.labels ) )
snake_case : str = [[] for _ in range(out_label_ids.shape[0] )]
snake_case : List[Any] = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
snake_case : Union[str, Any] = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(UpperCamelCase__ , UpperCamelCase__ ),
"precision": precision_score(UpperCamelCase__ , UpperCamelCase__ ),
"recall": recall_score(UpperCamelCase__ , UpperCamelCase__ ),
"f1": fa_score(UpperCamelCase__ , UpperCamelCase__ ),
}
snake_case : int = dict(results.items() )
snake_case : Union[str, Any] = results
return ret, preds_list, out_label_list
def lowerCamelCase ( self , UpperCamelCase__ ) -> List[str]:
'''simple docstring'''
snake_case ,snake_case ,snake_case : Optional[Any] = self._eval_end(UpperCamelCase__ )
snake_case : Tuple = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def lowerCamelCase ( self , UpperCamelCase__ ) -> Any:
'''simple docstring'''
snake_case ,snake_case ,snake_case : List[Any] = self._eval_end(UpperCamelCase__ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
snake_case : Optional[Any] = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str:
'''simple docstring'''
BaseTransformer.add_model_specific_args(UpperCamelCase__ , UpperCamelCase__ )
parser.add_argument(
"--task_type" , default="NER" , type=UpperCamelCase__ , help="Task type to fine tune in training (e.g. NER, POS, etc)" )
parser.add_argument(
"--max_seq_length" , default=128 , type=UpperCamelCase__ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--labels" , default="" , type=UpperCamelCase__ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , )
parser.add_argument(
"--gpus" , default=0 , type=UpperCamelCase__ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
return parser
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
__snake_case = NERTransformer.add_model_specific_args(parser, os.getcwd())
__snake_case = parser.parse_args()
__snake_case = NERTransformer(args)
__snake_case = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
__snake_case = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True))
__snake_case = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 203
| 1
|
'''simple docstring'''
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def a__ ( ) -> tuple[list[int], int]:
UpperCAmelCase__ : List[Any] = [randint(-10_00 , 10_00 ) for i in range(10 )]
UpperCAmelCase__ : Any = randint(-50_00 , 50_00 )
return (arr, r)
UpperCamelCase__ = make_dataset()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[int, ...]:
for triplet in permutations(lowerCAmelCase__ , 3 ):
if sum(lowerCAmelCase__ ) == target:
return tuple(sorted(lowerCAmelCase__ ) )
return (0, 0, 0)
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[int, int, int]:
arr.sort()
UpperCAmelCase__ : Any = len(lowerCAmelCase__ )
for i in range(n - 1 ):
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def a__ ( ) -> tuple[float, float]:
UpperCAmelCase__ : List[Any] = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
UpperCAmelCase__ : Optional[Any] = '''
triplet_sum1(*dataset)
'''
UpperCAmelCase__ : str = '''
triplet_sum2(*dataset)
'''
UpperCAmelCase__ : Any = repeat(setup=lowerCAmelCase__ , stmt=lowerCAmelCase__ , repeat=5 , number=1_00_00 )
UpperCAmelCase__ : Optional[Any] = repeat(setup=lowerCAmelCase__ , stmt=lowerCAmelCase__ , repeat=5 , number=1_00_00 )
return (min(lowerCAmelCase__ ), min(lowerCAmelCase__ ))
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCamelCase__ = solution_times()
print(F"""The time for naive implementation is {times[0]}.""")
print(F"""The time for optimized implementation is {times[1]}.""")
| 299
|
'''simple docstring'''
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def a__ ( lowerCAmelCase__ ) -> None:
UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = analyze_text(lowerCAmelCase__ )
UpperCAmelCase__ : List[Any] = list(''' ''' + ascii_lowercase )
# what is our total sum of probabilities.
UpperCAmelCase__ : str = sum(single_char_strings.values() )
# one length string
UpperCAmelCase__ : int = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
UpperCAmelCase__ : Optional[int] = single_char_strings[ch]
UpperCAmelCase__ : int = my_str / all_sum
my_fir_sum += prob * math.loga(lowerCAmelCase__ ) # entropy formula.
# print entropy
print(F"""{round(-1 * my_fir_sum ):.1f}""" )
# two len string
UpperCAmelCase__ : str = sum(two_char_strings.values() )
UpperCAmelCase__ : Optional[Any] = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
UpperCAmelCase__ : Optional[int] = cha + cha
if sequence in two_char_strings:
UpperCAmelCase__ : Dict = two_char_strings[sequence]
UpperCAmelCase__ : Optional[int] = int(lowerCAmelCase__ ) / all_sum
my_sec_sum += prob * math.loga(lowerCAmelCase__ )
# print second entropy
print(F"""{round(-1 * my_sec_sum ):.1f}""" )
# print the difference between them
print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" )
def a__ ( lowerCAmelCase__ ) -> tuple[dict, dict]:
UpperCAmelCase__ : Union[str, Any] = Counter() # type: ignore
UpperCAmelCase__ : Tuple = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0 , len(lowerCAmelCase__ ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def a__ ( ) -> Tuple:
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 299
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase : Tuple = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase : List[str] = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
_UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 304
|
'''simple docstring'''
import enum
import warnings
from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
from ..utils import add_end_docstrings, is_tf_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
class snake_case__ ( enum.Enum):
a_ = 0
a_ = 1
a_ = 2
@add_end_docstrings(UpperCamelCase)
class snake_case__ ( UpperCamelCase):
a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n "
def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]:
super().__init__(*_A , **_A )
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING )
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
UpperCAmelCase_ : Dict = None
if self.model.config.prefix is not None:
UpperCAmelCase_ : Tuple = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params )
UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params}
UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params}
def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = {}
if prefix is not None:
UpperCAmelCase_ : List[Any] = prefix
if prefix:
UpperCAmelCase_ : Tuple = self.tokenizer(
_A , padding=_A , add_special_tokens=_A , return_tensors=self.framework )
UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected"
''' [None, \'hole\']''' )
UpperCAmelCase_ : Union[str, Any] = handle_long_generation
preprocess_params.update(_A )
UpperCAmelCase_ : Optional[int] = generate_kwargs
UpperCAmelCase_ : Tuple = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' )
if return_tensors is not None:
raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' )
UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' )
UpperCAmelCase_ : List[Any] = ReturnType.TENSORS
if return_type is not None:
UpperCAmelCase_ : List[Any] = return_type
if clean_up_tokenization_spaces is not None:
UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A )
if len(_A ) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''' )
UpperCAmelCase_ : str = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any:
# Parse arguments
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({'''add_space_before_punct_symbol''': True} )
return super()._parse_and_tokenize(*_A , **_A )
def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict:
return super().__call__(_A , **_A )
def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]:
UpperCAmelCase_ : Tuple = self.tokenizer(
prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework )
UpperCAmelCase_ : str = prompt_text
if handle_long_generation == "hole":
UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1]
if "max_new_tokens" in generate_kwargs:
UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens''']
else:
UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len
if new_tokens < 0:
raise ValueError('''We cannot infer how many new tokens are expected''' )
if cur_len + new_tokens > self.tokenizer.model_max_length:
UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
'''We cannot use `hole` to handle this generation the number of desired tokens exceeds the'''
''' models max length''' )
UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:]
if "attention_mask" in inputs:
UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:]
return inputs
def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]:
UpperCAmelCase_ : Any = model_inputs['''input_ids''']
UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A )
# Allow empty prompts
if input_ids.shape[1] == 0:
UpperCAmelCase_ : Any = None
UpperCAmelCase_ : List[Any] = None
UpperCAmelCase_ : Union[str, Any] = 1
else:
UpperCAmelCase_ : Optional[int] = input_ids.shape[0]
UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' )
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 )
if prefix_length > 0:
UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].max_new_tokens is not None
)
if not has_max_new_tokens:
UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A )
UpperCAmelCase_ : Any = generated_sequence.shape[0]
if self.framework == "pt":
UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] )
elif self.framework == "tf":
UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) )
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0]
UpperCAmelCase_ : int = model_outputs['''input_ids''']
UpperCAmelCase_ : str = model_outputs['''prompt_text''']
UpperCAmelCase_ : Any = generated_sequence.numpy().tolist()
UpperCAmelCase_ : int = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
UpperCAmelCase_ : Any = self.tokenizer.decode(
_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , )
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
UpperCAmelCase_ : List[str] = 0
else:
UpperCAmelCase_ : str = len(
self.tokenizer.decode(
input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) )
if return_type == ReturnType.FULL_TEXT:
UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:]
else:
UpperCAmelCase_ : Dict = text[prompt_length:]
UpperCAmelCase_ : List[str] = {'''generated_text''': all_text}
records.append(_A )
return records
| 304
| 1
|
def __magic_name__ ( __a : int , __a : int ):
'''simple docstring'''
return x if y == 0 else greatest_common_divisor(__a , x % y )
def __magic_name__ ( __a : int , __a : int ):
'''simple docstring'''
return (x * y) // greatest_common_divisor(__a , __a )
def __magic_name__ ( __a : int = 20 ):
'''simple docstring'''
UpperCamelCase__ = 1
for i in range(1 , n + 1 ):
UpperCamelCase__ = lcm(__a , __a )
return g
if __name__ == "__main__":
print(f'{solution() = }')
| 178
|
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class __A( unittest.TestCase ):
"""simple docstring"""
def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=18 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=True , ):
UpperCamelCase__ = parent
UpperCamelCase__ = batch_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = image_size
UpperCamelCase__ = min_resolution
UpperCamelCase__ = max_resolution
UpperCamelCase__ = do_resize
UpperCamelCase__ = size_divisor
UpperCamelCase__ = do_rescale
def UpperCAmelCase_ (self ):
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class __A( __lowerCamelCase , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = GLPNImageProcessor if is_vision_available() else None
def UpperCAmelCase_ (self ):
UpperCamelCase__ = GLPNImageProcessingTester(self )
@property
def UpperCAmelCase_ (self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ (self ):
UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size_divisor""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """resample""" ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_rescale""" ) )
def UpperCAmelCase_ (self ):
pass
def UpperCAmelCase_ (self ):
# Initialize image_processing
UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCAmelCase_ (self ):
# Initialize image_processing
UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCAmelCase_ (self ):
# Initialize image_processing
UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 178
| 1
|
"""simple docstring"""
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
__SCREAMING_SNAKE_CASE : List[Any] = re.compile(R'\b(a|an|the)\b', re.UNICODE)
__SCREAMING_SNAKE_CASE : List[Any] = None
def _a ( ) -> str:
snake_case_ = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" )
parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" )
parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" )
parser.add_argument(
"""--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" )
parser.add_argument(
"""--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" )
parser.add_argument(
"""--na-prob-thresh""" , """-t""" , type=UpperCamelCase__ , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , )
parser.add_argument(
"""--out-image-dir""" , """-p""" , metavar="""out_images""" , default=UpperCamelCase__ , help="""Save precision-recall curves to directory.""" )
parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
snake_case_ = bool(qa["""answers"""]["""text"""] )
return qid_to_has_ans
def _a ( _SCREAMING_SNAKE_CASE ) -> Dict:
def remove_articles(_SCREAMING_SNAKE_CASE ):
return ARTICLES_REGEX.sub(""" """ , UpperCamelCase__ )
def white_space_fix(_SCREAMING_SNAKE_CASE ):
return " ".join(text.split() )
def remove_punc(_SCREAMING_SNAKE_CASE ):
snake_case_ = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_SCREAMING_SNAKE_CASE ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase__ ) ) ) )
def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]:
if not s:
return []
return normalize_answer(UpperCamelCase__ ).split()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
return int(normalize_answer(UpperCamelCase__ ) == normalize_answer(UpperCamelCase__ ) )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
snake_case_ = get_tokens(UpperCamelCase__ )
snake_case_ = get_tokens(UpperCamelCase__ )
snake_case_ = collections.Counter(UpperCamelCase__ ) & collections.Counter(UpperCamelCase__ )
snake_case_ = sum(common.values() )
if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
snake_case_ = 1.0 * num_same / len(UpperCamelCase__ )
snake_case_ = 1.0 * num_same / len(UpperCamelCase__ )
snake_case_ = (2 * precision * recall) / (precision + recall)
return fa
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
snake_case_ = {}
snake_case_ = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
snake_case_ = qa["""id"""]
snake_case_ = [t for t in qa["""answers"""]["""text"""] if normalize_answer(UpperCamelCase__ )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
snake_case_ = [""""""]
if qid not in preds:
print(f"""Missing prediction for {qid}""" )
continue
snake_case_ = preds[qid]
# Take max over all gold answers
snake_case_ = max(compute_exact(UpperCamelCase__ , UpperCamelCase__ ) for a in gold_answers )
snake_case_ = max(compute_fa(UpperCamelCase__ , UpperCamelCase__ ) for a in gold_answers )
return exact_scores, fa_scores
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
snake_case_ = {}
for qid, s in scores.items():
snake_case_ = na_probs[qid] > na_prob_thresh
if pred_na:
snake_case_ = float(not qid_to_has_ans[qid] )
else:
snake_case_ = s
return new_scores
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple:
if not qid_list:
snake_case_ = len(UpperCamelCase__ )
return collections.OrderedDict(
[
("""exact""", 100.0 * sum(exact_scores.values() ) / total),
("""f1""", 100.0 * sum(fa_scores.values() ) / total),
("""total""", total),
] )
else:
snake_case_ = len(UpperCamelCase__ )
return collections.OrderedDict(
[
("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total),
("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total),
("""total""", total),
] )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
for k in new_eval:
snake_case_ = new_eval[k]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
plt.step(UpperCamelCase__ , UpperCamelCase__ , color="""b""" , alpha=0.2 , where="""post""" )
plt.fill_between(UpperCamelCase__ , UpperCamelCase__ , step="""post""" , alpha=0.2 , color="""b""" )
plt.xlabel("""Recall""" )
plt.ylabel("""Precision""" )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(UpperCamelCase__ )
plt.savefig(UpperCamelCase__ )
plt.clf()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[Any]:
snake_case_ = sorted(UpperCamelCase__ , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] )
snake_case_ = 0.0
snake_case_ = 1.0
snake_case_ = 0.0
snake_case_ = [1.0]
snake_case_ = [0.0]
snake_case_ = 0.0
for i, qid in enumerate(UpperCamelCase__ ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
snake_case_ = true_pos / float(i + 1 )
snake_case_ = true_pos / float(UpperCamelCase__ )
if i == len(UpperCamelCase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(UpperCamelCase__ )
recalls.append(UpperCamelCase__ )
if out_image:
plot_pr_curve(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
return {"ap": 100.0 * avg_prec}
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
if out_image_dir and not os.path.exists(UpperCamelCase__ ):
os.makedirs(UpperCamelCase__ )
snake_case_ = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
snake_case_ = make_precision_recall_eval(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , out_image=os.path.join(UpperCamelCase__ , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , )
snake_case_ = make_precision_recall_eval(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , out_image=os.path.join(UpperCamelCase__ , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , )
snake_case_ = {k: float(UpperCamelCase__ ) for k, v in qid_to_has_ans.items()}
snake_case_ = make_precision_recall_eval(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , out_image=os.path.join(UpperCamelCase__ , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , )
merge_eval(UpperCamelCase__ , UpperCamelCase__ , """pr_exact""" )
merge_eval(UpperCamelCase__ , UpperCamelCase__ , """pr_f1""" )
merge_eval(UpperCamelCase__ , UpperCamelCase__ , """pr_oracle""" )
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
if not qid_list:
return
snake_case_ = [na_probs[k] for k in qid_list]
snake_case_ = np.ones_like(UpperCamelCase__ ) / float(len(UpperCamelCase__ ) )
plt.hist(UpperCamelCase__ , weights=UpperCamelCase__ , bins=20 , range=(0.0, 1.0) )
plt.xlabel("""Model probability of no-answer""" )
plt.ylabel("""Proportion of dataset""" )
plt.title(f"""Histogram of no-answer probability: {name}""" )
plt.savefig(os.path.join(UpperCamelCase__ , f"""na_prob_hist_{name}.png""" ) )
plt.clf()
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
snake_case_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
snake_case_ = num_no_ans
snake_case_ = cur_score
snake_case_ = 0.0
snake_case_ = sorted(UpperCamelCase__ , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] )
for i, qid in enumerate(UpperCamelCase__ ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
snake_case_ = scores[qid]
else:
if preds[qid]:
snake_case_ = -1
else:
snake_case_ = 0
cur_score += diff
if cur_score > best_score:
snake_case_ = cur_score
snake_case_ = na_probs[qid]
return 100.0 * best_score / len(UpperCamelCase__ ), best_thresh
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case_ , snake_case_ = find_best_thresh(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
snake_case_ , snake_case_ = find_best_thresh(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
snake_case_ = best_exact
snake_case_ = exact_thresh
snake_case_ = best_fa
snake_case_ = fa_thresh
def _a ( ) -> Union[str, Any]:
with open(OPTS.data_file ) as f:
snake_case_ = json.load(UpperCamelCase__ )
snake_case_ = dataset_json["""data"""]
with open(OPTS.pred_file ) as f:
snake_case_ = json.load(UpperCamelCase__ )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
snake_case_ = json.load(UpperCamelCase__ )
else:
snake_case_ = {k: 0.0 for k in preds}
snake_case_ = make_qid_to_has_ans(UpperCamelCase__ ) # maps qid to True/False
snake_case_ = [k for k, v in qid_to_has_ans.items() if v]
snake_case_ = [k for k, v in qid_to_has_ans.items() if not v]
snake_case_ , snake_case_ = get_raw_scores(UpperCamelCase__ , UpperCamelCase__ )
snake_case_ = apply_no_ans_threshold(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , OPTS.na_prob_thresh )
snake_case_ = apply_no_ans_threshold(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , OPTS.na_prob_thresh )
snake_case_ = make_eval_dict(UpperCamelCase__ , UpperCamelCase__ )
if has_ans_qids:
snake_case_ = make_eval_dict(UpperCamelCase__ , UpperCamelCase__ , qid_list=UpperCamelCase__ )
merge_eval(UpperCamelCase__ , UpperCamelCase__ , """HasAns""" )
if no_ans_qids:
snake_case_ = make_eval_dict(UpperCamelCase__ , UpperCamelCase__ , qid_list=UpperCamelCase__ )
merge_eval(UpperCamelCase__ , UpperCamelCase__ , """NoAns""" )
if OPTS.na_prob_file:
find_all_best_thresh(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , OPTS.out_image_dir )
histogram_na_prob(UpperCamelCase__ , UpperCamelCase__ , OPTS.out_image_dir , """hasAns""" )
histogram_na_prob(UpperCamelCase__ , UpperCamelCase__ , OPTS.out_image_dir , """noAns""" )
if OPTS.out_file:
with open(OPTS.out_file , """w""" ) as f:
json.dump(UpperCamelCase__ , UpperCamelCase__ )
else:
print(json.dumps(UpperCamelCase__ , indent=2 ) )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Union[str, Any] = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
main()
| 347
|
"""simple docstring"""
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
__lowerCamelCase = logging.get_logger(__name__)
# General docstring
__lowerCamelCase = "ResNetConfig"
# Base docstring
__lowerCamelCase = "microsoft/resnet-50"
__lowerCamelCase = [1, 20_48, 7, 7]
# Image classification docstring
__lowerCamelCase = "microsoft/resnet-50"
__lowerCamelCase = "tiger cat"
__lowerCamelCase = [
"microsoft/resnet-50",
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class UpperCamelCase__( nn.Module ):
def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 3 ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ) -> Any:
super().__init__()
A__ = nn.Convad(
__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=__UpperCAmelCase ,stride=__UpperCAmelCase ,padding=kernel_size // 2 ,bias=__UpperCAmelCase )
A__ = nn.BatchNormad(__UpperCAmelCase )
A__ = ACTaFN[activation] if activation is not None else nn.Identity()
def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor:
A__ = self.convolution(__UpperCAmelCase )
A__ = self.normalization(__UpperCAmelCase )
A__ = self.activation(__UpperCAmelCase )
return hidden_state
class UpperCamelCase__( nn.Module ):
def __init__( self ,__UpperCAmelCase ) -> Any:
super().__init__()
A__ = ResNetConvLayer(
config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act )
A__ = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 )
A__ = config.num_channels
def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor:
A__ = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
A__ = self.embedder(__UpperCAmelCase )
A__ = self.pooler(__UpperCAmelCase )
return embedding
class UpperCamelCase__( nn.Module ):
def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 2 ) -> Optional[Any]:
super().__init__()
A__ = nn.Convad(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ,stride=__UpperCAmelCase ,bias=__UpperCAmelCase )
A__ = nn.BatchNormad(__UpperCAmelCase )
def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor:
A__ = self.convolution(__UpperCAmelCase )
A__ = self.normalization(__UpperCAmelCase )
return hidden_state
class UpperCamelCase__( nn.Module ):
def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ) -> int:
super().__init__()
A__ = in_channels != out_channels or stride != 1
A__ = (
ResNetShortCut(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
A__ = nn.Sequential(
ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,activation=__UpperCAmelCase ) ,)
A__ = ACTaFN[activation]
def snake_case__ ( self ,__UpperCAmelCase ) -> Union[str, Any]:
A__ = hidden_state
A__ = self.layer(__UpperCAmelCase )
A__ = self.shortcut(__UpperCAmelCase )
hidden_state += residual
A__ = self.activation(__UpperCAmelCase )
return hidden_state
class UpperCamelCase__( nn.Module ):
def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ,__UpperCAmelCase = 4 ) -> int:
super().__init__()
A__ = in_channels != out_channels or stride != 1
