code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from ...processing_utils import ProcessorMixin class __snake_case ( lowercase_ ): __lowerCamelCase : Union[str, Any] = ["""image_processor""", """feature_extractor"""] __lowerCamelCase : Tuple = """TvltImageProcessor""" __lowerCamelCase : Optional[Any] = """TvltFeatureExtractor""" def __init__( self , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' super().__init__(image_processor=__UpperCamelCase , feature_extractor=__UpperCamelCase ) UpperCAmelCase : Dict =image_processor UpperCAmelCase : Union[str, Any] =feature_extractor def __call__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=False , *snake_case__ , **snake_case__ , ) -> Optional[Any]: '''simple docstring''' if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) UpperCAmelCase : str =None if images is not None: UpperCAmelCase : Any =self.image_processor(__UpperCamelCase , mask_pixel=__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) if images_mixed is not None: UpperCAmelCase : Dict =self.image_processor(__UpperCamelCase , is_mixed=__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) if audio is not None: UpperCAmelCase : Dict =self.feature_extractor( __UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , mask_audio=__UpperCamelCase , **__UpperCamelCase ) UpperCAmelCase : Optional[Any] ={} if audio is not None: output_dict.update(__UpperCamelCase ) if images is not None: output_dict.update(__UpperCamelCase ) if images_mixed_dict is not None: output_dict.update(__UpperCamelCase ) return output_dict @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =self.image_processor.model_input_names UpperCAmelCase : Union[str, Any] =self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
348
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : def __init__( self :List[Any] , __UpperCamelCase :Tuple , __UpperCamelCase :List[str]=13 , __UpperCamelCase :Any=30 , __UpperCamelCase :int=2 , __UpperCamelCase :Union[str, Any]=3 , __UpperCamelCase :Union[str, Any]=True , __UpperCamelCase :Optional[int]=True , __UpperCamelCase :List[str]=32 , __UpperCamelCase :List[Any]=5 , __UpperCamelCase :Dict=4 , __UpperCamelCase :List[str]=37 , __UpperCamelCase :str="gelu" , __UpperCamelCase :Union[str, Any]=0.1 , __UpperCamelCase :List[Any]=0.1 , __UpperCamelCase :Tuple=10 , __UpperCamelCase :Tuple=0.02 , __UpperCamelCase :int=None , ): A = parent A = batch_size A = image_size A = patch_size A = num_channels A = is_training A = use_labels A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = type_sequence_label_size A = initializer_range A = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A = (image_size // patch_size) ** 2 A = num_patches + 1 def lowerCamelCase ( self :Any ): A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self :Union[str, Any] ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase ( self :Dict , __UpperCamelCase :Dict , __UpperCamelCase :Any , __UpperCamelCase :Any ): A = ViTMSNModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :List[str] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Optional[Any] ): A = self.type_sequence_label_size A = ViTMSNForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , labels=__UpperCamelCase ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A = 1 A = ViTMSNForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase ( self :Optional[Any] ): A = self.prepare_config_and_inputs() A, A, A = config_and_inputs A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowerCamelCase ( self :Optional[int] ): A = ViTMSNModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def lowerCamelCase ( self :Any ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def lowerCamelCase ( self :Union[str, Any] ): pass def lowerCamelCase ( self :int ): A, A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def lowerCamelCase ( self :Tuple ): A, A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__UpperCamelCase ) A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCamelCase ( self :List[str] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCamelCase ( self :Dict ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def lowerCamelCase ( self :List[Any] ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = ViTMSNModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def A__ ( ): A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self :Union[str, Any] ): return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def lowerCamelCase ( self :Any ): torch.manual_seed(2 ) A = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(__UpperCamelCase ) A = self.default_image_processor A = prepare_img() A = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): A = model(**__UpperCamelCase ) # verify the logits A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) A = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
292
0
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase ): UpperCamelCase_: int = num_of_nodes UpperCamelCase_: Dict = [] UpperCamelCase_: Union[str, Any] = {} def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): self.m_edges.append([u_node, v_node, weight] ) def _a ( self , _lowerCamelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _a ( self , _lowerCamelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: UpperCamelCase_: Any = self.find_component(__lowerCAmelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if component_size[u_node] <= component_size[v_node]: UpperCamelCase_: Tuple = v_node component_size[v_node] += component_size[u_node] self.set_component(__lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: UpperCamelCase_: Tuple = self.find_component(__lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(__lowerCAmelCase ) def _a ( self ): UpperCamelCase_: Optional[Any] = [] UpperCamelCase_: Tuple = 0 UpperCamelCase_: Optional[int] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCamelCase_: int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = edge UpperCamelCase_: int = self.m_component[u] UpperCamelCase_: List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCamelCase_: Dict = [u, v, w] for edge in minimum_weight_edge: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[Any] = edge UpperCamelCase_: Any = self.m_component[u] UpperCamelCase_: List[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 UpperCamelCase_: Dict = [-1] * self.m_num_of_nodes print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def snake_case () -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
360
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[int] =RoFormerTokenizer a : int =RoFormerTokenizerFast a : int =True a : Optional[int] =True def _a ( self ): super().setUp() def _a ( self , **_lowerCamelCase ): return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **_lowerCamelCase ) def _a ( self , **_lowerCamelCase ): return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = '永和服装饰品有限公司,今天天气非常好' UpperCamelCase_: Any = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def _a ( self ): UpperCamelCase_: int = self.get_tokenizer() UpperCamelCase_ ,UpperCamelCase_: int = self.get_chinese_input_output_texts() UpperCamelCase_: Tuple = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , output_text.split() ) UpperCamelCase_: Dict = tokens + [tokenizer.unk_token] UpperCamelCase_: Dict = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[Any] = self.get_rust_tokenizer() UpperCamelCase_ ,UpperCamelCase_: Tuple = self.get_chinese_input_output_texts() UpperCamelCase_: Optional[Any] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , output_text.split() ) UpperCamelCase_: str = tokens + [tokenizer.unk_token] UpperCamelCase_: Optional[Any] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self ): pass def _a ( self ): pass def _a ( self ): pass
292
0
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __lowercase = logging.getLogger(__name__) class a__: '''simple docstring''' def __init__( self): """simple docstring""" lowerCAmelCase = False def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" if not self.initialized: lowerCAmelCase = RagRetriever( _a , question_encoder_tokenizer=_a , generator_tokenizer=_a , index=_a , init_retrieval=_a , ) lowerCAmelCase = True def a_ ( self): """simple docstring""" self.retriever.index.init_index() def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.retriever._main_retrieve(_a , _a) return doc_ids, retrieved_doc_embeds class a__( UpperCamelCase__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None): """simple docstring""" if index is not None and index.is_initialized() and len(_a) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """) super().__init__( _a , question_encoder_tokenizer=_a , generator_tokenizer=_a , index=_a , init_retrieval=_a , ) lowerCAmelCase = retrieval_workers if len(self.retrieval_workers) > 0: ray.get( [ worker.create_rag_retriever.remote(_a , _a , _a , _a) for worker in self.retrieval_workers ]) def a_ ( self): """simple docstring""" logger.info("""initializing retrieval""") if len(self.retrieval_workers) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers]) else: # Non-distributed training. Load index into this same process. self.index.init_index() def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" if len(self.retrieval_workers) > 0: # Select a random retrieval actor. lowerCAmelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers) - 1)] lowerCAmelCase = ray.get(random_worker.retrieve.remote(_a , _a)) else: lowerCAmelCase = self._main_retrieve(_a , _a) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_a) @classmethod def a_ ( cls , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" return super(_a , cls).get_tokenizers(_a , _a , **_a) @classmethod def a_ ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = kwargs.pop("""config""" , _a) or RagConfig.from_pretrained(_a , **_a) lowerCAmelCase = RagTokenizer.from_pretrained(_a , config=_a) lowerCAmelCase = rag_tokenizer.question_encoder lowerCAmelCase = rag_tokenizer.generator if indexed_dataset is not None: lowerCAmelCase = """custom""" lowerCAmelCase = CustomHFIndex(config.retrieval_vector_size , _a) else: lowerCAmelCase = cls._build_index(_a) return cls( _a , question_encoder_tokenizer=_a , generator_tokenizer=_a , retrieval_workers=_a , index=_a , )
272
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def a__ ( self , _a , _a , _a ) -> int: _A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a ) return generator, ["Something to write", "Something else"] def a__ ( self , _a , _a ) -> Dict: _A : Any = generator("""Something there""" ) self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) _A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) _A : Optional[int] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) with self.assertRaises(_a ): generator(4 ) @require_torch def a__ ( self ) -> List[str]: _A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility _A : Dict = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] ) _A : Any = 3 _A : Any = generator( """Something there""" , num_return_sequences=_a , num_beams=_a , ) _A : Optional[int] = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_a , _a ) _A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a ) self.assertEqual( _a , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) _A : Dict = generator.model.config.eos_token_id _A : List[str] = """<pad>""" _A : Dict = generator( ["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , ) self.assertEqual( _a , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def a__ ( self ) -> int: _A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility _A : str = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] )
26
0
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def snake_case (A_ :str , A_ :str ): '''simple docstring''' a : Any = RobertaPreLayerNormConfig.from_pretrained( A_ , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict a : Optional[int] = torch.load(hf_hub_download(repo_id=A_ , filename='pytorch_model.bin' ) ) a : Any = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): a : List[str] = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue a : str = tensor_value a : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=A_ , config=A_ , state_dict=A_ ) model.save_pretrained(A_ ) # convert tokenizer a : str = AutoTokenizer.from_pretrained(A_ ) tokenizer.save_pretrained(A_ ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase : Optional[int] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
360
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
186
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = "dandelin/vilt-b32-finetuned-vqa" SCREAMING_SNAKE_CASE : str = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) SCREAMING_SNAKE_CASE : Any = "image_qa" SCREAMING_SNAKE_CASE : str = AutoProcessor SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForVisualQuestionAnswering SCREAMING_SNAKE_CASE : Optional[int] = ["image", "text"] SCREAMING_SNAKE_CASE : List[Any] = ["text"] def __init__( self : Optional[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[Any]: requires_backends(self , ['''vision'''] ) super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : "Image" , _UpperCamelCase : str ) ->Union[str, Any]: return self.pre_processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' ) def snake_case__( self : Optional[int] , _UpperCamelCase : Dict ) ->int: with torch.no_grad(): return self.model(**_UpperCamelCase ).logits def snake_case__( self : Optional[Any] , _UpperCamelCase : Tuple ) ->Tuple: snake_case_ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
8
from statistics import mean import numpy as np def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> list: __snake_case: List[Any] = 0 # Number of processes finished __snake_case: Union[str, Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __snake_case: Dict = [0] * no_of_process # List to include calculation results __snake_case: Tuple = [0] * no_of_process # Sort by arrival time. __snake_case: int = [burst_time[i] for i in np.argsort(SCREAMING_SNAKE_CASE__)] __snake_case: Any = [process_name[i] for i in np.argsort(SCREAMING_SNAKE_CASE__)] arrival_time.sort() while no_of_process > finished_process_count: __snake_case: Tuple = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __snake_case: Any = arrival_time[i] __snake_case: List[Any] = 0 # Index showing the location of the process being performed __snake_case: Union[str, Any] = 0 # Saves the current response ratio. __snake_case: Optional[Any] = 0 for i in range(0 , SCREAMING_SNAKE_CASE__): if finished_process[i] == 0 and arrival_time[i] <= current_time: __snake_case: Tuple = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __snake_case: Union[str, Any] = temp __snake_case: Optional[int] = i # Calculate the turn around time __snake_case: Optional[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __snake_case: Optional[int] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> list: __snake_case: Union[str, Any] = [0] * no_of_process for i in range(0 , SCREAMING_SNAKE_CASE__): __snake_case: Optional[int] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = 5 __UpperCAmelCase : Tuple = ["A", "B", "C", "D", "E"] __UpperCAmelCase : str = [1, 2, 3, 4, 5] __UpperCAmelCase : Dict = [1, 2, 3, 4, 5] __UpperCAmelCase : List[str] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __UpperCAmelCase : List[str] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( f'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' f'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(f'average waiting time : {mean(waiting_time):.5f}') print(f'average turn around time : {mean(turn_around_time):.5f}')
111
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def A ( snake_case :Any , snake_case :Union[str, Any] , snake_case :Optional[int] , snake_case :Optional[Any] ) -> Any: # Initialise PyTorch model __UpperCamelCase = FunnelConfig.from_json_file(lowerCAmelCase_ ) print(f'Building PyTorch model from configuration: {config}' ) __UpperCamelCase = FunnelBaseModel(lowerCAmelCase_ ) if base_model else FunnelModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) UpperCamelCase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
369
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : int = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "distilbert" lowercase = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , __UpperCAmelCase=3_0522 , __UpperCAmelCase=512 , __UpperCAmelCase=False , __UpperCAmelCase=6 , __UpperCAmelCase=12 , __UpperCAmelCase=768 , __UpperCAmelCase=4 * 768 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.2 , __UpperCAmelCase=0 , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = max_position_embeddings __UpperCamelCase = sinusoidal_pos_embds __UpperCamelCase = n_layers __UpperCamelCase = n_heads __UpperCamelCase = dim __UpperCamelCase = hidden_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation __UpperCamelCase = initializer_range __UpperCamelCase = qa_dropout __UpperCamelCase = seq_classif_dropout super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def UpperCAmelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
263
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __init__( self : str , __magic_name__ : Any , __magic_name__ : Tuple=7 , __magic_name__ : List[Any]=3 , __magic_name__ : Union[str, Any]=30 , __magic_name__ : str=400 , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=None , __magic_name__ : int=True , __magic_name__ : List[str]=[0.5, 0.5, 0.5] , __magic_name__ : Optional[int]=[0.5, 0.5, 0.5] , __magic_name__ : str=True , __magic_name__ : Optional[int]=1 / 255 , __magic_name__ : Union[str, Any]=True , ) -> Dict: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean SCREAMING_SNAKE_CASE_ = image_std SCREAMING_SNAKE_CASE_ = do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor SCREAMING_SNAKE_CASE_ = do_pad def __A ( self : str ) -> Optional[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __A ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Union[str, Any]=False ) -> List[str]: if not batched: SCREAMING_SNAKE_CASE_ = image_inputs[0] if isinstance(__magic_name__ , Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ = int(self.size["shortest_edge"] * h / w ) SCREAMING_SNAKE_CASE_ = self.size["shortest_edge"] elif w > h: SCREAMING_SNAKE_CASE_ = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_ = int(self.size["shortest_edge"] * w / h ) else: SCREAMING_SNAKE_CASE_ = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_ = self.size["shortest_edge"] else: SCREAMING_SNAKE_CASE_ = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ = max(__magic_name__ , key=lambda __magic_name__ : item[0] )[0] SCREAMING_SNAKE_CASE_ = max(__magic_name__ , key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = YolosImageProcessor if is_vision_available() else None def __A ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE_ = YolosImageProcessingTester(self ) @property def __A ( self : Optional[Any] ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , "image_mean" ) ) self.assertTrue(hasattr(__magic_name__ , "image_std" ) ) self.assertTrue(hasattr(__magic_name__ , "do_normalize" ) ) self.assertTrue(hasattr(__magic_name__ , "do_resize" ) ) self.assertTrue(hasattr(__magic_name__ , "size" ) ) def __A ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} ) self.assertEqual(image_processor.do_pad , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__magic_name__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , __magic_name__ ) def __A ( self : List[str] ) -> Optional[int]: pass def __A ( self : Union[str, Any] ) -> Any: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) SCREAMING_SNAKE_CASE_ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self : Union[str, Any] ) -> Optional[int]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self : Optional[Any] ) -> List[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self : Tuple ) -> List[Any]: # Initialize image_processings SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE_ = self.image_processing_class(do_resize=__magic_name__ , do_normalize=__magic_name__ , do_rescale=__magic_name__ ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE_ = image_processing_a.pad(__magic_name__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE_ = image_processing_a(__magic_name__ , return_tensors="pt" ) self.assertTrue( torch.allclose(encoded_images_with_method["pixel_values"] , encoded_images["pixel_values"] , atol=1e-4 ) ) @slow def __A ( self : Any ) -> Any: # prepare image and target SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {"image_id": 39_769, "annotations": target} # encode them SCREAMING_SNAKE_CASE_ = YolosImageProcessor.from_pretrained("hustvl/yolos-small" ) SCREAMING_SNAKE_CASE_ = image_processing(images=__magic_name__ , annotations=__magic_name__ , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __magic_name__ , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __magic_name__ ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __magic_name__ , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __magic_name__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __magic_name__ ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __magic_name__ ) ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __magic_name__ ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __magic_name__ ) ) @slow def __A ( self : Any ) -> int: # prepare image, target and masks_path SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} SCREAMING_SNAKE_CASE_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them SCREAMING_SNAKE_CASE_ = YolosImageProcessor(format="coco_panoptic" ) SCREAMING_SNAKE_CASE_ = image_processing(images=__magic_name__ , annotations=__magic_name__ , masks_path=__magic_name__ , return_tensors="pt" ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __magic_name__ , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __magic_name__ ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __magic_name__ , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __magic_name__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __magic_name__ ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __magic_name__ ) ) # verify masks SCREAMING_SNAKE_CASE_ = 822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __magic_name__ ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __magic_name__ ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __magic_name__ ) )
118
from functools import lru_cache @lru_cache def a__ ( __UpperCamelCase ): if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
118
1
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) class a_ ( _lowerCAmelCase ): def __init__( self : Optional[int] , lowercase : int=None , **lowercase : Dict ): """simple docstring""" warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , lowercase , ) super().__init__(args=lowercase , **lowercase )
147
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCAmelCase : Any =logging.get_logger(__name__) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ): if isinstance(__lowerCamelCase ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCamelCase ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCamelCase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class a_ ( _lowerCAmelCase ): __A = ["pixel_values"] def __init__( self : List[str] , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Tuple , ): """simple docstring""" super().__init__(**lowercase ) lowercase_ :Any = size if size is not None else {"shortest_edge": 256} lowercase_ :int = get_size_dict(lowercase , default_to_square=lowercase ) lowercase_ :str = crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase_ :List[str] = get_size_dict(lowercase , param_name="crop_size" ) lowercase_ :List[str] = do_resize lowercase_ :Any = size lowercase_ :Union[str, Any] = do_center_crop lowercase_ :Union[str, Any] = crop_size lowercase_ :Optional[Any] = resample lowercase_ :List[str] = do_rescale lowercase_ :List[Any] = rescale_factor lowercase_ :Dict = offset lowercase_ :Optional[Any] = do_normalize lowercase_ :Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ :Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Optional[Any] , ): """simple docstring""" lowercase_ :List[Any] = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" in size: lowercase_ :int = get_resize_output_image_size(lowercase , size["shortest_edge"] , default_to_square=lowercase ) elif "height" in size and "width" in size: lowercase_ :Union[str, Any] = (size["height"], size["width"]) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : str , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : str , ): """simple docstring""" lowercase_ :Any = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase , size=(size["height"], size["width"]) , data_format=lowercase , **lowercase ) def lowercase__ ( self : List[str] , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : bool = True , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] , ): """simple docstring""" lowercase_ :List[str] = image.astype(np.floataa ) if offset: lowercase_ :List[str] = image - (scale / 2) return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : Tuple , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Dict , ): """simple docstring""" return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : Tuple , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. lowercase_ :Optional[int] = to_numpy_array(lowercase ) if do_resize: lowercase_ :Tuple = self.resize(image=lowercase , size=lowercase , resample=lowercase ) if do_center_crop: lowercase_ :Any = self.center_crop(lowercase , size=lowercase ) if do_rescale: lowercase_ :Optional[Any] = self.rescale(image=lowercase , scale=lowercase , offset=lowercase ) if do_normalize: lowercase_ :Tuple = self.normalize(image=lowercase , mean=lowercase , std=lowercase ) lowercase_ :Optional[Any] = to_channel_dimension_format(lowercase , lowercase ) return image def lowercase__ ( self : Dict , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : Optional[int] , ): """simple docstring""" lowercase_ :str = do_resize if do_resize is not None else self.do_resize lowercase_ :Optional[Any] = resample if resample is not None else self.resample lowercase_ :Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ :Dict = do_rescale if do_rescale is not None else self.do_rescale lowercase_ :Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ :Dict = offset if offset is not None else self.offset lowercase_ :Tuple = do_normalize if do_normalize is not None else self.do_normalize lowercase_ :int = image_mean if image_mean is not None else self.image_mean lowercase_ :Optional[int] = image_std if image_std is not None else self.image_std lowercase_ :int = size if size is not None else self.size lowercase_ :Optional[int] = get_size_dict(lowercase , default_to_square=lowercase ) lowercase_ :List[Any] = crop_size if crop_size is not None else self.crop_size lowercase_ :List[str] = get_size_dict(lowercase , param_name="crop_size" ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) lowercase_ :List[str] = make_batched(lowercase ) lowercase_ :List[Any] = [ [ self._preprocess_image( image=lowercase , do_resize=lowercase , size=lowercase , resample=lowercase , do_center_crop=lowercase , crop_size=lowercase , do_rescale=lowercase , rescale_factor=lowercase , offset=lowercase , do_normalize=lowercase , image_mean=lowercase , image_std=lowercase , data_format=lowercase , ) for img in video ] for video in videos ] lowercase_ :Optional[int] = {"pixel_values": videos} return BatchFeature(data=lowercase , tensor_type=lowercase )
147
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A : List[Any] = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['PoolFormerFeatureExtractor'] A : List[str] = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
6
from random import randint from tempfile import TemporaryFile import numpy as np def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ): __lowerCAmelCase = 0 if start < end: __lowerCAmelCase = randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = a[end] __lowerCAmelCase = a[pivot] __lowerCAmelCase = temp __lowerCAmelCase , __lowerCAmelCase = _in_place_partition(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE_ , p + 1 , SCREAMING_SNAKE_CASE_ ) return count def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): __lowerCAmelCase = 0 __lowerCAmelCase = randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = a[end] __lowerCAmelCase = a[pivot] __lowerCAmelCase = temp __lowerCAmelCase = start - 1 for index in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __lowerCAmelCase = new_pivot_index + 1 __lowerCAmelCase = a[new_pivot_index] __lowerCAmelCase = a[index] __lowerCAmelCase = temp __lowerCAmelCase = a[new_pivot_index + 1] __lowerCAmelCase = a[end] __lowerCAmelCase = temp return new_pivot_index + 1, count UpperCamelCase__ = TemporaryFile() UpperCamelCase__ = 100 # 1000 elements are to be sorted UpperCamelCase__ , UpperCamelCase__ = 0, 1 # mean and standard deviation UpperCamelCase__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array UpperCamelCase__ = np.load(outfile) UpperCamelCase__ = len(M) - 1 UpperCamelCase__ = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
92
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def __lowercase ( snake_case_ : list[list[float]] ) ->list[list[float]]: '''simple docstring''' __A : str = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __A : Union[str, Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements __A : Union[str, Any] = [[0.0, 0.0], [0.0, 0.0]] __A : Dict = matrix[1][1], matrix[0][0] __A : Union[str, Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __A : Any = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix __A : Union[str, Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __A : str = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __A : Tuple = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __A : Union[str, Any] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __A : Any = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __A : List[str] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __A : Optional[Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __A : Dict = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __A : str = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __A : List[str] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __A : List[Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): __A : Union[str, Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __A : Union[str, Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case_ ) # Calculate the inverse of the matrix return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
355
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def __lowercase ( snake_case_ : int ) ->bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(snake_case_ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( ) ->Iterator[int]: '''simple docstring''' __A : int = 2 while True: if is_prime(snake_case_ ): yield num num += 1 def __lowercase ( snake_case_ : int = 2000000 ) ->int: '''simple docstring''' return sum(takewhile(lambda snake_case_ : x < n ,prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
291
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = {} class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """llama""" __UpperCamelCase = ["""past_key_values"""] def __init__( self :Tuple , lowercase_ :Any=3_20_00 , lowercase_ :Tuple=40_96 , lowercase_ :Any=1_10_08 , lowercase_ :int=32 , lowercase_ :str=32 , lowercase_ :Optional[Any]=None , lowercase_ :Dict="silu" , lowercase_ :Any=20_48 , lowercase_ :Tuple=0.02 , lowercase_ :Tuple=1E-6 , lowercase_ :str=True , lowercase_ :Dict=0 , lowercase_ :Optional[Any]=1 , lowercase_ :List[str]=2 , lowercase_ :Union[str, Any]=1 , lowercase_ :List[Any]=False , lowercase_ :Union[str, Any]=None , **lowercase_ :int , ) -> int: UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase = num_attention_heads UpperCAmelCase = num_key_value_heads UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = rms_norm_eps UpperCAmelCase = pretraining_tp UpperCAmelCase = use_cache UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def UpperCAmelCase__ ( self :List[str] ) -> Any: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""" ) UpperCAmelCase = self.rope_scaling.get('type' , lowercase_ ) UpperCAmelCase = self.rope_scaling.get('factor' , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
78
'''simple docstring''' import torch from torch import nn class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int]=1 ,lowercase__ : Optional[Any]=False ): super().__init__() __lowercase = n_token __lowercase = d_embed __lowercase = d_proj __lowercase = cutoffs + [n_token] __lowercase = [0] + self.cutoffs __lowercase = div_val __lowercase = self.cutoffs[0] __lowercase = len(self.cutoffs ) - 1 __lowercase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __lowercase = nn.Parameter(torch.zeros(self.n_clusters ,self.d_embed ) ) __lowercase = nn.Parameter(torch.zeros(self.n_clusters ) ) __lowercase = nn.ModuleList() __lowercase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase__ ,lowercase__ ) ) ) else: self.out_projs.append(lowercase__ ) self.out_layers.append(nn.Linear(lowercase__ ,lowercase__ ) ) else: for i in range(len(self.cutoffs ) ): __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowercase__ ,lowercase__ ) ) ) self.out_layers.append(nn.Linear(lowercase__ ,r_idx - l_idx ) ) __lowercase = keep_order def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Any ): if proj is None: __lowercase = nn.functional.linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __lowercase = nn.functional.linear(lowercase__ ,proj.t().contiguous() ) __lowercase = nn.functional.linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Any=None ,lowercase__ : List[str]=False ): if labels is not None: # Shift so that tokens < n predict n __lowercase = hidden[..., :-1, :].contiguous() __lowercase = labels[..., 1:].contiguous() __lowercase = hidden.view(-1 ,hidden.size(-1 ) ) __lowercase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: __lowercase = hidden.view(-1 ,hidden.size(-1 ) ) if self.n_clusters == 0: __lowercase = self._compute_logit(lowercase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) if labels is not None: __lowercase = labels != -1_0_0 __lowercase = torch.zeros_like(lowercase__ ,dtype=hidden.dtype ,device=hidden.device ) __lowercase = ( -nn.functional.log_softmax(lowercase__ ,dim=-1 )[mask].gather(1 ,labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __lowercase = nn.functional.log_softmax(lowercase__ ,dim=-1 ) else: # construct weights and biases __lowercase , __lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = self.out_layers[0].weight[l_idx:r_idx] __lowercase = self.out_layers[0].bias[l_idx:r_idx] else: __lowercase = self.out_layers[i].weight __lowercase = self.out_layers[i].bias if i == 0: __lowercase = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) __lowercase = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(lowercase__ ) biases.append(lowercase__ ) __lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) if labels is None: __lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __lowercase = torch.zeros_like(lowercase__ ,dtype=hidden.dtype ,device=hidden.device ) __lowercase = 0 __lowercase = [0] + self.cutoffs for i in range(len(lowercase__ ) - 1 ): __lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __lowercase = (labels >= l_idx) & (labels < r_idx) __lowercase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __lowercase = labels.index_select(0 ,lowercase__ ) - l_idx __lowercase = head_logprob.index_select(0 ,lowercase__ ) __lowercase = hidden.index_select(0 ,lowercase__ ) else: __lowercase = hidden if i == 0: if labels is not None: __lowercase = head_logprob_i.gather(1 ,target_i[:, None] ).squeeze(1 ) else: __lowercase = head_logprob[:, : self.cutoffs[0]] else: __lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __lowercase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 ,target_i[:, None] ).squeeze(1 ) else: __lowercase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __lowercase = logprob_i if labels is not None: if (hasattr(self ,'''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 ,lowercase__ ,-logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Union[str, Any] ): if self.n_clusters == 0: __lowercase = self._compute_logit(lowercase__ ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) return nn.functional.log_softmax(lowercase__ ,dim=-1 ) else: # construct weights and biases __lowercase , __lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = self.out_layers[0].weight[l_idx:r_idx] __lowercase = self.out_layers[0].bias[l_idx:r_idx] else: __lowercase = self.out_layers[i].weight __lowercase = self.out_layers[i].bias if i == 0: __lowercase = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) __lowercase = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(lowercase__ ) biases.append(lowercase__ ) __lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = [0] + self.cutoffs for i in range(len(lowercase__ ) - 1 ): __lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1] if i == 0: __lowercase = head_logprob[:, : self.cutoffs[0]] else: __lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i] __lowercase = self._compute_logit(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = nn.functional.log_softmax(lowercase__ ,dim=1 ) __lowercase = head_logprob[:, -i] + tail_logprob_i __lowercase = logprob_i return out
104