A__ = out_channels // reduction
A__ = (
ResNetShortCut(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
A__ = nn.Sequential(
ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ,activation=__UpperCAmelCase ) ,)
A__ = ACTaFN[activation]
def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]:
A__ = hidden_state
A__ = self.layer(__UpperCAmelCase )
A__ = self.shortcut(__UpperCAmelCase )
hidden_state += residual
A__ = self.activation(__UpperCAmelCase )
return hidden_state
class UpperCamelCase__( nn.Module ):
def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 2 ,__UpperCAmelCase = 2 ,) -> Any:
super().__init__()
A__ = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer
A__ = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ,activation=config.hidden_act ) ,*[layer(__UpperCAmelCase ,__UpperCAmelCase ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,)
def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor:
A__ = input
for layer in self.layers:
A__ = layer(__UpperCAmelCase )
return hidden_state
class UpperCamelCase__( nn.Module ):
def __init__( self ,__UpperCAmelCase ) -> Optional[Any]:
super().__init__()
A__ = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
__UpperCAmelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) )
A__ = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(__UpperCAmelCase ,config.depths[1:] ):
self.stages.append(ResNetStage(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,depth=__UpperCAmelCase ) )
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = False ,__UpperCAmelCase = True ) -> BaseModelOutputWithNoAttention:
A__ = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
A__ = hidden_states + (hidden_state,)
A__ = stage_module(__UpperCAmelCase )
if output_hidden_states:
A__ = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=__UpperCAmelCase ,hidden_states=__UpperCAmelCase ,)
class UpperCamelCase__( __A ):
lowerCAmelCase__ : str = ResNetConfig
lowerCAmelCase__ : str = 'resnet'
lowerCAmelCase__ : int = 'pixel_values'
lowerCAmelCase__ : Any = True
def snake_case__ ( self ,__UpperCAmelCase ) -> List[Any]:
if isinstance(__UpperCAmelCase ,nn.Convad ):
nn.init.kaiming_normal_(module.weight ,mode='fan_out' ,nonlinearity='relu' )
elif isinstance(__UpperCAmelCase ,(nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight ,1 )
nn.init.constant_(module.bias ,0 )
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Any:
if isinstance(__UpperCAmelCase ,__UpperCAmelCase ):
A__ = value
__lowerCamelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
__lowerCamelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'The bare ResNet model outputting raw features without any specific head on top.' , __A , )
class UpperCamelCase__( __A ):
def __init__( self ,__UpperCAmelCase ) -> Union[str, Any]:
super().__init__(__UpperCAmelCase )
A__ = config
A__ = ResNetEmbeddings(__UpperCAmelCase )
A__ = ResNetEncoder(__UpperCAmelCase )
A__ = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ) -> BaseModelOutputWithPoolingAndNoAttention:
A__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
A__ = return_dict if return_dict is not None else self.config.use_return_dict
A__ = self.embedder(__UpperCAmelCase )
A__ = self.encoder(
__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase )
A__ = encoder_outputs[0]
A__ = self.pooler(__UpperCAmelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__UpperCAmelCase ,pooler_output=__UpperCAmelCase ,hidden_states=encoder_outputs.hidden_states ,)
@add_start_docstrings(
'\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __A , )
class UpperCamelCase__( __A ):
def __init__( self ,__UpperCAmelCase ) -> Tuple:
super().__init__(__UpperCAmelCase )
A__ = config.num_labels
A__ = ResNetModel(__UpperCAmelCase )
# classification head
A__ = nn.Sequential(
nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def snake_case__ ( self ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,) -> ImageClassifierOutputWithNoAttention:
A__ = return_dict if return_dict is not None else self.config.use_return_dict
A__ = self.resnet(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase )
A__ = outputs.pooler_output if return_dict else outputs[1]
A__ = self.classifier(__UpperCAmelCase )
A__ = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
A__ = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
A__ = 'single_label_classification'
else:
A__ = 'multi_label_classification'
if self.config.problem_type == "regression":
A__ = MSELoss()
if self.num_labels == 1:
A__ = loss_fct(logits.squeeze() ,labels.squeeze() )
else:
A__ = loss_fct(__UpperCAmelCase ,__UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
A__ = CrossEntropyLoss()
A__ = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
A__ = BCEWithLogitsLoss()
A__ = loss_fct(__UpperCAmelCase ,__UpperCAmelCase )
if not return_dict:
A__ = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase ,logits=__UpperCAmelCase ,hidden_states=outputs.hidden_states )
@add_start_docstrings(
'\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __A , )
class UpperCamelCase__( __A , __A ):
def __init__( self ,__UpperCAmelCase ) -> Optional[Any]:
super().__init__(__UpperCAmelCase )
super()._init_backbone(__UpperCAmelCase )
A__ = [config.embedding_size] + config.hidden_sizes
A__ = ResNetEmbeddings(__UpperCAmelCase )
A__ = ResNetEncoder(__UpperCAmelCase )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__UpperCAmelCase )
@replace_return_docstrings(output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC )
def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ) -> BackboneOutput:
A__ = return_dict if return_dict is not None else self.config.use_return_dict
A__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
A__ = self.embedder(__UpperCAmelCase )
A__ = self.encoder(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase )
A__ = outputs.hidden_states
A__ = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
A__ = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=__UpperCAmelCase ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=__UpperCAmelCase ,)
| 221
| 0
|
"""simple docstring"""
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger()
@dataclass
class lowercase:
'''simple docstring'''
lowercase__ = 42
lowercase__ = field(default_factory=__a )
lowercase__ = field(default_factory=__a )
def UpperCamelCase_ ( self: Optional[Any], a_: Union[str, Any], a_: Tensor, a_: Tensor ):
'''simple docstring'''
_snake_case : Optional[Any] = len(list(m.modules() ) ) == 1 or isinstance(a_, nn.Convad ) or isinstance(a_, nn.BatchNormad )
if has_not_submodules:
self.traced.append(a_ )
def __call__( self: List[Any], a_: Tensor ):
'''simple docstring'''
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(a_ )
[x.remove() for x in self.handles]
return self
@property
def UpperCamelCase_ ( self: Union[str, Any] ):
'''simple docstring'''
return list(filter(lambda a_ : len(list(x.state_dict().keys() ) ) > 0, self.traced ) )
@dataclass
class lowercase:
'''simple docstring'''
lowercase__ = 42
lowercase__ = 42
lowercase__ = 0
lowercase__ = field(default_factory=__a )
lowercase__ = field(default_factory=__a )
def __call__( self: Dict, a_: Tensor ):
'''simple docstring'''
_snake_case : Tuple = Tracker(self.dest )(a_ ).parametrized
_snake_case : int = Tracker(self.src )(a_ ).parametrized
_snake_case : Tuple = list(filter(lambda a_ : type(a_ ) not in self.src_skip, a_ ) )
_snake_case : Union[str, Any] = list(filter(lambda a_ : type(a_ ) not in self.dest_skip, a_ ) )
if len(a_ ) != len(a_ ):
raise Exception(
f"Numbers of operations are different. Source module has {len(a_ )} operations while"
f" destination module has {len(a_ )}." )
for dest_m, src_m in zip(a_, a_ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f"Transfered from={src_m} to={dest_m}" )
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : ResNetConfig , snake_case__ : Path , snake_case__ : bool = True ):
"""simple docstring"""
print(F"Converting {name}..." )
with torch.no_grad():
_snake_case : Dict = timm.create_model(snake_case__ , pretrained=snake_case__ ).eval()
_snake_case : List[Any] = ResNetForImageClassification(snake_case__ ).eval()
_snake_case : List[str] = ModuleTransfer(src=snake_case__ , dest=snake_case__ )
_snake_case : Optional[Any] = torch.randn((1, 3, 2_24, 2_24) )
module_transfer(snake_case__ )
assert torch.allclose(from_model(snake_case__ ) , our_model(snake_case__ ).logits ), "The model logits don't match the original one."
_snake_case : Optional[int] = F"resnet{'-'.join(name.split('resnet' ) )}"
print(snake_case__ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=snake_case__ , )
# we can use the convnext one
_snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=snake_case__ , )
print(F"Pushed {checkpoint_name}" )
def UpperCAmelCase__ (snake_case__ : Path , snake_case__ : str = None , snake_case__ : bool = True ):
"""simple docstring"""
_snake_case : Optional[Any] = """imagenet-1k-id2label.json"""
_snake_case : Optional[Any] = 10_00
_snake_case : str = (1, num_labels)
_snake_case : List[Any] = """huggingface/label-files"""
_snake_case : Union[str, Any] = num_labels
_snake_case : Optional[int] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) )
_snake_case : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()}
_snake_case : str = idalabel
_snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()}
_snake_case : Tuple = partial(snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ )
_snake_case : Optional[int] = {
"""resnet18""": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ),
"""resnet26""": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ),
"""resnet34""": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ),
"""resnet50""": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ),
"""resnet101""": ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ),
"""resnet152""": ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ),
}
if model_name:
convert_weight_and_push(snake_case__ , names_to_config[model_name] , snake_case__ , snake_case__ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
return config, expected_shape
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default=None,
type=str,
help=(
'''The name of the model you wish to convert, it must be one of the supported resnet* architecture,'''
''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=Path,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
default=True,
type=bool,
required=False,
help='''If True, push model and image processor to the hub.''',
)
A_ = parser.parse_args()
A_ = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 132
|
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : int = 1_00_00_00 ):
"""simple docstring"""
_snake_case : Dict = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , snake_case__ ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 132
| 1
|
'''simple docstring'''
def lowercase_ ( _lowercase ) -> int:
'''simple docstring'''
if not isinstance(_lowercase , _lowercase ) or number < 0:
raise ValueError('''Input must be a non-negative integer''' )
lowerCamelCase_ : Optional[int] = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 318
|
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
__lowercase : Optional[Any] = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__lowercase : Any = BASE_URL + '''/user'''
# https://github.com/settings/tokens
__lowercase : Any = os.environ.get('''USER_TOKEN''', '''''')
def lowercase_ ( _lowercase ) -> dict[Any, Any]:
'''simple docstring'''
lowerCamelCase_ : str = {
'''Authorization''': F"""token {auth_token}""",
'''Accept''': '''application/vnd.github.v3+json''',
}
return requests.get(_lowercase , headers=_lowercase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'{key}: {value}')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 318
| 1
|
"""simple docstring"""
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
lowercase__ = 1.054571817E-34 # unit of ℏ : J * s
lowercase__ = 3E8 # unit of c : m * s^-1
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
if (force, area, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if force < 0:
raise ValueError('Magnitude of force can not be negative' )
if distance < 0:
raise ValueError('Distance can not be negative' )
if area < 0:
raise ValueError('Area can not be negative' )
if force == 0:
_lowerCamelCase : List[str] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
_lowerCamelCase : List[str] = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
_lowerCamelCase : List[str] = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('One and only one argument must be 0' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12
|
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = (UnCLIPScheduler,)
def A_ ( self , **lowercase ):
_lowerCamelCase : Any = {
'num_train_timesteps': 1000,
'variance_type': 'fixed_small_log',
'clip_sample': True,
'clip_sample_range': 1.0,
'prediction_type': 'epsilon',
}
config.update(**lowercase )
return config
def A_ ( self ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=lowercase )
def A_ ( self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=lowercase )
def A_ ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase )
def A_ ( self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=lowercase )
def A_ ( self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=lowercase )
def A_ ( self ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=lowercase , prev_timestep=lowercase )
def A_ ( self ):
_lowerCamelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' )
_lowerCamelCase : str = scheduler_class(**lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5
def A_ ( self ):
_lowerCamelCase : List[str] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' )
_lowerCamelCase : int = scheduler_class(**lowercase )
_lowerCamelCase : List[str] = 0.5
assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5
def A_ ( self ):
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config()
_lowerCamelCase : Tuple = scheduler_class(**lowercase )
_lowerCamelCase : Union[str, Any] = scheduler.timesteps
_lowerCamelCase : Any = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter
_lowerCamelCase : Optional[int] = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : Tuple = model(lowercase , lowercase )
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : Optional[int] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2
assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3
def A_ ( self ):
_lowerCamelCase : Tuple = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : Optional[Any] = scheduler_class(**lowercase )
scheduler.set_timesteps(25 )
_lowerCamelCase : Optional[Any] = scheduler.timesteps
_lowerCamelCase : Optional[int] = self.dummy_model()
_lowerCamelCase : Any = self.dummy_sample_deter
_lowerCamelCase : str = torch.manual_seed(0 )
for i, t in enumerate(lowercase ):
# 1. predict noise residual
_lowerCamelCase : List[Any] = model(lowercase , lowercase )
if i + 1 == timesteps.shape[0]:
_lowerCamelCase : Optional[int] = None
else:
_lowerCamelCase : List[str] = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
_lowerCamelCase : Union[str, Any] = scheduler.step(
lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample
_lowerCamelCase : List[Any] = pred_prev_sample
_lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) )
_lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) )
assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2
assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3
def A_ ( self ):
pass
def A_ ( self ):
pass
| 12
| 1
|
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__A : Tuple = logging.get_logger(__name__)
__A : str = torch.device("cpu")
def __SCREAMING_SNAKE_CASE ( ) -> str:
'''simple docstring'''
UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw )
return im
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> int:
'''simple docstring'''
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1703E00, 2.1107E00, -2.0811E00, 8.8685E-01, 2.4360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9636E-01, 2.3478E-01, -1.6963E00, -1.7381E00, -8.6337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2768E-01, -4.7429E-01, -1.0897E00, -1.0248E00, 3.5523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5330E-01, 2.4211E-01, -6.0185E-01, -8.2789E-01, -6.0446E-02] )
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase = dct.pop(UpperCamelCase__ )
UpperCAmelCase = val
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> int:
'''simple docstring'''
UpperCAmelCase = []
for k in state_dict.keys():
UpperCAmelCase = k
if ".pwconv" in k:
UpperCAmelCase = k_new.replace('''.pwconv''' , '''.point_wise_conv''' )
if ".dwconv" in k:
UpperCAmelCase = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' )
if ".Proj." in k:
UpperCAmelCase = k_new.replace('''.Proj.''' , '''.proj.''' )
if "patch_embed" in k_new:
UpperCAmelCase = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' )
if "network" in k_new:
UpperCAmelCase = k_new.split('''.''' )
if ls[2].isdigit():
UpperCAmelCase = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] )
else:
UpperCAmelCase = k_new.replace('''network''' , '''swiftformer.encoder.network''' )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple:
'''simple docstring'''
UpperCAmelCase = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
UpperCAmelCase = 1000
UpperCAmelCase = '''huggingface/label-files'''
UpperCAmelCase = '''imagenet-1k-id2label.json'''
UpperCAmelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
UpperCAmelCase = idalabel
UpperCAmelCase = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
UpperCAmelCase = [3, 3, 6, 4]
UpperCAmelCase = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
UpperCAmelCase = [3, 3, 9, 6]
UpperCAmelCase = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
UpperCAmelCase = [4, 3, 10, 5]
UpperCAmelCase = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
UpperCAmelCase = [4, 4, 12, 6]
UpperCAmelCase = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith('''https''' ):
UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )
else:
UpperCAmelCase = torch.load(UpperCamelCase__ , map_location='''cpu''' )
UpperCAmelCase = checkpoint
UpperCAmelCase = create_rename_keys(UpperCamelCase__ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# load HuggingFace model
UpperCAmelCase = SwiftFormerForImageClassification(UpperCamelCase__ ).eval()
hf_model.load_state_dict(UpperCamelCase__ )
# prepare test inputs
UpperCAmelCase = prepare_img()
UpperCAmelCase = ViTImageProcessor.from_pretrained('''preprocessor_config''' )
UpperCAmelCase = processor(images=UpperCamelCase__ , return_tensors='''pt''' )
# compare outputs from both models
UpperCAmelCase = get_expected_output(UpperCamelCase__ )
UpperCAmelCase = hf_model(inputs['''pixel_values'''] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , UpperCamelCase__ , atol=1E-3 )
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
__A : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--swiftformer_name",
default="swiftformer_xs",
choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"],
type=str,
help="Name of the SwiftFormer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="./converted_outputs/",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.")
__A : Dict = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 273
|
import argparse
import re
from flax.traverse_util import flatten_dict, unflatten_dict
from tax import checkpoints
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
from transformers.utils import logging
logging.set_verbosity_info()
# should not include what is already done by the `from_pt` argument
__A : int = {
"/attention/": "/0/SelfAttention/",
"/self_attention/": "/0/SelfAttention/",
"/encoder_decoder_attention/": "/1/EncDecAttention/",
"value": "v",
"query": "q",
"key": "k",
"out": "o",
"pre_self_attention_layer_norm": "0/layer_norm",
"pre_cross_attention_layer_norm": "1/layer_norm",
"pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong
"token_embedder": "shared",
"encoder_norm": "final_layer_norm",
"decoder_norm": "final_layer_norm",
"relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight",
"router/router_weights/w/": "router/classifier/",
"roer/roer_weights/w/": "router/classifier/",
"logits_dense": "lm_head",
}
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> List[str]:
'''simple docstring'''
UpperCAmelCase = list(s_dict.keys() )
for key in keys:
UpperCAmelCase = R'''.*/layers_(\d+)'''
UpperCAmelCase = key
if re.match(UpperCamelCase__ , UpperCamelCase__ ):
UpperCAmelCase = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , UpperCamelCase__ )
UpperCAmelCase = R'''(encoder|decoder)\/'''
if re.match(UpperCamelCase__ , UpperCamelCase__ ):
UpperCAmelCase = re.match(UpperCamelCase__ , UpperCamelCase__ ).groups()
if groups[0] == "encoder":
UpperCAmelCase = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , UpperCamelCase__ )
UpperCAmelCase = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , UpperCamelCase__ )
elif groups[0] == "decoder":
UpperCAmelCase = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , UpperCamelCase__ )
UpperCAmelCase = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , UpperCamelCase__ )
# 2. Convert other classic mappings
for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items():
if old_key in new_key:
UpperCAmelCase = new_key.replace(UpperCamelCase__ , UpperCamelCase__ )
print(F"""{key} -> {new_key}""" )
UpperCAmelCase = s_dict.pop(UpperCamelCase__ )
if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
UpperCAmelCase = s_dict[
'''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight'''
].T
if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
UpperCAmelCase = s_dict[
'''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight'''
].T
# 3. Take extra care of the EXPERTS layer
for key in list(s_dict.keys() ):
if "expert" in key:
UpperCAmelCase = s_dict[key].shape[0]
UpperCAmelCase = s_dict[key]
for idx in range(UpperCamelCase__ ):
UpperCAmelCase = expert_weihts[idx]
print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" )
s_dict.pop(UpperCamelCase__ )
return s_dict
__A : Optional[int] = {
"NUM_ENCODER_LAYERS": "num_layers",
"NUM_DECODER_LAYERS": "num_decoder_layers",
"NUM_HEADS": "num_heads",
"HEAD_DIM": "d_kv",
"EMBED_DIM": "d_model",
"MLP_DIM": "d_ff",
"NUM_SELECTED_EXPERTS": "num_selected_experts",
"NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers",
"NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers",
"dense.MlpBlock.activations": "feed_forward_proj",
}
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]:
'''simple docstring'''
import regex as re
with open(UpperCamelCase__ , '''r''' ) as f:
UpperCAmelCase = f.read()
UpperCAmelCase = re.findall(R'''(.*) = ([0-9.]*)''' , UpperCamelCase__ )
UpperCAmelCase = {}
for param, value in regex_match:
if param in GIN_TO_CONFIG_MAPPING and value != "":
UpperCAmelCase = float(UpperCamelCase__ ) if '''.''' in value else int(UpperCamelCase__ )
UpperCAmelCase = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , UpperCamelCase__ )[0]
UpperCAmelCase = str(activation[1] )
UpperCAmelCase = num_experts
UpperCAmelCase = SwitchTransformersConfig(**UpperCamelCase__ )
return config
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="./" , UpperCamelCase__=8 ) -> List[Any]:
'''simple docstring'''
print(F"""Loading flax weights from : {flax_checkpoint_path}""" )
UpperCAmelCase = checkpoints.load_tax_checkpoint(UpperCamelCase__ )
if gin_file is not None:
UpperCAmelCase = convert_gin_to_config(UpperCamelCase__ , UpperCamelCase__ )
else:
UpperCAmelCase = SwitchTransformersConfig.from_pretrained(UpperCamelCase__ )
UpperCAmelCase = SwitchTransformersForConditionalGeneration(UpperCamelCase__ )
UpperCAmelCase = flax_params['''target''']
UpperCAmelCase = flatten_dict(UpperCamelCase__ , sep='''/''' )
UpperCAmelCase = rename_keys(UpperCamelCase__ )
UpperCAmelCase = unflatten_dict(UpperCamelCase__ , sep='''/''' )
# Load the flax params in the PT model
load_flax_weights_in_pytorch_model(UpperCamelCase__ , UpperCamelCase__ )
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
pt_model.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
__A : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the"
" model architecture. If not provided, a `gin_file` has to be provided."
),
)
parser.add_argument(
"--gin_file",
default=None,
type=str,
required=False,
help="Path to the gin config file. If not provided, a `config_file` has to be passed ",
)
parser.add_argument(
"--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model."
)
parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts")
__A : Tuple = parser.parse_args()
convert_flax_checkpoint_to_pytorch(
args.switch_tax_checkpoint_path,
args.config_name,
args.gin_file,
args.pytorch_dump_folder_path,
args.num_experts,
)
| 273
| 1
|
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
lowerCAmelCase_ = HUGGINGFACE_HUB_CACHE
lowerCAmelCase_ = '''config.json'''
lowerCAmelCase_ = '''diffusion_pytorch_model.bin'''
lowerCAmelCase_ = '''diffusion_flax_model.msgpack'''
lowerCAmelCase_ = '''model.onnx'''
lowerCAmelCase_ = '''diffusion_pytorch_model.safetensors'''
lowerCAmelCase_ = '''weights.pb'''
lowerCAmelCase_ = '''https://huggingface.co'''
lowerCAmelCase_ = default_cache_path
lowerCAmelCase_ = '''diffusers_modules'''
lowerCAmelCase_ = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules'''))
lowerCAmelCase_ = ['''fp16''', '''non-ema''']
lowerCAmelCase_ = '''.self_attn'''
| 279
|
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
lowerCAmelCase_ = '''__DUMMY_TRANSFORMERS_USER__'''
lowerCAmelCase_ = '''Dummy User'''
lowerCAmelCase_ = '''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'''
lowerCAmelCase_ = '''https://hub-ci.huggingface.co'''
lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}'''
lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}'''
lowerCAmelCase_ = Path('''~/.huggingface/hub_ci_token''').expanduser()
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]:
"""simple docstring"""
monkeypatch.setattr(
'''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , _UpperCamelCase )
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]:
"""simple docstring"""
monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , _UpperCamelCase )
monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , _UpperCamelCase )
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase ) -> Any:
"""simple docstring"""
monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , _UpperCamelCase )
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]:
"""simple docstring"""
HfFolder.save_token(_UpperCamelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( ) -> List[str]:
"""simple docstring"""
return HfApi(endpoint=_UpperCamelCase )
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( _UpperCamelCase ) -> Dict:
"""simple docstring"""
snake_case_ : Union[str, Any] = HfFolder.get_token()
HfFolder.save_token(_UpperCamelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(_UpperCamelCase )
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]:
"""simple docstring"""
def _cleanup_repo(_UpperCamelCase ):
hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' )
return _cleanup_repo
@pytest.fixture
def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]:
"""simple docstring"""
@contextmanager
def _temporary_repo(_UpperCamelCase ):
try:
yield repo_id
finally:
cleanup_repo(_UpperCamelCase )
return _temporary_repo
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict:
"""simple docstring"""
snake_case_ : Optional[int] = f'''repo_txt_data-{int(time.time() * 10E3 )}'''
snake_case_ : Any = f'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase )
hf_api.upload_file(
token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data/text_data.txt''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , )
yield repo_id
try:
hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict:
"""simple docstring"""
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : int = f'''repo_zipped_txt_data-{int(time.time() * 10E3 )}'''
snake_case_ : Tuple = f'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase )
hf_api.upload_file(
token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data.zip''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , )
yield repo_id
try:
hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict:
"""simple docstring"""
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope='''session''' )
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : List[str] = f'''repo_zipped_img_data-{int(time.time() * 10E3 )}'''
snake_case_ : str = f'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase )
hf_api.upload_file(
token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data.zip''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , )
yield repo_id
try:
hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int:
"""simple docstring"""
return hf_private_dataset_repo_zipped_img_data_
| 279
| 1
|
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = ['''image_processor''', '''tokenizer''']
UpperCAmelCase__ = '''LayoutLMv3ImageProcessor'''
UpperCAmelCase__ = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''')
def __init__( self : Optional[int] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str) ->Tuple:
'''simple docstring'''
A__ = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , UpperCAmelCase__ , )
A__ = kwargs.pop('''feature_extractor''')
A__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''')
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''')
super().__init__(UpperCAmelCase__ , UpperCAmelCase__)
def __call__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase__ : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase__ : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : List[str] , ) ->BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''')
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''')
# first, apply the image processor
A__ = self.image_processor(images=UpperCAmelCase__ , return_tensors=UpperCAmelCase__)
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [text] # add batch dimension (as the image processor always adds a batch dimension)
A__ = features['''words''']
A__ = self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , )
# add pixel values
A__ = features.pop('''pixel_values''')
if return_overflowing_tokens is True:
A__ = self.get_overflowing_images(UpperCAmelCase__ , encoded_inputs['''overflow_to_sample_mapping'''])
A__ = images
return encoded_inputs
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]) ->List[Any]:
'''simple docstring'''
A__ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx])
if len(UpperCAmelCase__) != len(UpperCAmelCase__):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f""" {len(UpperCAmelCase__)} and {len(UpperCAmelCase__)}""")
return images_with_overflow
def SCREAMING_SNAKE_CASE ( self : int , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Dict) ->Dict:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
@property
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase__ , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase__ , )
return self.image_processor
| 14
|
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ['image_processor', 'tokenizer']
_lowerCamelCase : Tuple = 'OwlViTImageProcessor'
_lowerCamelCase : List[Any] = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self : Optional[Any] , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Any ):
A_ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
A_ = kwargs.pop("feature_extractor" )
A_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
def __call__( self : Optional[int] , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict="max_length" , UpperCAmelCase : Optional[Any]="np" , **UpperCAmelCase : Optional[int] ):
if text is None and query_images is None and images is None:
raise ValueError(
"You have to specify at least one text or query image or image. All three cannot be none." )
if text is not None:
if isinstance(UpperCAmelCase , UpperCAmelCase ) or (isinstance(UpperCAmelCase , UpperCAmelCase ) and not isinstance(text[0] , UpperCAmelCase )):
A_ = [self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )]
elif isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(text[0] , UpperCAmelCase ):
A_ = []
# Maximum number of queries across batch
A_ = max([len(UpperCAmelCase ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(UpperCAmelCase ) != max_num_queries:
A_ = t + [" "] * (max_num_queries - len(UpperCAmelCase ))
A_ = self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )
encodings.append(UpperCAmelCase )
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings" )
if return_tensors == "np":
A_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 )
A_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
A_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 )
A_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
A_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 )
A_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
A_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 )
A_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 )
else:
raise ValueError("Target return tensor type could not be returned" )
A_ = BatchEncoding()
A_ = input_ids
A_ = attention_mask
if query_images is not None:
A_ = BatchEncoding()
A_ = self.image_processor(
UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ).pixel_values
A_ = query_pixel_values
if images is not None:
A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )
if text is not None and images is not None:
A_ = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
A_ = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def __A ( self : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ):
return self.image_processor.post_process(*UpperCAmelCase , **UpperCAmelCase )
def __A ( self : str , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ):
return self.image_processor.post_process_object_detection(*UpperCAmelCase , **UpperCAmelCase )
def __A ( self : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : int ):
return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase , **UpperCAmelCase )
def __A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ):
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def __A ( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ):
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def __A ( self : Union[str, Any] ):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
@property
def __A ( self : Optional[Any] ):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , )
return self.image_processor
| 312
| 0
|
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]:
for i in range(0, UpperCAmelCase__ ):
for _ in range(0, n - i - 1 ): # printing spaces
print(""" """, end="""""" )
for _ in range(0, i + 1 ): # printing stars
print("""* """, end="""""" )
print()
def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]:
for i in range(UpperCAmelCase__, 0, -1 ):
for _ in range(UpperCAmelCase__, 0, -1 ): # printing stars
print("""* """, end="""""" )
print()
for _ in range(n - i + 1, 0, -1 ): # printing spaces
print(""" """, end="""""" )
def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]:
if n <= 0:
print(""" ... .... nothing printing :(""" )
return
floyd(UpperCAmelCase__ ) # upper half
reverse_floyd(UpperCAmelCase__ ) # lower half
if __name__ == "__main__":
print(r'''| /\ | |- | |- |--| |\ /| |-''')
print(r'''|/ \| |- |_ |_ |__| | \/ | |_''')
__lowerCamelCase = 1
while K:
__lowerCamelCase = int(input('''enter the number and , and see the magic : '''))
print()
pretty_print(user_number)
__lowerCamelCase = int(input('''press 0 to exit... and 1 to continue...'''))
print('''Good Bye...''')
| 101
|
'''simple docstring'''
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class A__ ( _snake_case , unittest.TestCase ):
lowercase = ReformerTokenizer
lowercase = ReformerTokenizerFast
lowercase = True
lowercase = False
lowercase = True
def snake_case_ ( self ) -> str:
'''simple docstring'''
super().setUp()
A_ = ReformerTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case_ ( self ) -> Union[str, Any]:
'''simple docstring'''
A_ = """<s>"""
A_ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ )
def snake_case_ ( self ) -> Tuple:
'''simple docstring'''
A_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<unk>""" )
self.assertEqual(vocab_keys[1] , """<s>""" )
self.assertEqual(vocab_keys[-1] , """j""" )
self.assertEqual(len(UpperCamelCase__ ) , 1000 )
def snake_case_ ( self ) -> Dict:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1000 )
def snake_case_ ( self ) -> Union[str, Any]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A_ = self.get_tokenizer()
A_ = self.get_rust_tokenizer()
A_ = """I was born in 92000, and this is falsé."""
A_ = tokenizer.tokenize(UpperCamelCase__ )
A_ = rust_tokenizer.tokenize(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
A_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ )
A_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
A_ = self.get_rust_tokenizer()
A_ = tokenizer.encode(UpperCamelCase__ )
A_ = rust_tokenizer.encode(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
def snake_case_ ( self , UpperCamelCase__=15 ) -> int:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
A_ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ )
# Simple input
A_ = """This is a simple input"""
A_ = ["""This is a simple input 1""", """This is a simple input 2"""]
A_ = ("""This is a simple input""", """This is a pair""")
A_ = [
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" )
# Simple input
self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" )
# Simple input
self.assertRaises(
UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" , )
# Pair input
self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" )
# Pair input
self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" )
# Pair input
self.assertRaises(
UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" , )
def snake_case_ ( self ) -> Optional[Any]:
'''simple docstring'''
pass
def snake_case_ ( self ) -> Union[str, Any]:
'''simple docstring'''
A_ = ReformerTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ )
A_ = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [285, 46, 10, 170, 382] , )
A_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
UpperCamelCase__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
A_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ )
self.assertListEqual(
UpperCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
A_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ )
self.assertListEqual(
UpperCamelCase__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
@cached_property
def snake_case_ ( self ) -> Optional[int]:
'''simple docstring'''
return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" )
@slow
def snake_case_ ( self ) -> Dict:
'''simple docstring'''
A_ = """Hello World!"""
A_ = [126, 32, 262, 152, 38, 72, 287]
self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) )
@slow
def snake_case_ ( self ) -> Any:
'''simple docstring'''
A_ = (
"""This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"""
""" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"""
)
A_ = [
108,
265,
24,
111,
4,
258,
156,
35,
28,
275,
3,
259,
297,
260,
84,
4,
35,
110,
44,
8,
259,
91,
268,
21,
11,
209,
274,
109,
266,
277,
117,
86,
93,
315,
258,
278,
258,
277,
258,
0,
258,
288,
258,
319,
258,
0,
258,
0,
258,
0,
258,
0,
258,
287,
258,
315,
258,
289,
258,
278,
99,
269,
266,
262,
8,
259,
241,
4,
217,
230,
268,
266,
55,
168,
106,
75,
193,
266,
223,
27,
49,
26,
282,
25,
264,
299,
19,
26,
0,
258,
277,
117,
86,
93,
176,
183,
270,
11,
262,
42,
61,
265,
]
self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) )
@require_torch
@slow
def snake_case_ ( self ) -> str:
'''simple docstring'''
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
A_ = list(self.big_tokenizer.get_vocab().keys() )[:10]
A_ = """ """.join(UpperCamelCase__ )
A_ = self.big_tokenizer.encode_plus(UpperCamelCase__ , return_tensors="""pt""" )
A_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" )
A_ = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
A_ = encoded_sequence["""input_ids"""].shape
A_ = ReformerModel(UpperCamelCase__ )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**UpperCamelCase__ )
model(**UpperCamelCase__ )
@slow
def snake_case_ ( self ) -> Optional[int]:
'''simple docstring'''
# fmt: off
A_ = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
A_ = [
"""This is a very simple sentence.""",
"""The quick brown fox jumps over the lazy dog.""",
]
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase__ , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=UpperCamelCase__ , sequences=UpperCamelCase__ , )
| 101
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCAmelCase = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'OPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'OPTForCausalLM',
'OPTModel',
'OPTPreTrainedModel',
'OPTForSequenceClassification',
'OPTForQuestionAnswering',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'FlaxOPTForCausalLM',
'FlaxOPTModel',
'FlaxOPTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 29
|
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class _UpperCAmelCase ( A__ ,unittest.TestCase ):
"""simple docstring"""
lowercase__ = TextToVideoSDPipeline
lowercase__ = TEXT_TO_IMAGE_PARAMS
lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
lowercase__ = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def lowercase__ ( self : str ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase__ = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D'''), up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D'''), cross_attention_dim=32, attention_head_dim=4, )
lowercase__ = DDIMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, )
torch.manual_seed(0 )
lowercase__ = AutoencoderKL(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, sample_size=128, )
torch.manual_seed(0 )
lowercase__ = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='''gelu''', projection_dim=512, )
lowercase__ = CLIPTextModel(lowerCamelCase )
lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
lowercase__ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def lowercase__ ( self : int, lowerCamelCase : Union[str, Any], lowerCamelCase : int=0 ):
'''simple docstring'''
if str(lowerCamelCase ).startswith('''mps''' ):
lowercase__ = torch.manual_seed(lowerCamelCase )
else:
lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
lowercase__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''pt''',
}
return inputs
def lowercase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowercase__ = self.get_dummy_components()
lowercase__ = TextToVideoSDPipeline(**lowerCamelCase )
lowercase__ = sd_pipe.to(lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase )
lowercase__ = self.get_dummy_inputs(lowerCamelCase )
lowercase__ = '''np'''
lowercase__ = sd_pipe(**lowerCamelCase ).frames
lowercase__ = frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
lowercase__ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowercase__ ( self : str ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase, expected_max_diff=3E-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available(), reason='''XFormers attention is only available with CUDA and `xformers` installed''', )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase, expected_max_diff=1E-2 )
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def lowercase__ ( self : Optional[int] ):
'''simple docstring'''
pass
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def lowercase__ ( self : Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' )
def lowercase__ ( self : int ):
'''simple docstring'''
pass
def lowercase__ ( self : List[Any] ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' )
lowercase__ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
lowercase__ = pipe.to('''cuda''' )
lowercase__ = '''Spiderman is surfing'''
lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 )
lowercase__ = pipe(lowerCamelCase, generator=lowerCamelCase, num_inference_steps=25, output_type='''pt''' ).frames
lowercase__ = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5E-2
def lowercase__ ( self : int ):
'''simple docstring'''
lowercase__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' )
lowercase__ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
lowercase__ = pipe.to('''cuda''' )
lowercase__ = '''Spiderman is surfing'''
lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 )
lowercase__ = pipe(lowerCamelCase, generator=lowerCamelCase, num_inference_steps=2, output_type='''pt''' ).frames
lowercase__ = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5E-2
| 207
| 0
|
from collections.abc import Sequence
def lowerCAmelCase_ (lowerCAmelCase__: Sequence[float] , lowerCAmelCase__: float ):
"""simple docstring"""
return sum(c * (x**i) for i, c in enumerate(lowerCAmelCase__ ) )
def lowerCAmelCase_ (lowerCAmelCase__: Sequence[float] , lowerCAmelCase__: float ):
"""simple docstring"""
UpperCAmelCase_: Optional[int] = 0.0
for coeff in reversed(lowerCAmelCase__ ):
UpperCAmelCase_: Optional[Any] = result * x + coeff
return result
if __name__ == "__main__":
a : Dict = (0.0, 0.0, 5.0, 9.3, 7.0)
a : Any = 1_0.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 82
|
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class _a ( _lowerCAmelCase ):
A = 42
A = None
def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: Optional[int]=0.999 , lowerCAmelCase__: List[str]="cosine" , ):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(lowerCAmelCase__: List[str] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(lowerCAmelCase__: str ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' )
UpperCAmelCase_: List[Any] = []
for i in range(lowerCAmelCase__ ):
UpperCAmelCase_: Optional[int] = i / num_diffusion_timesteps
UpperCAmelCase_: int = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) )
return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa )
class _a ( _lowerCAmelCase , _lowerCAmelCase ):
@register_to_config
def __init__(self, SCREAMING_SNAKE_CASE_ = 1000, SCREAMING_SNAKE_CASE_ = "fixed_small_log", SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = 1.0, SCREAMING_SNAKE_CASE_ = "epsilon", SCREAMING_SNAKE_CASE_ = "squaredcos_cap_v2", ) -> List[Any]:
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" )
UpperCAmelCase_: Tuple = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Dict = 1.0 - self.betas
UpperCAmelCase_: int = torch.cumprod(self.alphas, dim=0 )
UpperCAmelCase_: Tuple = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
UpperCAmelCase_: List[str] = 1.0
# setable values
UpperCAmelCase_: str = None
UpperCAmelCase_: str = torch.from_numpy(np.arange(0, SCREAMING_SNAKE_CASE_ )[::-1].copy() )
UpperCAmelCase_: Dict = variance_type
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> torch.FloatTensor:
return sample
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Optional[Any]:
UpperCAmelCase_: Optional[Any] = num_inference_steps
UpperCAmelCase_: Tuple = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
UpperCAmelCase_: Tuple = (np.arange(0, SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(np.intaa )
UpperCAmelCase_: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ) -> List[Any]:
if prev_timestep is None:
UpperCAmelCase_: Any = t - 1
UpperCAmelCase_: int = self.alphas_cumprod[t]
UpperCAmelCase_: Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
UpperCAmelCase_: int = 1 - alpha_prod_t
UpperCAmelCase_: List[Any] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
UpperCAmelCase_: List[str] = self.betas[t]
else:
UpperCAmelCase_: List[str] = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
UpperCAmelCase_: Tuple = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
UpperCAmelCase_: List[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
UpperCAmelCase_: str = torch.log(torch.clamp(SCREAMING_SNAKE_CASE_, min=1E-20 ) )
UpperCAmelCase_: Dict = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
UpperCAmelCase_: Dict = variance.log()
UpperCAmelCase_: Tuple = beta.log()
UpperCAmelCase_: int = (predicted_variance + 1) / 2
UpperCAmelCase_: int = frac * max_log + (1 - frac) * min_log
return variance
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_ = True, ) -> Union[UnCLIPSchedulerOutput, Tuple]:
UpperCAmelCase_: List[Any] = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
UpperCAmelCase_ , UpperCAmelCase_: List[str] = torch.split(SCREAMING_SNAKE_CASE_, sample.shape[1], dim=1 )
else:
UpperCAmelCase_: Union[str, Any] = None
# 1. compute alphas, betas
if prev_timestep is None:
UpperCAmelCase_: List[Any] = t - 1
UpperCAmelCase_: Optional[int] = self.alphas_cumprod[t]
UpperCAmelCase_: Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
UpperCAmelCase_: Optional[Any] = 1 - alpha_prod_t
UpperCAmelCase_: Optional[Any] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
UpperCAmelCase_: Tuple = self.betas[t]
UpperCAmelCase_: Dict = self.alphas[t]
else:
UpperCAmelCase_: List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev
UpperCAmelCase_: List[str] = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
UpperCAmelCase_: Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
UpperCAmelCase_: int = model_output
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'
""" for the UnCLIPScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
UpperCAmelCase_: Optional[int] = torch.clamp(
SCREAMING_SNAKE_CASE_, -self.config.clip_sample_range, self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase_: Optional[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
UpperCAmelCase_: Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase_: List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
UpperCAmelCase_: Union[str, Any] = 0
if t > 0:
UpperCAmelCase_: Any = randn_tensor(
model_output.shape, dtype=model_output.dtype, generator=SCREAMING_SNAKE_CASE_, device=model_output.device )
UpperCAmelCase_: Dict = self._get_variance(
SCREAMING_SNAKE_CASE_, predicted_variance=SCREAMING_SNAKE_CASE_, prev_timestep=SCREAMING_SNAKE_CASE_, )
if self.variance_type == "fixed_small_log":
UpperCAmelCase_: Optional[int] = variance
elif self.variance_type == "learned_range":
UpperCAmelCase_: Dict = (0.5 * variance).exp()
else:
raise ValueError(
f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'
""" for the UnCLIPScheduler.""" )
UpperCAmelCase_: int = variance * variance_noise
UpperCAmelCase_: List[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_, pred_original_sample=SCREAMING_SNAKE_CASE_ )
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
UpperCAmelCase_: Tuple = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype )
UpperCAmelCase_: Union[str, Any] = timesteps.to(original_samples.device )
UpperCAmelCase_: Dict = alphas_cumprod[timesteps] ** 0.5
UpperCAmelCase_: int = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
UpperCAmelCase_: str = sqrt_alpha_prod.unsqueeze(-1 )
UpperCAmelCase_: Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5
UpperCAmelCase_: Optional[Any] = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
UpperCAmelCase_: Optional[int] = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
UpperCAmelCase_: List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 82
| 1
|
"""simple docstring"""
import string
def lowerCamelCase__ ( __snake_case ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''
for i in sequence:
_UpperCamelCase = ord(__snake_case )
if 65 <= extract <= 90:
output += chr(1_55 - extract )
elif 97 <= extract <= 1_22:
output += chr(2_19 - extract )
else:
output += i
return output
def lowerCamelCase__ ( __snake_case ) -> str:
"""simple docstring"""
_UpperCamelCase = string.ascii_letters
_UpperCamelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1]
return "".join(
letters_reversed[letters.index(__snake_case )] if c in letters else c for c in sequence )
def lowerCamelCase__ ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Running performance benchmarks...''' )
_UpperCamelCase = '''from string import printable ; from __main__ import atbash, atbash_slow'''
print(F'''> atbash_slow(): {timeit("atbash_slow(printable)", setup=__snake_case )} seconds''' )
print(F'''> atbash(): {timeit("atbash(printable)", setup=__snake_case )} seconds''' )
if __name__ == "__main__":
for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"):
print(F"""{example} encrypted in atbash: {atbash(example)}""")
benchmark()
| 194
|
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
_a = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""")
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ):
lowercase__ = SpeechTaTokenizer
lowercase__ = False
lowercase__ = True
def UpperCAmelCase ( self) -> List[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = SpeechTaTokenizer(__a)
_UpperCamelCase = AddedToken('''<mask>''' , lstrip=__a , rstrip=__a)
_UpperCamelCase = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token})
tokenizer.add_tokens(['''<ctc_blank>'''])
tokenizer.save_pretrained(self.tmpdirname)
def UpperCAmelCase ( self , __a) -> List[str]:
'''simple docstring'''
_UpperCamelCase = '''this is a test'''
_UpperCamelCase = '''this is a test'''
return input_text, output_text
def UpperCAmelCase ( self , __a , __a=False , __a=20 , __a=5) -> List[str]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_input_output_texts(__a)
_UpperCamelCase = tokenizer.encode(__a , add_special_tokens=__a)
_UpperCamelCase = tokenizer.decode(__a , clean_up_tokenization_spaces=__a)
return text, ids
def UpperCAmelCase ( self) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a) , __a)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a) , __a)
def UpperCAmelCase ( self) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''<s>''')
self.assertEqual(vocab_keys[1] , '''<pad>''')
self.assertEqual(vocab_keys[-4] , '''œ''')
self.assertEqual(vocab_keys[-2] , '''<mask>''')
self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''')
self.assertEqual(len(__a) , 81)
def UpperCAmelCase ( self) -> List[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 79)
def UpperCAmelCase ( self) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_tokenizers(do_lower_case=__a)
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}'''):
_UpperCamelCase = tokenizer.vocab_size
_UpperCamelCase = len(__a)
self.assertNotEqual(__a , 0)
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_UpperCamelCase = ['''aaaaa bbbbbb''', '''cccccccccdddddddd''']
_UpperCamelCase = tokenizer.add_tokens(__a)
_UpperCamelCase = tokenizer.vocab_size
_UpperCamelCase = len(__a)
self.assertNotEqual(__a , 0)
self.assertEqual(__a , __a)
self.assertEqual(__a , len(__a))
self.assertEqual(__a , all_size + len(__a))
_UpperCamelCase = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__a)
self.assertGreaterEqual(len(__a) , 4)
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1)
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1)
_UpperCamelCase = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''}
_UpperCamelCase = tokenizer.add_special_tokens(__a)
_UpperCamelCase = tokenizer.vocab_size
_UpperCamelCase = len(__a)
self.assertNotEqual(__a , 0)
self.assertEqual(__a , __a)
self.assertEqual(__a , len(__a))
self.assertEqual(__a , all_size_a + len(__a))
_UpperCamelCase = tokenizer.encode(
'''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__a)
self.assertGreaterEqual(len(__a) , 6)
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1)
self.assertGreater(tokens[0] , tokens[1])
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1)
self.assertGreater(tokens[-3] , tokens[-4])
self.assertEqual(tokens[0] , tokenizer.eos_token_id)
self.assertEqual(tokens[-3] , tokenizer.pad_token_id)
def UpperCAmelCase ( self) -> Any:
'''simple docstring'''
pass
def UpperCAmelCase ( self) -> int:
'''simple docstring'''
pass
def UpperCAmelCase ( self) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_tokenizer()
_UpperCamelCase = tokenizer.tokenize('''This is a test''')
# fmt: off
self.assertListEqual(__a , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''])
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__a) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''')
self.assertListEqual(
__a , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''])
_UpperCamelCase = tokenizer.convert_tokens_to_ids(__a)
# fmt: off
self.assertListEqual(__a , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26])
# fmt: on
_UpperCamelCase = tokenizer.convert_ids_to_tokens(__a)
self.assertListEqual(
__a , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''])
@slow
def UpperCAmelCase ( self) -> Optional[int]:
'''simple docstring'''