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowercase__ =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", F"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", F"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", F"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", F"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.weight""", F"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", F"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", F"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", F"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.weight""", F"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", F"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", F"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", F"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", F"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", F"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.bias""", F"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", F"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", F"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", F"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.bias""", F"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", F"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ): __a : Optional[Any] = state_dict.pop(lowerCAmelCase__ ) __a : int = val def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] ): __a : List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __a : Optional[int] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) __a : str = value else: __a : int = value return new_state_dict def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any=False ): __a : Any = '''''' if is_panoptic: __a : Optional[Any] = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __a : List[Any] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __a : Tuple = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __a : List[str] = in_proj_weight[:2_5_6, :] __a : str = in_proj_bias[:2_5_6] __a : Optional[Any] = in_proj_weight[2_5_6:5_1_2, :] __a : List[Any] = in_proj_bias[2_5_6:5_1_2] __a : Optional[Any] = in_proj_weight[-2_5_6:, :] __a : int = in_proj_bias[-2_5_6:] def __UpperCamelCase ( ): __a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a : List[str] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Dict ): __a : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __a : Tuple = '''resnet101''' if "dc5" in model_name: __a : int = True __a : List[Any] = '''panoptic''' in model_name if is_panoptic: __a : Optional[Any] = 2_5_0 else: __a : Optional[int] = 9_1 __a : str = '''huggingface/label-files''' __a : Optional[int] = '''coco-detection-id2label.json''' __a : Tuple = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) __a : List[Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __a : int = idalabel __a : Union[str, Any] = {v: k for k, v in idalabel.items()} # load image processor __a : Optional[int] = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __a : Optional[int] = ConditionalDetrImageProcessor(format=lowerCAmelCase__ ) # prepare image __a : Union[str, Any] = prepare_img() __a : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ) __a : int = encoding['''pixel_values'''] logger.info(f"Converting model {model_name}..." ) # load original model from torch hub __a : List[str] = torch.hub.load('''DeppMeng/ConditionalDETR''' , lowerCAmelCase__ , pretrained=lowerCAmelCase__ ).eval() __a : Tuple = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __a : Any = '''conditional_detr.''' + src rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a : int = rename_backbone_keys(lowerCAmelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCAmelCase__ , is_panoptic=lowerCAmelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __a : Optional[Any] = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __a : int = state_dict.pop(lowerCAmelCase__ ) __a : Optional[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __a : Union[str, Any] = state_dict.pop(lowerCAmelCase__ ) __a : Any = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __a : str = state_dict.pop(lowerCAmelCase__ ) __a : str = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __a : Optional[int] = state_dict.pop(lowerCAmelCase__ ) __a : str = val # finally, create HuggingFace model and load state dict __a : List[Any] = ConditionalDetrForSegmentation(lowerCAmelCase__ ) if is_panoptic else ConditionalDetrForObjectDetection(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() model.push_to_hub(repo_id=lowerCAmelCase__ , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion __a : Any = conditional_detr(lowerCAmelCase__ ) __a : str = model(lowerCAmelCase__ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowercase__ =parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
355
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = CustomTokenizer pass
90
0
"""simple docstring""" _lowerCamelCase : List[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = set() # keep track of all the paths to be checked A_ : List[Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A_ : Union[str, Any] = queue.pop(0 ) # get the last node from the path A_ : int = path[-1] if node not in explored: A_ : List[Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A_ : Dict = list(_UpperCAmelCase ) new_path.append(_UpperCAmelCase ) queue.append(_UpperCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_UpperCAmelCase ) # in case there's no path between the 2 nodes return [] def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A_ : Optional[int] = [start] A_ : List[Any] = set(_UpperCAmelCase ) # Keep tab on distances from `start` node. A_ : List[str] = {start: 0, target: -1} while queue: A_ : Union[str, Any] = queue.pop(0 ) if node == target: A_ : Union[str, Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_UpperCAmelCase ) queue.append(_UpperCAmelCase ) A_ : List[str] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
167
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Any = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
167
1
"""simple docstring""" from collections.abc import Sequence def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(_SCREAMING_SNAKE_CASE ) ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: """simple docstring""" lowerCAmelCase__ :Dict = 0.0 for coeff in reversed(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :int = result * x + coeff return result if __name__ == "__main__": __A = (0.0, 0.0, 5.0, 9.3, 7.0) __A = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
363
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __A = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: """simple docstring""" if rng is None: lowerCAmelCase__ :Dict = random.Random() lowerCAmelCase__ :Tuple = 1 for dim in shape: total_dims *= dim lowerCAmelCase__ :List[Any] = [] for _ in range(_SCREAMING_SNAKE_CASE ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCAmelCase__ :int = np.array(_SCREAMING_SNAKE_CASE , dtype=jnp.intaa ).reshape(_SCREAMING_SNAKE_CASE ) return output def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = ids_tensor(_SCREAMING_SNAKE_CASE , vocab_size=2 , rng=_SCREAMING_SNAKE_CASE ) # make sure that at least one token is attended to for each batch lowerCAmelCase__ :Any = 1 return attn_mask @require_flax class _lowerCAmelCase : """simple docstring""" __magic_name__ :Optional[int] = None __magic_name__ :List[str] = () def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCAmelCase__ :Union[str, Any] = 2 lowerCAmelCase__ :List[Any] = inputs['input_ids'].shape[-1] // 2 lowerCAmelCase__ :Union[str, Any] = inputs['input_ids'][:max_batch_size, :sequence_length] lowerCAmelCase__ :str = jnp.ones_like(__UpperCAmelCase ) lowerCAmelCase__ :int = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCAmelCase__ :List[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCAmelCase__ :Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = self._get_input_ids_and_config() lowerCAmelCase__ :int = False lowerCAmelCase__ :List[Any] = max_length lowerCAmelCase__ :List[Any] = 0 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :int = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase__ :List[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = pt_model_class(__UpperCAmelCase ).eval() lowerCAmelCase__ :Dict = load_flax_weights_in_pytorch_model(__UpperCAmelCase , flax_model.params ) lowerCAmelCase__ :Union[str, Any] = flax_model.generate(__UpperCAmelCase ).sequences lowerCAmelCase__ :Union[str, Any] = pt_model.generate(torch.tensor(__UpperCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCAmelCase__ :Union[str, Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = self._get_input_ids_and_config() lowerCAmelCase__ :Any = False lowerCAmelCase__ :Any = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[str] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Any = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = jit(model.generate ) lowerCAmelCase__ :Optional[Any] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = self._get_input_ids_and_config() lowerCAmelCase__ :int = True lowerCAmelCase__ :Optional[int] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Dict = model_class(__UpperCAmelCase ) lowerCAmelCase__ :int = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = jit(model.generate ) lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config() lowerCAmelCase__ :Optional[Any] = False lowerCAmelCase__ :Dict = max_length lowerCAmelCase__ :Dict = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[str] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Dict = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Any = jit(model.generate ) lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = self._get_input_ids_and_config() lowerCAmelCase__ :int = False lowerCAmelCase__ :Optional[Any] = max_length lowerCAmelCase__ :Optional[Any] = 2 lowerCAmelCase__ :Optional[int] = 2 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Union[str, Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :str = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = self._get_input_ids_and_config() lowerCAmelCase__ :Optional[int] = True lowerCAmelCase__ :Tuple = max_length lowerCAmelCase__ :Optional[int] = 0.8 lowerCAmelCase__ :Any = 1_0 lowerCAmelCase__ :List[Any] = 0.3 lowerCAmelCase__ :Tuple = 1 lowerCAmelCase__ :Union[str, Any] = 8 lowerCAmelCase__ :Optional[Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = jit(model.generate ) lowerCAmelCase__ :Any = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = self._get_input_ids_and_config() lowerCAmelCase__ :Union[str, Any] = max_length lowerCAmelCase__ :str = 1 lowerCAmelCase__ :Tuple = 8 lowerCAmelCase__ :Optional[Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = jit(model.generate ) lowerCAmelCase__ :Optional[int] = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self._get_input_ids_and_config() lowerCAmelCase__ :str = max_length lowerCAmelCase__ :Dict = 2 lowerCAmelCase__ :Dict = 1 lowerCAmelCase__ :Optional[int] = 8 lowerCAmelCase__ :Optional[Any] = 9 for model_class in self.all_generative_model_classes: lowerCAmelCase__ :List[Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :int = model.generate(__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Dict = jit(model.generate ) lowerCAmelCase__ :Dict = jit_generate(__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :Tuple = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :Union[str, Any] = False lowerCAmelCase__ :Optional[Any] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Tuple = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :int = jit(model.generate ) lowerCAmelCase__ :Optional[Any] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :Any = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :Optional[Any] = True lowerCAmelCase__ :Dict = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = jit(model.generate ) lowerCAmelCase__ :Optional[int] = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :int = self._get_input_ids_and_config() # pad attention mask on the left lowerCAmelCase__ :int = attention_mask.at[(0, 0)].set(0 ) lowerCAmelCase__ :Dict = 2 lowerCAmelCase__ :Optional[Any] = max_length for model_class in self.all_generative_model_classes: lowerCAmelCase__ :Any = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = jit(model.generate ) lowerCAmelCase__ :int = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) lowerCAmelCase__ :List[str] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) lowerCAmelCase__ :Optional[int] = 'Hello world' lowerCAmelCase__ :Union[str, Any] = tokenizer(__UpperCAmelCase , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__UpperCAmelCase , 'do_samples' ): model.generate(__UpperCAmelCase , do_samples=__UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__UpperCAmelCase , 'foo' ): lowerCAmelCase__ :Optional[int] = {'foo': 'bar'} model.generate(__UpperCAmelCase , **__UpperCAmelCase )
254
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __snake_case : Tuple = logging.get_logger(__name__) __snake_case : str = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class A__(__SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Optional[Any] = """longformer""" def __init__( self , _lowercase = 512 , _lowercase = 2 , _lowercase = 1 , _lowercase = 0 , _lowercase = 2 , _lowercase = 30_522 , _lowercase = 768 , _lowercase = 12 , _lowercase = 12 , _lowercase = 3_072 , _lowercase = "gelu" , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 512 , _lowercase = 2 , _lowercase = 0.0_2 , _lowercase = 1e-12 , _lowercase = False , **_lowercase , ) -> Optional[int]: super().__init__(pad_token_id=_lowercase , **_lowercase ) a_ : Dict = attention_window a_ : Union[str, Any] = sep_token_id a_ : Optional[int] = bos_token_id a_ : int = eos_token_id a_ : List[Any] = vocab_size a_ : Dict = hidden_size a_ : Optional[Any] = num_hidden_layers a_ : Optional[int] = num_attention_heads a_ : List[Any] = hidden_act a_ : Any = intermediate_size a_ : Any = hidden_dropout_prob a_ : Tuple = attention_probs_dropout_prob a_ : Any = max_position_embeddings a_ : Dict = type_vocab_size a_ : int = initializer_range a_ : Optional[Any] = layer_norm_eps a_ : Union[str, Any] = onnx_export class A__(__SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _lowercase , _lowercase = "default" , _lowercase = None ) -> Dict: super().__init__(_lowercase , _lowercase , _lowercase ) a_ : Optional[int] = True @property def UpperCamelCase__ ( self ) -> Tuple: if self.task == "multiple-choice": a_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: a_ : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def UpperCamelCase__ ( self ) -> Tuple: a_ : str = super().outputs if self.task == "default": a_ : Any = {0: """batch"""} return outputs @property def UpperCamelCase__ ( self ) -> List[str]: return 1e-4 @property def UpperCamelCase__ ( self ) -> List[Any]: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def UpperCamelCase__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , ) -> Optional[Any]: a_ : List[Any] = super().generate_dummy_inputs( preprocessor=_lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly a_ : Any = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global a_ : Union[str, Any] = 1 return inputs
248
_lowerCamelCase ={ "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0_2_1_7_6_6_3_4E-1_9, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355818, } def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCamelCase : Dict = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {", ".join(lowerCamelCase )}''' ) raise ValueError(lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
287
0
"""simple docstring""" import numpy as np lowerCAmelCase__ = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class __snake_case : def __init__( self : str ): """simple docstring""" _lowerCamelCase : Dict = np.array(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Union[str, Any] = np.where(letter == self.SQUARE ) _lowerCamelCase : Tuple = np.concatenate([indexa + 1, indexa + 1] ) return indexes def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = self.SQUARE[indexa - 1, indexa - 1] return letter def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = message.lower() _lowerCamelCase : Optional[int] = message.replace(''' ''' , '''''' ) _lowerCamelCase : Union[str, Any] = message.replace('''j''' , '''i''' ) _lowerCamelCase : int = np.empty((2, len(__lowerCAmelCase )) ) for letter_index in range(len(__lowerCAmelCase ) ): _lowerCamelCase : List[Any] = self.letter_to_numbers(message[letter_index] ) _lowerCamelCase : Tuple = numbers[0] _lowerCamelCase : Optional[int] = numbers[1] _lowerCamelCase : Dict = first_step.reshape(2 * len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = '''''' for numbers_index in range(len(__lowerCAmelCase ) ): _lowerCamelCase : Optional[int] = int(second_step[numbers_index * 2] ) _lowerCamelCase : List[str] = int(second_step[(numbers_index * 2) + 1] ) _lowerCamelCase : Any = self.numbers_to_letter(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = encoded_message + letter return encoded_message def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Tuple = message.lower() message.replace(''' ''' , '''''' ) _lowerCamelCase : Any = np.empty(2 * len(__lowerCAmelCase ) ) for letter_index in range(len(__lowerCAmelCase ) ): _lowerCamelCase : List[str] = self.letter_to_numbers(message[letter_index] ) _lowerCamelCase : Any = numbers[0] _lowerCamelCase : Optional[Any] = numbers[1] _lowerCamelCase : Any = first_step.reshape((2, len(__lowerCAmelCase )) ) _lowerCamelCase : int = '''''' for numbers_index in range(len(__lowerCAmelCase ) ): _lowerCamelCase : Optional[int] = int(second_step[0, numbers_index] ) _lowerCamelCase : int = int(second_step[1, numbers_index] ) _lowerCamelCase : Tuple = self.numbers_to_letter(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[str] = decoded_message + letter return decoded_message
175
"""simple docstring""" import argparse lowerCAmelCase__ = '''docs/source/_static/js/custom.js''' def snake_case_ ( A_ : List[str] ): '''simple docstring''' with open(A_, encoding='''utf-8''', newline='''\n''' ) as f: _lowerCamelCase : int = f.readlines() _lowerCamelCase : List[str] = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 _lowerCamelCase : List[Any] = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(A_, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.writelines(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') lowerCAmelCase__ = parser.parse_args() update_custom_js(args.version)
175
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> int: lowerCAmelCase = tempfile.mkdtemp() # fmt: off lowerCAmelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) ) lowerCAmelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase ) ) lowerCAmelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase = os.path.join(self.tmpdirname , lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowercase , lowercase ) def _snake_case ( self , **lowercase ) -> Dict: return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self , **lowercase ) -> List[str]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self , **lowercase ) -> int: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase ) def _snake_case ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase ) lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase ) self.assertIsInstance(processor_fast.tokenizer , lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase ) self.assertIsInstance(processor_fast.image_processor , lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 ) lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def _snake_case ( self ) -> int: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(lowercase , return_tensors="""np""" ) lowerCAmelCase = processor(images=lowercase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=lowercase ) lowerCAmelCase = tokenizer(lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def _snake_case ( self ) -> int: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(lowercase ) lowerCAmelCase = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def _snake_case ( self ) -> str: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPProcessor(tokenizer=lowercase , image_processor=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
46
"""simple docstring""" import math import sys def A__ ( UpperCamelCase ): A = "" try: with open(UpperCamelCase , "rb" ) as binary_file: A = binary_file.read() for dat in data: A = F"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def A__ ( UpperCamelCase ): A = {"0": "0", "1": "1"} A, A = "", "" A = len(UpperCamelCase ) for i in range(len(UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue A = lexicon[curr_string] result += last_match_id A = last_match_id + "0" if math.loga(UpperCamelCase ).is_integer(): A = {} for curr_key in list(UpperCamelCase ): A = lexicon.pop(UpperCamelCase ) A = new_lex A = last_match_id + "1" index += 1 A = "" return result def A__ ( UpperCamelCase , UpperCamelCase ): A = 8 try: with open(UpperCamelCase , "wb" ) as opened_file: A = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase ) , UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def A__ ( UpperCamelCase ): A = 0 for letter in data_bits: if letter == "1": break counter += 1 A = data_bits[counter:] A = data_bits[counter + 1 :] return data_bits def A__ ( UpperCamelCase , UpperCamelCase ): A = read_file_binary(UpperCamelCase ) A = remove_prefix(UpperCamelCase ) A = decompress_data(UpperCamelCase ) write_file_binary(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
292
0
def __UpperCamelCase ( _lowerCAmelCase = 10 , _lowerCAmelCase = 22 ) -> int: """simple docstring""" A : Dict = range(1 , _lowerCAmelCase ) A : List[Any] = range(1 , _lowerCAmelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
115
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_:Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:int = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } SCREAMING_SNAKE_CASE_:Tuple = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } SCREAMING_SNAKE_CASE_:Optional[int] = {"""facebook/blenderbot_small-90M""": 512} def __UpperCamelCase ( _lowerCAmelCase ) -> Dict: """simple docstring""" A : Optional[int] = set() A : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A : List[Any] = char A : Optional[int] = set(_lowerCAmelCase ) return pairs class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = ["input_ids", "attention_mask"] def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__="__start__", lowerCamelCase__="__end__", lowerCamelCase__="__unk__", lowerCamelCase__="__null__", **lowerCamelCase__, ): super().__init__(unk_token=lowerCamelCase__, bos_token=lowerCamelCase__, eos_token=lowerCamelCase__, pad_token=lowerCamelCase__, **lowerCamelCase__ ) with open(lowerCamelCase__, encoding="""utf-8""" ) as vocab_handle: A : Tuple = json.load(lowerCamelCase__ ) A : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase__, encoding="""utf-8""" ) as merges_handle: A : str = merges_handle.read().split("""\n""" )[1:-1] A : List[str] = [tuple(merge.split() ) for merge in merges] A : int = dict(zip(lowerCamelCase__, range(len(lowerCamelCase__ ) ) ) ) A : Optional[int] = {} @property def _lowerCAmelCase ( self ): return len(self.encoder ) def _lowerCAmelCase ( self ): return dict(self.encoder, **self.added_tokens_encoder ) def _lowerCAmelCase ( self, lowerCamelCase__ ): if token in self.cache: return self.cache[token] A : Optional[int] = re.sub("""([.,!?()])""", R""" \1""", lowerCamelCase__ ) A : List[Any] = re.sub("""(')""", R""" \1 """, lowerCamelCase__ ) A : int = re.sub(R"""\s{2,}""", """ """, lowerCamelCase__ ) if "\n" in token: A : Dict = token.replace("""\n""", """ __newln__""" ) A : Tuple = token.split(""" """ ) A : Union[str, Any] = [] for token in tokens: if not len(lowerCamelCase__ ): continue A : Optional[int] = token.lower() A : Optional[Any] = tuple(lowerCamelCase__ ) A : int = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A : Tuple = get_pairs(lowerCamelCase__ ) if not pairs: words.append(lowerCamelCase__ ) continue while True: A : Any = min(lowerCamelCase__, key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__, float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A : Any = bigram A : Optional[Any] = [] A : Any = 0 while i < len(lowerCamelCase__ ): try: A : List[str] = word.index(lowerCamelCase__, lowerCamelCase__ ) new_word.extend(word[i:j] ) A : Dict = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A : Tuple = tuple(lowerCamelCase__ ) A : int = new_word if len(lowerCamelCase__ ) == 1: break else: A : Dict = get_pairs(lowerCamelCase__ ) A : Any = """@@ """.join(lowerCamelCase__ ) A : Dict = word[:-4] A : Union[str, Any] = word words.append(lowerCamelCase__ ) return " ".join(lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : int = [] A : Optional[Any] = re.findall(R"""\S+\n?""", lowerCamelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase__ ).split(""" """ ) ) ) return split_tokens def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = token.lower() return self.encoder.get(lowerCamelCase__, self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.decoder.get(lowerCamelCase__, self.unk_token ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Dict = """ """.join(lowerCamelCase__ ).replace("""@@ """, """""" ).strip() return out_string def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A : str = os.path.join( lowerCamelCase__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A : int = os.path.join( lowerCamelCase__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase__, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCamelCase__, ensure_ascii=lowerCamelCase__ ) + """\n""" ) A : str = 0 with open(lowerCamelCase__, """w""", encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) A : List[Any] = token_index writer.write(""" """.join(lowerCamelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file
115
1
import functools from typing import Any def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bool: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ) or len(_UpperCamelCase ) == 0: raise ValueError('''the string should be not empty string''' ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not all( isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) > 0 for item in words ): raise ValueError('''the words should be a list of non-empty strings''' ) # Build trie snake_case_ : dict[str, Any] = {} snake_case_ : Dict = '''WORD_KEEPER''' for word in words: snake_case_ : Any = trie for c in word: if c not in trie_node: snake_case_ : Union[str, Any] = {} snake_case_ : str = trie_node[c] snake_case_ : List[Any] = True snake_case_ : List[Any] = len(_UpperCamelCase ) # Dynamic programming method @functools.cache def is_breakable(_UpperCamelCase ) -> bool: if index == len_string: return True snake_case_ : int = trie for i in range(_UpperCamelCase , _UpperCamelCase ): snake_case_ : Optional[Any] = trie_node.get(string[i] , _UpperCamelCase ) if trie_node is None: return False if trie_node.get(_UpperCamelCase , _UpperCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
279
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCAmelCase_ = random.Random() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: """simple docstring""" if rng is None: snake_case_ : str = global_rng snake_case_ : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=400 , __magic_name__=2000 , __magic_name__=10 , __magic_name__=160 , __magic_name__=8 , __magic_name__=0.0 , __magic_name__=4000 , __magic_name__=False , __magic_name__=True , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : str = batch_size snake_case_ : Union[str, Any] = min_seq_length snake_case_ : Tuple = max_seq_length snake_case_ : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ : Optional[int] = padding_value snake_case_ : Union[str, Any] = sampling_rate snake_case_ : Optional[int] = return_attention_mask snake_case_ : str = do_normalize snake_case_ : str = feature_size snake_case_ : Optional[Any] = chunk_length snake_case_ : Union[str, Any] = hop_length def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase (self , __magic_name__=False , __magic_name__=False ) -> Optional[Any]: '''simple docstring''' def _flatten(__magic_name__ ): return list(itertools.chain(*__magic_name__ ) ) if equal_length: snake_case_ : int = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case_ : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ : str = [np.asarray(__magic_name__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[str] = WhisperFeatureExtractionTester(self ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Union[str, Any] = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) snake_case_ : List[Any] = self.feature_extraction_class.from_pretrained(__magic_name__ ) snake_case_ : Optional[int] = feat_extract_first.to_dict() snake_case_ : Dict = feat_extract_second.to_dict() snake_case_ : List[str] = feat_extract_first.mel_filters snake_case_ : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(__magic_name__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(__magic_name__ ) snake_case_ : Optional[int] = self.feature_extraction_class.from_json_file(__magic_name__ ) snake_case_ : int = feat_extract_first.to_dict() snake_case_ : Optional[int] = feat_extract_second.to_dict() snake_case_ : Union[str, Any] = feat_extract_first.mel_filters snake_case_ : str = feat_extract_second.mel_filters self.assertTrue(np.allclose(__magic_name__ , __magic_name__ ) ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case_ : str = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] # Test feature size snake_case_ : str = feature_extractor(__magic_name__ , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case_ : Dict = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features snake_case_ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test batched snake_case_ : int = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case_ : List[str] = np.asarray(__magic_name__ ) snake_case_ : List[Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : Dict = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # Test truncation required snake_case_ : Any = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] snake_case_ : Union[str, Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] snake_case_ : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case_ : Optional[Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs_truncated] snake_case_ : Any = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features snake_case_ : List[Any] = feature_extractor(__magic_name__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__magic_name__ , __magic_name__ ): self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) def lowerCamelCase (self ) -> int: '''simple docstring''' import torch snake_case_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Union[str, Any] = np.random.rand(100 , 32 ).astype(np.floataa ) snake_case_ : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ : Optional[Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case_ : Optional[Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Optional[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech snake_case_ : Optional[Any] = ds.sort('''id''' ).select(range(__magic_name__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : str = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on snake_case_ : List[Any] = self._load_datasamples(1 ) snake_case_ : Union[str, Any] = WhisperFeatureExtractor() snake_case_ : Union[str, Any] = feature_extractor(__magic_name__ , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __magic_name__ , atol=1e-4 ) ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ : Optional[int] = self._load_datasamples(1 )[0] snake_case_ : List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue snake_case_ : Optional[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__magic_name__ )[0] self.assertTrue(np.all(np.mean(__magic_name__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__magic_name__ ) - 1 ) < 1e-3 ) )
279
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case__ ( _lowerCAmelCase ): lowercase__ : Dict = ['''image_processor''', '''tokenizer'''] lowercase__ : Optional[int] = '''ViltImageProcessor''' lowercase__ : Optional[int] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> int: __magic_name__ : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase__ , ) __magic_name__ : str = kwargs.pop("""feature_extractor""" ) __magic_name__ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : int = self.image_processor def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # add pixel_values + pixel_mask __magic_name__ : int = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) encoding.update(lowerCAmelCase__ ) return encoding def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__ ( self ) -> int: __magic_name__ : Dict = self.tokenizer.model_input_names __magic_name__ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __magic_name__ ( self ) -> int: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase__ , ) return self.image_processor_class @property def __magic_name__ ( self ) -> List[Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase__ , ) return self.image_processor
138
def UpperCamelCase ( _A ): """simple docstring""" if not isinstance(_A, _A ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) __magic_name__ : str = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
138
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int = 4_00_00_00 ) -> int: __A : Optional[int] = [0, 1] __A : Union[str, Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __A : Optional[int] = 0 for j in range(len(__snake_case ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
190
'''simple docstring''' import math import qiskit def _lowerCAmelCase ( __snake_case : int = 1 , __snake_case : int = 1 , __snake_case : int = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(__snake_case , __snake_case ) or isinstance(__snake_case , __snake_case ) or isinstance(__snake_case , __snake_case ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(__snake_case ) != input_a) or (math.floor(__snake_case ) != input_a) or (math.floor(__snake_case ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __A : int = qiskit.QuantumRegister(4 , 'qr' ) __A : Optional[int] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __A : Union[str, Any] = [input_a, input_a, carry_in] __A : Dict = qiskit.QuantumCircuit(__snake_case , __snake_case ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__snake_case ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__snake_case ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__snake_case ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __snake_case ) # measure the last two qbits __A : str = qiskit.Aer.get_backend('aer_simulator' ) __A : Any = qiskit.execute(__snake_case , __snake_case , shots=10_00 ) return job.result().get_counts(__snake_case ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
190
1
'''simple docstring''' import argparse import struct import unittest class lowerCAmelCase__ : """simple docstring""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : bytes ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = data # Initialize hash values __SCREAMING_SNAKE_CASE = [ 0X6a09e667, 0Xbb67ae85, 0X3c6ef372, 0Xa54ff53a, 0X510e527f, 0X9b05688c, 0X1f83d9ab, 0X5be0cd19, ] # Initialize round constants __SCREAMING_SNAKE_CASE = [ 0X428a2f98, 0X71374491, 0Xb5c0fbcf, 0Xe9b5dba5, 0X3956c25b, 0X59f111f1, 0X923f82a4, 0Xab1c5ed5, 0Xd807aa98, 0X12835b01, 0X243185be, 0X550c7dc3, 0X72be5d74, 0X80deb1fe, 0X9bdc06a7, 0Xc19bf174, 0Xe49b69c1, 0Xefbe4786, 0X0fc19dc6, 0X240ca1cc, 0X2de92c6f, 0X4a7484aa, 0X5cb0a9dc, 0X76f988da, 0X983e5152, 0Xa831c66d, 0Xb00327c8, 0Xbf597fc7, 0Xc6e00bf3, 0Xd5a79147, 0X06ca6351, 0X14292967, 0X27b70a85, 0X2e1b2138, 0X4d2c6dfc, 0X53380d13, 0X650a7354, 0X766a0abb, 0X81c2c92e, 0X92722c85, 0Xa2bfe8a1, 0Xa81a664b, 0Xc24b8b70, 0Xc76c51a3, 0Xd192e819, 0Xd6990624, 0Xf40e3585, 0X106aa070, 0X19a4c116, 0X1e376c08, 0X2748774c, 0X34b0bcb5, 0X391c0cb3, 0X4ed8aa4a, 0X5b9cca4f, 0X682e6ff3, 0X748f82ee, 0X78a5636f, 0X84c87814, 0X8cc70208, 0X90befffa, 0Xa4506ceb, 0Xbef9a3f7, 0Xc67178f2, ] __SCREAMING_SNAKE_CASE = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCAmelCase__ ( __SCREAMING_SNAKE_CASE : bytes ) -> bytes: """simple docstring""" __SCREAMING_SNAKE_CASE = b"""\x80""" + (b"""\x00""" * (63 - (len(__SCREAMING_SNAKE_CASE ) + 8) % 64)) __SCREAMING_SNAKE_CASE = struct.pack(""">Q""" , (len(__SCREAMING_SNAKE_CASE ) * 8) ) return data + padding + big_endian_integer def UpperCAmelCase__ ( self : Tuple ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" , __SCREAMING_SNAKE_CASE ) ) # add 48 0-ed integers words += [0] * 48 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __SCREAMING_SNAKE_CASE = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __SCREAMING_SNAKE_CASE = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __SCREAMING_SNAKE_CASE = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100000000 # Compression __SCREAMING_SNAKE_CASE = self.ror(__SCREAMING_SNAKE_CASE , 6 ) ^ self.ror(__SCREAMING_SNAKE_CASE , 11 ) ^ self.ror(__SCREAMING_SNAKE_CASE , 25 ) __SCREAMING_SNAKE_CASE = (e & f) ^ ((~e & 0Xffffffff) & g) __SCREAMING_SNAKE_CASE = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100000000 __SCREAMING_SNAKE_CASE = self.ror(__SCREAMING_SNAKE_CASE , 2 ) ^ self.ror(__SCREAMING_SNAKE_CASE , 13 ) ^ self.ror(__SCREAMING_SNAKE_CASE , 22 ) __SCREAMING_SNAKE_CASE = (a & b) ^ (a & c) ^ (b & c) __SCREAMING_SNAKE_CASE = (sa + maj) % 0X100000000 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( g, f, e, ((d + tempa) % 0X100000000), c, b, a, ((tempa + tempa) % 0X100000000), ) __SCREAMING_SNAKE_CASE = [a, b, c, d, e, f, g, h] # Modify final values __SCREAMING_SNAKE_CASE = [ ((element + mutated_hash_values[index]) % 0X100000000) for index, element in enumerate(self.hashes ) ] __SCREAMING_SNAKE_CASE = """""".join([hex(__SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for value in self.hashes] ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" return 0Xffffffff & (value << (32 - rotations)) | (value >> rotations) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> None: """simple docstring""" import hashlib __SCREAMING_SNAKE_CASE = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(__SCREAMING_SNAKE_CASE ).hash , hashlib.shaaaa(__SCREAMING_SNAKE_CASE ).hexdigest() ) def a__ ( ): """simple docstring""" import doctest doctest.testmod() __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: __SCREAMING_SNAKE_CASE = f.read() else: __SCREAMING_SNAKE_CASE = bytes(a__ , """utf-8""" ) print(SHAaaa(a__ ).hash ) if __name__ == "__main__": main()
331
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( a__ ): """simple docstring""" return x + 2 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) __SCREAMING_SNAKE_CASE = """x = y""" __SCREAMING_SNAKE_CASE = {"""y""": 5} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 5, """y""": 5} ) def UpperCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = add_two(x)""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result is None assert "tried to execute add_two" in out.out def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3\ny = 5""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """text = f'This is x: {x}.'""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """text""": """This is x: 3."""} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """if x <= 3:\n y = 2\nelse:\n y = 5""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 2} ) __SCREAMING_SNAKE_CASE = {"""x""": 8} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 8, """y""": 5} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [3, 5] ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = x""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 3} ) def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]\ntest_list[1]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 0\nfor i in range(3):\n x = i""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""range""": range} , state=__SCREAMING_SNAKE_CASE ) assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 2, """i""": 2} )
331
1
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup a_ : Tuple = { """User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""" } def a_ ( __snake_case : str = "dhaka" , __snake_case : int = 5 ) -> int: """simple docstring""" lowerCamelCase_ =min(__snake_case , 50 ) # Prevent abuse! lowerCamelCase_ ={ '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } lowerCamelCase_ =requests.get('''https://www.google.com/search''' , params=__snake_case , headers=__snake_case ) lowerCamelCase_ =BeautifulSoup(html.text , '''html.parser''' ) lowerCamelCase_ =''''''.join( re.findall(r'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) lowerCamelCase_ =json.dumps(__snake_case ) lowerCamelCase_ =json.loads(__snake_case ) lowerCamelCase_ =re.findall( r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , __snake_case , ) if not matched_google_image_data: return 0 lowerCamelCase_ =re.sub( r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(__snake_case ) , ) lowerCamelCase_ =re.findall( r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , __snake_case , ) for index, fixed_full_res_image in enumerate(__snake_case ): if index >= max_images: return index lowerCamelCase_ =bytes(__snake_case , '''ascii''' ).decode( '''unicode-escape''' ) lowerCamelCase_ =bytes(__snake_case , '''ascii''' ).decode( '''unicode-escape''' ) lowerCamelCase_ =urllib.request.build_opener() lowerCamelCase_ =[ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(__snake_case ) lowerCamelCase_ =F'''query_{query.replace(' ' , '_' )}''' if not os.path.exists(__snake_case ): os.makedirs(__snake_case ) urllib.request.urlretrieve( # noqa: S310 __snake_case , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: a_ : Any = download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print("""Please provide a search term.""") raise
75
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : Union[str, Any] = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
75
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' __snake_case = (DDIMParallelScheduler,) __snake_case = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def __lowerCAmelCase ( self : Optional[int] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[str] ) ->int: """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config(**lowerCAmelCase_ ) a = scheduler_class(**lowerCAmelCase_ ) a , a = 10, 0.0 a = self.dummy_model() a = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase_ ) for t in scheduler.timesteps: a = model(lowerCAmelCase_ , lowerCAmelCase_ ) a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample return sample def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) ->Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase_ ) a = self.scheduler_classes[0] a = self.get_scheduler_config(steps_offset=1 ) a = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) ->str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[int]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCAmelCase_ , eta=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**lowerCAmelCase_ ) a , a = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase_ ) a = self.dummy_model() a = self.dummy_sample_deter a = self.dummy_sample_deter + 0.1 a = self.dummy_sample_deter - 0.1 a = samplea.shape[0] a = torch.stack([samplea, samplea, samplea] , dim=0 ) a = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) a = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCAmelCase_ ) a = torch.sum(torch.abs(lowerCAmelCase_ ) ) a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def __lowerCAmelCase ( self : int ) ->Tuple: """simple docstring""" a = self.full_loop() a = torch.sum(torch.abs(lowerCAmelCase_ ) ) a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" a = self.full_loop(prediction_type='''v_prediction''' ) a = torch.sum(torch.abs(lowerCAmelCase_ ) ) a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.full_loop(set_alpha_to_one=lowerCAmelCase_ , beta_start=0.01 ) a = torch.sum(torch.abs(lowerCAmelCase_ ) ) a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = self.full_loop(set_alpha_to_one=lowerCAmelCase_ , beta_start=0.01 ) a = torch.sum(torch.abs(lowerCAmelCase_ ) ) a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
364
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ = 10 UpperCAmelCase__ = 256 def _a ( a :List[str] ) -> Optional[MinHash]: if len(a ) < MIN_NUM_TOKENS: return None a = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def _a ( a :str ) -> Set[str]: return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : Any , *, __UpperCAmelCase : float = 0.85 , ) ->Dict: """simple docstring""" a = duplication_jaccard_threshold a = NUM_PERM a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a = defaultdict(__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : MinHash ) ->None: """simple docstring""" a = self._index.query(__UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->List[List[Dict]]: """simple docstring""" a = [] for base, duplicates in self._duplicate_clusters.items(): a = [base] + list(__UpperCAmelCase ) # reformat the cluster to be a list of dict a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__UpperCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict ) ->None: """simple docstring""" a = self.get_duplicate_clusters() with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def _a ( a :List[Any] ) -> List[Any]: a , a = element a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _a ( a :Type[Dataset] ) -> List[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def _a ( a :Type[Dataset] , a :float ) -> str: a = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _a ( a :str , a :str ) -> float: a = get_tokens(a ) a = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ = None def _a ( a :Tuple , a :Tuple ) -> Any: a = [] for elementa in cluster: a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: a = 1 extremes.append(a ) return extremes def _a ( a :List[Any] , a :Optional[Any] , a :Union[str, Any] ) -> Optional[int]: global _shared_dataset a = dataset a = [] a = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def _a ( a :Type[Dataset] , a :float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: a = make_duplicate_clusters(a , a ) a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} a = {} a = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: a = element a = duplicate_indices - set(extreme_dict.keys() ) a = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a = element['''base_index'''] in extreme_dict if element["is_extreme"]: a = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(a )}""" ) print(F"""Number of duplicate clusters: {len(a )}""" ) print(F"""Files in duplicate cluster: {len(a )}""" ) print(F"""Unique files in duplicate cluster: {len(a )}""" ) print(F"""Filtered dataset size: {len(a )}""" ) return ds_filter, duplicate_clusters
26
0
'''simple docstring''' A__: List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__: str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__: Tuple = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int ) -> Any: assert len(str(_lowerCamelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _a : Tuple =year // 100 _a : List[str] =(5 * (century % 4) + 2) % 7 _a : str =year % 100 _a : str =centurian % 12 _a : Optional[int] =( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _a : int =( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _a : Union[str, Any] =(dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
276
UpperCamelCase = [0, 2, 4, 6, 8] UpperCamelCase = [1, 3, 5, 7, 9] def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] , _lowerCamelCase : int): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowercase__ : str = 0 for digit in range(10): lowercase__ : str = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _lowerCamelCase , _lowerCamelCase) return result lowercase__ : Dict = 0 for digita in range(10): lowercase__ : int = digita if (remainder + digita) % 2 == 0: lowercase__ : Optional[Any] = ODD_DIGITS else: lowercase__ : str = EVEN_DIGITS for digita in other_parity_digits: lowercase__ : List[str] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCamelCase , _lowerCamelCase , ) return result def lowercase_ ( _lowerCamelCase : int = 9): lowercase__ : Tuple = 0 for length in range(1 , max_power + 1): result += reversible_numbers(_lowerCamelCase , 0 , [0] * length , _lowerCamelCase) return result if __name__ == "__main__": print(f"{solution() = }")
87
0
"""simple docstring""" from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Dict[Optional[str], Type[Formatter]] = {} lowerCamelCase_ : Dict[Optional[str], str] = {} lowerCamelCase_ : Dict[Optional[str], Exception] = {} def _A ( lowercase , lowercase , lowercase = None , ): """simple docstring""" a =aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) a =formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) a =format_type def _A ( lowercase , lowercase , lowercase = None ): """simple docstring""" a =aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): a =unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["""python"""]) _register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""]) _register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""]) _register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""]) _register_formatter(CustomFormatter, """custom""") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""]) else: lowerCamelCase_ : Dict = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""") _register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""]) else: lowerCamelCase_ : Tuple = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""") _register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, """jax""", aliases=[]) else: lowerCamelCase_ : Optional[int] = ValueError("""JAX needs to be installed to be able to return JAX arrays.""") _register_unavailable_formatter(_jax_error, """jax""", aliases=[]) def _A ( lowercase ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _A ( lowercase , **lowercase ): """simple docstring""" a =get_format_type_from_alias(lowercase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowercase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
355
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : """simple docstring""" def __init__( self , __A , __A=13 , __A=[30, 30] , __A=2 , __A=3 , __A=True , __A=True , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=10 , __A=0.02 , __A=3 , __A=None , __A=8 , __A=10 , ) -> List[Any]: a =parent a =batch_size a =image_size a =patch_size a =num_channels a =is_training a =use_labels a =hidden_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_act a =hidden_dropout_prob a =attention_probs_dropout_prob a =type_sequence_label_size a =initializer_range a =num_labels a =scope a =n_targets a =num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens a =(image_size[1] // patch_size) * (image_size[0] // patch_size) a =num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) a =None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) a =[] for i in range(self.batch_size ): a ={} a =torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__A ) a =torch.rand(self.n_targets , 4 , device=__A ) labels.append(__A ) a =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ) -> int: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> List[Any]: a =YolosModel(config=__A ) model.to(__A ) model.eval() a =model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Dict: a =YolosForObjectDetection(__A ) model.to(__A ) model.eval() a =model(pixel_values=__A ) a =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) a =model(pixel_values=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.prepare_config_and_inputs() a , a , a =config_and_inputs a ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=False ) -> Any: a =super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": a =[] for i in range(self.model_tester.batch_size ): a ={} a =torch.ones( size=(self.model_tester.n_targets,) , device=__A , dtype=torch.long ) a =torch.ones( self.model_tester.n_targets , 4 , device=__A , dtype=torch.float ) labels.append(__A ) a =labels return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =YolosModelTester(self ) a =ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # YOLOS does not use inputs_embeds pass def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__A ) a =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a =[*signature.parameters.keys()] a =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a , a =self.model_tester.prepare_config_and_inputs_for_common() a =True # in YOLOS, the seq_len is different a =self.model_tester.expected_seq_len for model_class in self.all_model_classes: a =True a =False a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) a =len(__A ) # Check attention is always last and order is fine a =True a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =1 self.assertEqual(out_len + added_hidden_states , len(__A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self ) -> str: def check_hidden_states_output(__A , __A , __A ): a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.hidden_states a =getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__A ) , __A ) # YOLOS has a different seq_length a =self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a =True check_hidden_states_output(__A , __A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =YolosModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def _A ( ): """simple docstring""" a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Dict: return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__A ) a =self.default_image_processor a =prepare_img() a =image_processor(images=__A , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): a =model(inputs.pixel_values ) # verify outputs a =torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __A ) a =torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=__A , ) a =torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __A , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __A , atol=1E-4 ) ) # verify postprocessing a =image_processor.post_process_object_detection( __A , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] a =torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(__A ) a =[75, 75, 17, 63, 17] a =torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(__A ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __A , atol=1E-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __A ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __A ) )
215
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] ) -> List[Any]: __lowerCamelCase = [] for part_id in partition_order: __lowerCamelCase = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(__lowerCAmelCase ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __magic_name__ ( ) -> List[Any]: __lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __lowerCamelCase = spark.range(100 ).repartition(1 ) __lowerCamelCase = Spark(__lowerCAmelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __magic_name__ ( ) -> Dict: __lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __lowerCamelCase = spark.range(10 ).repartition(2 ) __lowerCamelCase = [1, 0] __lowerCamelCase = _generate_iterable_examples(__lowerCAmelCase , __lowerCAmelCase ) # Reverse the partitions. __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , __lowerCAmelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __magic_name__ ( ) -> int: __lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __lowerCamelCase = spark.range(10 ).repartition(1 ) __lowerCamelCase = SparkExamplesIterable(__lowerCAmelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __magic_name__ ( ) -> Tuple: __lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __lowerCamelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: __lowerCamelCase = lambda __lowerCAmelCase : x.reverse() __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [2, 1, 0] ) __lowerCamelCase = SparkExamplesIterable(__lowerCAmelCase ).shuffle_data_sources(__lowerCAmelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): __lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __magic_name__ ( ) -> Optional[Any]: __lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __lowerCamelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __lowerCamelCase = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): __lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __lowerCamelCase = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): __lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __magic_name__ ( ) -> Dict: __lowerCamelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __lowerCamelCase = spark.range(100 ).repartition(1 ) __lowerCamelCase = Spark(__lowerCAmelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
270
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Optional[int] ) -> List[Any]: if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=SCREAMING_SNAKE_CASE__ , ) assert hasattr(self , '''env''' ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: # configuration for running training on smdistributed Model Parallel __lowerCamelCase = { '''enabled''': True, '''processes_per_host''': 8, } __lowerCamelCase = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } __lowerCamelCase = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} __lowerCamelCase = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=SCREAMING_SNAKE_CASE__ , instance_type=self.instance_type , debugger_hook_config=SCREAMING_SNAKE_CASE__ , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=SCREAMING_SNAKE_CASE__ , py_version='''py36''' , ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: TrainingJobAnalytics(SCREAMING_SNAKE_CASE__ ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: # create estimator __lowerCamelCase = self.create_estimator(SCREAMING_SNAKE_CASE__ ) # run training estimator.fit() # result dataframe __lowerCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) __lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowerCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , SCREAMING_SNAKE_CASE__ )
270
1
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a_ = logging.get_logger(__name__) # pylint: disable=invalid-name a_ = 2_56 class snake_case ( _UpperCamelCase): __UpperCamelCase = ['melgan'] def __init__( self : Tuple , a__ : SpectrogramNotesEncoder , a__ : SpectrogramContEncoder , a__ : TaFilmDecoder , a__ : DDPMScheduler , a__ : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: '''simple docstring''' super().__init__() # From MELGAN _A = math.log(1E-5 ) # Matches MelGAN training. _A = 4.0 # Largest value for most examples _A = 1_28 self.register_modules( notes_encoder=a__ , continuous_encoder=a__ , decoder=a__ , scheduler=a__ , melgan=a__ , ) def a_ ( self : str , a__ : Tuple , a__ : Union[str, Any]=(-1.0, 1.0) , a__ : List[str]=False ) -> Optional[int]: '''simple docstring''' _A , _A = output_range if clip: _A = torch.clip(a__ , self.min_value , self.max_value ) # Scale to [0, 1]. _A = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def a_ ( self : str , a__ : Optional[Any] , a__ : Union[str, Any]=(-1.0, 1.0) , a__ : str=False ) -> str: '''simple docstring''' _A , _A = input_range _A = torch.clip(a__ , a__ , a__ ) if clip else outputs # Scale to [0, 1]. _A = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def a_ ( self : List[str] , a__ : Dict , a__ : List[str] , a__ : Optional[Any] ) -> Dict: '''simple docstring''' _A = input_tokens > 0 _A , _A = self.notes_encoder( encoder_input_tokens=a__ , encoder_inputs_mask=a__ ) _A , _A = self.continuous_encoder( encoder_inputs=a__ , encoder_inputs_mask=a__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def a_ ( self : Optional[Any] , a__ : List[Any] , a__ : Union[str, Any] , a__ : int ) -> int: '''simple docstring''' _A = noise_time if not torch.is_tensor(a__ ): _A = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(a__ ) and len(timesteps.shape ) == 0: _A = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _A = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) _A = self.decoder( encodings_and_masks=a__ , decoder_input_tokens=a__ , decoder_noise_time=a__ ) return logits @torch.no_grad() def __call__( self : Optional[int] , a__ : List[List[int]] , a__ : Optional[torch.Generator] = None , a__ : int = 1_00 , a__ : bool = True , a__ : str = "numpy" , a__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a__ : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a__ , a__ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(a__ )}.""" ) _A = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) _A = np.zeros([1, 0, self.n_dims] , np.floataa ) _A = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=a__ , device=self.device ) for i, encoder_input_tokens in enumerate(a__ ): if i == 0: _A = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. _A = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=a__ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. _A = ones _A = self.scale_features( a__ , output_range=[-1.0, 1.0] , clip=a__ ) _A = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=a__ , continuous_mask=a__ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop _A = randn_tensor( shape=encoder_continuous_inputs.shape , generator=a__ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(a__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _A = self.decode( encodings_and_masks=a__ , input_tokens=a__ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 _A = self.scheduler.step(a__ , a__ , a__ , generator=a__ ).prev_sample _A = self.scale_to_features(a__ , input_range=[-1.0, 1.0] ) _A = mel[:1] _A = mel.cpu().float().numpy() _A = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a__ , a__ ) logger.info("Generated segment" , a__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": _A = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: _A = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=a__ )
163
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
163
1
"""simple docstring""" import re def lowerCamelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' if len(re.findall("""[ATCG]""" , _UpperCamelCase ) ) != len(_UpperCamelCase ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
115
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int = 4_0_0_0_0_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase : int = [0, 1] __UpperCAmelCase : Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __UpperCAmelCase : str = 0 for j in range(len(_UpperCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"{solution() = }")
115
1
UpperCAmelCase__ : dict[str, float] ={ "km/h": 1.0, "m/s": 3.6, "mph": 1.609_344, "knot": 1.852, } UpperCAmelCase__ : dict[str, float] ={ "km/h": 1.0, "m/s": 0.277_777_778, "mph": 0.621_371_192, "knot": 0.539_956_803, } def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: lowerCamelCase =( F"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" F"""Valid values are: {", ".join(_UpperCAmelCase )}""" ) raise ValueError(_UpperCAmelCase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
262
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ : List[Any] =logging.get_logger(__name__) UpperCAmelCase__ : Dict ={'''vocab_file''': '''spiece.model'''} UpperCAmelCase__ : Dict ={ '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } UpperCAmelCase__ : List[str] ={ '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) UpperCAmelCase__ : Any =0 UpperCAmelCase__ : List[Any] =1 UpperCAmelCase__ : Union[str, Any] =2 UpperCAmelCase__ : Tuple =3 UpperCAmelCase__ : int =4 class __A ( a ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = """left""" def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_="<s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<sep>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="<cls>" , UpperCAmelCase_="<mask>" , UpperCAmelCase_=["<eop>", "<eod>"] , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token lowerCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) lowerCamelCase =3 lowerCamelCase =do_lower_case lowerCamelCase =remove_space lowerCamelCase =keep_accents lowerCamelCase =vocab_file lowerCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def _snake_case ( self ): return len(self.sp_model ) def _snake_case ( self ): lowerCamelCase ={self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowerCamelCase =self.__dict__.copy() lowerCamelCase =None return state def __setstate__( self , UpperCAmelCase_ ): lowerCamelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase ={} lowerCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , UpperCAmelCase_ ): if self.remove_space: lowerCamelCase =""" """.join(inputs.strip().split() ) else: lowerCamelCase =inputs lowerCamelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowerCamelCase =unicodedata.normalize("""NFKD""" , UpperCAmelCase_ ) lowerCamelCase ="""""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase_ )] ) if self.do_lower_case: lowerCamelCase =outputs.lower() return outputs def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase =self.preprocess_text(UpperCAmelCase_ ) lowerCamelCase =self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) lowerCamelCase =[] for piece in pieces: if len(UpperCAmelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCamelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase =cur_pieces[1:] else: lowerCamelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase_ ) else: new_pieces.append(UpperCAmelCase_ ) return new_pieces def _snake_case ( self , UpperCAmelCase_ ): return self.sp_model.PieceToId(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): return self.sp_model.IdToPiece(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ ): lowerCamelCase ="""""".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ , """ """ ).strip() return out_string def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = True , **UpperCAmelCase_ , ): lowerCamelCase =kwargs.pop("""use_source_tokenizer""" , UpperCAmelCase_ ) lowerCamelCase =self.convert_ids_to_tokens(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase =[] lowerCamelCase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) lowerCamelCase =[] sub_texts.append(UpperCAmelCase_ ) else: current_sub_text.append(UpperCAmelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCamelCase ="""""".join(UpperCAmelCase_ ) lowerCamelCase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase =self.clean_up_tokenization(UpperCAmelCase_ ) return clean_text else: return text def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =[self.sep_token_id] lowerCamelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] return ([0] * len(UpperCAmelCase_ )) + [1, 1] def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =[self.sep_token_id] lowerCamelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase =os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: lowerCamelCase =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
262
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = SwinConfig(image_size=192 ) if "base" in model_name: a_ = 6 a_ = 128 a_ = (2, 2, 18, 2) a_ = (4, 8, 16, 32) elif "large" in model_name: a_ = 12 a_ = 192 a_ = (2, 2, 18, 2) a_ = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) a_ = window_size a_ = embed_dim a_ = depths a_ = num_heads return config def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" if "encoder.mask_token" in name: a_ = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: a_ = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: a_ = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: a_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: a_ = name.replace("attn" , "attention.self" ) if "norm1" in name: a_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a_ = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": a_ = "layernorm.weight" if name == "encoder.norm.bias": a_ = "layernorm.bias" if "decoder" in name: pass else: a_ = "swin." + name return name def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" for key in orig_state_dict.copy().keys(): a_ = orig_state_dict.pop(UpperCAmelCase ) if "attn_mask" in key: pass elif "qkv" in key: a_ = key.split("." ) a_ = int(key_split[2] ) a_ = int(key_split[4] ) a_ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a_ = val[:dim, :] a_ = val[ dim : dim * 2, : ] a_ = val[-dim:, :] else: a_ = val[ :dim ] a_ = val[ dim : dim * 2 ] a_ = val[ -dim: ] else: a_ = val return orig_state_dict def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = torch.load(UpperCAmelCase , map_location="cpu" )["model"] a_ = get_swin_config(UpperCAmelCase ) a_ = SwinForMaskedImageModeling(UpperCAmelCase ) model.eval() a_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = ViTImageProcessor(size={"height": 192, "width": 192} ) a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) a_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ) with torch.no_grad(): a_ = model(**UpperCAmelCase ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCamelCase_ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
243
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = ["""vqvae"""] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->List[str]: super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , mel=__UpperCAmelCase , vqvae=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: return 50 if isinstance(self.scheduler , __UpperCAmelCase) else 10_00 @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=True , ) ->Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: a_ = steps or self.get_default_steps() self.scheduler.set_timesteps(__UpperCAmelCase) a_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: a_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__UpperCAmelCase , device=self.device , ) a_ = noise a_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__UpperCAmelCase , __UpperCAmelCase) a_ = self.mel.audio_slice_to_image(__UpperCAmelCase) a_ = np.frombuffer(input_image.tobytes() , dtype="uint8").reshape( (input_image.height, input_image.width)) a_ = (input_image / 2_55) * 2 - 1 a_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: a_ = self.vqvae.encode(torch.unsqueeze(__UpperCAmelCase , 0)).latent_dist.sample( generator=__UpperCAmelCase)[0] a_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: a_ = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , self.scheduler.timesteps[start_step - 1]) a_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a_ = int(mask_start_secs * pixels_per_second) a_ = int(mask_end_secs * pixels_per_second) a_ = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __UpperCAmelCase): a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase)["sample"] else: a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase)["sample"] if isinstance(self.scheduler , __UpperCAmelCase): a_ = self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , )["prev_sample"] else: a_ = self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase , )["prev_sample"] if mask is not None: if mask_start > 0: a_ = mask[:, step, :, :mask_start] if mask_end > 0: a_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a_ = 1 / self.vqvae.config.scaling_factor * images a_ = self.vqvae.decode(__UpperCAmelCase)["sample"] a_ = (images / 2 + 0.5).clamp(0 , 1) a_ = images.cpu().permute(0 , 2 , 3 , 1).numpy() a_ = (images * 2_55).round().astype("uint8") a_ = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__UpperCAmelCase , mode="RGB").convert("L") for _ in images)) a_ = [self.mel.image_to_audio(__UpperCAmelCase) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__UpperCAmelCase)[:, np.newaxis, :]) , **ImagePipelineOutput(__UpperCAmelCase)) @torch.no_grad() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 50) ->np.ndarray: assert isinstance(self.scheduler , __UpperCAmelCase) self.scheduler.set_timesteps(__UpperCAmelCase) a_ = np.array( [np.frombuffer(image.tobytes() , dtype="uint8").reshape((1, image.height, image.width)) for image in images]) a_ = (sample / 2_55) * 2 - 1 a_ = torch.Tensor(__UpperCAmelCase).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): a_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a_ = self.scheduler.alphas_cumprod[t] a_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a_ = 1 - alpha_prod_t a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase)["sample"] a_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output a_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->torch.Tensor: a_ = acos(torch.dot(torch.flatten(__UpperCAmelCase) , torch.flatten(__UpperCAmelCase)) / torch.norm(__UpperCAmelCase) / torch.norm(__UpperCAmelCase)) return sin((1 - alpha) * theta) * xa / sin(__UpperCAmelCase) + sin(alpha * theta) * xa / sin(__UpperCAmelCase)
243
1
from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=A_ ): UpperCAmelCase__ : Union[str, Any] = ["onnx"] def __init__(self : Tuple , *_A : Optional[int] , **_A : Any ) -> Dict: requires_backends(self , ["onnx"] ) @classmethod def UpperCAmelCase(cls : int , *_A : Dict , **_A : List[Any] ) -> Optional[Any]: requires_backends(cls , ["onnx"] ) @classmethod def UpperCAmelCase(cls : Dict , *_A : Tuple , **_A : Optional[Any] ) -> int: requires_backends(cls , ["onnx"] )
356
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def lowercase_ ( A__ , A__ ) -> int: """simple docstring""" snake_case = RobertaPreLayerNormConfig.from_pretrained( A__ , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict snake_case = torch.load(hf_hub_download(repo_id=A__ , filename="pytorch_model.bin" ) ) snake_case = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): snake_case = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue snake_case = tensor_value snake_case = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=A__ , config=A__ , state_dict=A__ ) model.save_pretrained(A__ ) # convert tokenizer snake_case = AutoTokenizer.from_pretrained(A__ ) tokenizer.save_pretrained(A__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _A = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
137
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
180
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class a ( __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Any = '''resnet''' lowerCamelCase :Any = ['''basic''', '''bottleneck'''] def __init__( self , lowerCAmelCase_=3 , lowerCAmelCase_=64 , lowerCAmelCase_=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_=[3, 4, 6, 3] , lowerCAmelCase_="bottleneck" , lowerCAmelCase_="relu" , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Union[str, Any]: super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _A = num_channels _A = embedding_size _A = hidden_sizes _A = depths _A = layer_type _A = hidden_act _A = downsample_in_first_stage _A = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] _A , _A = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[Any] = version.parse('''1.11''' ) @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase ( self ) -> float: return 1E-3
180
1
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : str =GPTSanJapaneseTokenizer lowercase_ : Optional[int] =False lowercase_ : Dict ={'''do_clean_text''': False, '''add_prefix_space''': False} def A__ ( self): super().setUp() # fmt: off lowercase = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on lowercase = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 lowercase = {'''unk_token''': '''<unk>'''} lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file''']) lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''emoji_file''']) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) with open(self.emoji_file ,'''w''') as emoji_writer: emoji_writer.write(json.dumps(_a)) def A__ ( self ,**A__): kwargs.update(self.special_tokens_map) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname ,**_a) def A__ ( self ,A__): lowercase = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' lowercase = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def A__ ( self ,A__): lowercase , lowercase = self.get_input_output_texts(_a) lowercase = tokenizer.encode(_a ,add_special_tokens=_a) lowercase = tokenizer.decode(_a ,clean_up_tokenization_spaces=_a) return text, ids def A__ ( self): pass # TODO add if relevant def A__ ( self): pass # TODO add if relevant def A__ ( self): pass # TODO add if relevant def A__ ( self): lowercase = self.get_tokenizer() # Testing tokenization lowercase = '''こんにちは、世界。 こんばんは、㔺界。''' lowercase = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] lowercase = tokenizer.tokenize(_a) self.assertListEqual(_a ,_a) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(_a) self.assertListEqual(_a ,_a) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] lowercase = tokenizer.convert_tokens_to_ids(_a) self.assertListEqual(_a ,_a) def A__ ( self): lowercase = self.get_tokenizer() # Testing tokenization lowercase = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' lowercase = '''こんにちは、、、、世界。こんばんは、、、、世界。''' lowercase = tokenizer.encode(_a) lowercase = tokenizer.decode(_a) self.assertEqual(_a ,_a) @slow def A__ ( self): lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') # Testing tokenization lowercase = '''こんにちは、世界。''' lowercase = '''こんばんは、㔺界。😀''' lowercase = '''こんにちは、世界。こんばんは、世界。😀''' lowercase = tokenizer.encode(prefix_text + input_text) lowercase = tokenizer.encode('''''' ,prefix_text=prefix_text + input_text) lowercase = tokenizer.encode(_a ,prefix_text=_a) lowercase = tokenizer.decode(_a) lowercase = tokenizer.decode(_a) lowercase = tokenizer.decode(_a) self.assertEqual(_a ,_a) self.assertEqual(_a ,_a) self.assertEqual(_a ,_a) @slow def A__ ( self): lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') # Testing tokenization lowercase = '''こんにちは、世界。''' lowercase = '''こんばんは、㔺界。😀''' lowercase = len(tokenizer.encode(_a)) - 2 lowercase = len(tokenizer.encode(_a)) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text).token_type_ids lowercase = tokenizer('''''' ,prefix_text=prefix_text + input_text).token_type_ids lowercase = tokenizer(_a ,prefix_text=_a).token_type_ids self.assertListEqual(_a ,_a) self.assertListEqual(_a ,_a) self.assertListEqual(_a ,_a) @slow def A__ ( self): lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') lowercase = tokenizer.encode('''あンいワ''') lowercase = tokenizer.encode('''''' ,prefix_text='''あンいワ''') lowercase = tokenizer.encode('''いワ''' ,prefix_text='''あン''') self.assertEqual(tokenizer.decode(_a) ,tokenizer.decode(_a)) self.assertEqual(tokenizer.decode(_a) ,tokenizer.decode(_a)) self.assertNotEqual(_a ,_a) self.assertNotEqual(_a ,_a) self.assertEqual(x_token_a[1] ,x_token_a[-1]) # SEG token self.assertEqual(x_token_a[1] ,x_token_a[3]) # SEG token @slow def A__ ( self): lowercase = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''') lowercase = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] lowercase = tokenizer(_a ,padding=_a) lowercase = tokenizer.batch_encode_plus(_a ,padding=_a) # fmt: off lowercase = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids ,_a) self.assertListEqual(x_token.token_type_ids ,_a) self.assertListEqual(x_token.attention_mask ,_a) self.assertListEqual(x_token_a.input_ids ,_a) self.assertListEqual(x_token_a.token_type_ids ,_a) self.assertListEqual(x_token_a.attention_mask ,_a) def A__ ( self): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def A__ ( self): # tokenizer has no padding token pass
363
lowercase__ :Any = 8.3_144_598 def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowercase__ :Optional[Any] = 300 lowercase__ :List[Any] = 28 lowercase__ :Dict = rms_speed_of_molecule(temperature, molar_mass) print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
97
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , ) -> List[Any]: '''simple docstring''' a__ : int =size if size is not None else {"height": 1_8, "width": 1_8} a__ : Dict =parent a__ : Union[str, Any] =batch_size a__ : List[Any] =num_channels a__ : str =image_size a__ : Any =min_resolution a__ : Dict =max_resolution a__ : Optional[int] =do_resize a__ : List[str] =size a__ : Union[str, Any] =do_normalize def _lowercase ( self ) -> Tuple: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : Dict = ImageGPTImageProcessor if is_vision_available() else None def _lowercase ( self ) -> str: '''simple docstring''' a__ : Tuple =ImageGPTImageProcessingTester(self ) @property def _lowercase ( self ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "clusters" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) a__ : Optional[Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Dict =self.image_processing_class(**self.image_processor_dict ) a__ : Optional[Any] =json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCAmelCase__ ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : Tuple =os.path.join(lowerCAmelCase__ , "image_processor.json" ) image_processor_first.to_json_file(lowerCAmelCase__ ) a__ : List[Any] =self.image_processing_class.from_json_file(lowerCAmelCase__ ).to_dict() a__ : Tuple =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase__ ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCAmelCase__ ) a__ : List[Any] =self.image_processing_class.from_pretrained(lowerCAmelCase__ ).to_dict() a__ : List[Any] =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase__ ) @unittest.skip("ImageGPT requires clusters at initialization" ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' pass def _A ( ): """simple docstring""" a__ : Optional[int] =load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) a__ : Union[str, Any] =Image.open(dataset[4]["file"] ) a__ : Any =Image.open(dataset[5]["file"] ) a__ : str =[imagea, imagea] return images @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase): @slow def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : Tuple =ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) a__ : List[Any] =prepare_images() # test non-batched a__ : List[str] =image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) a__ : Any =[3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase__ ) # test batched a__ : Optional[Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) a__ : Tuple =[3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase__ )