# Use custom sequence because this tokenizer does not handle numbers.
_UpperCamelCase = [
'''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '''
'''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '''
'''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '''
'''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''',
'''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '''
'''conditioning on both left and right context in all layers.''',
'''The quick brown fox jumps over the lazy dog.''',
]
# fmt: off
_UpperCamelCase = {
'''input_ids''': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__a , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=__a , )
| 194
| 1
|
"""simple docstring"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Any = {
'''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''',
'''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''',
'''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''',
'''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''',
'''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''',
}
class _UpperCAmelCase ( lowerCAmelCase__):
_lowerCAmelCase : Dict = """t5"""
_lowerCAmelCase : Any = ["""past_key_values"""]
_lowerCAmelCase : int = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""}
def __init__( self : str , lowercase_ : Any=32128 , lowercase_ : Optional[Any]=512 , lowercase_ : Tuple=64 , lowercase_ : Any=2048 , lowercase_ : int=6 , lowercase_ : Optional[Any]=None , lowercase_ : int=8 , lowercase_ : str=32 , lowercase_ : List[str]=128 , lowercase_ : List[str]=0.1 , lowercase_ : str=1E-6 , lowercase_ : str=1.0 , lowercase_ : Tuple="relu" , lowercase_ : List[Any]=True , lowercase_ : Tuple=True , lowercase_ : Optional[int]=0 , lowercase_ : int=1 , **lowercase_ : Optional[int] , ):
snake_case_ : Dict = vocab_size
snake_case_ : List[Any] = d_model
snake_case_ : Union[str, Any] = d_kv
snake_case_ : Tuple = d_ff
snake_case_ : List[str] = num_layers
snake_case_ : Optional[Any] = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
snake_case_ : Optional[int] = num_heads
snake_case_ : Optional[int] = relative_attention_num_buckets
snake_case_ : Optional[Any] = relative_attention_max_distance
snake_case_ : List[str] = dropout_rate
snake_case_ : int = layer_norm_epsilon
snake_case_ : str = initializer_factor
snake_case_ : Union[str, Any] = feed_forward_proj
snake_case_ : List[str] = use_cache
snake_case_ : Optional[Any] = self.feed_forward_proj.split('''-''' )
snake_case_ : List[Any] = act_info[-1]
snake_case_ : Tuple = act_info[0] == '''gated'''
if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2:
raise ValueError(
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
snake_case_ : Dict = '''gelu_new'''
super().__init__(
pad_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ , )
class _UpperCAmelCase ( lowerCAmelCase__):
@property
def _snake_case ( self : List[Any] ):
snake_case_ : Any = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
snake_case_ : Optional[Any] = '''past_encoder_sequence + sequence'''
snake_case_ : List[str] = {0: '''batch'''}
snake_case_ : Tuple = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
snake_case_ : Dict = {0: '''batch''', 1: '''decoder_sequence'''}
snake_case_ : str = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(lowercase_ , direction='''inputs''' )
return common_inputs
@property
def _snake_case ( self : Dict ):
return 13
| 155
|
"""simple docstring"""
from collections.abc import Generator
def __lowercase ( ):
snake_case_, snake_case_ : List[str] = 0, 1
while True:
snake_case_, snake_case_ : List[str] = b, a + b
yield b
def __lowercase ( _a = 1_000 ):
snake_case_ : Tuple = 1
snake_case_ : List[str] = fibonacci_generator()
while len(str(next(_a ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 155
| 1
|
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
def a ( A__ : Tuple ) -> int:
"""simple docstring"""
_lowercase =OrderedDict()
for key, value in state_dict.items():
if key.startswith('module.encoder' ):
_lowercase =key.replace('module.encoder' , 'glpn.encoder' )
if key.startswith('module.decoder' ):
_lowercase =key.replace('module.decoder' , 'decoder.stages' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_lowercase =key[key.find('patch_embed' ) + len('patch_embed' )]
_lowercase =key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(A__ )-1}''' )
if "norm" in key:
_lowercase =key.replace('norm' , 'layer_norm' )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_lowercase =key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )]
_lowercase =key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(A__ )-1}''' )
if "layer_norm1" in key:
_lowercase =key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
_lowercase =key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
_lowercase =key[key.find('block' ) + len('block' )]
_lowercase =key.replace(F'''block{idx}''' , F'''block.{int(A__ )-1}''' )
if "attn.q" in key:
_lowercase =key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
_lowercase =key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
_lowercase =key.replace('attn' , 'attention.self' )
if "fc1" in key:
_lowercase =key.replace('fc1' , 'dense1' )
if "fc2" in key:
_lowercase =key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
_lowercase =key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
_lowercase =key.replace('linear_fuse.conv' , 'linear_fuse' )
_lowercase =key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_lowercase =key[key.find('linear_c' ) + len('linear_c' )]
_lowercase =key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(A__ )-1}''' )
if "bot_conv" in key:
_lowercase =key.replace('bot_conv' , '0.convolution' )
if "skip_conv1" in key:
_lowercase =key.replace('skip_conv1' , '1.convolution' )
if "skip_conv2" in key:
_lowercase =key.replace('skip_conv2' , '2.convolution' )
if "fusion1" in key:
_lowercase =key.replace('fusion1' , '1.fusion' )
if "fusion2" in key:
_lowercase =key.replace('fusion2' , '2.fusion' )
if "fusion3" in key:
_lowercase =key.replace('fusion3' , '3.fusion' )
if "fusion" in key and "conv" in key:
_lowercase =key.replace('conv' , 'convolutional_layer' )
if key.startswith('module.last_layer_depth' ):
_lowercase =key.replace('module.last_layer_depth' , 'head.head' )
_lowercase =value
return new_state_dict
def a ( A__ : Union[str, Any] , A__ : Any ) -> List[Any]:
"""simple docstring"""
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_lowercase =state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' )
_lowercase =state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
_lowercase =kv_weight[
: config.hidden_sizes[i], :
]
_lowercase =kv_bias[: config.hidden_sizes[i]]
_lowercase =kv_weight[
config.hidden_sizes[i] :, :
]
_lowercase =kv_bias[config.hidden_sizes[i] :]
def a ( ) -> List[str]:
"""simple docstring"""
_lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg'
_lowercase =Image.open(requests.get(A__ , stream=A__ ).raw )
return image
@torch.no_grad()
def a ( A__ : List[str] , A__ : Optional[Any] , A__ : str=False , A__ : str=None ) -> List[str]:
"""simple docstring"""
_lowercase =GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
_lowercase =GLPNImageProcessor()
# prepare image
_lowercase =prepare_img()
_lowercase =image_processor(images=A__ , return_tensors='pt' ).pixel_values
logger.info('Converting model...' )
# load original state dict
_lowercase =torch.load(A__ , map_location=torch.device('cpu' ) )
# rename keys
_lowercase =rename_keys(A__ )
# key and value matrices need special treatment
read_in_k_v(A__ , A__ )
# create HuggingFace model and load state dict
_lowercase =GLPNForDepthEstimation(A__ )
model.load_state_dict(A__ )
model.eval()
# forward pass
_lowercase =model(A__ )
_lowercase =outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_lowercase =torch.tensor(
[[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] )
elif "kitti" in model_name:
_lowercase =torch.tensor(
[[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] )
else:
raise ValueError(F'''Unknown model name: {model_name}''' )
_lowercase =torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] , A__ , atol=1e-4 )
print('Looks ok!' )
# finally, push to hub if required
if push_to_hub:
logger.info('Pushing model and image processor to the hub...' )
model.push_to_hub(
repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=A__ , )
image_processor.push_to_hub(
repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=A__ , )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
lowercase_ = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 205
|
import os
def a ( ) -> Any:
"""simple docstring"""
with open(os.path.dirname(A__ ) + '/p022_names.txt' ) as file:
_lowercase =str(file.readlines()[0] )
_lowercase =names.replace('"' , '' ).split(',' )
names.sort()
_lowercase =0
_lowercase =0
for i, name in enumerate(A__ ):
for letter in name:
name_score += ord(A__ ) - 64
total_score += (i + 1) * name_score
_lowercase =0
return total_score
if __name__ == "__main__":
print(solution())
| 205
| 1
|
import numpy as np
def UpperCamelCase ( snake_case__ : str , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Dict ) -> Tuple:
UpperCamelCase : int = int(np.ceil((x_end - xa) / h ) )
UpperCamelCase : Any = np.zeros((n + 1,) )
UpperCamelCase : List[str] = ya
UpperCamelCase : Optional[int] = xa
for k in range(snake_case__ ):
UpperCamelCase : Optional[int] = f(snake_case__ , y[k] )
UpperCamelCase : Optional[int] = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
UpperCamelCase : List[str] = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
UpperCamelCase : Union[str, Any] = f(x + h , y[k] + h * ka )
UpperCamelCase : str = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 369
|
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
UpperCamelCase : List[str] = jnp.ones((batch_size, length) ) / length
return scores
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Optional[Any] = None
UpperCamelCase : Optional[int] = 20
UpperCamelCase : Optional[Any] = self._get_uniform_logits(batch_size=2, length=SCREAMING_SNAKE_CASE_ )
# tweak scores to not be uniform anymore
UpperCamelCase : Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch
UpperCamelCase : Any = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch
# compute softmax
UpperCamelCase : List[str] = jax.nn.softmax(SCREAMING_SNAKE_CASE_, axis=-1 )
UpperCamelCase : List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 )
UpperCamelCase : int = FlaxTemperatureLogitsWarper(temperature=1.3 )
UpperCamelCase : Tuple = jax.nn.softmax(temp_dist_warper_sharper(SCREAMING_SNAKE_CASE_, scores.copy(), cur_len=SCREAMING_SNAKE_CASE_ ), axis=-1 )
UpperCamelCase : Any = jax.nn.softmax(temp_dist_warper_smoother(SCREAMING_SNAKE_CASE_, scores.copy(), cur_len=SCREAMING_SNAKE_CASE_ ), axis=-1 )
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1e-3 ) )
self.assertTrue(jnp.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1e-3 ) )
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max() )
self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min() )
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max() )
self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min() )
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Dict = None
UpperCamelCase : Any = 10
UpperCamelCase : Any = 2
# create ramp distribution
UpperCamelCase : List[Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :], (batch_size, vocab_size) ).copy()
UpperCamelCase : Tuple = ramp_logits[1:, : vocab_size // 2] + vocab_size
UpperCamelCase : Dict = FlaxTopKLogitsWarper(3 )
UpperCamelCase : Tuple = top_k_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0] ).tolist(), 7 * [True] + 3 * [False] )
self.assertListEqual(jnp.isinf(scores[1] ).tolist(), 2 * [True] + 3 * [False] + 5 * [True] )
# check special case
UpperCamelCase : Optional[int] = 5
UpperCamelCase : Optional[int] = FlaxTopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3 )
UpperCamelCase : Union[str, Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :], (batch_size, length) ).copy()
UpperCamelCase : List[str] = top_k_warp_safety_check(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist(), [2, 2] )
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : int = None
UpperCamelCase : List[str] = 10
UpperCamelCase : Optional[Any] = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
UpperCamelCase : Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) )
UpperCamelCase : Optional[Any] = FlaxTopPLogitsWarper(0.8 )
UpperCamelCase : int = np.exp(top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) )
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
UpperCamelCase : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# check edge cases with negative and extreme logits
UpperCamelCase : Optional[Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :], (batch_size, vocab_size) ).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
UpperCamelCase : Tuple = ramp_logits[1] * 1_00.0
# make sure at least 2 tokens are kept
UpperCamelCase : int = FlaxTopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0 )
UpperCamelCase : List[str] = top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist(), [3, 2] )
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : Union[str, Any] = 20
UpperCamelCase : Union[str, Any] = 4
UpperCamelCase : Optional[int] = 0
UpperCamelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=SCREAMING_SNAKE_CASE_ )
# check that min length is applied at length 5
UpperCamelCase : List[str] = ids_tensor((batch_size, 20), vocab_size=20 )
UpperCamelCase : Any = 5
UpperCamelCase : Tuple = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = min_dist_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float('inf' )] )
# check that min length is not applied anymore at length 15
UpperCamelCase : Any = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = 15
UpperCamelCase : str = min_dist_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() )
def snake_case_ ( self ) -> Dict:
UpperCamelCase : str = 20
UpperCamelCase : List[Any] = 4
UpperCamelCase : List[str] = 0
UpperCamelCase : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ )
# check that all scores are -inf except the bos_token_id score
UpperCamelCase : Any = ids_tensor((batch_size, 1), vocab_size=20 )
UpperCamelCase : List[Any] = 1
UpperCamelCase : Tuple = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0] ) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
UpperCamelCase : Dict = 3
UpperCamelCase : str = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() )
def snake_case_ ( self ) -> List[str]:
UpperCamelCase : Union[str, Any] = 20
UpperCamelCase : Optional[Any] = 4
UpperCamelCase : List[Any] = 0
UpperCamelCase : int = 5
UpperCamelCase : Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ )
# check that all scores are -inf except the eos_token_id when max_length is reached
UpperCamelCase : str = ids_tensor((batch_size, 4), vocab_size=20 )
UpperCamelCase : Tuple = 4
UpperCamelCase : Union[str, Any] = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() )
self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0] ) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
UpperCamelCase : str = 3
UpperCamelCase : List[Any] = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() )
def snake_case_ ( self ) -> int:
UpperCamelCase : int = 4
UpperCamelCase : Tuple = 10
UpperCamelCase : str = 15
UpperCamelCase : List[str] = 2
UpperCamelCase : Any = 1
UpperCamelCase : List[str] = 15
# dummy input_ids and scores
UpperCamelCase : Dict = ids_tensor((batch_size, sequence_length), SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = input_ids.copy()
UpperCamelCase : Any = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = scores.copy()
# instantiate all dist processors
UpperCamelCase : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 )
UpperCamelCase : Optional[Any] = FlaxTopKLogitsWarper(3 )
UpperCamelCase : Optional[int] = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
UpperCamelCase : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = 10
# no processor list
UpperCamelCase : Any = temp_dist_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = top_k_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = min_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = bos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = eos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
# with processor list
UpperCamelCase : List[str] = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
UpperCamelCase : Optional[Any] = processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
# scores should be equal
self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() )
def snake_case_ ( self ) -> int:
UpperCamelCase : Optional[Any] = 4
UpperCamelCase : Tuple = 10
UpperCamelCase : Union[str, Any] = 15
UpperCamelCase : Union[str, Any] = 2
UpperCamelCase : Optional[Any] = 1
UpperCamelCase : int = 15
# dummy input_ids and scores
UpperCamelCase : Dict = ids_tensor((batch_size, sequence_length), SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = input_ids.copy()
UpperCamelCase : Optional[int] = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = scores.copy()
# instantiate all dist processors
UpperCamelCase : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 )
UpperCamelCase : Optional[Any] = FlaxTopKLogitsWarper(3 )
UpperCamelCase : Union[str, Any] = FlaxTopPLogitsWarper(0.8 )
# instantiate all logits processors
UpperCamelCase : str = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = 10
# no processor list
def run_no_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = temp_dist_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = top_k_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = min_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = bos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = eos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
return scores
# with processor list
def run_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] )
UpperCamelCase : Union[str, Any] = processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ )
return scores
UpperCamelCase : Dict = jax.jit(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = jax.jit(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = jitted_run_no_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = jitted_run_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# scores should be equal
self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# input_ids should never be changed
self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() )
| 103
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
lowerCamelCase__ : List[str] = {
'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Union[str, Any] = [
'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST',
'GPTNeoForCausalLM',
'GPTNeoForQuestionAnswering',
'GPTNeoForSequenceClassification',
'GPTNeoForTokenClassification',
'GPTNeoModel',
'GPTNeoPreTrainedModel',
'load_tf_weights_in_gpt_neo',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Any = [
'FlaxGPTNeoForCausalLM',
'FlaxGPTNeoModel',
'FlaxGPTNeoPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
lowerCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 225
|
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
snake_case_ : list[list[int]] = []
snake_case_ : list[int] = []
snake_case_ : List[Any] = 0
snake_case_ : Union[str, Any] = sum(__a )
create_state_space_tree(__a , __a , __a , __a , __a , __a )
return result
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ):
if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum:
return
if sum(__a ) == max_sum:
result.append(__a )
return
for index in range(__a , len(__a ) ):
create_state_space_tree(
__a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , )
_SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2]
_SCREAMING_SNAKE_CASE = 9
_SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 327
| 0
|
"""simple docstring"""
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
_snake_case = HUGGINGFACE_HUB_CACHE
_snake_case = 'config.json'
_snake_case = 'diffusion_pytorch_model.bin'
_snake_case = 'diffusion_flax_model.msgpack'
_snake_case = 'model.onnx'
_snake_case = 'diffusion_pytorch_model.safetensors'
_snake_case = 'weights.pb'
_snake_case = 'https://huggingface.co'
_snake_case = default_cache_path
_snake_case = 'diffusers_modules'
_snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
_snake_case = ['fp16', 'non-ema']
_snake_case = '.self_attn'
| 324
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class UpperCamelCase ( unittest.TestCase ):
@property
def _lowercase ( self : Optional[int] ) -> Union[str, Any]:
torch.manual_seed(0 )
_a : List[str] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
def _lowercase ( self : Dict ) -> Dict:
_a : str = self.dummy_uncond_unet
_a : Optional[int] = KarrasVeScheduler()
_a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : int = torch.manual_seed(0 )
_a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images
_a : Tuple = torch.manual_seed(0 )
_a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0]
_a : int = image[0, -3:, -3:, -1]
_a : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class UpperCamelCase ( unittest.TestCase ):
def _lowercase ( self : Tuple ) -> List[str]:
_a : Optional[Any] = """google/ncsnpp-celebahq-256"""
_a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ )
_a : Dict = KarrasVeScheduler()
_a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
_a : Optional[int] = torch.manual_seed(0 )
_a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images
_a : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
_a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 324
| 1
|
def __a ( SCREAMING_SNAKE_CASE ) -> list:
'''simple docstring'''
for i in range(len(SCREAMING_SNAKE_CASE ) - 1 , 0 , -1 ):
__UpperCAmelCase = False
for j in range(SCREAMING_SNAKE_CASE , 0 , -1 ):
if unsorted[j] < unsorted[j - 1]:
__UpperCAmelCase , __UpperCAmelCase = unsorted[j - 1], unsorted[j]
__UpperCAmelCase = True
for j in range(SCREAMING_SNAKE_CASE ):
if unsorted[j] > unsorted[j + 1]:
__UpperCAmelCase , __UpperCAmelCase = unsorted[j + 1], unsorted[j]
__UpperCAmelCase = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
A_ : Dict = input('Enter numbers separated by a comma:\n').strip()
A_ : Tuple = [int(item) for item in user_input.split(',')]
print(F"""{cocktail_shaker_sort(unsorted) = }""")
| 333
|
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
A_ : Optional[Any] = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
A_ : Optional[Any] = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"""{len(upper_files)} files contain uppercase characters:""")
print('\n'.join(upper_files) + '\n')
A_ : Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"""{len(space_files)} files contain space characters:""")
print('\n'.join(space_files) + '\n')
A_ : str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"""{len(hyphen_files)} files contain hyphen characters:""")
print('\n'.join(hyphen_files) + '\n')
A_ : Optional[Any] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"""{len(nodir_files)} files are not in a directory:""")
print('\n'.join(nodir_files) + '\n')
A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 333
| 1
|
"""simple docstring"""
def a_ ( _lowercase = 100_0000 ):
_UpperCamelCase : Dict = 1
_UpperCamelCase : Optional[int] = 1
_UpperCamelCase : List[str] = {1: 1}
for inputa in range(2 , _lowercase ):
_UpperCamelCase : List[Any] = 0
_UpperCamelCase : List[str] = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
_UpperCamelCase : Tuple = (3 * number) + 1
counter += 1
if inputa not in counters:
_UpperCamelCase : List[str] = counter
if counter > pre_counter:
_UpperCamelCase : str = inputa
_UpperCamelCase : Optional[Any] = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 128
|
"""simple docstring"""
def a_ ( _lowercase , _lowercase ):
if discount_rate < 0:
raise ValueError('''Discount rate cannot be negative''' )
if not cash_flows:
raise ValueError('''Cash flows list cannot be empty''' )
_UpperCamelCase : Optional[int] = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowercase ) )
return round(_lowercase , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 128
| 1
|
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
UpperCAmelCase_ = 1.054_571_817E-34 # unit of ℏ : J * s
UpperCAmelCase_ = 3E8 # unit of c : m * s^-1
def lowerCamelCase__ ( A__ : float , A__ : float , A__ : float ):
'''simple docstring'''
if (force, area, distance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if force < 0:
raise ValueError("""Magnitude of force can not be negative""" )
if distance < 0:
raise ValueError("""Distance can not be negative""" )
if area < 0:
raise ValueError("""Area can not be negative""" )
if force == 0:
__lowerCamelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
__lowerCamelCase = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
__lowerCamelCase = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError("""One and only one argument must be 0""" )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12
|
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n'
def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ):
'''simple docstring'''
__lowerCamelCase = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__lowerCamelCase = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class lowerCamelCase__( __lowerCamelCase):
def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ):
super().__init__()
self.register_modules(
unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , )
__lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ):
if latents is None:
__lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ )
else:
if latents.shape != shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' )
__lowerCamelCase = latents.to(UpperCamelCase_ )
__lowerCamelCase = latents * scheduler.init_noise_sigma
return latents
def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
__lowerCamelCase = torch.device(F'cuda:{gpu_id}' )
__lowerCamelCase = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(UpperCamelCase_ , UpperCamelCase_ )
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ):
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
__lowerCamelCase = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__lowerCamelCase = None
for cpu_offloaded_model in [self.unet, self.movq]:
__lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ )
# We'll offload the last model manually.
__lowerCamelCase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCAmelCase__ ( self: int ):
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(UpperCamelCase_ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(UpperCamelCase_ )
def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ):
__lowerCamelCase = self._execution_device
__lowerCamelCase = guidance_scale > 1.0
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 )
__lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
__lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 )
__lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ )
__lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ )
self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ )
__lowerCamelCase = self.scheduler.timesteps
__lowerCamelCase = self.movq.config.latent_channels
__lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor )
# create initial latent
__lowerCamelCase = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , )
for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ):
# expand the latents if we are doing classifier free guidance
__lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint}
__lowerCamelCase = self.unet(
sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0]
if do_classifier_free_guidance:
__lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 )
__lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 )
__lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 )
__lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
__lowerCamelCase = self.scheduler.step(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0]
# post-processing
__lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
__lowerCamelCase = image * 0.5 + 0.5
__lowerCamelCase = image.clamp(0 , 1 )
__lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 12
| 1
|
"""simple docstring"""
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( a_ ):
__a = (UniPCMultistepScheduler,)
__a = (("num_inference_steps", 25),)
def lowercase ( self : str , **_lowerCamelCase : Dict ):
_snake_case = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''solver_type''': '''bh2''',
}
config.update(**_lowerCamelCase )
return config
def lowercase ( self : Optional[int] , _lowerCamelCase : Any=0 , **_lowerCamelCase : Optional[int] ):
_snake_case = dict(self.forward_default_kwargs )
_snake_case = kwargs.pop('''num_inference_steps''' , _lowerCamelCase )
_snake_case = self.dummy_sample
_snake_case = 0.1 * sample
_snake_case = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
_snake_case = self.get_scheduler_config(**_lowerCamelCase )
_snake_case = scheduler_class(**_lowerCamelCase )
scheduler.set_timesteps(_lowerCamelCase )
# copy over dummy past residuals
_snake_case = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCamelCase )
_snake_case = scheduler_class.from_pretrained(_lowerCamelCase )
new_scheduler.set_timesteps(_lowerCamelCase )
# copy over dummy past residuals
_snake_case = dummy_past_residuals[: new_scheduler.config.solver_order]
_snake_case , _snake_case = sample, sample
for t in range(_lowerCamelCase , time_step + scheduler.config.solver_order + 1 ):
_snake_case = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
_snake_case = new_scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def lowercase ( self : Dict , _lowerCamelCase : List[Any]=0 , **_lowerCamelCase : str ):
_snake_case = dict(self.forward_default_kwargs )
_snake_case = kwargs.pop('''num_inference_steps''' , _lowerCamelCase )
_snake_case = self.dummy_sample
_snake_case = 0.1 * sample
_snake_case = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
_snake_case = self.get_scheduler_config()
_snake_case = scheduler_class(**_lowerCamelCase )
scheduler.set_timesteps(_lowerCamelCase )
# copy over dummy past residuals (must be after setting timesteps)
_snake_case = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowerCamelCase )
_snake_case = scheduler_class.from_pretrained(_lowerCamelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_lowerCamelCase )
# copy over dummy past residual (must be after setting timesteps)
_snake_case = dummy_past_residuals[: new_scheduler.config.solver_order]
_snake_case = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
_snake_case = new_scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def lowercase ( self : Optional[Any] , _lowerCamelCase : Any=None , **_lowerCamelCase : str ):
if scheduler is None:
_snake_case = self.scheduler_classes[0]
_snake_case = self.get_scheduler_config(**_lowerCamelCase )
_snake_case = scheduler_class(**_lowerCamelCase )
_snake_case = self.scheduler_classes[0]
_snake_case = self.get_scheduler_config(**_lowerCamelCase )
_snake_case = scheduler_class(**_lowerCamelCase )
_snake_case = 10
_snake_case = self.dummy_model()
_snake_case = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCamelCase )
for i, t in enumerate(scheduler.timesteps ):
_snake_case = model(_lowerCamelCase , _lowerCamelCase )
_snake_case = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample
return sample
def lowercase ( self : Any ):
_snake_case = dict(self.forward_default_kwargs )
_snake_case = kwargs.pop('''num_inference_steps''' , _lowerCamelCase )
for scheduler_class in self.scheduler_classes:
_snake_case = self.get_scheduler_config()
_snake_case = scheduler_class(**_lowerCamelCase )
_snake_case = self.dummy_sample
_snake_case = 0.1 * sample
if num_inference_steps is not None and hasattr(_lowerCamelCase , '''set_timesteps''' ):
scheduler.set_timesteps(_lowerCamelCase )
elif num_inference_steps is not None and not hasattr(_lowerCamelCase , '''set_timesteps''' ):
_snake_case = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_snake_case = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
_snake_case = dummy_past_residuals[: scheduler.config.solver_order]
_snake_case = scheduler.timesteps[5]
_snake_case = scheduler.timesteps[6]
_snake_case = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
_snake_case = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowercase ( self : Any ):
_snake_case = UniPCMultistepScheduler(**self.get_scheduler_config() )
_snake_case = self.full_loop(scheduler=_lowerCamelCase )
_snake_case = torch.mean(torch.abs(_lowerCamelCase ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3
_snake_case = DPMSolverSinglestepScheduler.from_config(scheduler.config )
_snake_case = DEISMultistepScheduler.from_config(scheduler.config )
_snake_case = DPMSolverMultistepScheduler.from_config(scheduler.config )
_snake_case = UniPCMultistepScheduler.from_config(scheduler.config )
_snake_case = self.full_loop(scheduler=_lowerCamelCase )
_snake_case = torch.mean(torch.abs(_lowerCamelCase ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3
def lowercase ( self : Union[str, Any] ):
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCamelCase )
def lowercase ( self : Any ):
self.check_over_configs(thresholding=_lowerCamelCase )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , solver_order=_lowerCamelCase , solver_type=_lowerCamelCase , )
def lowercase ( self : int ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCamelCase )
def lowercase ( self : List[str] ):
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_lowerCamelCase , solver_type=_lowerCamelCase , prediction_type=_lowerCamelCase , )
_snake_case = self.full_loop(
solver_order=_lowerCamelCase , solver_type=_lowerCamelCase , prediction_type=_lowerCamelCase , )
assert not torch.isnan(_lowerCamelCase ).any(), "Samples have nan numbers"
def lowercase ( self : str ):
self.check_over_configs(lower_order_final=_lowerCamelCase )
self.check_over_configs(lower_order_final=_lowerCamelCase )
def lowercase ( self : List[str] ):
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_lowerCamelCase , time_step=0 )
def lowercase ( self : str ):
_snake_case = self.full_loop()
_snake_case = torch.mean(torch.abs(_lowerCamelCase ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3
def lowercase ( self : Tuple ):
_snake_case = self.full_loop(prediction_type='''v_prediction''' )
_snake_case = torch.mean(torch.abs(_lowerCamelCase ) )
assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3
def lowercase ( self : Union[str, Any] ):
_snake_case = self.scheduler_classes[0]
_snake_case = self.get_scheduler_config(thresholding=_lowerCamelCase , dynamic_thresholding_ratio=0 )
_snake_case = scheduler_class(**_lowerCamelCase )
_snake_case = 10
_snake_case = self.dummy_model()
_snake_case = self.dummy_sample_deter.half()
scheduler.set_timesteps(_lowerCamelCase )
for i, t in enumerate(scheduler.timesteps ):
_snake_case = model(_lowerCamelCase , _lowerCamelCase )
_snake_case = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample
assert sample.dtype == torch.floataa
def lowercase ( self : Union[str, Any] , **_lowerCamelCase : Any ):
for scheduler_class in self.scheduler_classes:
_snake_case = self.get_scheduler_config(**_lowerCamelCase )
_snake_case = scheduler_class(**_lowerCamelCase )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 371
|
"""simple docstring"""
import os
import sys
import unittest
UpperCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
UpperCAmelCase__ = os.path.join(git_repo_path, 'src', 'diffusers')
class lowerCAmelCase__ ( unittest.TestCase ):
def lowercase ( self : Any ):
_snake_case = find_backend(''' if not is_torch_available():''' )
self.assertEqual(_lowerCamelCase , '''torch''' )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
_snake_case = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' )
self.assertEqual(_lowerCamelCase , '''torch_and_transformers''' )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
_snake_case = find_backend(
''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' )
self.assertEqual(_lowerCamelCase , '''torch_and_transformers_and_onnx''' )
def lowercase ( self : List[str] ):
_snake_case = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('''torch''' , _lowerCamelCase )
self.assertIn('''torch_and_transformers''' , _lowerCamelCase )
self.assertIn('''flax_and_transformers''' , _lowerCamelCase )
self.assertIn('''torch_and_transformers_and_onnx''' , _lowerCamelCase )
# Likewise, we can't assert on the exact content of a key
self.assertIn('''UNet2DModel''' , objects['''torch'''] )
self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] )
self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] )
self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] )
self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] )
self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] )
def lowercase ( self : List[str] ):
_snake_case = create_dummy_object('''CONSTANT''' , '''\'torch\'''' )
self.assertEqual(_lowerCamelCase , '''\nCONSTANT = None\n''' )
_snake_case = create_dummy_object('''function''' , '''\'torch\'''' )
self.assertEqual(
_lowerCamelCase , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' )
_snake_case = '''
class FakeClass(metaclass=DummyObject):
_backends = \'torch\'
def __init__(self, *args, **kwargs):
requires_backends(self, \'torch\')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
'''
_snake_case = create_dummy_object('''FakeClass''' , '''\'torch\'''' )
self.assertEqual(_lowerCamelCase , _lowerCamelCase )
def lowercase ( self : str ):
_snake_case = '''# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, ["torch"])
class FakeClass(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
'''
_snake_case = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} )
self.assertEqual(dummy_files['''torch'''] , _lowerCamelCase )
| 40
| 0
|
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''')
lowerCAmelCase_ = logging.getLogger(__name__)
@dataclass
class __lowerCAmelCase :
lowerCamelCase_ : Optional[int] = field(
default=128, metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
}, )
lowerCamelCase_ : bool = field(
default=_a, metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} )
lowerCamelCase_ : bool = field(
default=_a, metadata={
'''help''': (
'''Whether to pad all samples to `max_seq_length`. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch.'''
)
}, )
lowerCamelCase_ : Optional[int] = field(
default=_a, metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
}, )
lowerCamelCase_ : Optional[int] = field(
default=_a, metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
}, )
lowerCamelCase_ : Optional[int] = field(
default=_a, metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of prediction examples to this '''
'''value if set.'''
)
}, )
@dataclass
class __lowerCAmelCase :
lowerCamelCase_ : str = field(
default=_a, metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
lowerCamelCase_ : str = field(
default=_a, metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} )
lowerCamelCase_ : Optional[str] = field(
default=_a, metadata={'''help''': '''Train language if it is different from the evaluation language.'''} )
lowerCamelCase_ : Optional[str] = field(
default=_a, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
lowerCamelCase_ : Optional[str] = field(
default=_a, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
lowerCamelCase_ : Optional[str] = field(
default=_a, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, )
lowerCamelCase_ : Optional[bool] = field(
default=_a, metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''}, )
lowerCamelCase_ : bool = field(
default=_a, metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''}, )
lowerCamelCase_ : str = field(
default='''main''', metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''}, )
lowerCamelCase_ : bool = field(
default=_a, metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
}, )
lowerCamelCase_ : bool = field(
default=_a, metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''}, )
def lowerCamelCase_ ( ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
snake_case_ , snake_case_ , snake_case_ : Optional[int] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_xnli''' , _UpperCamelCase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
snake_case_ : Dict = training_args.get_process_log_level()
logger.setLevel(_UpperCamelCase )
datasets.utils.logging.set_verbosity(_UpperCamelCase )
transformers.utils.logging.set_verbosity(_UpperCamelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(f'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
snake_case_ : Optional[int] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
snake_case_ : List[str] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
snake_case_ : Union[str, Any] = load_dataset(
'''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
snake_case_ : Union[str, Any] = load_dataset(
'''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
snake_case_ : Optional[Any] = train_dataset.features['''label'''].names
if training_args.do_eval:
snake_case_ : str = load_dataset(
'''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
snake_case_ : Union[str, Any] = eval_dataset.features['''label'''].names
if training_args.do_predict:
snake_case_ : Dict = load_dataset(
'''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
snake_case_ : str = predict_dataset.features['''label'''].names
# Labels
snake_case_ : Optional[Any] = len(_UpperCamelCase )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ : Optional[int] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCamelCase , idalabel={str(_UpperCamelCase ): label for i, label in enumerate(_UpperCamelCase )} , labelaid={label: i for i, label in enumerate(_UpperCamelCase )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
snake_case_ : int = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
snake_case_ : Dict = '''max_length'''
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
snake_case_ : Any = False
def preprocess_function(_UpperCamelCase ):
# Tokenize the texts
return tokenizer(
examples['''premise'''] , examples['''hypothesis'''] , padding=_UpperCamelCase , max_length=data_args.max_seq_length , truncation=_UpperCamelCase , )
if training_args.do_train:
if data_args.max_train_samples is not None:
snake_case_ : int = min(len(_UpperCamelCase ) , data_args.max_train_samples )
snake_case_ : Tuple = train_dataset.select(range(_UpperCamelCase ) )
with training_args.main_process_first(desc='''train dataset map pre-processing''' ):
snake_case_ : str = train_dataset.map(
_UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , )
# Log a few random samples from the training set:
for index in random.sample(range(len(_UpperCamelCase ) ) , 3 ):
logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
snake_case_ : Tuple = min(len(_UpperCamelCase ) , data_args.max_eval_samples )
snake_case_ : Union[str, Any] = eval_dataset.select(range(_UpperCamelCase ) )
with training_args.main_process_first(desc='''validation dataset map pre-processing''' ):
snake_case_ : Optional[Any] = eval_dataset.map(
_UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
snake_case_ : List[str] = min(len(_UpperCamelCase ) , data_args.max_predict_samples )
snake_case_ : Any = predict_dataset.select(range(_UpperCamelCase ) )
with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ):
snake_case_ : List[Any] = predict_dataset.map(
_UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , )
# Get the metric function
snake_case_ : int = evaluate.load('''xnli''' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(_UpperCamelCase ):
snake_case_ : Optional[Any] = p.predictions[0] if isinstance(p.predictions , _UpperCamelCase ) else p.predictions
snake_case_ : Optional[Any] = np.argmax(_UpperCamelCase , axis=1 )
return metric.compute(predictions=_UpperCamelCase , references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
snake_case_ : Dict = default_data_collator
elif training_args.fpaa:
snake_case_ : Optional[Any] = DataCollatorWithPadding(_UpperCamelCase , pad_to_multiple_of=8 )
else:
snake_case_ : str = None
# Initialize our Trainer
snake_case_ : Union[str, Any] = Trainer(
model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , )
# Training
if training_args.do_train:
snake_case_ : Union[str, Any] = None
if training_args.resume_from_checkpoint is not None:
snake_case_ : Optional[Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
snake_case_ : List[Any] = last_checkpoint
snake_case_ : Any = trainer.train(resume_from_checkpoint=_UpperCamelCase )
snake_case_ : Union[str, Any] = train_result.metrics
snake_case_ : Dict = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase )
)
snake_case_ : int = min(_UpperCamelCase , len(_UpperCamelCase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''' , _UpperCamelCase )
trainer.save_metrics('''train''' , _UpperCamelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
snake_case_ : Optional[Any] = trainer.evaluate(eval_dataset=_UpperCamelCase )
snake_case_ : List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCamelCase )
snake_case_ : Any = min(_UpperCamelCase , len(_UpperCamelCase ) )
trainer.log_metrics('''eval''' , _UpperCamelCase )
trainer.save_metrics('''eval''' , _UpperCamelCase )
# Prediction
if training_args.do_predict:
logger.info('''*** Predict ***''' )
snake_case_ , snake_case_ , snake_case_ : List[Any] = trainer.predict(_UpperCamelCase , metric_key_prefix='''predict''' )
snake_case_ : str = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_UpperCamelCase )
)
snake_case_ : Optional[int] = min(_UpperCamelCase , len(_UpperCamelCase ) )
trainer.log_metrics('''predict''' , _UpperCamelCase )
trainer.save_metrics('''predict''' , _UpperCamelCase )
snake_case_ : Dict = np.argmax(_UpperCamelCase , axis=1 )
snake_case_ : Dict = os.path.join(training_args.output_dir , '''predictions.txt''' )
if trainer.is_world_process_zero():
with open(_UpperCamelCase , '''w''' ) as writer:
writer.write('''index\tprediction\n''' )
for index, item in enumerate(_UpperCamelCase ):
snake_case_ : Dict = label_list[item]
writer.write(f'''{index}\t{item}\n''' )
if __name__ == "__main__":
main()
| 279
|
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=18 , __magic_name__=30 , __magic_name__=400 , __magic_name__=True , __magic_name__=32 , __magic_name__=True , ) -> Dict:
'''simple docstring'''
snake_case_ : Tuple = parent
snake_case_ : Union[str, Any] = batch_size
snake_case_ : Union[str, Any] = num_channels
snake_case_ : Optional[Any] = image_size
snake_case_ : int = min_resolution
snake_case_ : Any = max_resolution
snake_case_ : Tuple = do_resize
snake_case_ : str = size_divisor
snake_case_ : Optional[Any] = do_rescale
def lowerCamelCase (self ) -> Dict:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class __lowerCAmelCase ( _a, unittest.TestCase ):
lowerCamelCase_ : Optional[Any] = GLPNImageProcessor if is_vision_available() else None
def lowerCamelCase (self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : str = GLPNImageProcessingTester(self )
@property
def lowerCamelCase (self ) -> Union[str, Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase (self ) -> List[str]:
'''simple docstring'''
snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__magic_name__ , '''do_resize''' ) )
self.assertTrue(hasattr(__magic_name__ , '''size_divisor''' ) )
self.assertTrue(hasattr(__magic_name__ , '''resample''' ) )
self.assertTrue(hasattr(__magic_name__ , '''do_rescale''' ) )
def lowerCamelCase (self ) -> List[Any]:
'''simple docstring'''
pass
def lowerCamelCase (self ) -> int:
'''simple docstring'''
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def lowerCamelCase (self ) -> Dict:
'''simple docstring'''
snake_case_ : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
snake_case_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def lowerCamelCase (self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 279
| 1
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
__UpperCamelCase : List[str] = logging.get_logger(__name__)
__UpperCamelCase : Tuple = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCamelCase : Any = {
'''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''},
'''tokenizer_file''': {
'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json'''
},
}
__UpperCamelCase : Optional[Any] = {'''mobilebert-uncased''': 5_1_2}
__UpperCamelCase : Optional[Any] = {}
class SCREAMING_SNAKE_CASE ( a_ ):
"""simple docstring"""
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_INIT_CONFIGURATION
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = MobileBertTokenizer
def __init__( self : Optional[int] ,lowercase_ : Union[str, Any]=None ,lowercase_ : List[str]=None ,lowercase_ : List[str]=True ,lowercase_ : Optional[Any]="[UNK]" ,lowercase_ : Any="[SEP]" ,lowercase_ : Dict="[PAD]" ,lowercase_ : Optional[Any]="[CLS]" ,lowercase_ : List[Any]="[MASK]" ,lowercase_ : str=True ,lowercase_ : Any=None ,**lowercase_ : List[str] ,):
super().__init__(
lowercase_ ,tokenizer_file=lowercase_ ,do_lower_case=lowercase_ ,unk_token=lowercase_ ,sep_token=lowercase_ ,pad_token=lowercase_ ,cls_token=lowercase_ ,mask_token=lowercase_ ,tokenize_chinese_chars=lowercase_ ,strip_accents=lowercase_ ,**lowercase_ ,)
lowerCAmelCase__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' ,lowercase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' ,lowercase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' ,lowercase_ ) != tokenize_chinese_chars
):
lowerCAmelCase__ : List[Any] = getattr(lowercase_ ,normalizer_state.pop('''type''' ) )
lowerCAmelCase__ : List[str] = do_lower_case
lowerCAmelCase__ : Tuple = strip_accents
lowerCAmelCase__ : List[Any] = tokenize_chinese_chars
lowerCAmelCase__ : str = normalizer_class(**lowercase_ )
lowerCAmelCase__ : Optional[Any] = do_lower_case
def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Dict ,lowercase_ : Optional[Any]=None ):
lowerCAmelCase__ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self : List[Any] ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ):
lowerCAmelCase__ : Optional[int] = [self.sep_token_id]
lowerCAmelCase__ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self : Any ,lowercase_ : str ,lowercase_ : Optional[str] = None ):
lowerCAmelCase__ : Optional[Any] = self._tokenizer.model.save(lowercase_ ,name=lowercase_ )
return tuple(lowercase_ )
| 350
|
"""simple docstring"""
from __future__ import annotations
__UpperCamelCase : Any = 1.6021e-19 # units = C
def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , ):
if (conductivity, electron_conc, mobility).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif conductivity < 0:
raise ValueError('''Conductivity cannot be negative''' )
elif electron_conc < 0:
raise ValueError('''Electron concentration cannot be negative''' )
elif mobility < 0:
raise ValueError('''mobility cannot be negative''' )
elif conductivity == 0:
return (
"conductivity",
mobility * electron_conc * ELECTRON_CHARGE,
)
elif electron_conc == 0:
return (
"electron_conc",
conductivity / (mobility * ELECTRON_CHARGE),
)
else:
return (
"mobility",
conductivity / (electron_conc * ELECTRON_CHARGE),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 74
| 0
|
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionPipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class A__ ( _snake_case , unittest.TestCase ):
lowercase = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"
def snake_case_ ( self , UpperCamelCase__=0 ) -> Tuple:
'''simple docstring'''
A_ = np.random.RandomState(UpperCamelCase__ )
A_ = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def snake_case_ ( self ) -> Optional[Any]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ) -> List[str]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
A_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ) -> List[str]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
A_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ) -> Optional[int]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
A_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ) -> List[Any]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
A_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ) -> List[str]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
A_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = pipe(**UpperCamelCase__ ).images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
A_ = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ) -> List[Any]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = 3 * [inputs["""prompt"""]]
# forward
A_ = pipe(**UpperCamelCase__ )
A_ = output.images[0, -3:, -3:, -1]
A_ = self.get_dummy_inputs()
A_ = 3 * [inputs.pop("""prompt""" )]
A_ = pipe.tokenizer(
UpperCamelCase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="""np""" , )
A_ = text_inputs["""input_ids"""]
A_ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0]
A_ = prompt_embeds
# forward
A_ = pipe(**UpperCamelCase__ )
A_ = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
def snake_case_ ( self ) -> List[str]:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = self.get_dummy_inputs()
A_ = 3 * ["""this is a negative prompt"""]
A_ = negative_prompt
A_ = 3 * [inputs["""prompt"""]]
# forward
A_ = pipe(**UpperCamelCase__ )
A_ = output.images[0, -3:, -3:, -1]
A_ = self.get_dummy_inputs()
A_ = 3 * [inputs.pop("""prompt""" )]
A_ = []
for p in [prompt, negative_prompt]:
A_ = pipe.tokenizer(
UpperCamelCase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="""np""" , )
A_ = text_inputs["""input_ids"""]
embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] )
A_ , A_ = embeds
# forward
A_ = pipe(**UpperCamelCase__ )
A_ = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
@nightly
@require_onnxruntime
@require_torch_gpu
class A__ ( unittest.TestCase ):
@property
def snake_case_ ( self ) -> List[Any]:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def snake_case_ ( self ) -> Union[str, Any]:
'''simple docstring'''
A_ = ort.SessionOptions()
A_ = False
return options
def snake_case_ ( self ) -> Optional[int]:
'''simple docstring'''
# using the PNDM scheduler by default
A_ = OnnxStableDiffusionPipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = """A painting of a squirrel eating a burger"""
np.random.seed(0 )
A_ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" )
A_ = output.images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
A_ = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def snake_case_ ( self ) -> Any:
'''simple docstring'''
A_ = DDIMScheduler.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" )
A_ = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = """open neural network exchange"""
A_ = np.random.RandomState(0 )
A_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="""np""" )
A_ = output.images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
A_ = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def snake_case_ ( self ) -> Dict:
'''simple docstring'''
A_ = LMSDiscreteScheduler.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" )
A_ = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = """open neural network exchange"""
A_ = np.random.RandomState(0 )
A_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="""np""" )
A_ = output.images
A_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
A_ = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def snake_case_ ( self ) -> Optional[Any]:
'''simple docstring'''
A_ = 0
def test_callback_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None:
A_ = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
assert latents.shape == (1, 4, 64, 64)
A_ = latents[0, -3:, -3:, -1]
A_ = np.array(
[-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3
elif step == 5:
assert latents.shape == (1, 4, 64, 64)
A_ = latents[0, -3:, -3:, -1]
A_ = np.array(
[-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3
A_ = False
A_ = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
A_ = """Andromeda galaxy in a bottle"""
A_ = np.random.RandomState(0 )
pipe(
prompt=UpperCamelCase__ , num_inference_steps=5 , guidance_scale=7.5 , generator=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 , )
assert test_callback_fn.has_been_called
assert number_of_steps == 6
def snake_case_ ( self ) -> Tuple:
'''simple docstring'''
A_ = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
assert isinstance(UpperCamelCase__ , UpperCamelCase__ )
assert pipe.safety_checker is None
A_ = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(UpperCamelCase__ )
A_ = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
A_ = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
| 162
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCamelCase = {
'''configuration_clap''': [
'''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ClapAudioConfig''',
'''ClapConfig''',
'''ClapTextConfig''',
],
'''processing_clap''': ['''ClapProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
'''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ClapModel''',
'''ClapPreTrainedModel''',
'''ClapTextModel''',
'''ClapTextModelWithProjection''',
'''ClapAudioModel''',
'''ClapAudioModelWithProjection''',
]
__lowerCamelCase = ['''ClapFeatureExtractor''']
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 162
| 1
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
lowerCAmelCase = logging.get_logger(__name__)
class _a ( UpperCamelCase__ ):
def __init__( self: Any , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Any ) -> List[str]:
"""simple docstring"""
warnings.warn(
'''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use CLIPImageProcessor instead.''' , _a , )
super().__init__(*_a , **_a )
| 363
|
from collections.abc import Sequence
from queue import Queue
class _a :
def __init__( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Dict=None ) -> Tuple:
"""simple docstring"""
lowercase__ = start
lowercase__ = end
lowercase__ = val
lowercase__ = (start + end) // 2
lowercase__ = left
lowercase__ = right
def __repr__( self: Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})'
class _a :
def __init__( self: Any , UpperCamelCase_: Sequence , UpperCamelCase_: Any ) -> List[str]:
"""simple docstring"""
lowercase__ = collection
lowercase__ = function
if self.collection:
lowercase__ = self._build_tree(0 , len(UpperCamelCase_ ) - 1 )
def lowerCamelCase_ ( self: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
self._update_tree(self.root , UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase_ ( self: str , UpperCamelCase_: int , UpperCamelCase_: List[str] ) -> Optional[Any]:
"""simple docstring"""
return self._query_range(self.root , UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: Dict ) -> str:
"""simple docstring"""
if start == end:
return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.collection[start] )
lowercase__ = (start + end) // 2
lowercase__ = self._build_tree(UpperCamelCase_ , UpperCamelCase_ )
lowercase__ = self._build_tree(mid + 1 , UpperCamelCase_ )
return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.fn(left.val , right.val ) , UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Dict , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] ) -> Dict:
"""simple docstring"""
if node.start == i and node.end == i:
lowercase__ = val
return
if i <= node.mid:
self._update_tree(node.left , UpperCamelCase_ , UpperCamelCase_ )
else:
self._update_tree(node.right , UpperCamelCase_ , UpperCamelCase_ )
lowercase__ = self.fn(node.left.val , node.right.val )
def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: Dict ) -> List[Any]:
"""simple docstring"""
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , UpperCamelCase_ , UpperCamelCase_ )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , UpperCamelCase_ , node.mid ) , self._query_range(node.right , node.mid + 1 , UpperCamelCase_ ) , )
else:
# range in right child tree
return self._query_range(node.right , UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase_ ( self: Optional[int] ) -> str:
"""simple docstring"""
if self.root is not None:
lowercase__ = Queue()
queue.put(self.root )
while not queue.empty():
lowercase__ = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print('*' * 50)
lowerCAmelCase = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 93
| 0
|
'''simple docstring'''
import math
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : int ) -> int:
_a : Any =len(_UpperCAmelCase )
_a : Tuple =int(math.floor(math.sqrt(_UpperCAmelCase ) ) )
_a : List[str] =0
while arr[min(_UpperCAmelCase ,_UpperCAmelCase ) - 1] < x:
_a : Dict =step
step += int(math.floor(math.sqrt(_UpperCAmelCase ) ) )
if prev >= n:
return -1
while arr[prev] < x:
_a : str =prev + 1
if prev == min(_UpperCAmelCase ,_UpperCAmelCase ):
return -1
if arr[prev] == x:
return prev
return -1
if __name__ == "__main__":
A__: Any = input('''Enter numbers separated by a comma:\n''').strip()
A__: Dict = [int(item) for item in user_input.split(''',''')]
A__: Dict = int(input('''Enter the number to be searched:\n'''))
A__: Any = jump_search(arr, x)
if res == -1:
print('''Number not found!''')
else:
print(F"Number {x} is at index {res}")
| 276
|
'''simple docstring'''
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
A__: Union[str, Any] = input('''Enter image url: ''').strip()
print(F"Downloading image from {url} ...")
A__: Tuple = BeautifulSoup(requests.get(url).content, '''html.parser''')
# The image URL is in the content field of the first meta tag with property og:image
A__: Union[str, Any] = soup.find('''meta''', {'''property''': '''og:image'''})['''content''']
A__: List[Any] = requests.get(image_url).content
A__: List[str] = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"
with open(file_name, '''wb''') as fp:
fp.write(image_data)
print(F"Done. Image saved to disk as {file_name}.")
| 276
| 1
|
"""simple docstring"""
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_torch_available():
import torch
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
__snake_case = logging.get_logger(__name__)
@dataclass
class _lowerCAmelCase ( snake_case_ ):
__UpperCAmelCase : Union[str, Any] = [
'''no_inference''',
'''no_cuda''',
'''no_tpu''',
'''no_speed''',
'''no_memory''',
'''no_env_print''',
'''no_multi_process''',
]
def __init__( self , **UpperCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
snake_case : str = deprecated_arg[3:]
setattr(self , UpperCamelCase__ , not kwargs.pop(UpperCamelCase__ ) )
logger.warning(
F'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or'
F' {positive_arg}={kwargs[positive_arg]}' )
snake_case : Union[str, Any] = kwargs.pop("torchscript" , self.torchscript )
snake_case : Optional[int] = kwargs.pop("torch_xla_tpu_print_metrics" , self.torch_xla_tpu_print_metrics )
snake_case : List[Any] = kwargs.pop("fp16_opt_level" , self.fpaa_opt_level )
super().__init__(**UpperCamelCase__ )
__UpperCAmelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Trace the models using torchscript'''} )
__UpperCAmelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} )
__UpperCAmelCase : str = field(
default='''O1''' , metadata={
'''help''': (
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. '''
'''See details at https://nvidia.github.io/apex/amp.html'''
)
} , )
@cached_property
def lowerCamelCase ( self ) -> Tuple["torch.device", int]:
'''simple docstring'''
requires_backends(self , ["torch"] )
logger.info("PyTorch: setting up devices" )
if not self.cuda:
snake_case : Optional[Any] = torch.device("cpu" )
snake_case : Optional[int] = 0
elif is_torch_tpu_available():
snake_case : Optional[int] = xm.xla_device()
snake_case : List[str] = 0
else:
snake_case : str = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
snake_case : List[str] = torch.cuda.device_count()
return device, n_gpu
@property
def lowerCamelCase ( self ) -> List[Any]:
'''simple docstring'''
return is_torch_tpu_available() and self.tpu
@property
def lowerCamelCase ( self ) -> int:
'''simple docstring'''
requires_backends(self , ["torch"] )
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def lowerCamelCase ( self ) -> "torch.device":
'''simple docstring'''
requires_backends(self , ["torch"] )
return self._setup_devices[0]
@property
def lowerCamelCase ( self ) -> Tuple:
'''simple docstring'''
requires_backends(self , ["torch"] )
return self._setup_devices[1]
@property
def lowerCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return self.n_gpu > 0
| 112
|
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
"""BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""",
# See all AltCLIP models at https://huggingface.co/models?filter=altclip
}
class _lowerCAmelCase ( snake_case_ ):
__UpperCAmelCase : Tuple = '''altclip_text_model'''
def __init__( self , UpperCamelCase__=25_0002 , UpperCamelCase__=1024 , UpperCamelCase__=24 , UpperCamelCase__=16 , UpperCamelCase__=4096 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=514 , UpperCamelCase__=1 , UpperCamelCase__=0.02 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-05 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=768 , **UpperCamelCase__ , ) -> Optional[int]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
snake_case : Any = vocab_size
snake_case : List[Any] = hidden_size
snake_case : Optional[int] = num_hidden_layers
snake_case : Optional[Any] = num_attention_heads
snake_case : Dict = hidden_act
snake_case : Dict = intermediate_size
snake_case : int = hidden_dropout_prob
snake_case : Optional[int] = attention_probs_dropout_prob
snake_case : Union[str, Any] = max_position_embeddings
snake_case : Optional[int] = type_vocab_size
snake_case : Dict = initializer_range
snake_case : int = initializer_factor
snake_case : Union[str, Any] = layer_norm_eps
snake_case : List[Any] = position_embedding_type
snake_case : Any = use_cache
snake_case : str = project_dim
class _lowerCAmelCase ( snake_case_ ):
__UpperCAmelCase : Tuple = '''altclip_vision_model'''
def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=3072 , UpperCamelCase__=512 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3 , UpperCamelCase__=224 , UpperCamelCase__=32 , UpperCamelCase__="quick_gelu" , UpperCamelCase__=1e-5 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=1.0 , **UpperCamelCase__ , ) -> str:
'''simple docstring'''
super().__init__(**UpperCamelCase__ )
snake_case : Optional[int] = hidden_size
snake_case : str = intermediate_size
snake_case : List[str] = projection_dim
snake_case : Optional[Any] = num_hidden_layers
snake_case : Optional[int] = num_attention_heads
snake_case : str = num_channels
snake_case : List[str] = patch_size
snake_case : List[Any] = image_size
snake_case : Union[str, Any] = initializer_range
snake_case : Optional[Any] = initializer_factor
snake_case : Any = attention_dropout
snake_case : Dict = layer_norm_eps
snake_case : List[str] = hidden_act
@classmethod
def lowerCamelCase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCamelCase__ )
snake_case ,snake_case : str = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ )
# get the vision config dict if we are loading from AltCLIPConfig
if config_dict.get("model_type" ) == "altclip":
snake_case : Optional[Any] = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ )
class _lowerCAmelCase ( snake_case_ ):
__UpperCAmelCase : str = '''altclip'''
__UpperCAmelCase : Optional[Any] = True
def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=2.6592 , **UpperCamelCase__ ) -> Any:
'''simple docstring'''
snake_case : List[str] = kwargs.pop("text_config_dict" , UpperCamelCase__ )
snake_case : Union[str, Any] = kwargs.pop("vision_config_dict" , UpperCamelCase__ )
super().__init__(**UpperCamelCase__ )
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
snake_case : List[str] = {}
# This is the complete result when using `text_config_dict`.
snake_case : Dict = AltCLIPTextConfig(**UpperCamelCase__ ).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
snake_case : Optional[Any] = (
F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. '
F'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
snake_case : Any = (
F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The '
F'value `text_config["{key}"]` will be overriden.'
)
logger.warning(UpperCamelCase__ )
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict )
if vision_config_dict is not None:
if vision_config is None:
snake_case : Union[str, Any] = {}
# This is the complete result when using `vision_config_dict`.
snake_case : int = AltCLIPVisionConfig(**UpperCamelCase__ ).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
snake_case : Optional[int] = {
str(UpperCamelCase__ ): value for key, value in _vision_config_dict["id2label"].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
snake_case : int = (
F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different '
F'values. The value `vision_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
snake_case : Optional[Any] = (
F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. '
F'The value `vision_config["{key}"]` will be overriden.'
)
logger.warning(UpperCamelCase__ )
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict )
if text_config is None:
snake_case : Optional[int] = {}
logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." )
if vision_config is None:
snake_case : Dict = {}
logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." )
snake_case : Dict = AltCLIPTextConfig(**UpperCamelCase__ )
snake_case : Tuple = AltCLIPVisionConfig(**UpperCamelCase__ )
snake_case : int = projection_dim
snake_case : List[str] = logit_scale_init_value
snake_case : int = 1.0
@classmethod
def lowerCamelCase ( cls , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase__ )
def lowerCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case : Tuple = copy.deepcopy(self.__dict__ )
snake_case : Optional[int] = self.text_config.to_dict()
snake_case : str = self.vision_config.to_dict()
snake_case : Optional[int] = self.__class__.model_type
return output
| 112
| 1
|
"""simple docstring"""
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
a_ = {
"""return_dict""": False,
"""output_hidden_states""": True,
"""output_attentions""": True,
"""torchscript""": True,
"""torch_dtype""": """float16""",
"""use_bfloat16""": True,
"""tf_legacy_loss""": True,
"""pruned_heads""": {"""a""": 1},
"""tie_word_embeddings""": False,
"""is_decoder""": True,
"""cross_attention_hidden_size""": 128,
"""add_cross_attention""": True,
"""tie_encoder_decoder""": True,
"""max_length""": 50,
"""min_length""": 3,
"""do_sample""": True,
"""early_stopping""": True,
"""num_beams""": 3,
"""num_beam_groups""": 3,
"""diversity_penalty""": 0.5,
"""temperature""": 2.0,
"""top_k""": 10,
"""top_p""": 0.7,
"""typical_p""": 0.2,
"""repetition_penalty""": 0.8,
"""length_penalty""": 0.8,
"""no_repeat_ngram_size""": 5,
"""encoder_no_repeat_ngram_size""": 5,
"""bad_words_ids""": [1, 2, 3],
"""num_return_sequences""": 3,
"""chunk_size_feed_forward""": 5,
"""output_scores""": True,
"""return_dict_in_generate""": True,
"""forced_bos_token_id""": 2,
"""forced_eos_token_id""": 3,
"""remove_invalid_values""": True,
"""architectures""": ["""BertModel"""],
"""finetuning_task""": """translation""",
"""id2label""": {0: """label"""},
"""label2id""": {"""label""": """0"""},
"""tokenizer_class""": """BertTokenizerFast""",
"""prefix""": """prefix""",
"""bos_token_id""": 6,
"""pad_token_id""": 7,
"""eos_token_id""": 8,
"""sep_token_id""": 9,
"""decoder_start_token_id""": 10,
"""exponential_decay_length_penalty""": (5, 1.01),
"""suppress_tokens""": [0, 1],
"""begin_suppress_tokens""": 2,
"""task_specific_params""": {"""translation""": """some_params"""},
"""problem_type""": """regression""",
}
@is_staging_test
class __snake_case ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def UpperCamelCase__( cls ):
'''simple docstring'''
__A : Any = TOKEN
HfFolder.save_token(UpperCamelCase__ )
@classmethod
def UpperCamelCase__( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id='''test-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-config''' )
except HTTPError:
pass
def UpperCamelCase__( self ):
'''simple docstring'''
__A : Optional[int] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub('''test-config''' , use_auth_token=self._token )
__A : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCamelCase__ , repo_id='''test-config''' , push_to_hub=UpperCamelCase__ , use_auth_token=self._token )
__A : Optional[int] = BertConfig.from_pretrained(F"""{USER}/test-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) )
def UpperCamelCase__( self ):
'''simple docstring'''
__A : Optional[int] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token )
__A : List[str] = BertConfig.from_pretrained('''valid_org/test-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCamelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=UpperCamelCase__ , use_auth_token=self._token )
__A : List[str] = BertConfig.from_pretrained('''valid_org/test-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) )
def UpperCamelCase__( self ):
'''simple docstring'''
CustomConfig.register_for_auto_class()
__A : List[str] = CustomConfig(attribute=42 )
config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} )
__A : List[Any] = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=UpperCamelCase__ )
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' )
self.assertEqual(new_config.attribute , 42 )
class __snake_case ( unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__( self ):
'''simple docstring'''
__A : Any = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
__A : Optional[Any] = c.n_embd + 1 # int
__A : Any = c.resid_pdrop + 1.0 # float
__A : List[Any] = not c.scale_attn_weights # bool
__A : List[Any] = c.summary_type + '''foo''' # str
c.update_from_string(
F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" )
self.assertEqual(UpperCamelCase__ , c.n_embd , '''mismatch for key: n_embd''' )
self.assertEqual(UpperCamelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' )
self.assertEqual(UpperCamelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' )
self.assertEqual(UpperCamelCase__ , c.summary_type , '''mismatch for key: summary_type''' )
def UpperCamelCase__( self ):
'''simple docstring'''
__A : str = PretrainedConfig()
__A : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
UpperCamelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] )
__A : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCamelCase__ , UpperCamelCase__ )]
if len(UpperCamelCase__ ) > 0:
raise ValueError(
'''The following keys are set with the default values in'''
''' `test_configuration_common.config_common_kwargs` pick another value for them:'''
F""" {', '.join(UpperCamelCase__ )}.""" )
def UpperCamelCase__( self ):
'''simple docstring'''
with self.assertRaises(UpperCamelCase__ ):
# config is in subfolder, the following should not work without specifying the subfolder
__A : Tuple = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' )
__A : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' )
self.assertIsNotNone(UpperCamelCase__ )
def UpperCamelCase__( self ):
'''simple docstring'''