95
def _A ( SCREAMING_SNAKE_CASE : list ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Input list must be a non empty list" ) if len(SCREAMING_SNAKE_CASE ) == 1: return True a__ : Union[str, Any] =series[1] - series[0] for index in range(len(SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _A ( SCREAMING_SNAKE_CASE : list ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Input list must be a non empty list" ) a__ : Any =0 for val in series: answer += val return answer / len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
95
1
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A ( _a ,unittest.TestCase ): lowercase_ = DebertaTokenizer lowercase_ = True lowercase_ = DebertaTokenizerFast def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] _a = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) _a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a = {'''unk_token''': '''[UNK]'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def __lowerCAmelCase ( self : str , **lowerCAmelCase_ : List[str] ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = '''lower newer''' _a = '''lower newer''' return input_text, output_text def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _a = self.get_tokenizer() _a = '''lower newer''' _a = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _a = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" _a = self.get_tokenizer() _a = tokenizer('''Hello''' , '''World''' ) _a = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , _snake_case ) @slow def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _a = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) _a = tokenizer.encode('''sequence builders''' , add_special_tokens=_snake_case ) _a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_snake_case ) _a = tokenizer.encode( '''sequence builders''' , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) _a = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) _a = tokenizer.build_inputs_with_special_tokens(_snake_case ) _a = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _a = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _a = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) _a = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] _a = tokenizer(_snake_case , padding=_snake_case ) _a = [tokenizer.decode(_snake_case , skip_special_tokens=_snake_case ) for seq in encoding['''input_ids''']] # fmt: off _a = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _a = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , _snake_case ) for expected, decoded in zip(_snake_case , _snake_case ): self.assertEqual(_snake_case , _snake_case )
357
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _snake_case : Optional[Any] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class A ( unittest.TestCase ): @classmethod def __lowerCAmelCase ( cls : Tuple ) -> int: """simple docstring""" _a = TOKEN HfFolder.save_token(lowerCAmelCase_ ) @classmethod def __lowerCAmelCase ( cls : Tuple ) -> Optional[int]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _a = FlaxBertModel(lowerCAmelCase_ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) _a = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) _a = flatten_dict(unfreeze(model.params ) ) _a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase_ , 1e-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase_ , repo_id='''test-model-flax''' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) _a = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) _a = flatten_dict(unfreeze(model.params ) ) _a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase_ , 1e-3 , msg=F'{key} not identical' ) def __lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _a = FlaxBertModel(lowerCAmelCase_ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) _a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) _a = flatten_dict(unfreeze(model.params ) ) _a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase_ , 1e-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCAmelCase_ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) _a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) _a = flatten_dict(unfreeze(model.params ) ) _a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase_ , 1e-3 , msg=F'{key} not identical' ) def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] ): '''simple docstring''' _a = True _a = flatten_dict(modela.params ) _a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: _a = False return models_are_equal @require_flax class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _a = FlaxBertModel(lowerCAmelCase_ ) _a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) with self.assertRaises(lowerCAmelCase_ ): _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ ) _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.assertTrue(check_models_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _a = FlaxBertModel(lowerCAmelCase_ ) _a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , max_shard_size='''10KB''' ) with self.assertRaises(lowerCAmelCase_ ): _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ ) _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.assertTrue(check_models_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _a = '''bert''' _a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(lowerCAmelCase_ ): _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ ) _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" _a = '''bert''' _a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(lowerCAmelCase_ ): _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ ) _a = FlaxBertModel.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ )
179
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Any=99 , UpperCAmelCase_ : Optional[int]=36 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[str]=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[str]=512 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : int=6 , UpperCAmelCase_ : Dict=6 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Any]=1_000 , ) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =parent lowerCamelCase__: Union[str, Any] =batch_size lowerCamelCase__: Dict =num_channels lowerCamelCase__: int =image_size lowerCamelCase__: List[Any] =patch_size lowerCamelCase__: Union[str, Any] =text_seq_length lowerCamelCase__: str =is_training lowerCamelCase__: Dict =use_input_mask lowerCamelCase__: Optional[Any] =use_token_type_ids lowerCamelCase__: List[str] =use_labels lowerCamelCase__: int =vocab_size lowerCamelCase__: Optional[Any] =hidden_size lowerCamelCase__: Tuple =num_hidden_layers lowerCamelCase__: Optional[Any] =num_attention_heads lowerCamelCase__: Optional[int] =intermediate_size lowerCamelCase__: Union[str, Any] =hidden_act lowerCamelCase__: Union[str, Any] =hidden_dropout_prob lowerCamelCase__: Dict =attention_probs_dropout_prob lowerCamelCase__: Any =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =type_sequence_label_size lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: Optional[int] =coordinate_size lowerCamelCase__: Any =shape_size lowerCamelCase__: Optional[Any] =num_labels lowerCamelCase__: Optional[int] =num_choices lowerCamelCase__: int =scope lowerCamelCase__: str =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase__: str =text_seq_length lowerCamelCase__: List[Any] =(image_size // patch_size) ** 2 + 1 lowerCamelCase__: List[Any] =self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size) lowerCamelCase__: Union[str, Any] =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase__: Dict =bbox[i, j, 3] lowerCamelCase__: Union[str, Any] =bbox[i, j, 1] lowerCamelCase__: str =t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase__: Tuple =bbox[i, j, 2] lowerCamelCase__: Any =bbox[i, j, 0] lowerCamelCase__: Optional[Any] =t lowerCamelCase__: str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: Union[str, Any] =None if self.use_input_mask: lowerCamelCase__: Optional[int] =random_attention_mask([self.batch_size, self.text_seq_length]) lowerCamelCase__: Any =None if self.use_token_type_ids: lowerCamelCase__: Any =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size) lowerCamelCase__: str =None lowerCamelCase__: List[Any] =None if self.use_labels: lowerCamelCase__: Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCamelCase__: Tuple =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels) lowerCamelCase__: str =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =LayoutLMvaModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # text + image lowerCamelCase__: Optional[int] =model(UpperCAmelCase_ , pixel_values=UpperCAmelCase_) lowerCamelCase__: Tuple =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) lowerCamelCase__: Any =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) lowerCamelCase__: int =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # text only lowerCamelCase__: str =model(UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size)) # image only lowerCamelCase__: int =model(pixel_values=UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Any =self.num_labels lowerCamelCase__: Optional[Any] =LayoutLMvaForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: int =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.num_labels lowerCamelCase__: List[str] =LayoutLMvaForTokenClassification(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Union[str, Any] =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =LayoutLMvaForQuestionAnswering(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Union[str, Any] =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ): List[Any] =config_and_inputs lowerCamelCase__: List[str] ={ "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any) ->Optional[int]: '''simple docstring''' return True def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' lowerCamelCase__: Union[str, Any] =LayoutLMvaModelTester(self) lowerCamelCase__: Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]=False) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =copy.deepcopy(UpperCAmelCase_) if model_class in get_values(UpperCAmelCase_): lowerCamelCase__: Union[str, Any] ={ k: v.unsqueeze(1).expand(-1 , self.model_tester.num_choices , -1).contiguous() if isinstance(UpperCAmelCase_ , torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase_): lowerCamelCase__: Optional[int] =torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in get_values(UpperCAmelCase_): lowerCamelCase__: int =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) lowerCamelCase__: int =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in [ *get_values(UpperCAmelCase_), ]: lowerCamelCase__: Union[str, Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in [ *get_values(UpperCAmelCase_), ]: lowerCamelCase__: int =torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase_ , ) return inputs_dict def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__: Union[str, Any] =type self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: int =LayoutLMvaModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" lowerCamelCase__: str =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base").to(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.default_image_processor lowerCamelCase__: List[Any] =prepare_img() lowerCamelCase__: Union[str, Any] =image_processor(images=UpperCAmelCase_ , return_tensors="pt").pixel_values.to(UpperCAmelCase_) lowerCamelCase__: Any =torch.tensor([[1, 2]]) lowerCamelCase__: str =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) # forward pass lowerCamelCase__: Tuple =model( input_ids=input_ids.to(UpperCAmelCase_) , bbox=bbox.to(UpperCAmelCase_) , pixel_values=pixel_values.to(UpperCAmelCase_) , ) # verify the logits lowerCamelCase__: str =torch.Size((1, 199, 768)) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_) lowerCamelCase__: Dict =torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1E-4))
10
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase: List[Any] = logging.get_logger(__name__) lowerCAmelCase: List[Any] = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class a__( lowerCamelCase__ ): lowercase__ = """roberta""" def __init__( self : Tuple , __snake_case : List[str]=5_02_65 , __snake_case : int=7_68 , __snake_case : Union[str, Any]=12 , __snake_case : Dict=12 , __snake_case : Tuple=30_72 , __snake_case : Optional[Any]="gelu" , __snake_case : str=0.1 , __snake_case : Any=0.1 , __snake_case : str=5_12 , __snake_case : int=2 , __snake_case : Any=0.02 , __snake_case : int=1e-1_2 , __snake_case : str=1 , __snake_case : Union[str, Any]=0 , __snake_case : Tuple=2 , __snake_case : Optional[int]="absolute" , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=None , **__snake_case : str , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) a : List[str] = vocab_size a : str = hidden_size a : Tuple = num_hidden_layers a : Dict = num_attention_heads a : List[Any] = hidden_act a : str = intermediate_size a : Union[str, Any] = hidden_dropout_prob a : Optional[Any] = attention_probs_dropout_prob a : Any = max_position_embeddings a : Optional[int] = type_vocab_size a : str = initializer_range a : List[Any] = layer_norm_eps a : Optional[int] = position_embedding_type a : Dict = use_cache a : Any = classifier_dropout class a__( lowerCamelCase__ ): @property def lowercase_ ( self : int ): if self.task == "multiple-choice": a : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: a : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
297
0
import requests UpperCamelCase_ = '''YOUR API KEY''' def lowerCamelCase_ ( _a : str , _a : str = giphy_api_key ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """+""".join(query.split() ) UpperCAmelCase_ : str = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' UpperCAmelCase_ : Dict = requests.get(_a ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
59
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = ["pixel_values"] def __init__( self: Optional[Any] ,lowerCamelCase_: bool = True ,lowerCamelCase_: Optional[Dict[str, int]] = None ,lowerCamelCase_: PILImageResampling = PILImageResampling.BICUBIC ,lowerCamelCase_: bool = True ,lowerCamelCase_: bool = True ,lowerCamelCase_: Union[int, float] = 1 / 255 ,lowerCamelCase_: Dict[str, int] = None ,lowerCamelCase_: bool = True ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,**lowerCamelCase_: Union[str, Any] ,) -> None: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = size if size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase_ : Tuple = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ,param_name="""crop_size""" ) UpperCAmelCase_ : Union[str, Any] = do_resize UpperCAmelCase_ : Union[str, Any] = do_rescale UpperCAmelCase_ : str = do_normalize UpperCAmelCase_ : Optional[int] = do_center_crop UpperCAmelCase_ : str = crop_size UpperCAmelCase_ : List[str] = size UpperCAmelCase_ : Any = resample UpperCAmelCase_ : Tuple = rescale_factor UpperCAmelCase_ : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self: List[Any] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Dict[str, int] ,lowerCamelCase_: PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: Optional[int] ,) -> np.ndarray: UpperCAmelCase_ : Tuple = get_size_dict(lowerCamelCase_ ) if "shortest_edge" in size: UpperCAmelCase_ : Optional[Any] = get_resize_output_image_size(lowerCamelCase_ ,size=size["""shortest_edge"""] ,default_to_square=lowerCamelCase_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase_ : Tuple = (size["""height"""], size["""width"""]) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: List[Any] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Dict[str, int] ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: str ,) -> np.ndarray: UpperCAmelCase_ : Dict = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCamelCase_ ,size=(size["""height"""], size["""width"""]) ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: Optional[int] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: float ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: List[str] ) -> np.ndarray: return rescale(lowerCamelCase_ ,scale=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: np.ndarray ,lowerCamelCase_: Union[float, List[float]] ,lowerCamelCase_: Union[float, List[float]] ,lowerCamelCase_: Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase_: Union[str, Any] ,) -> np.ndarray: return normalize(lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def A__ ( self: Any ,lowerCamelCase_: ImageInput ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Dict[str, int] = None ,lowerCamelCase_: PILImageResampling = None ,lowerCamelCase_: bool = None ,lowerCamelCase_: int = None ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Optional[float] = None ,lowerCamelCase_: Optional[bool] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[float, List[float]]] = None ,lowerCamelCase_: Optional[Union[str, TensorType]] = None ,lowerCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST ,**lowerCamelCase_: List[str] ,) -> BatchFeature: UpperCAmelCase_ : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : str = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ,default_to_square=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = resample if resample is not None else self.resample UpperCAmelCase_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Optional[Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : int = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Dict = size if size is not None else self.size UpperCAmelCase_ : List[str] = get_size_dict(lowerCamelCase_ ) if not is_batched(lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = [images] if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase_ : Tuple = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: UpperCAmelCase_ : int = [self.resize(image=lowerCamelCase_ ,size=lowerCamelCase_ ,resample=lowerCamelCase_ ) for image in images] if do_center_crop: UpperCAmelCase_ : Optional[int] = [self.center_crop(image=lowerCamelCase_ ,size=lowerCamelCase_ ) for image in images] if do_rescale: UpperCAmelCase_ : str = [self.rescale(image=lowerCamelCase_ ,scale=lowerCamelCase_ ) for image in images] if do_normalize: UpperCAmelCase_ : Dict = [self.normalize(image=lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ) for image in images] UpperCAmelCase_ : Dict = [to_channel_dimension_format(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] UpperCAmelCase_ : Tuple = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ ,tensor_type=lowerCamelCase_ )
59
1
'''simple docstring''' from __future__ import annotations import math def _UpperCamelCase ( __A , __A ) -> list: '''simple docstring''' if len(__A ) != 2 or len(a[0] ) != 2 or len(__A ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) UpperCamelCase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _UpperCamelCase ( __A , __A ) -> str: '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__A ) ) ] def _UpperCamelCase ( __A , __A ) -> Union[str, Any]: '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__A ) ) ] def _UpperCamelCase ( __A ) -> tuple[list, list, list, list]: '''simple docstring''' if len(__A ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) UpperCamelCase__ = len(__A ) UpperCamelCase__ = matrix_length // 2 UpperCamelCase__ = [[a[i][j] for j in range(__A , __A )] for i in range(__A )] UpperCamelCase__ = [ [a[i][j] for j in range(__A , __A )] for i in range(__A , __A ) ] UpperCamelCase__ = [[a[i][j] for j in range(__A )] for i in range(__A )] UpperCamelCase__ = [[a[i][j] for j in range(__A )] for i in range(__A , __A )] return top_left, top_right, bot_left, bot_right def _UpperCamelCase ( __A ) -> tuple[int, int]: '''simple docstring''' return len(__A ), len(matrix[0] ) def _UpperCamelCase ( __A ) -> None: '''simple docstring''' print("\n".join(str(__A ) for line in matrix ) ) def _UpperCamelCase ( __A , __A ) -> list: '''simple docstring''' if matrix_dimensions(__A ) == (2, 2): return default_matrix_multiplication(__A , __A ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = split_matrix(__A ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = split_matrix(__A ) UpperCamelCase__ = actual_strassen(__A , matrix_subtraction(__A , __A ) ) UpperCamelCase__ = actual_strassen(matrix_addition(__A , __A ) , __A ) UpperCamelCase__ = actual_strassen(matrix_addition(__A , __A ) , __A ) UpperCamelCase__ = actual_strassen(__A , matrix_subtraction(__A , __A ) ) UpperCamelCase__ = actual_strassen(matrix_addition(__A , __A ) , matrix_addition(__A , __A ) ) UpperCamelCase__ = actual_strassen(matrix_subtraction(__A , __A ) , matrix_addition(__A , __A ) ) UpperCamelCase__ = actual_strassen(matrix_subtraction(__A , __A ) , matrix_addition(__A , __A ) ) UpperCamelCase__ = matrix_addition(matrix_subtraction(matrix_addition(__A , __A ) , __A ) , __A ) UpperCamelCase__ = matrix_addition(__A , __A ) UpperCamelCase__ = matrix_addition(__A , __A ) UpperCamelCase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__A , __A ) , __A ) , __A ) # construct the new matrix from our 4 quadrants UpperCamelCase__ = [] for i in range(len(__A ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__A ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _UpperCamelCase ( __A , __A ) -> list: '''simple docstring''' if matrix_dimensions(__A )[1] != matrix_dimensions(__A )[0]: UpperCamelCase__ = ( "Unable to multiply these matrices, please check the dimensions.\n" F'''Matrix A: {matrixa}\n''' F'''Matrix B: {matrixa}''' ) raise Exception(__A ) UpperCamelCase__ = matrix_dimensions(__A ) UpperCamelCase__ = matrix_dimensions(__A ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] UpperCamelCase__ = max(*__A , *__A ) UpperCamelCase__ = int(math.pow(2 , math.ceil(math.loga(__A ) ) ) ) UpperCamelCase__ = matrixa UpperCamelCase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __A ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) UpperCamelCase__ = actual_strassen(__A , __A ) # Removing the additional zeros for i in range(0 , __A ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a__ : int = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a__ : str = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
80
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCAmelCase_ ( snake_case_ ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _A : List[str] = model_type_to_module_name(snake_case_ ) _A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" ) try: return getattr(snake_case_,snake_case_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A : List[Any] = importlib.import_module("""transformers""" ) if hasattr(snake_case_,snake_case_ ): return getattr(snake_case_,snake_case_ ) return None def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,): _A : Optional[int] = get_file_from_repo( snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(snake_case_,encoding="""utf-8""" ) as reader: return json.load(snake_case_ ) class lowercase : def __init__( self ) -> List[Any]: raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_a ) def a__ ( cls , _a , **_a ) -> Any: _A : Tuple = kwargs.pop("""config""" , _a ) _A : Tuple = kwargs.pop("""trust_remote_code""" , _a ) _A : List[Any] = True _A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a ) _A : Tuple = config_dict.get("""feature_extractor_type""" , _a ) _A : int = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): _A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_a , _a ): _A : int = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.feature_extractor_type`` _A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a ) if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: _A : Tuple = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: _A : Optional[Any] = feature_extractor_class_from_name(_a ) _A : List[Any] = feature_extractor_auto_map is not None _A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING _A : Optional[int] = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: _A : Dict = get_class_from_dynamic_module( _a , _a , **_a ) _A : str = kwargs.pop("""code_revision""" , _a ) if os.path.isdir(_a ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_a , **_a ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_a , **_a ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_a ) in FEATURE_EXTRACTOR_MAPPING: _A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )] return feature_extractor_class.from_dict(_a , **_a ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a__ ( _a , _a ) -> Optional[int]: FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
26
0
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", """stage2.cls_token""") ) return token def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Any = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase__ : Dict = 1000 lowerCAmelCase__ : Union[str, Any] = 'huggingface/label-files' lowerCAmelCase__ : str = num_labels lowerCAmelCase__ : str = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) lowerCAmelCase__ : Tuple = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = idalabel lowerCAmelCase__ : str = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Dict = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": lowerCAmelCase__ : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": lowerCAmelCase__ : str = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase__ : Dict = [2, 2, 20] lowerCAmelCase__ : Any = [3, 12, 16] lowerCAmelCase__ : Tuple = [192, 768, 1024] lowerCAmelCase__ : str = CvtForImageClassification(_UpperCAmelCase ) lowerCAmelCase__ : List[Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) lowerCAmelCase__ : int = image_size lowerCAmelCase__ : int = torch.load(_UpperCAmelCase , map_location=torch.device("""cpu""" ) ) lowerCAmelCase__ : List[Any] = OrderedDict() lowerCAmelCase__ : Union[str, Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase__ : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase ) lowerCAmelCase__ : Tuple = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): lowerCAmelCase__ : Optional[int] = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase__ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase__ : List[str] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
350
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if any(not isinstance(UpperCamelCase , UpperCamelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(UpperCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(UpperCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
184
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Optional[int] = logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'maskformer-swin' SCREAMING_SNAKE_CASE = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: int=224 , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: int=3 , _SCREAMING_SNAKE_CASE: List[Any]=96 , _SCREAMING_SNAKE_CASE: Union[str, Any]=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE: Any=[3, 6, 12, 24] , _SCREAMING_SNAKE_CASE: List[str]=7 , _SCREAMING_SNAKE_CASE: List[str]=4.0 , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: Any=0.0 , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: str="gelu" , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.02 , _SCREAMING_SNAKE_CASE: str=1e-5 , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: str=None , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> List[str]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = image_size __lowerCAmelCase : Any = patch_size __lowerCAmelCase : Tuple = num_channels __lowerCAmelCase : Any = embed_dim __lowerCAmelCase : Any = depths __lowerCAmelCase : Dict = len(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = num_heads __lowerCAmelCase : Tuple = window_size __lowerCAmelCase : Dict = mlp_ratio __lowerCAmelCase : Any = qkv_bias __lowerCAmelCase : Union[str, Any] = hidden_dropout_prob __lowerCAmelCase : int = attention_probs_dropout_prob __lowerCAmelCase : Tuple = drop_path_rate __lowerCAmelCase : int = hidden_act __lowerCAmelCase : Optional[int] = use_absolute_embeddings __lowerCAmelCase : List[str] = layer_norm_eps __lowerCAmelCase : Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCAmelCase : Optional[Any] = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE) - 1)) __lowerCAmelCase : Any = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(_SCREAMING_SNAKE_CASE) + 1)] __lowerCAmelCase , __lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names)
269
"""simple docstring""" import re def _lowercase ( __snake_case ) -> str: if len(re.findall("[ATCG]" ,__snake_case ) ) != len(__snake_case ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" ,"TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
269
1
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class A ( unittest.TestCase ): def __init__( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Optional[int]=18 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : Tuple=4_00 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : List[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : List[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : List[str]=False , ) -> Tuple: """simple docstring""" _a = size if size is not None else {'''height''': 20, '''width''': 20} _a = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_center_crop _a = crop_size _a = do_normalize _a = image_mean _a = image_std _a = do_reduce_labels def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def snake_case_ (): '''simple docstring''' _a = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) _a = Image.open(dataset[0]['''file'''] ) _a = Image.open(dataset[1]['''file'''] ) return image, map def snake_case_ (): '''simple docstring''' _a = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) _a = Image.open(ds[0]['''file'''] ) _a = Image.open(ds[1]['''file'''] ) _a = Image.open(ds[2]['''file'''] ) _a = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class A ( _a ,unittest.TestCase ): lowercase_ = BeitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _a = BeitImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''image_std''' ) ) def __lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase_ ) _a = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCAmelCase_ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def __lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) _a = [] for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _a = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched _a = image_processing(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) _a , _a = prepare_semantic_single_inputs() _a = image_processing(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) _a , _a = prepare_semantic_batch_inputs() _a = image_processing(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _a , _a = prepare_semantic_single_inputs() _a = image_processing(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) _a = True _a = image_processing(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
179
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def snake_case_ (UpperCamelCase : Dict ): '''simple docstring''' _a = {} _a = job['''started_at'''] _a = job['''completed_at'''] _a = date_parser.parse(UpperCamelCase ) _a = date_parser.parse(UpperCamelCase ) _a = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _a = start _a = end _a = duration_in_min return job_info def snake_case_ (UpperCamelCase : int , UpperCamelCase : int=None ): '''simple docstring''' _a = None if token is not None: _a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'Bearer {token}'} _a = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' _a = requests.get(UpperCamelCase , headers=UpperCamelCase ).json() _a = {} try: job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase ) for job in result['''jobs''']} ) _a = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(UpperCamelCase ): _a = requests.get(url + f'&page={i + 2}' , headers=UpperCamelCase ).json() job_time.update({job['''name''']: extract_time_from_single_job(UpperCamelCase ) for job in result['''jobs''']} ) return job_time except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') _snake_case : Tuple = parser.parse_args() _snake_case : int = get_job_time(args.workflow_run_id) _snake_case : int = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v['duration']}''')
179
1
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __a ( __lowerCamelCase ): def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : List[str] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowercase ( self : List[str] ): '''simple docstring''' with self.assertRaises(__lowercase ): UpperCamelCase__ : Tuple = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' with self.assertRaises(__lowercase ): UpperCamelCase__ : List[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : int = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowercase ( self : List[Any] ): '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCamelCase__ : List[str] = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __lowercase ( self : int ): '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCamelCase__ : Any = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : int = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __lowercase ( self : Dict ): '''simple docstring''' import PIL.Image UpperCamelCase__ : str = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=__lowercase ) as mock_cast_to_python_objects: UpperCamelCase__ : Union[str, Any] = pa.array(TypedSequence([{"path": None, "bytes": B"image_bytes"}, pil_image] , type=Image() ) ) UpperCamelCase__ : Any = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , __lowercase ) self.assertFalse(kwargs["optimize_list_casting"] ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: UpperCamelCase__ : List[Any] = pa.BufferReader(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , pa.Buffer ) else pa.memory_map(__lowerCAmelCase ) UpperCamelCase__ : Tuple = pa.ipc.open_stream(__lowerCAmelCase ) UpperCamelCase__ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: UpperCamelCase__ : str = pa.BufferOutputStream() UpperCamelCase__ : int = pa.schema(__lowerCAmelCase ) if fields else None with ArrowWriter(stream=__lowerCAmelCase , schema=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) UpperCamelCase__ : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase__ : str = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def SCREAMING_SNAKE_CASE ( ) -> int: UpperCamelCase__ : Optional[Any] = pa.BufferOutputStream() UpperCamelCase__ : Optional[Any] = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=__lowerCAmelCase , features=__lowerCAmelCase ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) UpperCamelCase__ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata UpperCamelCase__ : Tuple = pa.BufferReader(output.getvalue() ) UpperCamelCase__ : Dict = pa.ipc.open_stream(__lowerCAmelCase ) UpperCamelCase__ : pa.Table = f.read_all() UpperCamelCase__ : str = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__lowerCAmelCase ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: UpperCamelCase__ : Union[str, Any] = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase , hash_salt="split_name" , check_duplicates=__lowerCAmelCase , ) as writer: with pytest.raises(__lowerCAmelCase ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) UpperCamelCase__ : Any = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[int]: UpperCamelCase__ : Any = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase , hash_salt="split_name" , check_duplicates=__lowerCAmelCase , ) as writer: with pytest.raises(__lowerCAmelCase ): writer.write({"col_1": "foo", "col_2": 1} , key=10 ) writer.write({"col_1": "bar", "col_2": 2} , key=10 ) UpperCamelCase__ : Tuple = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str: UpperCamelCase__ : Dict = pa.BufferOutputStream() with ArrowWriter( stream=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase , hash_salt="split_name" , check_duplicates=__lowerCAmelCase , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) UpperCamelCase__ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str: UpperCamelCase__ : Optional[Any] = pa.BufferOutputStream() UpperCamelCase__ : Optional[int] = pa.schema(__lowerCAmelCase ) if fields else None with ArrowWriter(stream=__lowerCAmelCase , schema=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) UpperCamelCase__ : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase__ : Optional[int] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: UpperCamelCase__ : Tuple = pa.BufferOutputStream() UpperCamelCase__ : str = pa.schema(__lowerCAmelCase ) if fields else None with ArrowWriter(stream=__lowerCAmelCase , schema=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) UpperCamelCase__ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase__ : str = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: UpperCamelCase__ : List[str] = pa.BufferOutputStream() UpperCamelCase__ : Optional[int] = pa.schema(__lowerCAmelCase ) if fields else None with ArrowWriter(stream=__lowerCAmelCase , schema=__lowerCAmelCase , writer_batch_size=__lowerCAmelCase ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) UpperCamelCase__ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase__ : List[Any] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def SCREAMING_SNAKE_CASE ( ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ : Optional[int] = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} UpperCamelCase__ : Dict = os.path.join(__lowerCAmelCase , "test.arrow" ) with ArrowWriter(path=__lowerCAmelCase , schema=pa.schema(__lowerCAmelCase ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) UpperCamelCase__ : Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__lowerCAmelCase , metadata=writer._schema.metadata ) _check_output(__lowerCAmelCase , 1 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]: if pa.types.is_list(__lowerCAmelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: if isinstance(lst[0] , __lowerCAmelCase ): change_first_primitive_element_in_list(lst[0] , __lowerCAmelCase ) else: UpperCamelCase__ : List[Any] = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: UpperCamelCase__ : Dict = pa.array(TypedSequence(__lowerCAmelCase , optimized_int_type=__lowerCAmelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: UpperCamelCase__ : List[str] = pa.array(OptimizedTypedSequence(__lowerCAmelCase , col=__lowerCAmelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications UpperCamelCase__ : Tuple = copy.deepcopy(__lowerCAmelCase ) UpperCamelCase__ : int = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ : Optional[Any] = pa.array(OptimizedTypedSequence(__lowerCAmelCase , col=__lowerCAmelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: UpperCamelCase__ : Optional[Any] = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=__lowerCAmelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: UpperCamelCase__ : int = '''mock://dataset-train.arrow''' with ArrowWriter(path=__lowerCAmelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__lowerCAmelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) UpperCamelCase__ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: UpperCamelCase__ : Optional[Any] = pa.BufferOutputStream() with ParquetWriter(stream=__lowerCAmelCase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) UpperCamelCase__ : Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 UpperCamelCase__ : str = pa.BufferReader(output.getvalue() ) UpperCamelCase__ : pa.Table = pq.read_table(__lowerCAmelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: import PIL.Image UpperCamelCase__ : Dict = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__lowerCAmelCase , format="png" ) UpperCamelCase__ : Tuple = pa.BufferOutputStream() with ParquetWriter( stream=__lowerCAmelCase , features=Features({"image": Image()} ) , embed_local_files=__lowerCAmelCase ) as writer: writer.write({"image": image_path} ) writer.finalize() UpperCamelCase__ : List[Any] = pa.BufferReader(output.getvalue() ) UpperCamelCase__ : pa.Table = pq.read_table(__lowerCAmelCase ) UpperCamelCase__ : Optional[Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , __lowerCAmelCase ) with open(__lowerCAmelCase , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def SCREAMING_SNAKE_CASE ( ) -> Dict: UpperCamelCase__ : Optional[Any] = pa.schema([pa.field("col_1" , pa.string() , nullable=__lowerCAmelCase )] ) UpperCamelCase__ : Tuple = pa.BufferOutputStream() with ArrowWriter(stream=__lowerCAmelCase ) as writer: writer._build_writer(inferred_schema=__lowerCAmelCase ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