__A : Dict = mock.Mock()
__A : int = 500
__A : List[str] = {}
__A : Dict = HTTPError
__A : Any = {}
# Download this model to make sure it's in the cache.
__A : str = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=UpperCamelCase__ ) as mock_head:
__A : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCamelCase__( self ):
'''simple docstring'''
__A : Dict = BertConfig.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' )
def UpperCamelCase__( self ):
'''simple docstring'''
__A : Dict = AutoConfig.from_pretrained('''bert-base-cased''' )
__A : int = ['''config.4.0.0.json''']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(UpperCamelCase__ )
__A : Dict = 2
json.dump(configuration.to_dict() , open(os.path.join(UpperCamelCase__ , '''config.4.0.0.json''' ) , '''w''' ) )
# This should pick the new configuration file as the version of Transformers is > 4.0.0
__A : Dict = AutoConfig.from_pretrained(UpperCamelCase__ )
self.assertEqual(new_configuration.hidden_size , 2 )
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
__A : str = ['''config.42.0.0.json''']
__A : Dict = 768
configuration.save_pretrained(UpperCamelCase__ )
shutil.move(os.path.join(UpperCamelCase__ , '''config.4.0.0.json''' ) , os.path.join(UpperCamelCase__ , '''config.42.0.0.json''' ) )
__A : Optional[int] = AutoConfig.from_pretrained(UpperCamelCase__ )
self.assertEqual(new_configuration.hidden_size , 768 )
def UpperCamelCase__( self ):
'''simple docstring'''
__A : int = '''hf-internal-testing/test-two-configs'''
import transformers as new_transformers
__A : List[Any] = '''v4.0.0'''
__A , __A : Dict = new_transformers.models.auto.AutoConfig.from_pretrained(
UpperCamelCase__ , return_unused_kwargs=UpperCamelCase__ )
self.assertEqual(new_configuration.hidden_size , 2 )
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(UpperCamelCase__ , {} )
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
__A : Any = '''v3.0.0'''
__A : Any = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCamelCase__ )
self.assertEqual(old_configuration.hidden_size , 768 )
| 179
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase = logging.get_logger(__name__)
__lowerCamelCase = {
'''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''',
}
class A__ ( _snake_case ):
lowercase = "roc_bert"
def __init__( self , UpperCamelCase__=30522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__=True , UpperCamelCase__=0 , UpperCamelCase__="absolute" , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=768 , UpperCamelCase__=910 , UpperCamelCase__=512 , UpperCamelCase__=24858 , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Tuple:
'''simple docstring'''
A_ = vocab_size
A_ = max_position_embeddings
A_ = hidden_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = type_vocab_size
A_ = layer_norm_eps
A_ = use_cache
A_ = enable_pronunciation
A_ = enable_shape
A_ = pronunciation_embed_dim
A_ = pronunciation_vocab_size
A_ = shape_embed_dim
A_ = shape_vocab_size
A_ = concat_input
A_ = position_embedding_type
A_ = classifier_dropout
super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ )
| 162
| 0
|
'''simple docstring'''
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
def __init__(self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , ):
A_ : str = size if size is not None else {'''height''': 18, '''width''': 18}
A_ : Any = parent
A_ : List[str] = batch_size
A_ : Optional[Any] = num_channels
A_ : List[str] = image_size
A_ : List[str] = min_resolution
A_ : Optional[int] = max_resolution
A_ : Optional[int] = do_resize
A_ : List[str] = size
A_ : Any = do_normalize
A_ : str = image_mean
A_ : Dict = image_std
def _a (self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
__SCREAMING_SNAKE_CASE : Tuple = DPTImageProcessor if is_vision_available() else None
def _a (self ):
A_ : Tuple = DPTImageProcessingTester(self )
@property
def _a (self ):
return self.image_processor_tester.prepare_image_processor_dict()
def _a (self ):
A_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """size""" ) )
def _a (self ):
A_ : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
A_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def _a (self ):
A_ : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , Image.Image )
# Test not batched input
A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
A_ : int = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def _a (self ):
A_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , np.ndarray )
# Test not batched input
A_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
A_ : Dict = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def _a (self ):
A_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , torch.Tensor )
# Test not batched input
A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
A_ : Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 356
|
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowerCAmelCase :
def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=128 , lowercase=32 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ):
A_ : Union[str, Any] = parent
A_ : Optional[int] = batch_size
A_ : Any = seq_length
A_ : int = is_training
A_ : List[str] = use_input_mask
A_ : Any = use_token_type_ids
A_ : List[Any] = use_labels
A_ : Dict = vocab_size
A_ : Optional[int] = hidden_size
A_ : int = num_hidden_layers
A_ : List[str] = num_attention_heads
A_ : Dict = intermediate_size
A_ : List[str] = hidden_act
A_ : List[str] = hidden_dropout_prob
A_ : Union[str, Any] = attention_probs_dropout_prob
A_ : Optional[Any] = max_position_embeddings
A_ : Optional[Any] = type_vocab_size
A_ : List[Any] = type_sequence_label_size
A_ : Tuple = initializer_range
A_ : List[Any] = num_labels
A_ : str = num_choices
A_ : Tuple = scope
def _a (self ):
A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ : Tuple = None
if self.use_input_mask:
A_ : str = random_attention_mask([self.batch_size, self.seq_length] )
A_ : Any = None
if self.use_token_type_ids:
A_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A_ : Dict = None
A_ : Any = None
A_ : List[Any] = None
if self.use_labels:
A_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ : int = ids_tensor([self.batch_size] , self.num_choices )
A_ : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _a (self ):
return NezhaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , )
def _a (self ):
(
(
A_
), (
A_
), (
A_
), (
A_
), (
A_
), (
A_
), (
A_
),
) : Union[str, Any] = self.prepare_config_and_inputs()
A_ : Union[str, Any] = True
A_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
A_ : Union[str, Any] = NezhaModel(config=lowercase )
model.to(lowercase )
model.eval()
A_ : int = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase )
A_ : Optional[Any] = model(lowercase , token_type_ids=lowercase )
A_ : str = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ):
A_ : Optional[int] = True
A_ : Optional[Any] = NezhaModel(lowercase )
model.to(lowercase )
model.eval()
A_ : Optional[int] = model(
lowercase , attention_mask=lowercase , token_type_ids=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , )
A_ : str = model(
lowercase , attention_mask=lowercase , token_type_ids=lowercase , encoder_hidden_states=lowercase , )
A_ : Tuple = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
A_ : Optional[Any] = NezhaForMaskedLM(config=lowercase )
model.to(lowercase )
model.eval()
A_ : List[str] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
A_ : Tuple = NezhaForNextSentencePrediction(config=lowercase )
model.to(lowercase )
model.eval()
A_ : Union[str, Any] = model(
lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
A_ : int = NezhaForPreTraining(config=lowercase )
model.to(lowercase )
model.eval()
A_ : str = model(
lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , next_sentence_label=lowercase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
A_ : Any = NezhaForQuestionAnswering(config=lowercase )
model.to(lowercase )
model.eval()
A_ : Optional[int] = model(
lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
A_ : Optional[Any] = self.num_labels
A_ : int = NezhaForSequenceClassification(lowercase )
model.to(lowercase )
model.eval()
A_ : List[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
A_ : List[str] = self.num_labels
A_ : Optional[int] = NezhaForTokenClassification(config=lowercase )
model.to(lowercase )
model.eval()
A_ : int = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ):
A_ : int = self.num_choices
A_ : int = NezhaForMultipleChoice(config=lowercase )
model.to(lowercase )
model.eval()
A_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A_ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A_ : Optional[int] = model(
lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _a (self ):
A_ : Tuple = self.prepare_config_and_inputs()
(
(
A_
), (
A_
), (
A_
), (
A_
), (
A_
), (
A_
), (
A_
),
) : int = config_and_inputs
A_ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
__SCREAMING_SNAKE_CASE : str = (
{
'feature-extraction': NezhaModel,
'fill-mask': NezhaForMaskedLM,
'question-answering': NezhaForQuestionAnswering,
'text-classification': NezhaForSequenceClassification,
'token-classification': NezhaForTokenClassification,
'zero-shot': NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE : List[Any] = True
def _a (self , lowercase , lowercase , lowercase=False ):
A_ : Optional[Any] = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase )
if return_labels:
if model_class in get_values(lowercase ):
A_ : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase )
A_ : Tuple = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowercase )
return inputs_dict
def _a (self ):
A_ : Optional[int] = NezhaModelTester(self )
A_ : Any = ConfigTester(self , config_class=lowercase , hidden_size=37 )
def _a (self ):
self.config_tester.run_common_tests()
def _a (self ):
A_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase )
def _a (self ):
A_ : str = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*lowercase )
def _a (self ):
# This regression test was failing with PyTorch < 1.3
(
(
A_
), (
A_
), (
A_
), (
A_
), (
A_
), (
A_
), (
A_
), (
A_
), (
A_
),
) : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
A_ : str = None
self.model_tester.create_and_check_model_as_decoder(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , )
def _a (self ):
A_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase )
def _a (self ):
A_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowercase )
def _a (self ):
A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase )
def _a (self ):
A_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowercase )
def _a (self ):
A_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase )
def _a (self ):
A_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase )
def _a (self ):
A_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase )
@slow
def _a (self ):
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ : Any = NezhaModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
@slow
@require_torch_gpu
def _a (self ):
A_, A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
A_ : Optional[int] = True
A_ : str = model_class(config=lowercase )
A_ : str = self._prepare_for_class(lowercase , lowercase )
A_ : Tuple = torch.jit.trace(
lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowercase , os.path.join(lowercase , """bert.pt""" ) )
A_ : List[str] = torch.jit.load(os.path.join(lowercase , """bert.pt""" ) , map_location=lowercase )
loaded(inputs_dict["""input_ids"""].to(lowercase ) , inputs_dict["""attention_mask"""].to(lowercase ) )
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
@slow
def _a (self ):
A_ : Dict = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" )
A_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
A_ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1]] )
with torch.no_grad():
A_ : Optional[int] = model(lowercase , attention_mask=lowercase )[0]
A_ : Optional[int] = torch.Size((1, 6, 768) )
self.assertEqual(output.shape , lowercase )
A_ : List[Any] = torch.tensor([[[0.06_85, 0.24_41, 0.11_02], [0.06_00, 0.19_06, 0.13_49], [0.02_21, 0.08_19, 0.05_86]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
@slow
def _a (self ):
A_ : str = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" )
A_ : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
A_ : str = torch.tensor([[1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
A_ : Tuple = model(lowercase , attention_mask=lowercase )[0]
A_ : str = torch.Size((1, 6, 21128) )
self.assertEqual(output.shape , lowercase )
A_ : List[Any] = torch.tensor(
[[-2.79_39, -1.79_02, -2.21_89], [-2.85_85, -1.89_08, -2.37_23], [-2.64_99, -1.77_50, -2.25_58]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
| 135
| 0
|
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Union[str, Any]=7 ) -> str:
'''simple docstring'''
A__ = None
if token is not None:
A__ = {"Accept": "application/vnd.github+json", "Authorization": F'Bearer {token}'}
# The id of a workflow (not of a workflow run)
A__ = "636036"
A__ = F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'
A__ = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json()
return result["workflow_runs"]
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A__ = get_daily_ci_runs(SCREAMING_SNAKE_CASE_ )
A__ = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
A__ = workflow_run["id"]
break
return workflow_run_id
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: str ) -> List[str]:
'''simple docstring'''
A__ = get_last_daily_ci_runs(SCREAMING_SNAKE_CASE_ )
if workflow_run_id is not None:
A__ = get_artifacts_links(worflow_run_id=SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
A__ = artifacts_links[artifact_name]
download_artifact(
artifact_name=SCREAMING_SNAKE_CASE_ , artifact_url=SCREAMING_SNAKE_CASE_ , output_dir=SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ )
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: List[str] ) -> Optional[int]:
'''simple docstring'''
get_last_daily_ci_artifacts(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A__ = {}
for artifact_name in artifact_names:
A__ = os.path.join(SCREAMING_SNAKE_CASE_ , F'{artifact_name}.zip' )
if os.path.isfile(SCREAMING_SNAKE_CASE_ ):
A__ = {}
with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
# read the file
with z.open(SCREAMING_SNAKE_CASE_ ) as f:
A__ = f.read().decode("UTF-8" )
return results
| 68
|
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
__A : Optional[int] = logging.getLogger(__name__)
@dataclass
class A_ :
UpperCAmelCase__ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCAmelCase__ = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCAmelCase__ = field(
default=a_ , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class A_ :
UpperCAmelCase__ = field(default=a_ , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
UpperCAmelCase__ = field(
default=a_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCAmelCase__ = field(
default=a_ , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCAmelCase__ = field(
default=a_ , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
UpperCAmelCase__ = field(
default=a_ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCAmelCase__ = field(
default=a_ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def _lowercase ( self ):
'''simple docstring'''
if self.train_file is not None:
UpperCAmelCase = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
UpperCAmelCase = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class A_ :
UpperCAmelCase__ = 42
UpperCAmelCase__ = True
UpperCAmelCase__ = None
UpperCAmelCase__ = None
def __call__( self , _A ):
'''simple docstring'''
UpperCAmelCase = '''label''' if '''label''' in features[0].keys() else '''labels'''
UpperCAmelCase = [feature.pop(_A ) for feature in features]
UpperCAmelCase = len(_A )
UpperCAmelCase = len(features[0]['''input_ids'''] )
UpperCAmelCase = [
[{k: v[i] for k, v in feature.items()} for i in range(_A )] for feature in features
]
UpperCAmelCase = list(chain(*_A ) )
UpperCAmelCase = self.tokenizer.pad(
_A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
# Un-flatten
UpperCAmelCase = {k: v.view(_A , _A , -1 ) for k, v in batch.items()}
# Add back labels
UpperCAmelCase = torch.tensor(_A , dtype=torch.intaa )
return batch
def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_swag''' , UpperCamelCase__ , UpperCamelCase__ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCAmelCase = training_args.get_process_log_level()
logger.setLevel(UpperCamelCase__ )
datasets.utils.logging.set_verbosity(UpperCamelCase__ )
transformers.utils.logging.set_verbosity(UpperCamelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
UpperCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
UpperCAmelCase = {}
if data_args.train_file is not None:
UpperCAmelCase = data_args.train_file
if data_args.validation_file is not None:
UpperCAmelCase = data_args.validation_file
UpperCAmelCase = data_args.train_file.split('''.''' )[-1]
UpperCAmelCase = load_dataset(
UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
UpperCAmelCase = load_dataset(
'''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
UpperCAmelCase = [F"""ending{i}""" for i in range(4 )]
UpperCAmelCase = '''sent1'''
UpperCAmelCase = '''sent2'''
if data_args.max_seq_length is None:
UpperCAmelCase = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
'''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'''
''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'''
''' override this default with `--block_size xxx`.''' )
UpperCAmelCase = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
UpperCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(UpperCamelCase__ ):
UpperCAmelCase = [[context] * 4 for context in examples[context_name]]
UpperCAmelCase = examples[question_header_name]
UpperCAmelCase = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(UpperCamelCase__ )
]
# Flatten out
UpperCAmelCase = list(chain(*UpperCamelCase__ ) )
UpperCAmelCase = list(chain(*UpperCamelCase__ ) )
# Tokenize
UpperCAmelCase = tokenizer(
UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
UpperCAmelCase = raw_datasets['''train''']
if data_args.max_train_samples is not None:
UpperCAmelCase = min(len(UpperCamelCase__ ) , data_args.max_train_samples )
UpperCAmelCase = train_dataset.select(range(UpperCamelCase__ ) )
with training_args.main_process_first(desc='''train dataset map pre-processing''' ):
UpperCAmelCase = train_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
UpperCAmelCase = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
UpperCAmelCase = min(len(UpperCamelCase__ ) , data_args.max_eval_samples )
UpperCAmelCase = eval_dataset.select(range(UpperCamelCase__ ) )
with training_args.main_process_first(desc='''validation dataset map pre-processing''' ):
UpperCAmelCase = eval_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
UpperCAmelCase = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(UpperCamelCase__ ):
UpperCAmelCase , UpperCAmelCase = eval_predictions
UpperCAmelCase = np.argmax(UpperCamelCase__ , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
UpperCAmelCase = Trainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , )
# Training
if training_args.do_train:
UpperCAmelCase = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase = last_checkpoint
UpperCAmelCase = trainer.train(resume_from_checkpoint=UpperCamelCase__ )
trainer.save_model() # Saves the tokenizer too for easy upload
UpperCAmelCase = train_result.metrics
UpperCAmelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ )
)
UpperCAmelCase = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics('''train''' , UpperCamelCase__ )
trainer.save_metrics('''train''' , UpperCamelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase = trainer.evaluate()
UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ )
UpperCAmelCase = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics('''eval''' , UpperCamelCase__ )
trainer.save_metrics('''eval''' , UpperCamelCase__ )
UpperCAmelCase = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''multiple-choice''',
'''dataset_tags''': '''swag''',
'''dataset_args''': '''regular''',
'''dataset''': '''SWAG''',
'''language''': '''en''',
}
if training_args.push_to_hub:
trainer.push_to_hub(**UpperCamelCase__ )
else:
trainer.create_model_card(**UpperCamelCase__ )
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> int:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 273
| 0
|
"""simple docstring"""
def lowercase__ ( lowercase_ ) -> bool:
"""simple docstring"""
_UpperCamelCase : set[int] = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
_UpperCamelCase : set[int] = set()
return any(
node not in visited and depth_first_search(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ )
for node in graph )
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> bool:
"""simple docstring"""
visited.add(lowercase_ )
rec_stk.add(lowercase_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(lowercase_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 310
|
"""simple docstring"""
from __future__ import annotations
from math import pi
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, float]:
"""simple docstring"""
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if inductance < 0:
raise ValueError("Inductance cannot be negative" )
if frequency < 0:
raise ValueError("Frequency cannot be negative" )
if reactance < 0:
raise ValueError("Inductive reactance cannot be negative" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 310
| 1
|
'''simple docstring'''
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE
lowercase__ : int = 'config.json'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin'
lowercase__ : List[str] = 'diffusion_flax_model.msgpack'
lowercase__ : str = 'model.onnx'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors'
lowercase__ : List[str] = 'weights.pb'
lowercase__ : str = 'https://huggingface.co'
lowercase__ : str = default_cache_path
lowercase__ : Optional[int] = 'diffusers_modules'
lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
lowercase__ : Tuple = ['fp16', 'non-ema']
lowercase__ : int = '.self_attn'
| 324
|
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
_UpperCamelCase = iter(lowercase )
while True:
_UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) )
if not chunk:
return
yield chunk
def a__ ( lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
_UpperCamelCase = ''''''
if len(lowercase ) < 2:
return dirty
for i in range(len(lowercase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowercase ) & 1:
clean += "X"
return clean
def a__ ( lowercase : str ) -> list[str]:
"""simple docstring"""
_UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_UpperCamelCase = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowercase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowercase )
return table
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = prepare_input(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 324
| 1
|
'''simple docstring'''
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
__A : Any = logging.getLogger()
def UpperCamelCase_ ( A__ : Path , A__ : list ):
'''simple docstring'''
lowerCAmelCase_ : int = """\n""".join(A__ )
Path(A__ ).open("""w""" ).writelines(A__ )
__A : Optional[int] = "patrickvonplaten/t5-tiny-random"
__A : Optional[int] = "sshleifer/bart-tiny-random"
__A : Dict = "sshleifer/tiny-mbart"
__A : Tuple = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class __snake_case ( _SCREAMING_SNAKE_CASE):
"""simple docstring"""
def __lowercase ( self : Optional[int] , lowerCamelCase : str ) -> Any:
lowerCAmelCase_ : Tuple = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
lowerCAmelCase_ : str = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
lowerCAmelCase_ : List[str] = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""]
_dump_articles(lowerCamelCase , lowerCamelCase )
lowerCAmelCase_ : List[str] = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" )
lowerCAmelCase_ : Union[str, Any] = """translation_en_to_de""" if model == T5_TINY else """summarization"""
lowerCAmelCase_ : Any = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split()
with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ):
run_generate()
assert Path(lowerCamelCase ).exists()
# os.remove(Path(output_file_name))
def __lowercase ( self : Optional[int] ) -> List[str]:
self.run_eval_tester(lowerCamelCase )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def __lowercase ( self : str , lowerCamelCase : str ) -> Optional[int]:
self.run_eval_tester(lowerCamelCase )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def __lowercase ( self : List[Any] , lowerCamelCase : Tuple ) -> Optional[Any]:
lowerCAmelCase_ : Tuple = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
lowerCAmelCase_ : List[Any] = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
lowerCAmelCase_ : Union[str, Any] = {
"""en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""],
"""de""": [
"""Maschinelles Lernen ist großartig, oder?""",
"""Ich esse gerne Bananen""",
"""Morgen ist wieder ein toller Tag!""",
],
}
lowerCAmelCase_ : Dict = Path(self.get_auto_remove_tmp_dir() )
lowerCAmelCase_ : Any = str(tmp_dir / """scores.json""" )
lowerCAmelCase_ : List[Any] = str(tmp_dir / """val.target""" )
_dump_articles(lowerCamelCase , text["""en"""] )
_dump_articles(lowerCamelCase , text["""de"""] )
lowerCAmelCase_ : str = """translation_en_to_de""" if model == T5_TINY else """summarization"""
lowerCAmelCase_ : int = F'\n run_eval_search.py\n {model}\n {str(lowerCamelCase )}\n {str(lowerCamelCase )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split()
testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] )
with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ):
with CaptureStdout() as cs:
run_search()
lowerCAmelCase_ : Optional[int] = [""" num_beams | length_penalty""", model, """Best score args"""]
lowerCAmelCase_ : Tuple = ["""Info"""]
if "translation" in task:
expected_strings.append("""bleu""" )
else:
expected_strings.extend(lowerCamelCase )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(lowerCamelCase ).exists()
os.remove(Path(lowerCamelCase ) )
| 89
|
'''simple docstring'''
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def UpperCamelCase_ ( A__ : bytes , A__ : int ):
'''simple docstring'''
lowerCAmelCase_ : int = f'{sampling_rate}'
lowerCAmelCase_ : str = """1"""
lowerCAmelCase_ : Optional[int] = """f32le"""
lowerCAmelCase_ : Any = [
"""ffmpeg""",
"""-i""",
"""pipe:0""",
"""-ac""",
ac,
"""-ar""",
ar,
"""-f""",
format_for_conversion,
"""-hide_banner""",
"""-loglevel""",
"""quiet""",
"""pipe:1""",
]
try:
with subprocess.Popen(A__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process:
lowerCAmelCase_ : Optional[int] = ffmpeg_process.communicate(A__ )
except FileNotFoundError as error:
raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error
lowerCAmelCase_ : Optional[Any] = output_stream[0]
lowerCAmelCase_ : Optional[int] = np.frombuffer(A__ , np.floataa )
if audio.shape[0] == 0:
raise ValueError("""Malformed soundfile""" )
return audio
def UpperCamelCase_ ( A__ : int , A__ : float , A__ : str = "f32le" , ):
'''simple docstring'''
lowerCAmelCase_ : int = f'{sampling_rate}'
lowerCAmelCase_ : Any = """1"""
if format_for_conversion == "s16le":
lowerCAmelCase_ : Optional[Any] = 2
elif format_for_conversion == "f32le":
lowerCAmelCase_ : Union[str, Any] = 4
else:
raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' )
lowerCAmelCase_ : int = platform.system()
if system == "Linux":
lowerCAmelCase_ : int = """alsa"""
lowerCAmelCase_ : int = """default"""
elif system == "Darwin":
lowerCAmelCase_ : List[str] = """avfoundation"""
lowerCAmelCase_ : Union[str, Any] = """:0"""
elif system == "Windows":
lowerCAmelCase_ : List[Any] = """dshow"""
lowerCAmelCase_ : Union[str, Any] = """default"""
lowerCAmelCase_ : Tuple = [
"""ffmpeg""",
"""-f""",
format_,
"""-i""",
input_,
"""-ac""",
ac,
"""-ar""",
ar,
"""-f""",
format_for_conversion,
"""-fflags""",
"""nobuffer""",
"""-hide_banner""",
"""-loglevel""",
"""quiet""",
"""pipe:1""",
]
lowerCAmelCase_ : Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
lowerCAmelCase_ : List[str] = _ffmpeg_stream(A__ , A__ )
for item in iterator:
yield item
def UpperCamelCase_ ( A__ : int , A__ : float , A__ : Optional[int] = None , A__ : Optional[Union[Tuple[float, float], float]] = None , A__ : str = "f32le" , ):
'''simple docstring'''
if stream_chunk_s is not None:
lowerCAmelCase_ : Union[str, Any] = stream_chunk_s
else:
lowerCAmelCase_ : Tuple = chunk_length_s
lowerCAmelCase_ : List[Any] = ffmpeg_microphone(A__ , A__ , format_for_conversion=A__ )
if format_for_conversion == "s16le":
lowerCAmelCase_ : Tuple = np.intaa
lowerCAmelCase_ : List[Any] = 2
elif format_for_conversion == "f32le":
lowerCAmelCase_ : Dict = np.floataa
lowerCAmelCase_ : int = 4
else:
raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' )
if stride_length_s is None:
lowerCAmelCase_ : Optional[Any] = chunk_length_s / 6
lowerCAmelCase_ : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
if isinstance(A__ , (int, float) ):
lowerCAmelCase_ : int = [stride_length_s, stride_length_s]
lowerCAmelCase_ : str = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample
lowerCAmelCase_ : List[str] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample
lowerCAmelCase_ : Dict = datetime.datetime.now()
lowerCAmelCase_ : Any = datetime.timedelta(seconds=A__ )
for item in chunk_bytes_iter(A__ , A__ , stride=(stride_left, stride_right) , stream=A__ ):
# Put everything back in numpy scale
lowerCAmelCase_ : Optional[int] = np.frombuffer(item["""raw"""] , dtype=A__ )
lowerCAmelCase_ : Dict = (
item["""stride"""][0] // size_of_sample,
item["""stride"""][1] // size_of_sample,
)
lowerCAmelCase_ : Dict = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def UpperCamelCase_ ( A__ : Any , A__ : int , A__ : Tuple[int, int] , A__ : bool = False ):
'''simple docstring'''
lowerCAmelCase_ : List[str] = B""""""
lowerCAmelCase_, lowerCAmelCase_ : Any = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
f'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' )
lowerCAmelCase_ : Union[str, Any] = 0
for raw in iterator:
acc += raw
if stream and len(A__ ) < chunk_len:
lowerCAmelCase_ : Dict = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(A__ ) >= chunk_len:
# We are flushing the accumulator
lowerCAmelCase_ : Optional[Any] = (_stride_left, stride_right)
lowerCAmelCase_ : List[str] = {"""raw""": acc[:chunk_len], """stride""": stride}
if stream:
lowerCAmelCase_ : List[Any] = False
yield item
lowerCAmelCase_ : str = stride_left
lowerCAmelCase_ : str = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(A__ ) > stride_left:
lowerCAmelCase_ : Tuple = {"""raw""": acc, """stride""": (_stride_left, 0)}
if stream:
lowerCAmelCase_ : Optional[Any] = False
yield item
def UpperCamelCase_ ( A__ : List[str] , A__ : int ):
'''simple docstring'''
lowerCAmelCase_ : Dict = 2**24 # 16Mo
try:
with subprocess.Popen(A__ , stdout=subprocess.PIPE , bufsize=A__ ) as ffmpeg_process:
while True:
lowerCAmelCase_ : Union[str, Any] = ffmpeg_process.stdout.read(A__ )
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
| 89
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase : Dict ={
"""configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""],
"""processing_speech_to_text""": ["""Speech2TextProcessor"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : int =["""Speech2TextTokenizer"""]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Any =["""Speech2TextFeatureExtractor"""]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str =[
"""TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFSpeech2TextForConditionalGeneration""",
"""TFSpeech2TextModel""",
"""TFSpeech2TextPreTrainedModel""",
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[int] =[
"""SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Speech2TextForConditionalGeneration""",
"""Speech2TextModel""",
"""Speech2TextPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 128
|
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
import transformers
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPTaTokenizer,
GPTaTokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class _lowercase (unittest.TestCase ):
'''simple docstring'''
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = 0
@slow
def _lowerCamelCase ( self ):
'''simple docstring'''
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
self.assertGreater(len(snake_case__ ) , 0 )
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
self.assertIsInstance(snake_case__ , (GPTaTokenizer, GPTaTokenizerFast) )
self.assertGreater(len(snake_case__ ) , 0 )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , (RobertaTokenizer, RobertaTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 20 )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = AutoConfig.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
# Check that tokenizer_type ≠ model_type
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , config=snake_case__ )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def _lowerCamelCase ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(snake_case__ , "vocab.txt" ) )
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="bert" , use_fast=snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.json" , os.path.join(snake_case__ , "vocab.json" ) )
shutil.copy("./tests/fixtures/merges.txt" , os.path.join(snake_case__ , "merges.txt" ) )
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="gpt2" , use_fast=snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
@require_tokenizers
def _lowerCamelCase ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(snake_case__ , "vocab.txt" ) )
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="bert" )
self.assertIsInstance(snake_case__ , snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.json" , os.path.join(snake_case__ , "vocab.json" ) )
shutil.copy("./tests/fixtures/merges.txt" , os.path.join(snake_case__ , "merges.txt" ) )
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="gpt2" )
self.assertIsInstance(snake_case__ , snake_case__ )
def _lowerCamelCase ( self ):
'''simple docstring'''
with pytest.raises(snake_case__ ):
AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx" )
@require_tokenizers
def _lowerCamelCase ( self ):
'''simple docstring'''
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
UpperCamelCase_ = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
if isinstance(snake_case__ , snake_case__ ):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , snake_case__ )
else:
self.assertEqual(tokenizer.do_lower_case , snake_case__ )
self.assertEqual(tokenizer.model_max_length , 512 )
@require_tokenizers
def _lowerCamelCase ( self ):
'''simple docstring'''
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
snake_case__ , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ):
UpperCamelCase_ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = TOKENIZER_MAPPING.values()
UpperCamelCase_ = []
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__ )
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__ )
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(snake_case__ )
@require_tokenizers
def _lowerCamelCase ( self ):
'''simple docstring'''
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=snake_case__ ) , snake_case__ )
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) , snake_case__ )
@require_tokenizers
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=snake_case__ )
UpperCamelCase_ = "Hello, world. How are you?"
UpperCamelCase_ = tokenizer.tokenize(snake_case__ )
self.assertEqual("[UNK]" , tokens[0] )
UpperCamelCase_ = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=snake_case__ )
UpperCamelCase_ = tokenizer.tokenize(snake_case__ )
self.assertEqual("[UNK]" , tokens[0] )
@require_tokenizers
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" )
self.assertEqual(type(snake_case__ ) , snake_case__ )
self.assertEqual(tokenizer.model_max_length , 512 )
self.assertEqual(tokenizer.vocab_size , 3_0000 )
self.assertEqual(tokenizer.unk_token , "[UNK]" )
self.assertEqual(tokenizer.padding_side , "right" )
self.assertEqual(tokenizer.truncation_side , "right" )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , tokenizer.__class__ )
self.assertEqual(tokenizera.vocab_size , 12 )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = AutoTokenizer.from_pretrained("ctrl" )
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(snake_case__ , snake_case__ )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = get_tokenizer_config("bert-base-cased" )
UpperCamelCase_ = config.pop("_commit_hash" , snake_case__ )
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(snake_case__ , {"do_lower_case": False} )
# This model does not have a tokenizer_config so we get back an empty dict.
UpperCamelCase_ = get_tokenizer_config(snake_case__ )
self.assertDictEqual(snake_case__ , {} )
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
UpperCamelCase_ = get_tokenizer_config(snake_case__ )
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config["tokenizer_class"] , "BertTokenizer" )
def _lowerCamelCase ( self ):
'''simple docstring'''
try:
AutoConfig.register("custom" , snake_case__ )
AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(snake_case__ ):
AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ )
UpperCamelCase_ = CustomTokenizer.from_pretrained(snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def _lowerCamelCase ( self ):
'''simple docstring'''
try:
AutoConfig.register("custom" , snake_case__ )
# Can register in two steps
AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) )
AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
snake_case__ , slow_tokenizer_class=snake_case__ , fast_tokenizer_class=snake_case__ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(snake_case__ ):
AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ )
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase_ = BertTokenizerFast.from_pretrained(snake_case__ )
bert_tokenizer.save_pretrained(snake_case__ )
UpperCamelCase_ = CustomTokenizerFast.from_pretrained(snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , use_fast=snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def _lowerCamelCase ( self ):
'''simple docstring'''
with self.assertRaises(snake_case__ ):
UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(snake_case__ ):
UpperCamelCase_ = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ )
UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ )
self.assertTrue(tokenizer.special_attribute_present )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , trust_remote_code=snake_case__ )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast" )
# Test we can also load the slow version
UpperCamelCase_ = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
else:
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" )
@require_tokenizers
def _lowerCamelCase ( self ):
'''simple docstring'''
class _lowercase (a_ ):
'''simple docstring'''
lowercase__ = False
class _lowercase (a_ ):
'''simple docstring'''
lowercase__ = NewTokenizer
lowercase__ = False
try:
AutoConfig.register("custom" , snake_case__ )
AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ )
AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ )
# If remote code is not set, the default is to use local
UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertFalse(tokenizer.special_attribute_present )
UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote code is disabled, we load the local one.
UpperCamelCase_ = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertFalse(tokenizer.special_attribute_present )
UpperCamelCase_ = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub
UpperCamelCase_ = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertTrue(tokenizer.special_attribute_present )
UpperCamelCase_ = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertTrue(tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=snake_case__ )
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
# Test we can also load the slow version
UpperCamelCase_ = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
else:
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
def _lowerCamelCase ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
snake_case__ , "bert-base is not a local folder and is not a valid model identifier" ):
UpperCamelCase_ = AutoTokenizer.from_pretrained("bert-base" )
def _lowerCamelCase ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
snake_case__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , revision="aaaaaa" )
def _lowerCamelCase ( self ):
'''simple docstring'''
UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
with RequestCounter() as counter:
UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 128
| 1
|
import argparse
import torch
from transformers import YosoConfig, YosoForMaskedLM
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if "model" in orig_key:
__UpperCamelCase :str = orig_key.replace('''model.''' , '''''' )
if "norm1" in orig_key:
__UpperCamelCase :List[Any] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' )
if "norm2" in orig_key:
__UpperCamelCase :int = orig_key.replace('''norm2''' , '''output.LayerNorm''' )
if "norm" in orig_key:
__UpperCamelCase :int = orig_key.replace('''norm''' , '''LayerNorm''' )
if "transformer" in orig_key:
__UpperCamelCase :Any = orig_key.split('''.''' )[0].split('''_''' )[-1]
__UpperCamelCase :List[Any] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" )
if "mha.attn" in orig_key:
__UpperCamelCase :List[str] = orig_key.replace('''mha.attn''' , '''attention.self''' )
if "mha" in orig_key:
__UpperCamelCase :str = orig_key.replace('''mha''' , '''attention''' )
if "W_q" in orig_key:
__UpperCamelCase :Optional[Any] = orig_key.replace('''W_q''' , '''self.query''' )
if "W_k" in orig_key:
__UpperCamelCase :List[Any] = orig_key.replace('''W_k''' , '''self.key''' )
if "W_v" in orig_key:
__UpperCamelCase :Tuple = orig_key.replace('''W_v''' , '''self.value''' )
if "ff1" in orig_key:
__UpperCamelCase :Tuple = orig_key.replace('''ff1''' , '''intermediate.dense''' )
if "ff2" in orig_key:
__UpperCamelCase :Union[str, Any] = orig_key.replace('''ff2''' , '''output.dense''' )
if "ff" in orig_key:
__UpperCamelCase :Optional[Any] = orig_key.replace('''ff''' , '''output.dense''' )
if "mlm_class" in orig_key:
__UpperCamelCase :Optional[int] = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' )
if "mlm" in orig_key:
__UpperCamelCase :str = orig_key.replace('''mlm''' , '''cls.predictions.transform''' )
if "cls" not in orig_key:
__UpperCamelCase :Optional[int] = '''yoso.''' + orig_key
return orig_key
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
__UpperCamelCase :int = orig_state_dict.pop(SCREAMING_SNAKE_CASE )
if ("pooler" in key) or ("sen_class" in key):
continue
else:
__UpperCamelCase :str = val
__UpperCamelCase :List[str] = orig_state_dict['''cls.predictions.decoder.bias''']
__UpperCamelCase :Any = torch.arange(SCREAMING_SNAKE_CASE ).expand((1, -1) ) + 2
return orig_state_dict
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :str = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model_state_dict''']
__UpperCamelCase :Tuple = YosoConfig.from_json_file(SCREAMING_SNAKE_CASE )
__UpperCamelCase :Union[str, Any] = YosoForMaskedLM(SCREAMING_SNAKE_CASE )
__UpperCamelCase :List[Any] = convert_checkpoint_helper(config.max_position_embeddings , SCREAMING_SNAKE_CASE )
print(model.load_state_dict(SCREAMING_SNAKE_CASE ) )
model.eval()
model.save_pretrained(SCREAMING_SNAKE_CASE )
print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" )
if __name__ == "__main__":
__lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The json file for YOSO model config.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__lowercase = parser.parse_args()
convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 105
|
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self) -> int:
__UpperCamelCase :str = 0
def UpperCamelCase__ ( self) -> Optional[Any]:
__UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''')
self.assertIsInstance(__lowercase , __lowercase)
def UpperCamelCase__ ( self) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json'''
__UpperCamelCase :Dict = Path(__lowercase) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , )
json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w'''))
__UpperCamelCase :Union[str, Any] = AutoImageProcessor.from_pretrained(__lowercase)
self.assertIsInstance(__lowercase , __lowercase)
def UpperCamelCase__ ( self) -> Union[str, Any]:
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCamelCase :str = Path(__lowercase) / '''preprocessor_config.json'''
__UpperCamelCase :Union[str, Any] = Path(__lowercase) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , )
json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w'''))
__UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase)
self.assertIsInstance(__lowercase , __lowercase)
def UpperCamelCase__ ( self) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCamelCase :int = CLIPConfig()
# Create a dummy config file with image_proceesor_type
__UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json'''
__UpperCamelCase :Optional[Any] = Path(__lowercase) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , )
json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w'''))
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
__UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained(__lowercase).to_dict()
config_dict.pop('''image_processor_type''')
__UpperCamelCase :List[str] = CLIPImageProcessor(**__lowercase)
# save in new folder
model_config.save_pretrained(__lowercase)
config.save_pretrained(__lowercase)
__UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase)
# make sure private variable is not incorrectly saved
__UpperCamelCase :Union[str, Any] = json.loads(config.to_json_string())
self.assertTrue('''_processor_class''' not in dict_as_saved)
self.assertIsInstance(__lowercase , __lowercase)
def UpperCamelCase__ ( self) -> List[str]:
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , )
__UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained(__lowercase)
self.assertIsInstance(__lowercase , __lowercase)
def UpperCamelCase__ ( self) -> Optional[int]:
with self.assertRaisesRegex(
__lowercase , '''clip-base is not a local folder and is not a valid model identifier'''):
__UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''clip-base''')
def UpperCamelCase__ ( self) -> List[Any]:
with self.assertRaisesRegex(
__lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''):
__UpperCamelCase :str = AutoImageProcessor.from_pretrained(__lowercase , revision='''aaaaaa''')
def UpperCamelCase__ ( self) -> List[str]:
with self.assertRaisesRegex(
__lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
__UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''')
def UpperCamelCase__ ( self) -> str:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__lowercase):
__UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''')
# If remote code is disabled, we can't load this config.
with self.assertRaises(__lowercase):
__UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase)
__UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase)
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''')
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__lowercase)
__UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained(__lowercase , trust_remote_code=__lowercase)
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''')
def UpperCamelCase__ ( self) -> Optional[Any]:
try:
AutoConfig.register('''custom''' , __lowercase)
AutoImageProcessor.register(__lowercase , __lowercase)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__lowercase):
AutoImageProcessor.register(__lowercase , __lowercase)
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json'''
__UpperCamelCase :List[str] = Path(__lowercase) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , )
json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w'''))
__UpperCamelCase :int = CustomImageProcessor.from_pretrained(__lowercase)
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(__lowercase)
__UpperCamelCase :int = AutoImageProcessor.from_pretrained(__lowercase)
self.assertIsInstance(__lowercase , __lowercase)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def UpperCamelCase__ ( self) -> List[Any]:
class lowerCamelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
a__ : List[str] = True
try:
AutoConfig.register('''custom''' , __lowercase)
AutoImageProcessor.register(__lowercase , __lowercase)
# If remote code is not set, the default is to use local
__UpperCamelCase :str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''')
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''')
self.assertTrue(image_processor.is_local)
# If remote code is disabled, we load the local one.
__UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase)
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''')
self.assertTrue(image_processor.is_local)
# If remote is enabled, we load from the Hub
__UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase)
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''')
self.assertTrue(not hasattr(__lowercase , '''is_local'''))
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 105
| 1
|
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCAmelCase_ ( __A ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase__ = filter(lambda __A : p.requires_grad, model.parameters() )
UpperCAmelCase__ = sum([np.prod(p.size() ) for p in model_parameters] )
return params
UpperCamelCase__ = logging.getLogger(__name__)
def lowerCAmelCase_ ( __A, __A ) -> str:
'''simple docstring'''
if metric == "rouge2":
UpperCAmelCase__ = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
UpperCAmelCase__ = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
UpperCAmelCase__ = "{val_avg_em:.4f}-{step_count}"
else:
raise NotImplementedError(
f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"""
" function." )
UpperCAmelCase__ = ModelCheckpoint(
dirpath=__A, filename=__A, monitor=f"""val_{metric}""", mode="max", save_top_k=3, every_n_epochs=1, )
return checkpoint_callback
def lowerCAmelCase_ ( __A, __A ) -> List[Any]:
'''simple docstring'''
return EarlyStopping(
monitor=f"""val_{metric}""", mode="min" if "loss" in metric else "max", patience=__A, verbose=__A, )
class A ( pl.Callback ):
def lowercase_ (self : int , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = {f"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__UpperCAmelCase )
@rank_zero_only
def lowercase_ (self : str , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule , __UpperCAmelCase : str , __UpperCAmelCase : List[Any]=True ) -> None:
"""simple docstring"""
logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" )
UpperCAmelCase__ = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
UpperCAmelCase__ = Path(pl_module.hparams.output_dir )
if type_path == "test":
UpperCAmelCase__ = od / "test_results.txt"
UpperCAmelCase__ = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
UpperCAmelCase__ = od / f"""{type_path}_results/{trainer.global_step:05d}.txt"""
UpperCAmelCase__ = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt"""
results_file.parent.mkdir(exist_ok=__UpperCAmelCase )
generations_file.parent.mkdir(exist_ok=__UpperCAmelCase )
with open(__UpperCAmelCase , "a+" ) as writer:
for key in sorted(__UpperCAmelCase ):
if key in ["log", "progress_bar", "preds"]:
continue
UpperCAmelCase__ = metrics[key]
if isinstance(__UpperCAmelCase , torch.Tensor ):
UpperCAmelCase__ = val.item()
UpperCAmelCase__ = f"""{key}: {val:.6f}\n"""
writer.write(__UpperCAmelCase )
if not save_generations:
return
if "preds" in metrics:
UpperCAmelCase__ = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(__UpperCAmelCase )
@rank_zero_only
def lowercase_ (self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
try:
UpperCAmelCase__ = pl_module.model.model.num_parameters()
except AttributeError:
UpperCAmelCase__ = pl_module.model.num_parameters()
UpperCAmelCase__ = count_trainable_parameters(__UpperCAmelCase )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} )
@rank_zero_only
def lowercase_ (self : List[Any] , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) -> Union[str, Any]:
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__UpperCAmelCase , __UpperCAmelCase , "test" )
@rank_zero_only
def lowercase_ (self : Tuple , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : Union[str, Any] ) -> int:
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 65
|
"""simple docstring"""
from itertools import permutations
def lowercase ( A_ )-> bool:
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
a : Optional[int] = [7, 11, 13, 17]
for i, test in enumerate(A_ ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowercase ( A_ = 10 )-> int:
'''simple docstring'''
return sum(
int("".join(map(A_ , A_ ) ) )
for num in permutations(range(A_ ) )
if is_substring_divisible(A_ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 40
| 0
|
"""simple docstring"""
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
lowerCamelCase__ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.'''
def A(__a: List[str]=None ):
if subparsers is not None:
lowerCAmelCase_ = subparsers.add_parser("tpu-config" , description=_description )
else:
lowerCAmelCase_ = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description )
# Core arguments
lowerCAmelCase_ = parser.add_argument_group(
"Config Arguments" , "Arguments that can be configured through `accelerate config`." )
config_args.add_argument(
"--config_file" , type=__a , default=__a , help="Path to the config file to use for accelerate." , )
config_args.add_argument(
"--tpu_name" , default=__a , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , )
config_args.add_argument(
"--tpu_zone" , default=__a , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , )
lowerCAmelCase_ = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." )
pod_args.add_argument(
"--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , )
pod_args.add_argument(
"--command_file" , default=__a , help="The path to the file containing the commands to run on the pod on startup." , )
pod_args.add_argument(
"--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , )
pod_args.add_argument(
"--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , )
pod_args.add_argument(
"--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , )
pod_args.add_argument(
"--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." )
if subparsers is not None:
parser.set_defaults(func=__a )
return parser
def A(__a: str ):
lowerCAmelCase_ = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(__a ):
lowerCAmelCase_ = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
lowerCAmelCase_ = defaults.command_file
if not args.command and defaults.commands is not None:
lowerCAmelCase_ = defaults.commands
if not args.tpu_name:
lowerCAmelCase_ = defaults.tpu_name
if not args.tpu_zone:
lowerCAmelCase_ = defaults.tpu_zone
if args.accelerate_version == "dev":
lowerCAmelCase_ = "git+https://github.com/huggingface/accelerate.git"
elif args.accelerate_version == "latest":
lowerCAmelCase_ = "accelerate -U"
elif isinstance(parse(args.accelerate_version ) , __a ):
lowerCAmelCase_ = F"accelerate=={args.accelerate_version}"
if not args.command_file and not args.command:
raise ValueError("You must specify either a command file or a command to run on the pod." )
if args.command_file:
with open(args.command_file , "r" ) as f:
lowerCAmelCase_ = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , __a ):
lowerCAmelCase_ = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
lowerCAmelCase_ = ["cd /usr/share"]
if args.install_accelerate:
new_cmd += [F"pip install {args.accelerate_version}"]
new_cmd += args.command
lowerCAmelCase_ = "; ".join(__a )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
lowerCAmelCase_ = ["gcloud"]
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F"Running {' '.join(__a )}" )
return
subprocess.run(__a )
print("Successfully setup pod." )
def A():
lowerCAmelCase_ = tpu_command_parser()
lowerCAmelCase_ = parser.parse_args()
tpu_command_launcher(__a )
| 359
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCamelCase__ = {
'''configuration_encodec''': [
'''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''EncodecConfig''',
],
'''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
'''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''EncodecModel''',
'''EncodecPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 22
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.