189
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename A__ = '''http://www.mocksite.com/file1.txt''' A__ = '''"text": ["foo", "foo"]''' A__ = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8''' class a : __lowerCAmelCase : Optional[int] = 2_00 __lowerCAmelCase : List[str] = {"""Content-Length""": """100"""} __lowerCAmelCase : Dict = {} def __lowerCamelCase ( self :Dict ,**__lowercase :List[Any] ): return [bytes(__lowercase ,'''utf-8''' )] def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(__lowerCAmelCase , '''request''' , __lowerCAmelCase ) snake_case__ : Union[str, Any] = URL if issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Optional[Any] = url elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : int = [url] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : int = {'''train''': url} snake_case__ : Dict = '''dummy''' snake_case__ : Any = '''downloads''' snake_case__ : int = tmp_path snake_case__ : Any = DownloadConfig( cache_dir=os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , use_etag=__lowerCAmelCase , ) snake_case__ : Tuple = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) snake_case__ : List[Any] = dl_manager.download(__lowerCAmelCase ) snake_case__ : Union[str, Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Optional[int] = [downloaded_paths] snake_case__ : Dict = [urls] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in downloaded_paths.keys() snake_case__ : str = downloaded_paths.values() snake_case__ : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCAmelCase , __lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] snake_case__ : List[Any] = Path(__lowerCAmelCase ) snake_case__ : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() snake_case__ : List[str] = downloaded_path.read_text() assert content == CONTENT snake_case__ : List[str] = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() snake_case__ : str = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ : Any = str(__lowerCAmelCase ) if issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Tuple = filename elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = [filename] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = {'''train''': filename} snake_case__ : Any = '''dummy''' snake_case__ : Any = xz_file.parent snake_case__ : List[str] = '''extracted''' snake_case__ : Dict = DownloadConfig( cache_dir=__lowerCAmelCase , use_etag=__lowerCAmelCase , ) snake_case__ : Dict = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) snake_case__ : str = dl_manager.extract(__lowerCAmelCase ) snake_case__ : int = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = [extracted_paths] snake_case__ : Optional[Any] = [paths] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in extracted_paths.keys() snake_case__ : int = extracted_paths.values() snake_case__ : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCAmelCase , __lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] snake_case__ : Optional[int] = Path(__lowerCAmelCase ) snake_case__ : int = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCAmelCase , etag=__lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() snake_case__ : List[Any] = extracted_path.read_text() snake_case__ : List[str] = text_file.read_text() assert extracted_file_content == expected_file_content def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: """simple docstring""" assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__lowerCAmelCase , start=1 ): snake_case__ : Any = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Any = request.getfixturevalue(__lowerCAmelCase ) snake_case__ : Union[str, Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" snake_case__ : Union[str, Any] = request.getfixturevalue(__lowerCAmelCase ) snake_case__ : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Any = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCAmelCase ) , start=1 ): assert os.path.basename(__lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
230
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : int = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
363
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase_ : Dict = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , **__A ) -> Dict: super().__init__(**__A ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type(__A ) def __call__( self , __A , __A = None , **__A , ) -> List[str]: if "text_queries" in kwargs: a =kwargs.pop('''text_queries''' ) if isinstance(__A , (str, Image.Image) ): a ={'''image''': image, '''candidate_labels''': candidate_labels} else: a =image a =super().__call__(__A , **__A ) return results def SCREAMING_SNAKE_CASE ( self , **__A ) -> Optional[Any]: a ={} if "threshold" in kwargs: a =kwargs['''threshold'''] if "top_k" in kwargs: a =kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self , __A ) -> str: a =load_image(inputs['''image'''] ) a =inputs['''candidate_labels'''] if isinstance(__A , __A ): a =candidate_labels.split(''',''' ) a =torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(__A ): a =self.tokenizer(__A , return_tensors=self.framework ) a =self.image_processor(__A , return_tensors=self.framework ) yield { "is_last": i == len(__A ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self , __A ) -> List[Any]: a =model_inputs.pop('''target_size''' ) a =model_inputs.pop('''candidate_label''' ) a =model_inputs.pop('''is_last''' ) a =self.model(**__A ) a ={'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self , __A , __A=0.1 , __A=None ) -> List[str]: a =[] for model_output in model_outputs: a =model_output['''candidate_label'''] a =BaseModelOutput(__A ) a =self.image_processor.post_process_object_detection( outputs=__A , threshold=__A , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): a =outputs['''scores'''][index].item() a =self._get_bounding_box(outputs['''boxes'''][index][0] ) a ={'''score''': score, '''label''': label, '''box''': box} results.append(__A ) a =sorted(__A , key=lambda __A : x["score"] , reverse=__A ) if top_k: a =results[:top_k] return results def SCREAMING_SNAKE_CASE ( self , __A ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) a , a , a , a =box.int().tolist() a ={ '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
215
0
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCAmelCase : Tuple = datasets.logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ UpperCAmelCase : int = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ UpperCAmelCase : Tuple = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="dummy_doc" ) -> int: '''simple docstring''' lowercase_ = {doc: key_lines} lowercase_ = {doc: sys_lines} lowercase_ = {} lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = reader.get_doc_mentions(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase ) key_singletons_num += singletons_num if NP_only or min_span: lowercase_ = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ = reader.get_doc_mentions(__lowerCAmelCase , sys_doc_lines[doc] , __lowerCAmelCase ) sys_singletons_num += singletons_num if NP_only or min_span: lowercase_ = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) if remove_nested: lowercase_ = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowercase_ = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowercase_ = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( """Number of resulting singleton clusters in the key """ F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' """files, respectively""" ) return doc_coref_infos def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = get_coref_infos(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ = {} lowercase_ = 0 lowercase_ = 0 for name, metric in metrics: lowercase_ = evaluator.evaluate_documents(__lowerCAmelCase , __lowerCAmelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , F'''Recall: {recall * 1_00:.2f}''' , F''' Precision: {precision * 1_00:.2f}''' , F''' F1: {fa * 1_00:.2f}''' , ) if conll_subparts_num == 3: lowercase_ = (conll / 3) * 1_00 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({"""conll_score""": conll} ) return output_scores def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: lowercase_ = line.split()[5] if not parse_col == "-": lowercase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""")), """references""": datasets.Sequence(datasets.Value("""string""")), }) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" lowercase_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowercase_ = util.check_gold_parse_annotation(__lowerCAmelCase) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use \'min_span\'.""") # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowercase_ = evaluate( key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , ) return score
136
'''simple docstring''' from math import pow def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowercase__ : Optional[Any] = int(pow(UpperCAmelCase , UpperCAmelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowercase__ , lowercase__ : Dict = backtrack( UpperCAmelCase , UpperCAmelCase , current_number + 1 , UpperCAmelCase , UpperCAmelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowercase__ , lowercase__ : str = backtrack( UpperCAmelCase , UpperCAmelCase , current_number + 1 , UpperCAmelCase , UpperCAmelCase ) return current_sum, solutions_count def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(UpperCAmelCase , UpperCAmelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
198
0
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = int(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = t // 36_00, (t // 60) % 60, t % 60 return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}" def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=3_00 ): # docstyle-ignore return f"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n " def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: SCREAMING_SNAKE_CASE_: Optional[Any] = f"{elt:.6f}" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else str(_UpperCAmelCase ) html_code += f" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __lowercase : """simple docstring""" _UpperCAmelCase : List[str] = 5 _UpperCAmelCase : Optional[Any] = 0.2 def __init__( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional["NotebookTrainingTracker"] = None , lowerCAmelCase__ : int = 300 , ): SCREAMING_SNAKE_CASE_: int = total SCREAMING_SNAKE_CASE_: List[str] = "" if prefix is None else prefix SCREAMING_SNAKE_CASE_: Dict = leave SCREAMING_SNAKE_CASE_: Tuple = parent SCREAMING_SNAKE_CASE_: Optional[int] = width SCREAMING_SNAKE_CASE_: Any = None SCREAMING_SNAKE_CASE_: Optional[Any] = None SCREAMING_SNAKE_CASE_: List[Any] = None def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : str = None): SCREAMING_SNAKE_CASE_: Optional[int] = value if comment is not None: SCREAMING_SNAKE_CASE_: str = comment if self.last_value is None: SCREAMING_SNAKE_CASE_: str = time.time() SCREAMING_SNAKE_CASE_: Dict = value SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: Optional[int] = self.warmup SCREAMING_SNAKE_CASE_: Dict = 1 self.update_bar(lowerCAmelCase__) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total): if self.first_calls > 0: self.first_calls -= 1 SCREAMING_SNAKE_CASE_: List[str] = time.time() SCREAMING_SNAKE_CASE_: Optional[Any] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: SCREAMING_SNAKE_CASE_: int = self.elapsed_time / (value - self.start_value) else: SCREAMING_SNAKE_CASE_: Dict = None if value >= self.total: SCREAMING_SNAKE_CASE_: int = self.total SCREAMING_SNAKE_CASE_: Optional[Any] = None if not self.leave: self.close() elif self.average_time_per_item is not None: SCREAMING_SNAKE_CASE_: Dict = self.average_time_per_item * (self.total - value) self.update_bar(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = value SCREAMING_SNAKE_CASE_: str = current_time if self.average_time_per_item is None: SCREAMING_SNAKE_CASE_: Optional[Any] = 1 else: SCREAMING_SNAKE_CASE_: List[Any] = max(int(self.update_every / self.average_time_per_item) , 1) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any=None): SCREAMING_SNAKE_CASE_: Dict = " " * (len(str(self.total)) - len(str(lowerCAmelCase__))) + str(lowerCAmelCase__) if self.elapsed_time is None: SCREAMING_SNAKE_CASE_: List[str] = F"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: SCREAMING_SNAKE_CASE_: str = F"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}" else: SCREAMING_SNAKE_CASE_: Optional[Any] = ( F"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <" F" {format_time(self.predicted_remaining)}" ) self.label += F", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment) == 0 else F", {self.comment}]" self.display() def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Dict = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: SCREAMING_SNAKE_CASE_: Dict = disp.display(disp.HTML(self.html_code) , display_id=lowerCAmelCase__) else: self.output.update(disp.HTML(self.html_code)) def _SCREAMING_SNAKE_CASE ( self : Dict): if self.parent is None and self.output is not None: self.output.update(disp.HTML("")) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=None): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = None if column_names is None else [column_names] SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: List[str] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: SCREAMING_SNAKE_CASE_: Any = disp.display(disp.HTML(self.html_code) , display_id=lowerCAmelCase__) else: self.output.update(disp.HTML(self.html_code)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : str): if self.inner_table is None: SCREAMING_SNAKE_CASE_: int = [list(values.keys()), list(values.values())] else: SCREAMING_SNAKE_CASE_: Union[str, Any] = self.inner_table[0] if len(self.inner_table) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = columns self.inner_table.append([values[c] for c in columns]) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Tuple=300): SCREAMING_SNAKE_CASE_: Dict = NotebookProgressBar(lowerCAmelCase__ , prefix=lowerCAmelCase__ , parent=self , width=lowerCAmelCase__) return self.child_bar def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = None self.display() class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: int = False def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Tuple = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" SCREAMING_SNAKE_CASE_: Any = 0 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: Tuple = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss") SCREAMING_SNAKE_CASE_: Tuple = NotebookTrainingTracker(state.max_steps , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , **lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: Tuple = int(state.epoch) if int(state.epoch) == state.epoch else F"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1 , comment=F"Epoch {epoch}/{state.num_train_epochs}" , force_update=self._force_next_update , ) SCREAMING_SNAKE_CASE_: Tuple = False def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=None , **lowerCAmelCase__ : Optional[Any]): if not has_length(lowerCAmelCase__): return if self.prediction_bar is None: if self.training_tracker is not None: SCREAMING_SNAKE_CASE_: Tuple = self.training_tracker.add_child(len(lowerCAmelCase__)) else: SCREAMING_SNAKE_CASE_: Any = NotebookProgressBar(len(lowerCAmelCase__)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : str , **lowerCAmelCase__ : Dict): if self.prediction_bar is not None: self.prediction_bar.close() SCREAMING_SNAKE_CASE_: Union[str, Any] = None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Dict): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: SCREAMING_SNAKE_CASE_: int = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy SCREAMING_SNAKE_CASE_: Any = state.global_step self.training_tracker.write_line(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Tuple): if self.training_tracker is not None: SCREAMING_SNAKE_CASE_: Dict = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history): if "loss" in log: SCREAMING_SNAKE_CASE_: List[Any] = log["loss"] break if self.first_column == "Epoch": SCREAMING_SNAKE_CASE_: Dict = int(state.epoch) else: SCREAMING_SNAKE_CASE_: Optional[Any] = state.global_step SCREAMING_SNAKE_CASE_: Optional[int] = "eval" for k in metrics: if k.endswith("_loss"): SCREAMING_SNAKE_CASE_: Union[str, Any] = re.sub(R"\_loss$" , "" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = metrics.pop("total_flos" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = metrics.pop("epoch" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = metrics.pop(F"{metric_key_prefix}_runtime" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = metrics.pop(F"{metric_key_prefix}_samples_per_second" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = metrics.pop(F"{metric_key_prefix}_steps_per_second" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = metrics.pop(F"{metric_key_prefix}_jit_compilation_time" , lowerCAmelCase__) for k, v in metrics.items(): if k == F"{metric_key_prefix}_loss": SCREAMING_SNAKE_CASE_: Optional[Any] = v else: SCREAMING_SNAKE_CASE_: List[str] = k.split("_") SCREAMING_SNAKE_CASE_: Any = " ".join([part.capitalize() for part in splits[1:]]) SCREAMING_SNAKE_CASE_: Optional[Any] = v self.training_tracker.write_line(lowerCAmelCase__) self.training_tracker.remove_child() SCREAMING_SNAKE_CASE_: Any = None # Evaluation takes a long time so we should force the next update. SCREAMING_SNAKE_CASE_: Union[str, Any] = True def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Union[str, Any]): self.training_tracker.update( state.global_step , comment=F"Epoch {int(state.epoch)}/{state.num_train_epochs}" , force_update=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = None
127
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : Any = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowerCAmelCase : str = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = EfficientNetConfig() SCREAMING_SNAKE_CASE_: Any = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE_: Optional[Any] = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE_: List[Any] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE_: Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE_: Optional[int] = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE_: Dict = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE_: str = "huggingface/label-files" SCREAMING_SNAKE_CASE_: str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_: int = 10_00 SCREAMING_SNAKE_CASE_: int = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_: int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Any = idalabel SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in idalabel.items()} return config def A_ ( ): SCREAMING_SNAKE_CASE_: Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_: int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE_: Optional[Any] = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_UpperCAmelCase , ) return preprocessor def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE_: Optional[Any] = sorted(set(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: int = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = {b: str(_UpperCAmelCase ) for b, i in zip(_UpperCAmelCase , range(_UpperCAmelCase ) )} SCREAMING_SNAKE_CASE_: List[Any] = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE_: List[str] = block_name_mapping[b] rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE_: Optional[Any] = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE_: str = "efficientnet." + item[1] SCREAMING_SNAKE_CASE_: List[str] = "classifier.weight" SCREAMING_SNAKE_CASE_: Optional[Any] = "classifier.bias" return key_mapping def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE_: List[str] = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE_: str = torch.from_numpy(_UpperCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE_: Tuple = torch.from_numpy(np.transpose(_UpperCAmelCase ) ) else: SCREAMING_SNAKE_CASE_: List[str] = torch.from_numpy(_UpperCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCAmelCase ) @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model_classes[model_name]( include_top=_UpperCAmelCase , weights="imagenet" , input_tensor=_UpperCAmelCase , input_shape=_UpperCAmelCase , pooling=_UpperCAmelCase , classes=10_00 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE_: Tuple = original_model.trainable_variables SCREAMING_SNAKE_CASE_: Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE_: List[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE_: str = param.numpy() SCREAMING_SNAKE_CASE_: Union[str, Any] = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE_: Any = get_efficientnet_config(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = EfficientNetForImageClassification(_UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE_: str = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE_: Tuple = rename_keys(_UpperCAmelCase ) replace_params(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE_: Optional[Any] = convert_image_processor(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] = hf_model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE_: int = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE_: Tuple = image.img_to_array(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = np.expand_dims(_UpperCAmelCase , axis=0 ) SCREAMING_SNAKE_CASE_: str = original_model.predict(_UpperCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCAmelCase ): os.mkdir(_UpperCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCAmelCase ) preprocessor.save_pretrained(_UpperCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f"Pushing converted {model_name} to the hub..." ) SCREAMING_SNAKE_CASE_: Optional[Any] = f"efficientnet-{model_name}" preprocessor.push_to_hub(_UpperCAmelCase ) hf_model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowerCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
127
1
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any] = 16000) -> int: '''simple docstring''' __lowercase = int(round(sample_rate * max_length)) if len(_UpperCAmelCase) <= sample_length: return wav __lowercase = randint(0, len(_UpperCAmelCase) - sample_length - 1) return wav[random_offset : random_offset + sample_length] @dataclass class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : Optional[str] = field(default=A__ ,metadata={"help": "Name of a dataset from the datasets package"} ) __UpperCAmelCase : Optional[str] = field( default=A__ ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __UpperCAmelCase : Optional[str] = field( default=A__ ,metadata={"help": "A file containing the training audio paths and labels."} ) __UpperCAmelCase : Optional[str] = field( default=A__ ,metadata={"help": "A file containing the validation audio paths and labels."} ) __UpperCAmelCase : str = field( default="train" ,metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to \'train\'" } ,) __UpperCAmelCase : str = field( default="validation" ,metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to \'validation\'" ) } ,) __UpperCAmelCase : str = field( default="audio" ,metadata={"help": "The name of the dataset column containing the audio data. Defaults to \'audio\'"} ,) __UpperCAmelCase : str = field( default="label" ,metadata={"help": "The name of the dataset column containing the labels. Defaults to \'label\'"} ) __UpperCAmelCase : Optional[int] = field( default=A__ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) __UpperCAmelCase : Optional[int] = field( default=A__ ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) __UpperCAmelCase : float = field( default=2_0 ,metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} ,) @dataclass class _lowerCAmelCase : """simple docstring""" __UpperCAmelCase : str = field( default="facebook/wav2vec2-base" ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ,) __UpperCAmelCase : Optional[str] = field( default=A__ ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCAmelCase : Optional[str] = field( default=A__ ,metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) __UpperCAmelCase : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) __UpperCAmelCase : Optional[str] = field( default=A__ ,metadata={"help": "Name or path of preprocessor config."} ) __UpperCAmelCase : bool = field( default=A__ ,metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) __UpperCAmelCase : bool = field( default=A__ ,metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) __UpperCAmelCase : bool = field( default=A__ ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) __UpperCAmelCase : Optional[bool] = field( default=A__ ,metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __UpperCAmelCase : bool = field( default=A__ ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,) def _lowercase ( self : Optional[Any] ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", UpperCAmelCase__, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def _A ( ) -> List[Any]: '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase ,__lowercase ,__lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: __lowercase ,__lowercase ,__lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification", _UpperCAmelCase, _UpperCAmelCase) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase) transformers.utils.logging.set_verbosity(_UpperCAmelCase) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}""") logger.info(F"""Training/evaluation parameters {training_args}""") # Set seed before initializing model. set_seed(training_args.seed) # Detecting last checkpoint. __lowercase = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to train from scratch.") elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch.") # Initialize our dataset and prepare it for the audio classification task. __lowercase = DatasetDict() __lowercase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name, use_auth_token=True if model_args.use_auth_token else None, ) __lowercase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name, use_auth_token=True if model_args.use_auth_token else None, ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. """ "Make sure to set `--audio_column_name` to the correct audio column - one of " F"""{", ".join(raw_datasets["train"].column_names)}.""") if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. """ "Make sure to set `--label_column_name` to the correct text column - one of " F"""{", ".join(raw_datasets["train"].column_names)}.""") # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy __lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path, return_attention_mask=model_args.attention_mask, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. __lowercase = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)) __lowercase = feature_extractor.model_input_names[0] def train_transforms(UpperCamelCase_ : Union[str, Any]): __lowercase = [] for audio in batch[data_args.audio_column_name]: __lowercase = random_subsample( audio["array"], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate) subsampled_wavs.append(_UpperCAmelCase) __lowercase = feature_extractor(_UpperCAmelCase, sampling_rate=feature_extractor.sampling_rate) __lowercase = {model_input_name: inputs.get(_UpperCAmelCase)} __lowercase = list(batch[data_args.label_column_name]) return output_batch def val_transforms(UpperCamelCase_ : Any): __lowercase = [audio["array"] for audio in batch[data_args.audio_column_name]] __lowercase = feature_extractor(_UpperCAmelCase, sampling_rate=feature_extractor.sampling_rate) __lowercase = {model_input_name: inputs.get(_UpperCAmelCase)} __lowercase = list(batch[data_args.label_column_name]) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowercase = raw_datasets["train"].features[data_args.label_column_name].names __lowercase ,__lowercase = {}, {} for i, label in enumerate(_UpperCAmelCase): __lowercase = str(_UpperCAmelCase) __lowercase = label # Load the accuracy metric from the datasets package __lowercase = evaluate.load("accuracy") # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase_ : Tuple): __lowercase = np.argmax(eval_pred.predictions, axis=1) return metric.compute(predictions=_UpperCAmelCase, references=eval_pred.label_ids) __lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCAmelCase), labelaid=_UpperCAmelCase, idalabel=_UpperCAmelCase, finetuning_task="audio-classification", cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) __lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=_UpperCAmelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: __lowercase = ( raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCAmelCase, output_all_columns=_UpperCAmelCase) if training_args.do_eval: if data_args.max_eval_samples is not None: __lowercase = ( raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCAmelCase, output_all_columns=_UpperCAmelCase) # Initialize our trainer __lowercase = Trainer( model=_UpperCAmelCase, args=_UpperCAmelCase, train_dataset=raw_datasets["train"] if training_args.do_train else None, eval_dataset=raw_datasets["eval"] if training_args.do_eval else None, compute_metrics=_UpperCAmelCase, tokenizer=_UpperCAmelCase, ) # Training if training_args.do_train: __lowercase = None if training_args.resume_from_checkpoint is not None: __lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase = last_checkpoint __lowercase = trainer.train(resume_from_checkpoint=_UpperCAmelCase) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase = trainer.evaluate() trainer.log_metrics("eval", _UpperCAmelCase) trainer.save_metrics("eval", _UpperCAmelCase) # Write model card and (optionally) push to hub __lowercase = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCAmelCase) else: trainer.create_model_card(**_UpperCAmelCase) if __name__ == "__main__": main()
17
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None): SCREAMING_SNAKE_CASE = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE = key.replace('moe_layer.experts.0' , F'''ffn.experts.expert_{expert_idx}''') else: SCREAMING_SNAKE_CASE = key.replace('moe_layer.experts.' , 'ffn.experts.expert_') if "gate" in key: SCREAMING_SNAKE_CASE = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier') if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace('.fc2.' , '.ffn.fc2.') if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace('.fc1.' , '.ffn.fc1.') if ".encoder_attn." in key: SCREAMING_SNAKE_CASE = key.replace('.encoder_attn.' , '.cross_attention.') if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm') if "final_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace('final_layer_norm' , 'ff_layer_norm') SCREAMING_SNAKE_CASE = state_dict[old_key] return new_dict def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = WEIGHTS_NAME): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) for expert in range(_UpperCAmelCase): SCREAMING_SNAKE_CASE = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_UpperCAmelCase): SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase)['model'] remove_ignore_keys_(_UpperCAmelCase) SCREAMING_SNAKE_CASE = rename_fairseq_keys(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = os.path.join( _UpperCAmelCase , weights_name.replace('.bin' , F'''-{len(_UpperCAmelCase)+1:05d}-of-???.bin''')) torch.save(_UpperCAmelCase , _UpperCAmelCase) sharded_state_dicts.append(expert_state.keys()) total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size( expert_state[list(_UpperCAmelCase)[0]].dtype) # Add the last block SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , weights_name.replace('.bin' , F'''-{len(_UpperCAmelCase)+1:05d}-of-???.bin''')) SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + '-shared.pt')['model'] remove_ignore_keys_(_UpperCAmelCase) SCREAMING_SNAKE_CASE = rename_fairseq_keys(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys()) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_UpperCAmelCase) == 1: SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase) torch.save(_UpperCAmelCase , _UpperCAmelCase) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_UpperCAmelCase , _UpperCAmelCase) # Otherwise, let's build the index SCREAMING_SNAKE_CASE = {} for idx, shard in enumerate(_UpperCAmelCase): SCREAMING_SNAKE_CASE = weights_name.replace('.bin' , F'''-{idx+1:05d}-of-{len(_UpperCAmelCase):05d}.bin''') SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''')) os.rename(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase)) for key in shard: SCREAMING_SNAKE_CASE = shard_file # Add the metadata SCREAMING_SNAKE_CASE = {'total_size': total_size} SCREAMING_SNAKE_CASE = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase) , 'w' , encoding='utf-8') as f: SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n' f.write(_UpperCAmelCase) return metadata, index if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) a_ : Optional[Any] = parser.parse_args() a_ , a_ : Optional[Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : List[Any] = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : int = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
137
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowercase_ = numpy.array([0, 0]) lowercase_ = numpy.array([0.5, 0.8_660_254]) lowercase_ = numpy.array([1, 0]) lowercase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def _snake_case( SCREAMING_SNAKE_CASE__ : list[numpy.ndarray] , SCREAMING_SNAKE_CASE__ : int ) -> list[numpy.ndarray]: '''simple docstring''' A__ = initial_vectors for _ in range(SCREAMING_SNAKE_CASE__ ): A__ = iteration_step(SCREAMING_SNAKE_CASE__ ) return vectors def _snake_case( SCREAMING_SNAKE_CASE__ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' A__ = [] for i, start_vector in enumerate(vectors[:-1] ): A__ = vectors[i + 1] new_vectors.append(SCREAMING_SNAKE_CASE__ ) A__ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def _snake_case( SCREAMING_SNAKE_CASE__ : numpy.ndarray , SCREAMING_SNAKE_CASE__ : float ) -> numpy.ndarray: '''simple docstring''' A__ = numpy.radians(SCREAMING_SNAKE_CASE__ ) A__ , A__ = numpy.cos(SCREAMING_SNAKE_CASE__ ), numpy.sin(SCREAMING_SNAKE_CASE__ ) A__ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : list[numpy.ndarray] ) -> None: '''simple docstring''' A__ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() A__ , A__ = zip(*SCREAMING_SNAKE_CASE__ ) plt.plot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
282
from jiwer import compute_measures import datasets lowercase_ = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" lowercase_ = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" lowercase_ = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : Any )-> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': datasets.Value('string',id='sequence' ), 'references': datasets.Value('string',id='sequence' ), } ),codebase_urls=['https://github.com/jitsi/jiwer/'],reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ],) def snake_case__ ( self : int,lowercase_ : Any=None,lowercase_ : List[str]=None,lowercase_ : Dict=False )-> Optional[int]: '''simple docstring''' if concatenate_texts: return compute_measures(lowercase_,lowercase_ )["wer"] else: A__ = 0 A__ = 0 for prediction, reference in zip(lowercase_,lowercase_ ): A__ = compute_measures(lowercase_,lowercase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
282
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): lowercase__ : int = tempfile.mkdtemp() lowercase__ : Tuple = BlipImageProcessor() lowercase__ : Optional[Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) lowercase__ : List[Any] = BlipProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def snake_case ( self : str , **SCREAMING_SNAKE_CASE : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ).tokenizer def snake_case ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ).image_processor def snake_case ( self : int ): shutil.rmtree(self.tmpdirname ) def snake_case ( self : Optional[int] ): lowercase__ : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ : str = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self : str ): lowercase__ : Optional[Any] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase__ : str = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) lowercase__ : Tuple = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE ) def snake_case ( self : List[Any] ): lowercase__ : List[Any] = self.get_image_processor() lowercase__ : Dict = self.get_tokenizer() lowercase__ : str = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = self.prepare_image_inputs() lowercase__ : List[Any] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="np" ) lowercase__ : List[Any] = processor(images=SCREAMING_SNAKE_CASE , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case ( self : Optional[int] ): lowercase__ : Tuple = self.get_image_processor() lowercase__ : List[Any] = self.get_tokenizer() lowercase__ : Union[str, Any] = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) lowercase__ : Dict = "lower newer" lowercase__ : Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self : Dict ): lowercase__ : Union[str, Any] = self.get_image_processor() lowercase__ : Union[str, Any] = self.get_tokenizer() lowercase__ : List[Any] = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) lowercase__ : int = "lower newer" lowercase__ : Optional[int] = self.prepare_image_inputs() lowercase__ : List[Any] = processor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE ): processor() def snake_case ( self : Union[str, Any] ): lowercase__ : Tuple = self.get_image_processor() lowercase__ : Dict = self.get_tokenizer() lowercase__ : Tuple = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : Dict = processor.batch_decode(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : List[Any] ): lowercase__ : Tuple = self.get_image_processor() lowercase__ : Union[str, Any] = self.get_tokenizer() lowercase__ : List[str] = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = "lower newer" lowercase__ : List[Any] = self.prepare_image_inputs() lowercase__ : Any = processor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
130
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[Any] ): warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
130
1
def UpperCamelCase ( _A : str )-> str: """simple docstring""" A__ = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCamelCase ( _A : str )-> dict[str, str]: """simple docstring""" A__ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key A__ = remove_duplicates(key.upper() ) A__ = len(_A ) # First fill cipher with key characters A__ = {alphabet[i]: char for i, char in enumerate(_A )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_A ) , 26 ): A__ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 A__ = alphabet[i - offset] A__ = char return cipher_alphabet def UpperCamelCase ( _A : str , _A : dict[str, str] )-> str: """simple docstring""" return "".join(cipher_map.get(_A , _A ) for ch in message.upper() ) def UpperCamelCase ( _A : str , _A : dict[str, str] )-> str: """simple docstring""" A__ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_A , _A ) for ch in message.upper() ) def UpperCamelCase ( )-> None: """simple docstring""" A__ = input("Enter message to encode or decode: " ).strip() A__ = input("Enter keyword: " ).strip() A__ = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: A__ = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) A__ = create_cipher_map(_A ) print(func(_A , _A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
198
from __future__ import annotations from random import random class UpperCamelCase : def __init__( self , UpperCAmelCase__ = None ): A__ = value A__ = random() A__ = None A__ = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self ): A__ = str(self.value ) + " " A__ = str(self.left or "" ) A__ = str(self.right or "" ) return value + left + right def UpperCamelCase ( _A : Node | None , _A : int )-> tuple[Node | None, Node | None]: """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: A__ , A__ = split(root.left , _A ) return left, root else: A__ , A__ = split(root.right , _A ) return root, right def UpperCamelCase ( _A : Node | None , _A : Node | None )-> Node | None: """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: A__ = merge(left.right , _A ) return left else: A__ = merge(_A , right.left ) return right def UpperCamelCase ( _A : Node | None , _A : int )-> Node | None: """simple docstring""" A__ = Node(_A ) A__ , A__ = split(_A , _A ) return merge(merge(_A , _A ) , _A ) def UpperCamelCase ( _A : Node | None , _A : int )-> Node | None: """simple docstring""" A__ , A__ = split(_A , value - 1 ) A__ , A__ = split(_A , _A ) return merge(_A , _A ) def UpperCamelCase ( _A : Node | None )-> None: """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def UpperCamelCase ( _A : Node | None , _A : str )-> Node | None: """simple docstring""" for arg in args.split(): if arg[0] == "+": A__ = insert(_A , int(arg[1:] ) ) elif arg[0] == "-": A__ = erase(_A , int(arg[1:] ) ) else: print("Unknown command" ) return root def UpperCamelCase ( )-> None: """simple docstring""" A__ = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) A__ = input() while args != "q": A__ = interact_treap(_A , _A ) print(_A ) A__ = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
198
1
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
269
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __snake_case : Optional[int] = 50_000 __snake_case : Dict = 5_000 __snake_case , __snake_case : Union[str, Any] = os.path.split(__file__) __snake_case : Any = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _lowercase ( __snake_case ,__snake_case ) -> Dict: for i in range(__snake_case ): __lowerCAmelCase : Union[str, Any] = dataset[i] @get_duration def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Dict: for i in range(0 ,len(__snake_case ) ,__snake_case ): __lowerCAmelCase : List[str] = dataset[i : i + batch_size] @get_duration def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Dict: with dataset.formatted_as(type=__snake_case ): for i in range(__snake_case ): __lowerCAmelCase : Union[str, Any] = dataset[i] @get_duration def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ) -> str: with dataset.formatted_as(type=__snake_case ): for i in range(0 ,__snake_case ,__snake_case ): __lowerCAmelCase : Optional[int] = dataset[i : i + batch_size] def _lowercase ( ) -> Union[str, Any]: __lowerCAmelCase : Optional[int] = {"num examples": SPEED_TEST_N_EXAMPLES} __lowerCAmelCase : Optional[int] = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] __lowerCAmelCase : Any = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) __lowerCAmelCase : int = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) __lowerCAmelCase : str = generate_example_dataset( os.path.join(__snake_case ,"dataset.arrow" ) ,__snake_case ,num_examples=__snake_case ,seq_shapes={"list": (100,)} ,) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ ,str(__snake_case ) ) __lowerCAmelCase : str = func(__snake_case ,**__snake_case ) print("shuffling dataset" ) __lowerCAmelCase : Optional[int] = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " ,func.__name__ ,str(__snake_case ) ) __lowerCAmelCase : List[str] = func( __snake_case ,**__snake_case ) with open(__snake_case ,"wb" ) as f: f.write(json.dumps(__snake_case ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
269
1
"""simple docstring""" def _A (__a ) -> int: """simple docstring""" if not isinstance(__a , __a ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) SCREAMING_SNAKE_CASE_ : int = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
318
"""simple docstring""" from scipy.stats import pearsonr import datasets UpperCAmelCase_ : List[Any] = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ UpperCAmelCase_ : Optional[int] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ UpperCAmelCase_ : Tuple = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=False): '''simple docstring''' if return_pvalue: SCREAMING_SNAKE_CASE_ : int = pearsonr(lowercase_ , lowercase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase_ , lowercase_)[0])}
318
1
import string def A ( _SCREAMING_SNAKE_CASE ) -> None: for key in range(len(string.ascii_uppercase ) ): lowerCamelCase : Optional[int] = "" for symbol in message: if symbol in string.ascii_uppercase: lowerCamelCase : Any = string.ascii_uppercase.find(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[int] = num - key if num < 0: lowerCamelCase : Union[str, Any] = num + len(string.ascii_uppercase ) lowerCamelCase : str = translated + string.ascii_uppercase[num] else: lowerCamelCase : Optional[Any] = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def A ( ) -> None: lowerCamelCase : List[Any] = input("Encrypted message: " ) lowerCamelCase : int = message.upper() decrypt(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
48
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" _UpperCamelCase = iter(lowercase ) while True: _UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) ) if not chunk: return yield chunk def a__ ( lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) _UpperCamelCase = '''''' if len(lowercase ) < 2: return dirty for i in range(len(lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowercase ) & 1: clean += "X" return clean def a__ ( lowercase : str ) -> list[str]: """simple docstring""" _UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _UpperCamelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowercase ) return table def a__ ( lowercase : str, lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = generate_table(lowercase ) _UpperCamelCase = prepare_input(lowercase ) _UpperCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase, 2 ): _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def a__ ( lowercase : str, lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = generate_table(lowercase ) _UpperCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase, 2 ): _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
324
0
'''simple docstring''' def _lowercase ( __A ,__A ,__A ,__A ,__A ,): '''simple docstring''' __UpperCamelCase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: __UpperCamelCase = 1 - (matter_density + radiation_density + dark_energy) __UpperCamelCase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __UpperCamelCase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation a__ : Optional[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
243
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase=0.01 , lowercase=1_0_0_0 ) -> List[Any]: __UpperCamelCase = p_stop __UpperCamelCase = max_length def __iter__( self ) -> Dict: __UpperCamelCase = 0 __UpperCamelCase = False while not stop and count < self.max_length: yield count count += 1 __UpperCamelCase = random.random() < self.p_stop class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self , lowercase , lowercase , lowercase=False , lowercase=True ) -> List[str]: __UpperCamelCase = [ BatchSamplerShard(lowercase , 2 , lowercase , split_batches=lowercase , even_batches=lowercase ) for i in range(2 ) ] __UpperCamelCase = [list(lowercase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowercase ) for shard in batch_sampler_shards] , [len(lowercase ) for e in expected] ) self.assertListEqual(lowercase , lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: # Check the shards when the dataset is a round multiple of total batch size. __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is very small. __UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase ) def __lowerCamelCase ( self ) -> Dict: # Check the shards when the dataset is a round multiple of batch size. __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size. __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is very small. __UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: # Check the shards when the dataset is a round multiple of total batch size. __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is very small. __UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) def __lowerCamelCase ( self ) -> str: # Check the shards when the dataset is a round multiple of batch size. __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size. __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is very small. __UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) def __lowerCamelCase ( self ) -> str: __UpperCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] __UpperCamelCase = [BatchSamplerShard(lowercase , 2 , lowercase , even_batches=lowercase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase=False , lowercase=2 , lowercase=False ) -> List[str]: random.seed(lowercase ) __UpperCamelCase = list(lowercase ) __UpperCamelCase = [ IterableDatasetShard( lowercase , batch_size=lowercase , drop_last=lowercase , num_processes=lowercase , process_index=lowercase , split_batches=lowercase , ) for i in range(lowercase ) ] __UpperCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowercase ) iterable_dataset_lists.append(list(lowercase ) ) __UpperCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __UpperCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowercase ) , len(lowercase ) ) self.assertTrue(len(lowercase ) % shard_batch_size == 0 ) __UpperCamelCase = [] for idx in range(0 , len(lowercase ) , lowercase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowercase ) < len(lowercase ): reference += reference self.assertListEqual(lowercase , reference[: len(lowercase )] ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = 4_2 __UpperCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) # Edge case with a very small dataset __UpperCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = SkipBatchSampler(lowercase , 2 ) self.assertListEqual(list(lowercase ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = DataLoader(list(range(1_6 ) ) , batch_size=4 ) __UpperCamelCase = skip_first_batches(lowercase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __lowerCamelCase ( self ) -> Tuple: Accelerator() __UpperCamelCase = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
243
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
69
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCamelCase = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __UpperCamelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) __UpperCamelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __UpperCamelCase = re.compile(r'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __UpperCamelCase = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: snake_case_ = None # source code of `config_class` snake_case_ = inspect.getsource(UpperCAmelCase ) snake_case_ = _re_checkpoint.findall(UpperCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): snake_case_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: snake_case_ = ckpt_name break return checkpoint def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ = get_checkpoint_from_config_class(UpperCAmelCase ) snake_case_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: snake_case_ = '\n'.join(sorted(UpperCAmelCase ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
69
1
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } __UpperCamelCase = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } __UpperCamelCase = { '''ctrl''': 256, } __UpperCamelCase = { '''Pregnancy''': 16_8629, '''Christianity''': 7675, '''Explain''': 10_6423, '''Fitness''': 6_3440, '''Saving''': 6_3163, '''Ask''': 2_7171, '''Ass''': 9_5985, '''Joke''': 16_3509, '''Questions''': 4_5622, '''Thoughts''': 4_9605, '''Retail''': 5_2342, '''Feminism''': 16_4338, '''Writing''': 1_1992, '''Atheism''': 19_2263, '''Netflix''': 4_8616, '''Computing''': 3_9639, '''Opinion''': 4_3213, '''Alone''': 4_4967, '''Funny''': 5_8917, '''Gaming''': 4_0358, '''Human''': 4088, '''India''': 1331, '''Joker''': 7_7138, '''Diet''': 3_6206, '''Legal''': 1_1859, '''Norman''': 4939, '''Tip''': 7_2689, '''Weight''': 5_2343, '''Movies''': 4_6273, '''Running''': 2_3425, '''Science''': 2090, '''Horror''': 3_7793, '''Confession''': 6_0572, '''Finance''': 1_2250, '''Politics''': 1_6360, '''Scary''': 19_1985, '''Support''': 1_2654, '''Technologies''': 3_2516, '''Teenage''': 6_6160, '''Event''': 3_2769, '''Learned''': 6_7460, '''Notion''': 18_2770, '''Wikipedia''': 3_7583, '''Books''': 6665, '''Extract''': 7_6050, '''Confessions''': 10_2701, '''Conspiracy''': 7_5932, '''Links''': 6_3674, '''Narcissus''': 15_0425, '''Relationship''': 5_4766, '''Relationships''': 13_4796, '''Reviews''': 4_1671, '''News''': 4256, '''Translation''': 2_6820, '''multilingual''': 12_8406, } def UpperCAmelCase ( UpperCAmelCase ) -> Union[str, Any]: snake_case_ = set() snake_case_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ = char snake_case_ = set(a_ ) return pairs class UpperCamelCase ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = CONTROL_CODES def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__="<unk>", **lowerCAmelCase__) -> int: super().__init__(unk_token=lowercase_, **lowercase_) with open(lowercase_, encoding='utf-8') as vocab_handle: snake_case_ = json.load(lowercase_) snake_case_ = {v: k for k, v in self.encoder.items()} with open(lowercase_, encoding='utf-8') as merges_handle: snake_case_ = merges_handle.read().split('\n')[1:-1] snake_case_ = [tuple(merge.split()) for merge in merges] snake_case_ = dict(zip(lowercase_, range(len(lowercase_)))) snake_case_ = {} @property def a_ ( self) -> Any: return len(self.encoder) def a_ ( self) -> List[str]: return dict(self.encoder, **self.added_tokens_encoder) def a_ ( self, lowerCAmelCase__) -> List[str]: if token in self.cache: return self.cache[token] snake_case_ = tuple(lowercase_) snake_case_ = tuple(list(word[:-1]) + [word[-1] + '</w>']) snake_case_ = get_pairs(lowercase_) if not pairs: return token while True: snake_case_ = min(lowercase_, key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowercase_, float('inf'))) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ = bigram snake_case_ = [] snake_case_ = 0 while i < len(lowercase_): try: snake_case_ = word.index(lowercase_, lowercase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) snake_case_ = j if word[i] == first and i < len(lowercase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 snake_case_ = tuple(lowercase_) snake_case_ = new_word if len(lowercase_) == 1: break else: snake_case_ = get_pairs(lowercase_) snake_case_ = '@@ '.join(lowercase_) snake_case_ = word[:-4] snake_case_ = word return word def a_ ( self, lowerCAmelCase__) -> Optional[Any]: snake_case_ = [] snake_case_ = re.findall(R'\S+\n?', lowercase_) for token in words: split_tokens.extend(list(self.bpe(lowercase_).split(' '))) return split_tokens def a_ ( self, lowerCAmelCase__) -> Optional[Any]: return self.encoder.get(lowercase_, self.encoder.get(self.unk_token)) def a_ ( self, lowerCAmelCase__) -> str: return self.decoder.get(lowercase_, self.unk_token) def a_ ( self, lowerCAmelCase__) -> Optional[Any]: snake_case_ = ' '.join(lowercase_).replace('@@ ', '').strip() return out_string def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(lowercase_): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowercase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) snake_case_ = os.path.join( lowercase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowercase_, 'w', encoding='utf-8') as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowercase_, ensure_ascii=lowercase_) + '\n') snake_case_ = 0 with open(lowercase_, 'w', encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') snake_case_ = token_index writer.write(' '.join(lowercase_) + '\n') index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
0
"""simple docstring""" __a = "Tobias Carryer" from time import time class lowerCamelCase : '''simple docstring''' def __init__( self: int , snake_case: Any , snake_case: Any , snake_case: Optional[Any] , snake_case: List[Any]=int(time() ) ) -> Optional[Any]: # noqa: B008 snake_case_ :Any = multiplier snake_case_ :Union[str, Any] = increment snake_case_ :Union[str, Any] = modulo snake_case_ :Any = seed def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case_ :Optional[int] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __a = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31) while True: print(lcg.next_number())
66
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowercase (unittest.TestCase ): @property def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : List[str] = self.dummy_uncond_unet __lowerCAmelCase : Any = PNDMScheduler() __lowerCAmelCase : Dict = PNDMPipeline(unet=A_ , scheduler=A_ ) pndm.to(A_ ) pndm.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Optional[Any] = torch.manual_seed(0 ) __lowerCAmelCase : Any = pndm(generator=A_ , num_inference_steps=20 , output_type='''numpy''' ).images __lowerCAmelCase : Optional[Any] = torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = pndm(generator=A_ , num_inference_steps=20 , output_type='''numpy''' , return_dict=A_ )[0] __lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] __lowerCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Optional[int] = '''google/ddpm-cifar10-32''' __lowerCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained(A_ ) __lowerCAmelCase : int = PNDMScheduler() __lowerCAmelCase : Any = PNDMPipeline(unet=A_ , scheduler=A_ ) pndm.to(A_ ) pndm.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Tuple = torch.manual_seed(0 ) __lowerCAmelCase : Any = pndm(generator=A_ , output_type='''numpy''' ).images __lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : List[Any] = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
275
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A ( A_ ): def __init__(self , *lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) __lowercase= eval_examples __lowercase= post_process_function def _A (self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase = "eval" ): __lowercase= self.eval_dataset if eval_dataset is None else eval_dataset __lowercase= self.get_eval_dataloader(lowerCAmelCase ) __lowercase= self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowercase= self.compute_metrics __lowercase= None __lowercase= self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __lowercase= time.time() try: __lowercase= eval_loop( lowerCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase , metric_key_prefix=lowerCAmelCase , ) finally: __lowercase= compute_metrics __lowercase= self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowerCAmelCase , lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowercase= self.post_process_function(lowerCAmelCase , lowerCAmelCase , output.predictions ) __lowercase= self.compute_metrics(lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): __lowercase= metrics.pop(lowerCAmelCase ) metrics.update(output.metrics ) else: __lowercase= output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowercase= self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase ) return metrics def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase = "test" ): __lowercase= self.get_test_dataloader(lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. __lowercase= self.compute_metrics __lowercase= None __lowercase= self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __lowercase= time.time() try: __lowercase= eval_loop( lowerCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase , metric_key_prefix=lowerCAmelCase , ) finally: __lowercase= compute_metrics __lowercase= self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowerCAmelCase , lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __lowercase= self.post_process_function(lowerCAmelCase , lowerCAmelCase , output.predictions , 'predict' ) __lowercase= self.compute_metrics(lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): __lowercase= metrics.pop(lowerCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase )
304
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''blenderbot-small''' UpperCamelCase_ : Optional[Any] =['''past_key_values'''] UpperCamelCase_ : Optional[int] ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self , lowerCAmelCase=5_0_2_6_5 , lowerCAmelCase=5_1_2 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=5_1_2 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1 , lowerCAmelCase=False , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , lowerCAmelCase=2 , **lowerCAmelCase , ): __lowercase= vocab_size __lowercase= max_position_embeddings __lowercase= d_model __lowercase= encoder_ffn_dim __lowercase= encoder_layers __lowercase= encoder_attention_heads __lowercase= decoder_ffn_dim __lowercase= decoder_layers __lowercase= decoder_attention_heads __lowercase= dropout __lowercase= attention_dropout __lowercase= activation_dropout __lowercase= activation_function __lowercase= init_std __lowercase= encoder_layerdrop __lowercase= decoder_layerdrop __lowercase= use_cache __lowercase= encoder_layers __lowercase= scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) class A ( A_ ): @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase= {0: 'batch'} __lowercase= {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase= {0: 'batch', 1: 'decoder_sequence'} __lowercase= {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super().outputs else: __lowercase= super(lowerCAmelCase , self ).outputs if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Generate decoder inputs __lowercase= seq_length if not self.use_past else 1 __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowercase= {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowercase= dict(**lowerCAmelCase , **lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape __lowercase= common_inputs['decoder_input_ids'].shape[1] __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= decoder_seq_length + 3 __lowercase= ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase= torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase )] , dim=1 ) __lowercase= [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase, __lowercase= self.num_layers __lowercase= min(lowerCAmelCase , lowerCAmelCase ) __lowercase= max(lowerCAmelCase , lowerCAmelCase ) - min_num_layers __lowercase= 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), ) ) # TODO: test this. __lowercase= encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCAmelCase , lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase= seqlen + 2 __lowercase, __lowercase= self.num_layers __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= common_inputs['attention_mask'].dtype __lowercase= torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) __lowercase= [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase ) ] return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase= tokenizer.num_special_tokens_to_add(lowerCAmelCase ) __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase= [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase= dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: __lowercase= self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) elif self.task == "causal-lm": __lowercase= self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) else: __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: __lowercase= super(lowerCAmelCase , self )._flatten_past_key_values_( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
304
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
283
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( UpperCamelCase , unittest.TestCase ): '''simple docstring''' __A : List[Any] = BioGptTokenizer __A : Optional[int] = False def _snake_case ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowerCamelCase : str = dict(zip(__A , range(len(__A ) ) ) ) lowerCamelCase : Dict = ["l o 123", "lo w 1456", "e r</w> 1789", ""] lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(__A ) ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Dict = "lower newer" lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = BioGptTokenizer(self.vocab_file , self.merges_file ) lowerCamelCase : Optional[int] = "lower" lowerCamelCase : Any = ["low", "er</w>"] lowerCamelCase : List[str] = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) lowerCamelCase : Union[str, Any] = tokens + ["<unk>"] lowerCamelCase : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) @slow def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) lowerCamelCase : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=__A ) lowerCamelCase : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=__A ) lowerCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__A ) lowerCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__A , __A ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
283
1
from math import factorial def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: """simple docstring""" if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(_lowercase ) // (factorial(_lowercase ) * factorial(n - k )) if __name__ == "__main__": print( """The number of five-card hands possible from a standard""", F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( """If a class of 40 students must be arranged into groups of""", F'''4 for group projects, there are {combinations(40, 4)} ways''', """to arrange them.\n""", ) print( """If 10 teams are competing in a Formula One race, there""", F'''are {combinations(10, 3)} ways that first, second and''', """third place can be awarded.""", )
359
_lowerCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609_344, "knot": 1.852, } _lowerCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.277_777_778, "mph": 0.621_371_192, "knot": 0.539_956_803, } def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: """simple docstring""" if unit_to not in speed_chart or unit_from not in speed_chart_inverse: A__ = ( f"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" f"""Valid values are: {", ".join(lowercase_ )}""" ) raise ValueError(lowercase_ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
231
0
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() __snake_case = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCAmelCase ( lowercase : Any , lowercase : str , lowercase : Any , lowercase : Union[str, Any] , lowercase : Any=False , lowercase : str=True ) -> Optional[int]: """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) snake_case ,snake_case ,snake_case ,snake_case : Optional[int] = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: snake_case : Any = cached_file(lowercase , lowercase , force_download=not use_cached_models ) snake_case : Optional[int] = config_class.from_json_file(lowercase ) snake_case : Union[str, Any] = True snake_case : Union[str, Any] = True print(F'Building TensorFlow model from configuration: {config}' ) snake_case : Union[str, Any] = model_class(lowercase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): snake_case : Optional[int] = cached_file( lowercase , lowercase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: snake_case : Optional[Any] = load_pytorch_checkpoint_in_tfa_model(lowercase , lowercase ) if compare_with_pt_model: snake_case : Optional[Any] = tf_model(tf_model.dummy_inputs , training=lowercase ) # build the network snake_case : List[str] = torch.load(lowercase , map_location="cpu" ) snake_case : str = pt_model_class.from_pretrained( pretrained_model_name_or_path=lowercase , config=lowercase , state_dict=lowercase ) with torch.no_grad(): snake_case : Any = pt_model(**pt_model.dummy_inputs ) snake_case : Union[str, Any] = pto[0].numpy() snake_case : Optional[int] = tfo[0].numpy() snake_case : List[str] = np.amax(np.abs(np_pt - np_tf ) ) print(F'Max absolute difference between models outputs {diff}' ) assert diff <= 2e-2, F'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(F'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(lowercase , save_format="h5" ) def __lowerCAmelCase ( lowercase : int , lowercase : Any , lowercase : str=None , lowercase : Optional[int]=None , lowercase : Dict=False , lowercase : Optional[Any]=False , lowercase : Optional[int]=False , lowercase : Union[str, Any]=False , ) -> Any: """simple docstring""" if args_model_type is None: snake_case : Any = list(MODEL_CLASSES.keys() ) else: snake_case : Optional[Any] = [args_model_type] for j, model_type in enumerate(lowercase , start=1 ): print("=" * 100 ) print(F' Converting model type {j}/{len(lowercase )}: {model_type}' ) print("=" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) snake_case ,snake_case ,snake_case ,snake_case ,snake_case : Union[str, Any] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: snake_case : Dict = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: snake_case : Union[str, Any] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowercase , lowercase ) , start=1 ): print("-" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F' Skipping finetuned checkpoint {model_shortcut_name}' ) continue snake_case : Dict = model_shortcut_name elif only_convert_finetuned_models: print(F' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( F' Converting checkpoint {i}/{len(lowercase )}: {model_shortcut_name} - model_type {model_type}' ) print("-" * 100 ) if config_shortcut_name in aws_config_map: snake_case : List[str] = cached_file(lowercase , lowercase , force_download=not use_cached_models ) else: snake_case : str = config_shortcut_name if model_shortcut_name in aws_model_maps: snake_case : List[str] = cached_file(lowercase , lowercase , force_download=not use_cached_models ) else: snake_case : Union[str, Any] = model_shortcut_name if os.path.isfile(lowercase ): snake_case : Dict = "converted_model" convert_pt_checkpoint_to_tf( model_type=lowercase , pytorch_checkpoint_path=lowercase , config_file=lowercase , tf_dump_path=os.path.join(lowercase , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=lowercase , ) if remove_cached_files: os.remove(lowercase ) os.remove(lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") __snake_case = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
203
"""simple docstring""" import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __snake_case = logging.getLogger(__name__) class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Optional[int] = '''token-classification''' def __init__( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' if type(UpperCamelCase__ ) == dict: snake_case : Optional[int] = Namespace(**UpperCamelCase__ ) snake_case : Optional[int] = import_module("tasks" ) try: snake_case : Optional[int] = getattr(UpperCamelCase__ , hparams.task_type ) snake_case : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) snake_case : str = self.token_classification_task.get_labels(hparams.labels ) snake_case : Union[str, Any] = CrossEntropyLoss().ignore_index super().__init__(UpperCamelCase__ , len(self.labels ) , self.mode ) def lowerCamelCase ( self , **UpperCamelCase__ ) -> Any: '''simple docstring''' return self.model(**UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": snake_case : Optional[int] = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids snake_case : List[Any] = self(**UpperCamelCase__ ) snake_case : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = self.hparams for mode in ["train", "dev", "test"]: snake_case : Optional[Any] = self._feature_file(UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , UpperCamelCase__ ) snake_case : List[str] = torch.load(UpperCamelCase__ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) snake_case : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase__ ) snake_case : Dict = self.token_classification_task.convert_examples_to_features( UpperCamelCase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase__ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , UpperCamelCase__ ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> DataLoader: '''simple docstring''' snake_case : Optional[Any] = self._feature_file(UpperCamelCase__ ) logger.info("Loading features from cached file %s" , UpperCamelCase__ ) snake_case : Any = torch.load(UpperCamelCase__ ) snake_case : Tuple = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) snake_case : List[str] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: snake_case : Tuple = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: snake_case : Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) snake_case : Optional[int] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , batch_size=UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' """Compute validation""" "" snake_case : Any = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": snake_case : Optional[int] = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids snake_case : Optional[int] = self(**UpperCamelCase__ ) snake_case ,snake_case : str = outputs[:2] snake_case : Optional[int] = logits.detach().cpu().numpy() snake_case : str = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCamelCase ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : Dict = torch.stack([x["val_loss"] for x in outputs] ).mean() snake_case : List[str] = np.concatenate([x["pred"] for x in outputs] , axis=0 ) snake_case : Any = np.argmax(UpperCamelCase__ , axis=2 ) snake_case : Dict = np.concatenate([x["target"] for x in outputs] , axis=0 ) snake_case : Tuple = dict(enumerate(self.labels ) ) snake_case : str = [[] for _ in range(out_label_ids.shape[0] )] snake_case : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) snake_case : Union[str, Any] = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(UpperCamelCase__ , UpperCamelCase__ ), "precision": precision_score(UpperCamelCase__ , UpperCamelCase__ ), "recall": recall_score(UpperCamelCase__ , UpperCamelCase__ ), "f1": fa_score(UpperCamelCase__ , UpperCamelCase__ ), } snake_case : int = dict(results.items() ) snake_case : Union[str, Any] = results return ret, preds_list, out_label_list def lowerCamelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' snake_case ,snake_case ,snake_case : Optional[Any] = self._eval_end(UpperCamelCase__ ) snake_case : Tuple = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCamelCase ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case ,snake_case ,snake_case : List[Any] = self._eval_end(UpperCamelCase__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 snake_case : Optional[Any] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' BaseTransformer.add_model_specific_args(UpperCamelCase__ , UpperCamelCase__ ) parser.add_argument( "--task_type" , default="NER" , type=UpperCamelCase__ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=128 , type=UpperCamelCase__ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=UpperCamelCase__ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=UpperCamelCase__ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": __snake_case = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __snake_case = NERTransformer.add_model_specific_args(parser, os.getcwd()) __snake_case = parser.parse_args() __snake_case = NERTransformer(args) __snake_case = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __snake_case = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) __snake_case = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
203
1
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: UpperCAmelCase__ : List[Any] = [randint(-10_00 , 10_00 ) for i in range(10 )] UpperCAmelCase__ : Any = randint(-50_00 , 50_00 ) return (arr, r) UpperCamelCase__ = make_dataset() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[int, ...]: for triplet in permutations(lowerCAmelCase__ , 3 ): if sum(lowerCAmelCase__ ) == target: return tuple(sorted(lowerCAmelCase__ ) ) return (0, 0, 0) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[int, int, int]: arr.sort() UpperCAmelCase__ : Any = len(lowerCAmelCase__ ) for i in range(n - 1 ): UpperCAmelCase__ , UpperCAmelCase__ : Tuple = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: UpperCAmelCase__ : List[Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase__ : Optional[Any] = ''' triplet_sum1(*dataset) ''' UpperCAmelCase__ : str = ''' triplet_sum2(*dataset) ''' UpperCAmelCase__ : Any = repeat(setup=lowerCAmelCase__ , stmt=lowerCAmelCase__ , repeat=5 , number=1_00_00 ) UpperCAmelCase__ : Optional[Any] = repeat(setup=lowerCAmelCase__ , stmt=lowerCAmelCase__ , repeat=5 , number=1_00_00 ) return (min(lowerCAmelCase__ ), min(lowerCAmelCase__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase__ = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
299
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( lowerCAmelCase__ ) -> None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = analyze_text(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase__ : str = sum(single_char_strings.values() ) # one length string UpperCAmelCase__ : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase__ : Optional[int] = single_char_strings[ch] UpperCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(lowerCAmelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string UpperCAmelCase__ : str = sum(two_char_strings.values() ) UpperCAmelCase__ : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: UpperCAmelCase__ : Dict = two_char_strings[sequence] UpperCAmelCase__ : Optional[int] = int(lowerCAmelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCAmelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def a__ ( lowerCAmelCase__ ) -> tuple[dict, dict]: UpperCAmelCase__ : Union[str, Any] = Counter() # type: ignore UpperCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCAmelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
299
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Tuple = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
304
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class snake_case__ ( enum.Enum): a_ = 0 a_ = 1 a_ = 2 @add_end_docstrings(UpperCamelCase) class snake_case__ ( UpperCamelCase): a_ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[str] , *_A : Dict , **_A : int ) -> Optional[int]: super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Dict = None if self.model.config.prefix is not None: UpperCAmelCase_ : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase_ : int = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : List[str] = {**self._forward_params, **forward_params} def A ( self : Union[str, Any] , _A : int=None , _A : str=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : List[Any]=None , _A : int=None , _A : Optional[int]=None , _A : List[Any]=None , **_A : List[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : List[Any] = prefix if prefix: UpperCAmelCase_ : Tuple = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : List[Any] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) UpperCAmelCase_ : Union[str, Any] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase_ : Optional[int] = generate_kwargs UpperCAmelCase_ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase_ : List[Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Any = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A ( self : Dict , *_A : Optional[Any] , **_A : Any ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : Union[str, Any] , **_A : List[str] ) -> Dict: return super().__call__(_A , **_A ) def A ( self : List[Any] , _A : List[Any] , _A : Any="" , _A : Dict=None , **_A : Dict ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase_ : str = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Optional[int] = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase_ : Union[str, Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase_ : List[str] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Optional[int] = inputs['''attention_mask'''][:, -keep_length:] return inputs def A ( self : List[str] , _A : Optional[Any] , **_A : str ) -> Optional[int]: UpperCAmelCase_ : Any = model_inputs['''input_ids'''] UpperCAmelCase_ : Dict = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = 1 else: UpperCAmelCase_ : Optional[int] = input_ids.shape[0] UpperCAmelCase_ : Dict = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Any = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : Union[str, Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase_ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : List[str] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A ( self : int , _A : List[Any] , _A : Dict=ReturnType.FULL_TEXT , _A : Dict=True ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = model_outputs['''generated_sequence'''][0] UpperCAmelCase_ : int = model_outputs['''input_ids'''] UpperCAmelCase_ : str = model_outputs['''prompt_text'''] UpperCAmelCase_ : Any = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : Any = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[str] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : List[str] = {'''generated_text''': all_text} records.append(_A ) return records
304
1
def __magic_name__ ( __a : int , __a : int ): '''simple docstring''' return x if y == 0 else greatest_common_divisor(__a , x % y ) def __magic_name__ ( __a : int , __a : int ): '''simple docstring''' return (x * y) // greatest_common_divisor(__a , __a ) def __magic_name__ ( __a : int = 20 ): '''simple docstring''' UpperCamelCase__ = 1 for i in range(1 , n + 1 ): UpperCamelCase__ = lcm(__a , __a ) return g if __name__ == "__main__": print(f'{solution() = }')
178
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __A( unittest.TestCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=18 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=True , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size_divisor UpperCamelCase__ = do_rescale def UpperCAmelCase_ (self ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = GLPNImageProcessor if is_vision_available() else None def UpperCAmelCase_ (self ): UpperCamelCase__ = GLPNImageProcessingTester(self ) @property def UpperCAmelCase_ (self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size_divisor""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """resample""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_rescale""" ) ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCAmelCase_ (self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCAmelCase_ (self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
178
1
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np __SCREAMING_SNAKE_CASE : List[Any] = re.compile(R'\b(a|an|the)\b', re.UNICODE) __SCREAMING_SNAKE_CASE : List[Any] = None def _a ( ) -> str: snake_case_ = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=UpperCamelCase__ , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=UpperCamelCase__ , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case_ = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def _a ( _SCREAMING_SNAKE_CASE ) -> Dict: def remove_articles(_SCREAMING_SNAKE_CASE ): return ARTICLES_REGEX.sub(""" """ , UpperCamelCase__ ) def white_space_fix(_SCREAMING_SNAKE_CASE ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase__ ) ) ) ) def _a ( _SCREAMING_SNAKE_CASE ) -> List[Any]: if not s: return [] return normalize_answer(UpperCamelCase__ ).split() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: return int(normalize_answer(UpperCamelCase__ ) == normalize_answer(UpperCamelCase__ ) ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ = get_tokens(UpperCamelCase__ ) snake_case_ = get_tokens(UpperCamelCase__ ) snake_case_ = collections.Counter(UpperCamelCase__ ) & collections.Counter(UpperCamelCase__ ) snake_case_ = sum(common.values() ) if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 snake_case_ = 1.0 * num_same / len(UpperCamelCase__ ) snake_case_ = 1.0 * num_same / len(UpperCamelCase__ ) snake_case_ = (2 * precision * recall) / (precision + recall) return fa def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ = {} snake_case_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case_ = qa["""id"""] snake_case_ = [t for t in qa["""answers"""]["""text"""] if normalize_answer(UpperCamelCase__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string snake_case_ = [""""""] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue snake_case_ = preds[qid] # Take max over all gold answers snake_case_ = max(compute_exact(UpperCamelCase__ , UpperCamelCase__ ) for a in gold_answers ) snake_case_ = max(compute_fa(UpperCamelCase__ , UpperCamelCase__ ) for a in gold_answers ) return exact_scores, fa_scores def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = {} for qid, s in scores.items(): snake_case_ = na_probs[qid] > na_prob_thresh if pred_na: snake_case_ = float(not qid_to_has_ans[qid] ) else: snake_case_ = s return new_scores def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple: if not qid_list: snake_case_ = len(UpperCamelCase__ ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores.values() ) / total), ("""f1""", 100.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: snake_case_ = len(UpperCamelCase__ ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: for k in new_eval: snake_case_ = new_eval[k] def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: plt.step(UpperCamelCase__ , UpperCamelCase__ , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(UpperCamelCase__ , UpperCamelCase__ , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(UpperCamelCase__ ) plt.savefig(UpperCamelCase__ ) plt.clf() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: snake_case_ = sorted(UpperCamelCase__ , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) snake_case_ = 0.0 snake_case_ = 1.0 snake_case_ = 0.0 snake_case_ = [1.0] snake_case_ = [0.0] snake_case_ = 0.0 for i, qid in enumerate(UpperCamelCase__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] snake_case_ = true_pos / float(i + 1 ) snake_case_ = true_pos / float(UpperCamelCase__ ) if i == len(UpperCamelCase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(UpperCamelCase__ ) recalls.append(UpperCamelCase__ ) if out_image: plot_pr_curve(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return {"ap": 100.0 * avg_prec} def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: if out_image_dir and not os.path.exists(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) snake_case_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return snake_case_ = make_precision_recall_eval( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , out_image=os.path.join(UpperCamelCase__ , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) snake_case_ = make_precision_recall_eval( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , out_image=os.path.join(UpperCamelCase__ , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) snake_case_ = {k: float(UpperCamelCase__ ) for k, v in qid_to_has_ans.items()} snake_case_ = make_precision_recall_eval( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , out_image=os.path.join(UpperCamelCase__ , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(UpperCamelCase__ , UpperCamelCase__ , """pr_exact""" ) merge_eval(UpperCamelCase__ , UpperCamelCase__ , """pr_f1""" ) merge_eval(UpperCamelCase__ , UpperCamelCase__ , """pr_oracle""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: if not qid_list: return snake_case_ = [na_probs[k] for k in qid_list] snake_case_ = np.ones_like(UpperCamelCase__ ) / float(len(UpperCamelCase__ ) ) plt.hist(UpperCamelCase__ , weights=UpperCamelCase__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(UpperCamelCase__ , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) snake_case_ = num_no_ans snake_case_ = cur_score snake_case_ = 0.0 snake_case_ = sorted(UpperCamelCase__ , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) for i, qid in enumerate(UpperCamelCase__ ): if qid not in scores: continue if qid_to_has_ans[qid]: snake_case_ = scores[qid] else: if preds[qid]: snake_case_ = -1 else: snake_case_ = 0 cur_score += diff if cur_score > best_score: snake_case_ = cur_score snake_case_ = na_probs[qid] return 100.0 * best_score / len(UpperCamelCase__ ), best_thresh def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ , snake_case_ = find_best_thresh(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case_ , snake_case_ = find_best_thresh(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = best_exact snake_case_ = exact_thresh snake_case_ = best_fa snake_case_ = fa_thresh def _a ( ) -> Union[str, Any]: with open(OPTS.data_file ) as f: snake_case_ = json.load(UpperCamelCase__ ) snake_case_ = dataset_json["""data"""] with open(OPTS.pred_file ) as f: snake_case_ = json.load(UpperCamelCase__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: snake_case_ = json.load(UpperCamelCase__ ) else: snake_case_ = {k: 0.0 for k in preds} snake_case_ = make_qid_to_has_ans(UpperCamelCase__ ) # maps qid to True/False snake_case_ = [k for k, v in qid_to_has_ans.items() if v] snake_case_ = [k for k, v in qid_to_has_ans.items() if not v] snake_case_ , snake_case_ = get_raw_scores(UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = apply_no_ans_threshold(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , OPTS.na_prob_thresh ) snake_case_ = apply_no_ans_threshold(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , OPTS.na_prob_thresh ) snake_case_ = make_eval_dict(UpperCamelCase__ , UpperCamelCase__ ) if has_ans_qids: snake_case_ = make_eval_dict(UpperCamelCase__ , UpperCamelCase__ , qid_list=UpperCamelCase__ ) merge_eval(UpperCamelCase__ , UpperCamelCase__ , """HasAns""" ) if no_ans_qids: snake_case_ = make_eval_dict(UpperCamelCase__ , UpperCamelCase__ , qid_list=UpperCamelCase__ ) merge_eval(UpperCamelCase__ , UpperCamelCase__ , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , OPTS.out_image_dir ) histogram_na_prob(UpperCamelCase__ , UpperCamelCase__ , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(UpperCamelCase__ , UpperCamelCase__ , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) else: print(json.dumps(UpperCamelCase__ , indent=2 ) ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
347
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __lowerCamelCase = logging.get_logger(__name__) # General docstring __lowerCamelCase = "ResNetConfig" # Base docstring __lowerCamelCase = "microsoft/resnet-50" __lowerCamelCase = [1, 20_48, 7, 7] # Image classification docstring __lowerCamelCase = "microsoft/resnet-50" __lowerCamelCase = "tiger cat" __lowerCamelCase = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 3 ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ) -> Any: super().__init__() A__ = nn.Convad( __UpperCAmelCase ,__UpperCAmelCase ,kernel_size=__UpperCAmelCase ,stride=__UpperCAmelCase ,padding=kernel_size // 2 ,bias=__UpperCAmelCase ) A__ = nn.BatchNormad(__UpperCAmelCase ) A__ = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = self.convolution(__UpperCAmelCase ) A__ = self.normalization(__UpperCAmelCase ) A__ = self.activation(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ) -> Any: super().__init__() A__ = ResNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act ) A__ = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 ) A__ = config.num_channels def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) A__ = self.embedder(__UpperCAmelCase ) A__ = self.pooler(__UpperCAmelCase ) return embedding class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 2 ) -> Optional[Any]: super().__init__() A__ = nn.Convad(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ,stride=__UpperCAmelCase ,bias=__UpperCAmelCase ) A__ = nn.BatchNormad(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = self.convolution(__UpperCAmelCase ) A__ = self.normalization(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ) -> int: super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = ( ResNetShortCut(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,activation=__UpperCAmelCase ) ,) A__ = ACTaFN[activation] def snake_case__ ( self ,__UpperCAmelCase ) -> Union[str, Any]: A__ = hidden_state A__ = self.layer(__UpperCAmelCase ) A__ = self.shortcut(__UpperCAmelCase ) hidden_state += residual A__ = self.activation(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ,__UpperCAmelCase = 4 ) -> int: super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = out_channels // reduction A__ = ( ResNetShortCut(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ,activation=__UpperCAmelCase ) ,) A__ = ACTaFN[activation] def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = hidden_state A__ = self.layer(__UpperCAmelCase ) A__ = self.shortcut(__UpperCAmelCase ) hidden_state += residual A__ = self.activation(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 2 ,__UpperCAmelCase = 2 ,) -> Any: super().__init__() A__ = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer A__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ,activation=config.hidden_act ) ,*[layer(__UpperCAmelCase ,__UpperCAmelCase ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,) def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = input for layer in self.layers: A__ = layer(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ) -> Optional[Any]: super().__init__() A__ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __UpperCAmelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) A__ = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__UpperCAmelCase ,config.depths[1:] ): self.stages.append(ResNetStage(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,depth=__UpperCAmelCase ) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = False ,__UpperCAmelCase = True ) -> BaseModelOutputWithNoAttention: A__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A__ = hidden_states + (hidden_state,) A__ = stage_module(__UpperCAmelCase ) if output_hidden_states: A__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=__UpperCAmelCase ,hidden_states=__UpperCAmelCase ,) class UpperCamelCase__( __A ): lowerCAmelCase__ : str = ResNetConfig lowerCAmelCase__ : str = 'resnet' lowerCAmelCase__ : int = 'pixel_values' lowerCAmelCase__ : Any = True def snake_case__ ( self ,__UpperCAmelCase ) -> List[Any]: if isinstance(__UpperCAmelCase ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='fan_out' ,nonlinearity='relu' ) elif isinstance(__UpperCAmelCase ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Any: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): A__ = value __lowerCamelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __lowerCamelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , __A , ) class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> Union[str, Any]: super().__init__(__UpperCAmelCase ) A__ = config A__ = ResNetEmbeddings(__UpperCAmelCase ) A__ = ResNetEncoder(__UpperCAmelCase ) A__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ) -> BaseModelOutputWithPoolingAndNoAttention: A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.embedder(__UpperCAmelCase ) A__ = self.encoder( __UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) A__ = encoder_outputs[0] A__ = self.pooler(__UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase ,pooler_output=__UpperCAmelCase ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __A , ) class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> Tuple: super().__init__(__UpperCAmelCase ) A__ = config.num_labels A__ = ResNetModel(__UpperCAmelCase ) # classification head A__ = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def snake_case__ ( self ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,) -> ImageClassifierOutputWithNoAttention: A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.resnet(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) A__ = outputs.pooler_output if return_dict else outputs[1] A__ = self.classifier(__UpperCAmelCase ) A__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A__ = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A__ = 'single_label_classification' else: A__ = 'multi_label_classification' if self.config.problem_type == "regression": A__ = MSELoss() if self.num_labels == 1: A__ = loss_fct(logits.squeeze() ,labels.squeeze() ) else: A__ = loss_fct(__UpperCAmelCase ,__UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A__ = BCEWithLogitsLoss() A__ = loss_fct(__UpperCAmelCase ,__UpperCAmelCase ) if not return_dict: A__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase ,logits=__UpperCAmelCase ,hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __A , ) class UpperCamelCase__( __A , __A ): def __init__( self ,__UpperCAmelCase ) -> Optional[Any]: super().__init__(__UpperCAmelCase ) super()._init_backbone(__UpperCAmelCase ) A__ = [config.embedding_size] + config.hidden_sizes A__ = ResNetEmbeddings(__UpperCAmelCase ) A__ = ResNetEncoder(__UpperCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @replace_return_docstrings(output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ) -> BackboneOutput: A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = self.embedder(__UpperCAmelCase ) A__ = self.encoder(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) A__ = outputs.hidden_states A__ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: A__ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__UpperCAmelCase ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=__UpperCAmelCase ,)
221
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger() @dataclass class lowercase: '''simple docstring''' lowercase__ = 42 lowercase__ = field(default_factory=__a ) lowercase__ = field(default_factory=__a ) def UpperCamelCase_ ( self: Optional[Any], a_: Union[str, Any], a_: Tensor, a_: Tensor ): '''simple docstring''' _snake_case : Optional[Any] = len(list(m.modules() ) ) == 1 or isinstance(a_, nn.Convad ) or isinstance(a_, nn.BatchNormad ) if has_not_submodules: self.traced.append(a_ ) def __call__( self: List[Any], a_: Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' return list(filter(lambda a_ : len(list(x.state_dict().keys() ) ) > 0, self.traced ) ) @dataclass class lowercase: '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 0 lowercase__ = field(default_factory=__a ) lowercase__ = field(default_factory=__a ) def __call__( self: Dict, a_: Tensor ): '''simple docstring''' _snake_case : Tuple = Tracker(self.dest )(a_ ).parametrized _snake_case : int = Tracker(self.src )(a_ ).parametrized _snake_case : Tuple = list(filter(lambda a_ : type(a_ ) not in self.src_skip, a_ ) ) _snake_case : Union[str, Any] = list(filter(lambda a_ : type(a_ ) not in self.dest_skip, a_ ) ) if len(a_ ) != len(a_ ): raise Exception( f"Numbers of operations are different. Source module has {len(a_ )} operations while" f" destination module has {len(a_ )}." ) for dest_m, src_m in zip(a_, a_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}" ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : ResNetConfig , snake_case__ : Path , snake_case__ : bool = True ): """simple docstring""" print(F"Converting {name}..." ) with torch.no_grad(): _snake_case : Dict = timm.create_model(snake_case__ , pretrained=snake_case__ ).eval() _snake_case : List[Any] = ResNetForImageClassification(snake_case__ ).eval() _snake_case : List[str] = ModuleTransfer(src=snake_case__ , dest=snake_case__ ) _snake_case : Optional[Any] = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(snake_case__ ) assert torch.allclose(from_model(snake_case__ ) , our_model(snake_case__ ).logits ), "The model logits don't match the original one." _snake_case : Optional[int] = F"resnet{'-'.join(name.split('resnet' ) )}" print(snake_case__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=snake_case__ , ) # we can use the convnext one _snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=snake_case__ , ) print(F"Pushed {checkpoint_name}" ) def UpperCAmelCase__ (snake_case__ : Path , snake_case__ : str = None , snake_case__ : bool = True ): """simple docstring""" _snake_case : Optional[Any] = """imagenet-1k-id2label.json""" _snake_case : Optional[Any] = 10_00 _snake_case : str = (1, num_labels) _snake_case : List[Any] = """huggingface/label-files""" _snake_case : Union[str, Any] = num_labels _snake_case : Optional[int] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : str = idalabel _snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} _snake_case : Tuple = partial(snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ ) _snake_case : Optional[int] = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(snake_case__ , names_to_config[model_name] , snake_case__ , snake_case__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return config, expected_shape if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) A_ = parser.parse_args() A_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
132
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int = 1_00_00_00 ): """simple docstring""" _snake_case : Dict = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , snake_case__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
132
1
'''simple docstring''' def lowercase_ ( _lowercase ) -> int: '''simple docstring''' if not isinstance(_lowercase , _lowercase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) lowerCamelCase_ : Optional[int] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
318
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowercase : Optional[Any] = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowercase : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowercase : Any = os.environ.get('''USER_TOKEN''', '''''') def lowercase_ ( _lowercase ) -> dict[Any, Any]: '''simple docstring''' lowerCamelCase_ : str = { '''Authorization''': F"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
318
1
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowercase__ = 1.054571817E-34 # unit of ℏ : J * s lowercase__ = 3E8 # unit of c : m * s^-1 def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: _lowerCamelCase : List[str] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCamelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCamelCase : List[str] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def A_ ( self , **lowercase ): _lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowercase ) return config def A_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase ) def A_ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase ) def A_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase ) def A_ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase ) def A_ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase ) def A_ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase , prev_timestep=lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config(variance_type='fixed_small_log' ) _lowerCamelCase : str = scheduler_class(**lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def A_ ( self ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='learned_range' ) _lowerCamelCase : int = scheduler_class(**lowercase ) _lowerCamelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowercase ) - -0.0_01_00_11 < 1E-5 def A_ ( self ): _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config() _lowerCamelCase : Tuple = scheduler_class(**lowercase ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : Tuple = model(lowercase , lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def A_ ( self ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Optional[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(25 ) _lowerCamelCase : Optional[Any] = scheduler.timesteps _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Any = self.dummy_sample_deter _lowerCamelCase : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase ): # 1. predict noise residual _lowerCamelCase : List[Any] = model(lowercase , lowercase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Union[str, Any] = scheduler.step( lowercase , lowercase , lowercase , prev_timestep=lowercase , generator=lowercase ).prev_sample _lowerCamelCase : List[Any] = pred_prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(lowercase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def A_ ( self ): pass def A_ ( self ): pass
12
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Tuple = logging.get_logger(__name__) __A : str = torch.device("cpu") def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> int: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703E00, 2.1107E00, -2.0811E00, 8.8685E-01, 2.4360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636E-01, 2.3478E-01, -1.6963E00, -1.7381E00, -8.6337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768E-01, -4.7429E-01, -1.0897E00, -1.0248E00, 3.5523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330E-01, 2.4211E-01, -6.0185E-01, -8.2789E-01, -6.0446E-02] ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase = dct.pop(UpperCamelCase__ ) UpperCAmelCase = val def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> int: '''simple docstring''' UpperCAmelCase = [] for k in state_dict.keys(): UpperCAmelCase = k if ".pwconv" in k: UpperCAmelCase = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: UpperCAmelCase = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: UpperCAmelCase = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: UpperCAmelCase = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: UpperCAmelCase = k_new.split('''.''' ) if ls[2].isdigit(): UpperCAmelCase = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: UpperCAmelCase = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' UpperCAmelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase = 1000 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase = [3, 3, 6, 4] UpperCAmelCase = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCAmelCase = [3, 3, 9, 6] UpperCAmelCase = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase = [4, 3, 10, 5] UpperCAmelCase = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase = [4, 4, 12, 6] UpperCAmelCase = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ ) else: UpperCAmelCase = torch.load(UpperCamelCase__ , map_location='''cpu''' ) UpperCAmelCase = checkpoint UpperCAmelCase = create_rename_keys(UpperCamelCase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # load HuggingFace model UpperCAmelCase = SwiftFormerForImageClassification(UpperCamelCase__ ).eval() hf_model.load_state_dict(UpperCamelCase__ ) # prepare test inputs UpperCAmelCase = prepare_img() UpperCAmelCase = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) UpperCAmelCase = processor(images=UpperCamelCase__ , return_tensors='''pt''' ) # compare outputs from both models UpperCAmelCase = get_expected_output(UpperCamelCase__ ) UpperCAmelCase = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , UpperCamelCase__ , atol=1E-3 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") __A : Dict = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
273
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __A : int = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' UpperCAmelCase = list(s_dict.keys() ) for key in keys: UpperCAmelCase = R'''.*/layers_(\d+)''' UpperCAmelCase = key if re.match(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , UpperCamelCase__ ) UpperCAmelCase = R'''(encoder|decoder)\/''' if re.match(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase = re.match(UpperCamelCase__ , UpperCamelCase__ ).groups() if groups[0] == "encoder": UpperCAmelCase = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , UpperCamelCase__ ) UpperCAmelCase = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , UpperCamelCase__ ) elif groups[0] == "decoder": UpperCAmelCase = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , UpperCamelCase__ ) UpperCAmelCase = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , UpperCamelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase = new_key.replace(UpperCamelCase__ , UpperCamelCase__ ) print(F"""{key} -> {new_key}""" ) UpperCAmelCase = s_dict.pop(UpperCamelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase = s_dict[key].shape[0] UpperCAmelCase = s_dict[key] for idx in range(UpperCamelCase__ ): UpperCAmelCase = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(UpperCamelCase__ ) return s_dict __A : Optional[int] = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' import regex as re with open(UpperCamelCase__ , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = re.findall(R'''(.*) = ([0-9.]*)''' , UpperCamelCase__ ) UpperCAmelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase = float(UpperCamelCase__ ) if '''.''' in value else int(UpperCamelCase__ ) UpperCAmelCase = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , UpperCamelCase__ )[0] UpperCAmelCase = str(activation[1] ) UpperCAmelCase = num_experts UpperCAmelCase = SwitchTransformersConfig(**UpperCamelCase__ ) return config def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="./" , UpperCamelCase__=8 ) -> List[Any]: '''simple docstring''' print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCAmelCase = checkpoints.load_tax_checkpoint(UpperCamelCase__ ) if gin_file is not None: UpperCAmelCase = convert_gin_to_config(UpperCamelCase__ , UpperCamelCase__ ) else: UpperCAmelCase = SwitchTransformersConfig.from_pretrained(UpperCamelCase__ ) UpperCAmelCase = SwitchTransformersForConditionalGeneration(UpperCamelCase__ ) UpperCAmelCase = flax_params['''target'''] UpperCAmelCase = flatten_dict(UpperCamelCase__ , sep='''/''' ) UpperCAmelCase = rename_keys(UpperCamelCase__ ) UpperCAmelCase = unflatten_dict(UpperCamelCase__ , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCamelCase__ , UpperCamelCase__ ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") __A : Tuple = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
273
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCAmelCase_ = HUGGINGFACE_HUB_CACHE lowerCAmelCase_ = '''config.json''' lowerCAmelCase_ = '''diffusion_pytorch_model.bin''' lowerCAmelCase_ = '''diffusion_flax_model.msgpack''' lowerCAmelCase_ = '''model.onnx''' lowerCAmelCase_ = '''diffusion_pytorch_model.safetensors''' lowerCAmelCase_ = '''weights.pb''' lowerCAmelCase_ = '''https://huggingface.co''' lowerCAmelCase_ = default_cache_path lowerCAmelCase_ = '''diffusers_modules''' lowerCAmelCase_ = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) lowerCAmelCase_ = ['''fp16''', '''non-ema'''] lowerCAmelCase_ = '''.self_attn'''
279
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCAmelCase_ = '''__DUMMY_TRANSFORMERS_USER__''' lowerCAmelCase_ = '''Dummy User''' lowerCAmelCase_ = '''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''' lowerCAmelCase_ = '''https://hub-ci.huggingface.co''' lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' lowerCAmelCase_ = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , _UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[int]: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , _UpperCamelCase ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , _UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , _UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" HfFolder.save_token(_UpperCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" return HfApi(endpoint=_UpperCamelCase ) @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = HfFolder.get_token() HfFolder.save_token(_UpperCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_UpperCamelCase ) @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" def _cleanup_repo(_UpperCamelCase ): hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" @contextmanager def _temporary_repo(_UpperCamelCase ): try: yield repo_id finally: cleanup_repo(_UpperCamelCase ) return _temporary_repo @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" snake_case_ : Optional[int] = f'''repo_txt_data-{int(time.time() * 10E3 )}''' snake_case_ : Any = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase ) hf_api.upload_file( token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data/text_data.txt''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" snake_case_ : int = f'''repo_zipped_txt_data-{int(time.time() * 10E3 )}''' snake_case_ : Tuple = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase ) hf_api.upload_file( token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data.zip''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = f'''repo_zipped_img_data-{int(time.time() * 10E3 )}''' snake_case_ : str = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' , private=_UpperCamelCase ) hf_api.upload_file( token=_UpperCamelCase , path_or_fileobj=str(_UpperCamelCase ) , path_in_repo='''data.zip''' , repo_id=_UpperCamelCase , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(_UpperCamelCase , token=_UpperCamelCase , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
279
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ = '''LayoutLMv3ImageProcessor''' UpperCAmelCase__ = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self : Optional[int] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str) ->Tuple: '''simple docstring''' A__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase__ , ) A__ = kwargs.pop('''feature_extractor''') A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase__ : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase__ : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : List[str] , ) ->BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''') # first, apply the image processor A__ = self.image_processor(images=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [text] # add batch dimension (as the image processor always adds a batch dimension) A__ = features['''words'''] A__ = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , ) # add pixel values A__ = features.pop('''pixel_values''') if return_overflowing_tokens is True: A__ = self.get_overflowing_images(UpperCAmelCase__ , encoded_inputs['''overflow_to_sample_mapping''']) A__ = images return encoded_inputs def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]) ->List[Any]: '''simple docstring''' A__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(UpperCAmelCase__) != len(UpperCAmelCase__): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f""" {len(UpperCAmelCase__)} and {len(UpperCAmelCase__)}""") return images_with_overflow def SCREAMING_SNAKE_CASE ( self : int , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Optional[Any]) ->Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase__ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase__ , ) return self.image_processor
14
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['image_processor', 'tokenizer'] _lowerCamelCase : Tuple = 'OwlViTImageProcessor' _lowerCamelCase : List[Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[Any] , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Any ): A_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) A_ = kwargs.pop("feature_extractor" ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict="max_length" , UpperCAmelCase : Optional[Any]="np" , **UpperCAmelCase : Optional[int] ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(UpperCAmelCase , UpperCAmelCase ) or (isinstance(UpperCAmelCase , UpperCAmelCase ) and not isinstance(text[0] , UpperCAmelCase )): A_ = [self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )] elif isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(text[0] , UpperCAmelCase ): A_ = [] # Maximum number of queries across batch A_ = max([len(UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCAmelCase ) != max_num_queries: A_ = t + [" "] * (max_num_queries - len(UpperCAmelCase )) A_ = self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) encodings.append(UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": A_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) A_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) A_ = BatchEncoding() A_ = input_ids A_ = attention_mask if query_images is not None: A_ = BatchEncoding() A_ = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ).pixel_values A_ = query_pixel_values if images is not None: A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def __A ( self : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ): return self.image_processor.post_process(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : str , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ): return self.image_processor.post_process_object_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : int ): return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def __A ( self : Union[str, Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def __A ( self : Optional[Any] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
312
0
'''simple docstring''' # Function to print upper half of diamond (pyramid) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: for i in range(0, UpperCAmelCase__ ): for _ in range(0, n - i - 1 ): # printing spaces print(""" """, end="""""" ) for _ in range(0, i + 1 ): # printing stars print("""* """, end="""""" ) print() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: for i in range(UpperCAmelCase__, 0, -1 ): for _ in range(UpperCAmelCase__, 0, -1 ): # printing stars print("""* """, end="""""" ) print() for _ in range(n - i + 1, 0, -1 ): # printing spaces print(""" """, end="""""" ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(UpperCAmelCase__ ) # upper half reverse_floyd(UpperCAmelCase__ ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __lowerCamelCase = 1 while K: __lowerCamelCase = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __lowerCamelCase = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
101
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class A__ ( _snake_case , unittest.TestCase ): lowercase = ReformerTokenizer lowercase = ReformerTokenizerFast lowercase = True lowercase = False lowercase = True def snake_case_ ( self ) -> str: '''simple docstring''' super().setUp() A_ = ReformerTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = """<s>""" A_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(UpperCamelCase__ ) , 1000 ) def snake_case_ ( self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' if not self.test_rust_tokenizer: return A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() A_ = """I was born in 92000, and this is falsé.""" A_ = tokenizer.tokenize(UpperCamelCase__ ) A_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.get_rust_tokenizer() A_ = tokenizer.encode(UpperCamelCase__ ) A_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__=15 ) -> int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) # Simple input A_ = """This is a simple input""" A_ = ["""This is a simple input 1""", """This is a simple input 2"""] A_ = ("""This is a simple input""", """This is a pair""") A_ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" ) # Simple input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" ) # Simple input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" , ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" ) # Pair input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="""max_length""" , ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' pass def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = ReformerTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) A_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [285, 46, 10, 170, 382] , ) A_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = """Hello World!""" A_ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) A_ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @require_torch @slow def snake_case_ ( self ) -> str: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence A_ = list(self.big_tokenizer.get_vocab().keys() )[:10] A_ = """ """.join(UpperCamelCase__ ) A_ = self.big_tokenizer.encode_plus(UpperCamelCase__ , return_tensors="""pt""" ) A_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) A_ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A_ = encoded_sequence["""input_ids"""].shape A_ = ReformerModel(UpperCamelCase__ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCamelCase__ ) model(**UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # fmt: off A_ = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A_ = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=UpperCamelCase__ , sequences=UpperCamelCase__ , )
101
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = TextToVideoSDPipeline lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowercase__ = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowercase__ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D'''), up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D'''), cross_attention_dim=32, attention_head_dim=4, ) lowercase__ = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=lowerCamelCase, set_alpha_to_one=lowerCamelCase, ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='''gelu''', projection_dim=512, ) lowercase__ = CLIPTextModel(lowerCamelCase ) lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowercase__ ( self : int, lowerCamelCase : Union[str, Any], lowerCamelCase : int=0 ): '''simple docstring''' if str(lowerCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(lowerCamelCase ) else: lowercase__ = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowercase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = TextToVideoSDPipeline(**lowerCamelCase ) lowercase__ = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowercase__ = self.get_dummy_inputs(lowerCamelCase ) lowercase__ = '''np''' lowercase__ = sd_pipe(**lowerCamelCase ).frames lowercase__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowercase__ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : str ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCamelCase, expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available(), reason='''XFormers attention is only available with CUDA and `xformers` installed''', ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase, expected_max_diff=1E-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def lowercase__ ( self : int ): '''simple docstring''' pass def lowercase__ ( self : List[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) lowercase__ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ = pipe.to('''cuda''' ) lowercase__ = '''Spiderman is surfing''' lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ = pipe(lowerCamelCase, generator=lowerCamelCase, num_inference_steps=25, output_type='''pt''' ).frames lowercase__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) lowercase__ = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) lowercase__ = pipe.to('''cuda''' ) lowercase__ = '''Spiderman is surfing''' lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ = pipe(lowerCamelCase, generator=lowerCamelCase, num_inference_steps=2, output_type='''pt''' ).frames lowercase__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
207
0
from collections.abc import Sequence def lowerCAmelCase_ (lowerCAmelCase__: Sequence[float] , lowerCAmelCase__: float ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(lowerCAmelCase__ ) ) def lowerCAmelCase_ (lowerCAmelCase__: Sequence[float] , lowerCAmelCase__: float ): """simple docstring""" UpperCAmelCase_: Optional[int] = 0.0 for coeff in reversed(lowerCAmelCase__ ): UpperCAmelCase_: Optional[Any] = result * x + coeff return result if __name__ == "__main__": a : Dict = (0.0, 0.0, 5.0, 9.3, 7.0) a : Any = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
82
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( _lowerCAmelCase ): A = 42 A = None def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: Optional[int]=0.999 , lowerCAmelCase__: List[str]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__: List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__: str ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) UpperCAmelCase_: List[Any] = [] for i in range(lowerCAmelCase__ ): UpperCAmelCase_: Optional[int] = i / num_diffusion_timesteps UpperCAmelCase_: int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class _a ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__(self, SCREAMING_SNAKE_CASE_ = 1000, SCREAMING_SNAKE_CASE_ = "fixed_small_log", SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = 1.0, SCREAMING_SNAKE_CASE_ = "epsilon", SCREAMING_SNAKE_CASE_ = "squaredcos_cap_v2", ) -> List[Any]: if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) UpperCAmelCase_: Tuple = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = 1.0 - self.betas UpperCAmelCase_: int = torch.cumprod(self.alphas, dim=0 ) UpperCAmelCase_: Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase_: List[str] = 1.0 # setable values UpperCAmelCase_: str = None UpperCAmelCase_: str = torch.from_numpy(np.arange(0, SCREAMING_SNAKE_CASE_ )[::-1].copy() ) UpperCAmelCase_: Dict = variance_type def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> torch.FloatTensor: return sample def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Optional[Any]: UpperCAmelCase_: Optional[Any] = num_inference_steps UpperCAmelCase_: Tuple = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase_: Tuple = (np.arange(0, SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase_: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ) -> List[Any]: if prev_timestep is None: UpperCAmelCase_: Any = t - 1 UpperCAmelCase_: int = self.alphas_cumprod[t] UpperCAmelCase_: Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase_: int = 1 - alpha_prod_t UpperCAmelCase_: List[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase_: List[str] = self.betas[t] else: UpperCAmelCase_: List[str] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase_: Tuple = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase_: List[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase_: str = torch.log(torch.clamp(SCREAMING_SNAKE_CASE_, min=1E-20 ) ) UpperCAmelCase_: Dict = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase_: Dict = variance.log() UpperCAmelCase_: Tuple = beta.log() UpperCAmelCase_: int = (predicted_variance + 1) / 2 UpperCAmelCase_: int = frac * max_log + (1 - frac) * min_log return variance def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_ = True, ) -> Union[UnCLIPSchedulerOutput, Tuple]: UpperCAmelCase_: List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase_ , UpperCAmelCase_: List[str] = torch.split(SCREAMING_SNAKE_CASE_, sample.shape[1], dim=1 ) else: UpperCAmelCase_: Union[str, Any] = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase_: List[Any] = t - 1 UpperCAmelCase_: Optional[int] = self.alphas_cumprod[t] UpperCAmelCase_: Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase_: Optional[Any] = 1 - alpha_prod_t UpperCAmelCase_: Optional[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase_: Tuple = self.betas[t] UpperCAmelCase_: Dict = self.alphas[t] else: UpperCAmelCase_: List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase_: List[str] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase_: Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase_: int = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase_: Optional[int] = torch.clamp( SCREAMING_SNAKE_CASE_, -self.config.clip_sample_range, self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_: Optional[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase_: Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_: List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase_: Union[str, Any] = 0 if t > 0: UpperCAmelCase_: Any = randn_tensor( model_output.shape, dtype=model_output.dtype, generator=SCREAMING_SNAKE_CASE_, device=model_output.device ) UpperCAmelCase_: Dict = self._get_variance( SCREAMING_SNAKE_CASE_, predicted_variance=SCREAMING_SNAKE_CASE_, prev_timestep=SCREAMING_SNAKE_CASE_, ) if self.variance_type == "fixed_small_log": UpperCAmelCase_: Optional[int] = variance elif self.variance_type == "learned_range": UpperCAmelCase_: Dict = (0.5 * variance).exp() else: raise ValueError( f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) UpperCAmelCase_: int = variance * variance_noise UpperCAmelCase_: List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_, pred_original_sample=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCAmelCase_: Tuple = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype ) UpperCAmelCase_: Union[str, Any] = timesteps.to(original_samples.device ) UpperCAmelCase_: Dict = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase_: int = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase_: str = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase_: Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase_: Optional[Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase_: Optional[int] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase_: List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
82
1
"""simple docstring""" import string def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = '''''' for i in sequence: _UpperCamelCase = ord(__snake_case ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = string.ascii_letters _UpperCamelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(__snake_case )] if c in letters else c for c in sequence ) def lowerCamelCase__ ( ) -> None: """simple docstring""" from timeit import timeit print('''Running performance benchmarks...''' ) _UpperCamelCase = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F'''> atbash_slow(): {timeit("atbash_slow(printable)", setup=__snake_case )} seconds''' ) print(F'''> atbash(): {timeit("atbash(printable)", setup=__snake_case )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
194
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = SpeechTaTokenizer lowercase__ = False lowercase__ = True def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = SpeechTaTokenizer(__a) _UpperCamelCase = AddedToken('''<mask>''' , lstrip=__a , rstrip=__a) _UpperCamelCase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token}) tokenizer.add_tokens(['''<ctc_blank>''']) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = '''this is a test''' _UpperCamelCase = '''this is a test''' return input_text, output_text def UpperCAmelCase ( self , __a , __a=False , __a=20 , __a=5) -> List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_input_output_texts(__a) _UpperCamelCase = tokenizer.encode(__a , add_special_tokens=__a) _UpperCamelCase = tokenizer.decode(__a , clean_up_tokenization_spaces=__a) return text, ids def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = '''<pad>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a) , __a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a) , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<s>''') self.assertEqual(vocab_keys[1] , '''<pad>''') self.assertEqual(vocab_keys[-4] , '''œ''') self.assertEqual(vocab_keys[-2] , '''<mask>''') self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''') self.assertEqual(len(__a) , 81) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.get_tokenizers(do_lower_case=__a) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}'''): _UpperCamelCase = tokenizer.vocab_size _UpperCamelCase = len(__a) self.assertNotEqual(__a , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _UpperCamelCase = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] _UpperCamelCase = tokenizer.add_tokens(__a) _UpperCamelCase = tokenizer.vocab_size _UpperCamelCase = len(__a) self.assertNotEqual(__a , 0) self.assertEqual(__a , __a) self.assertEqual(__a , len(__a)) self.assertEqual(__a , all_size + len(__a)) _UpperCamelCase = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__a) self.assertGreaterEqual(len(__a) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) _UpperCamelCase = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} _UpperCamelCase = tokenizer.add_special_tokens(__a) _UpperCamelCase = tokenizer.vocab_size _UpperCamelCase = len(__a) self.assertNotEqual(__a , 0) self.assertEqual(__a , __a) self.assertEqual(__a , len(__a)) self.assertEqual(__a , all_size_a + len(__a)) _UpperCamelCase = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__a) self.assertGreaterEqual(len(__a) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> int: '''simple docstring''' pass def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = tokenizer.tokenize('''This is a test''') # fmt: off self.assertListEqual(__a , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t''']) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__a) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( __a , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.''']) _UpperCamelCase = tokenizer.convert_tokens_to_ids(__a) # fmt: off self.assertListEqual(__a , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26]) # fmt: on _UpperCamelCase = tokenizer.convert_ids_to_tokens(__a) self.assertListEqual( __a , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.''']) @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' # Use custom sequence because this tokenizer does not handle numbers. _UpperCamelCase = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off _UpperCamelCase = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=__a , )
194
1
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : Any = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Dict = """t5""" _lowerCAmelCase : Any = ["""past_key_values"""] _lowerCAmelCase : int = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : str , lowercase_ : Any=32128 , lowercase_ : Optional[Any]=512 , lowercase_ : Tuple=64 , lowercase_ : Any=2048 , lowercase_ : int=6 , lowercase_ : Optional[Any]=None , lowercase_ : int=8 , lowercase_ : str=32 , lowercase_ : List[str]=128 , lowercase_ : List[str]=0.1 , lowercase_ : str=1E-6 , lowercase_ : str=1.0 , lowercase_ : Tuple="relu" , lowercase_ : List[Any]=True , lowercase_ : Tuple=True , lowercase_ : Optional[int]=0 , lowercase_ : int=1 , **lowercase_ : Optional[int] , ): snake_case_ : Dict = vocab_size snake_case_ : List[Any] = d_model snake_case_ : Union[str, Any] = d_kv snake_case_ : Tuple = d_ff snake_case_ : List[str] = num_layers snake_case_ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry snake_case_ : Optional[int] = num_heads snake_case_ : Optional[int] = relative_attention_num_buckets snake_case_ : Optional[Any] = relative_attention_max_distance snake_case_ : List[str] = dropout_rate snake_case_ : int = layer_norm_epsilon snake_case_ : str = initializer_factor snake_case_ : Union[str, Any] = feed_forward_proj snake_case_ : List[str] = use_cache snake_case_ : Optional[Any] = self.feed_forward_proj.split('''-''' ) snake_case_ : List[Any] = act_info[-1] snake_case_ : Tuple = act_info[0] == '''gated''' if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": snake_case_ : Dict = '''gelu_new''' super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ , ) class _UpperCAmelCase ( lowerCAmelCase__): @property def _snake_case ( self : List[Any] ): snake_case_ : Any = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: snake_case_ : Optional[Any] = '''past_encoder_sequence + sequence''' snake_case_ : List[str] = {0: '''batch'''} snake_case_ : Tuple = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: snake_case_ : Dict = {0: '''batch''', 1: '''decoder_sequence'''} snake_case_ : str = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='''inputs''' ) return common_inputs @property def _snake_case ( self : Dict ): return 13
155
"""simple docstring""" from collections.abc import Generator def __lowercase ( ): snake_case_, snake_case_ : List[str] = 0, 1 while True: snake_case_, snake_case_ : List[str] = b, a + b yield b def __lowercase ( _a = 1_000 ): snake_case_ : Tuple = 1 snake_case_ : List[str] = fibonacci_generator() while len(str(next(_a ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
155
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def a ( A__ : Tuple ) -> int: """simple docstring""" _lowercase =OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): _lowercase =key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): _lowercase =key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowercase =key[key.find('patch_embed' ) + len('patch_embed' )] _lowercase =key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(A__ )-1}''' ) if "norm" in key: _lowercase =key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowercase =key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] _lowercase =key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(A__ )-1}''' ) if "layer_norm1" in key: _lowercase =key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: _lowercase =key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 _lowercase =key[key.find('block' ) + len('block' )] _lowercase =key.replace(F'''block{idx}''' , F'''block.{int(A__ )-1}''' ) if "attn.q" in key: _lowercase =key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: _lowercase =key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: _lowercase =key.replace('attn' , 'attention.self' ) if "fc1" in key: _lowercase =key.replace('fc1' , 'dense1' ) if "fc2" in key: _lowercase =key.replace('fc2' , 'dense2' ) if "linear_pred" in key: _lowercase =key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: _lowercase =key.replace('linear_fuse.conv' , 'linear_fuse' ) _lowercase =key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowercase =key[key.find('linear_c' ) + len('linear_c' )] _lowercase =key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(A__ )-1}''' ) if "bot_conv" in key: _lowercase =key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: _lowercase =key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: _lowercase =key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: _lowercase =key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: _lowercase =key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: _lowercase =key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: _lowercase =key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): _lowercase =key.replace('module.last_layer_depth' , 'head.head' ) _lowercase =value return new_state_dict def a ( A__ : Union[str, Any] , A__ : Any ) -> List[Any]: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowercase =state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _lowercase =state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _lowercase =kv_weight[ : config.hidden_sizes[i], : ] _lowercase =kv_bias[: config.hidden_sizes[i]] _lowercase =kv_weight[ config.hidden_sizes[i] :, : ] _lowercase =kv_bias[config.hidden_sizes[i] :] def a ( ) -> List[str]: """simple docstring""" _lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase =Image.open(requests.get(A__ , stream=A__ ).raw ) return image @torch.no_grad() def a ( A__ : List[str] , A__ : Optional[Any] , A__ : str=False , A__ : str=None ) -> List[str]: """simple docstring""" _lowercase =GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _lowercase =GLPNImageProcessor() # prepare image _lowercase =prepare_img() _lowercase =image_processor(images=A__ , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict _lowercase =torch.load(A__ , map_location=torch.device('cpu' ) ) # rename keys _lowercase =rename_keys(A__ ) # key and value matrices need special treatment read_in_k_v(A__ , A__ ) # create HuggingFace model and load state dict _lowercase =GLPNForDepthEstimation(A__ ) model.load_state_dict(A__ ) model.eval() # forward pass _lowercase =model(A__ ) _lowercase =outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _lowercase =torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: _lowercase =torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) _lowercase =torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , A__ , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=A__ , ) image_processor.push_to_hub( repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=A__ , ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) lowercase_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
205
import os def a ( ) -> Any: """simple docstring""" with open(os.path.dirname(A__ ) + '/p022_names.txt' ) as file: _lowercase =str(file.readlines()[0] ) _lowercase =names.replace('"' , '' ).split(',' ) names.sort() _lowercase =0 _lowercase =0 for i, name in enumerate(A__ ): for letter in name: name_score += ord(A__ ) - 64 total_score += (i + 1) * name_score _lowercase =0 return total_score if __name__ == "__main__": print(solution())
205
1
import numpy as np def UpperCamelCase ( snake_case__ : str , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Dict ) -> Tuple: UpperCamelCase : int = int(np.ceil((x_end - xa) / h ) ) UpperCamelCase : Any = np.zeros((n + 1,) ) UpperCamelCase : List[str] = ya UpperCamelCase : Optional[int] = xa for k in range(snake_case__ ): UpperCamelCase : Optional[int] = f(snake_case__ , y[k] ) UpperCamelCase : Optional[int] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCamelCase : List[str] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCamelCase : Union[str, Any] = f(x + h , y[k] + h * ka ) UpperCamelCase : str = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
369
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : List[str] = jnp.ones((batch_size, length) ) / length return scores def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = None UpperCamelCase : Optional[int] = 20 UpperCamelCase : Optional[Any] = self._get_uniform_logits(batch_size=2, length=SCREAMING_SNAKE_CASE_ ) # tweak scores to not be uniform anymore UpperCamelCase : Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch UpperCamelCase : Any = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax UpperCamelCase : List[str] = jax.nn.softmax(SCREAMING_SNAKE_CASE_, axis=-1 ) UpperCamelCase : List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase : int = FlaxTemperatureLogitsWarper(temperature=1.3 ) UpperCamelCase : Tuple = jax.nn.softmax(temp_dist_warper_sharper(SCREAMING_SNAKE_CASE_, scores.copy(), cur_len=SCREAMING_SNAKE_CASE_ ), axis=-1 ) UpperCamelCase : Any = jax.nn.softmax(temp_dist_warper_smoother(SCREAMING_SNAKE_CASE_, scores.copy(), cur_len=SCREAMING_SNAKE_CASE_ ), axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min() ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = None UpperCamelCase : Any = 10 UpperCamelCase : Any = 2 # create ramp distribution UpperCamelCase : List[Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :], (batch_size, vocab_size) ).copy() UpperCamelCase : Tuple = ramp_logits[1:, : vocab_size // 2] + vocab_size UpperCamelCase : Dict = FlaxTopKLogitsWarper(3 ) UpperCamelCase : Tuple = top_k_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist(), 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist(), 2 * [True] + 3 * [False] + 5 * [True] ) # check special case UpperCamelCase : Optional[int] = 5 UpperCamelCase : Optional[int] = FlaxTopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3 ) UpperCamelCase : Union[str, Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :], (batch_size, length) ).copy() UpperCamelCase : List[str] = top_k_warp_safety_check(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist(), [2, 2] ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : int = None UpperCamelCase : List[str] = 10 UpperCamelCase : Optional[Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) UpperCamelCase : Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) UpperCamelCase : Optional[Any] = FlaxTopPLogitsWarper(0.8 ) UpperCamelCase : int = np.exp(top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 UpperCamelCase : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # check edge cases with negative and extreme logits UpperCamelCase : Optional[Any] = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :], (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme UpperCamelCase : Tuple = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept UpperCamelCase : int = FlaxTopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0 ) UpperCamelCase : List[str] = top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist(), [3, 2] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Union[str, Any] = 20 UpperCamelCase : Union[str, Any] = 4 UpperCamelCase : Optional[int] = 0 UpperCamelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=SCREAMING_SNAKE_CASE_ ) # check that min length is applied at length 5 UpperCamelCase : List[str] = ids_tensor((batch_size, 20), vocab_size=20 ) UpperCamelCase : Any = 5 UpperCamelCase : Tuple = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = min_dist_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 UpperCamelCase : Any = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = 15 UpperCamelCase : str = min_dist_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() ) def snake_case_ ( self ) -> Dict: UpperCamelCase : str = 20 UpperCamelCase : List[Any] = 4 UpperCamelCase : List[str] = 0 UpperCamelCase : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ ) # check that all scores are -inf except the bos_token_id score UpperCamelCase : Any = ids_tensor((batch_size, 1), vocab_size=20 ) UpperCamelCase : List[Any] = 1 UpperCamelCase : Tuple = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 UpperCamelCase : Dict = 3 UpperCamelCase : str = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : Union[str, Any] = 20 UpperCamelCase : Optional[Any] = 4 UpperCamelCase : List[Any] = 0 UpperCamelCase : int = 5 UpperCamelCase : Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ ) # check that all scores are -inf except the eos_token_id when max_length is reached UpperCamelCase : str = ids_tensor((batch_size, 4), vocab_size=20 ) UpperCamelCase : Tuple = 4 UpperCamelCase : Union[str, Any] = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached UpperCamelCase : str = 3 UpperCamelCase : List[Any] = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = logits_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() ) def snake_case_ ( self ) -> int: UpperCamelCase : int = 4 UpperCamelCase : Tuple = 10 UpperCamelCase : str = 15 UpperCamelCase : List[str] = 2 UpperCamelCase : Any = 1 UpperCamelCase : List[str] = 15 # dummy input_ids and scores UpperCamelCase : Dict = ids_tensor((batch_size, sequence_length), SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = input_ids.copy() UpperCamelCase : Any = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = scores.copy() # instantiate all dist processors UpperCamelCase : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase : Optional[Any] = FlaxTopKLogitsWarper(3 ) UpperCamelCase : Optional[int] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCamelCase : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = 10 # no processor list UpperCamelCase : Any = temp_dist_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = top_k_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = min_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = bos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = eos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # with processor list UpperCamelCase : List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCamelCase : Optional[Any] = processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) # scores should be equal self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[Any] = 4 UpperCamelCase : Tuple = 10 UpperCamelCase : Union[str, Any] = 15 UpperCamelCase : Union[str, Any] = 2 UpperCamelCase : Optional[Any] = 1 UpperCamelCase : int = 15 # dummy input_ids and scores UpperCamelCase : Dict = ids_tensor((batch_size, sequence_length), SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = input_ids.copy() UpperCamelCase : Optional[int] = self._get_uniform_logits(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = scores.copy() # instantiate all dist processors UpperCamelCase : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCamelCase : Optional[Any] = FlaxTopKLogitsWarper(3 ) UpperCamelCase : Union[str, Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCamelCase : str = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 10 # no processor list def run_no_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = temp_dist_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = top_k_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = top_p_warp(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = min_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = bos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = eos_dist_proc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) return scores # with processor list def run_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCamelCase : Union[str, Any] = processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, cur_len=SCREAMING_SNAKE_CASE_ ) return scores UpperCamelCase : Dict = jax.jit(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = jax.jit(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = jitted_run_no_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = jitted_run_processor_list(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # scores should be equal self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() )
103
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase__ : List[str] = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Union[str, Any] = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys lowerCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
225
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : list[list[int]] = [] snake_case_ : list[int] = [] snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) _SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2] _SCREAMING_SNAKE_CASE = 9 _SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
327
0
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
324
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def _lowercase ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) _a : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase ( self : Dict ) -> Dict: _a : str = self.dummy_uncond_unet _a : Optional[int] = KarrasVeScheduler() _a : List[str] = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : int = torch.manual_seed(0 ) _a : List[Any] = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : Tuple = torch.manual_seed(0 ) _a : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase__ , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] _a : int = image[0, -3:, -3:, -1] _a : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Tuple ) -> List[str]: _a : Optional[Any] = """google/ncsnpp-celebahq-256""" _a : Any = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _a : Dict = KarrasVeScheduler() _a : int = KarrasVePipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : Optional[int] = torch.manual_seed(0 ) _a : Tuple = pipe(num_inference_steps=20 , generator=UpperCAmelCase__ , output_type="""numpy""" ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
324
1
def __a ( SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' for i in range(len(SCREAMING_SNAKE_CASE ) - 1 , 0 , -1 ): __UpperCAmelCase = False for j in range(SCREAMING_SNAKE_CASE , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __UpperCAmelCase , __UpperCAmelCase = unsorted[j - 1], unsorted[j] __UpperCAmelCase = True for j in range(SCREAMING_SNAKE_CASE ): if unsorted[j] > unsorted[j + 1]: __UpperCAmelCase , __UpperCAmelCase = unsorted[j + 1], unsorted[j] __UpperCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A_ : Dict = input('Enter numbers separated by a comma:\n').strip() A_ : Tuple = [int(item) for item in user_input.split(',')] print(F"""{cocktail_shaker_sort(unsorted) = }""")
333
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') A_ : str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') A_ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') A_ : Union[str, Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
1
"""simple docstring""" def a_ ( _lowercase = 100_0000 ): _UpperCamelCase : Dict = 1 _UpperCamelCase : Optional[int] = 1 _UpperCamelCase : List[str] = {1: 1} for inputa in range(2 , _lowercase ): _UpperCamelCase : List[Any] = 0 _UpperCamelCase : List[str] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _UpperCamelCase : Tuple = (3 * number) + 1 counter += 1 if inputa not in counters: _UpperCamelCase : List[str] = counter if counter > pre_counter: _UpperCamelCase : str = inputa _UpperCamelCase : Optional[Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
128
"""simple docstring""" def a_ ( _lowercase , _lowercase ): if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) _UpperCamelCase : Optional[int] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowercase ) ) return round(_lowercase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
128
1
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase_ = 1.054_571_817E-34 # unit of ℏ : J * s UpperCAmelCase_ = 3E8 # unit of c : m * s^-1 def lowerCamelCase__ ( A__ : float , A__ : float , A__ : float ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: __lowerCamelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __lowerCamelCase = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __lowerCamelCase = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
12
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ): '''simple docstring''' __lowerCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ): super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) __lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ): if latents is None: __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCamelCase = latents.to(UpperCamelCase_ ) __lowerCamelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) __lowerCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. __lowerCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self: int ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ): __lowerCamelCase = self._execution_device __lowerCamelCase = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) __lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) __lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase = self.scheduler.timesteps __lowerCamelCase = self.movq.config.latent_channels __lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent __lowerCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint} __lowerCamelCase = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing __lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCamelCase = image * 0.5 + 0.5 __lowerCamelCase = image.clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
12
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( a_ ): __a = (UniPCMultistepScheduler,) __a = (("num_inference_steps", 25),) def lowercase ( self : str , **_lowerCamelCase : Dict ): _snake_case = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**_lowerCamelCase ) return config def lowercase ( self : Optional[int] , _lowerCamelCase : Any=0 , **_lowerCamelCase : Optional[int] ): _snake_case = dict(self.forward_default_kwargs ) _snake_case = kwargs.pop('''num_inference_steps''' , _lowerCamelCase ) _snake_case = self.dummy_sample _snake_case = 0.1 * sample _snake_case = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _snake_case = self.get_scheduler_config(**_lowerCamelCase ) _snake_case = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(_lowerCamelCase ) # copy over dummy past residuals _snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCamelCase ) _snake_case = scheduler_class.from_pretrained(_lowerCamelCase ) new_scheduler.set_timesteps(_lowerCamelCase ) # copy over dummy past residuals _snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case , _snake_case = sample, sample for t in range(_lowerCamelCase , time_step + scheduler.config.solver_order + 1 ): _snake_case = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample _snake_case = new_scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase ( self : Dict , _lowerCamelCase : List[Any]=0 , **_lowerCamelCase : str ): _snake_case = dict(self.forward_default_kwargs ) _snake_case = kwargs.pop('''num_inference_steps''' , _lowerCamelCase ) _snake_case = self.dummy_sample _snake_case = 0.1 * sample _snake_case = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(_lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCamelCase ) _snake_case = scheduler_class.from_pretrained(_lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) _snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample _snake_case = new_scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase ( self : Optional[Any] , _lowerCamelCase : Any=None , **_lowerCamelCase : str ): if scheduler is None: _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config(**_lowerCamelCase ) _snake_case = scheduler_class(**_lowerCamelCase ) _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config(**_lowerCamelCase ) _snake_case = scheduler_class(**_lowerCamelCase ) _snake_case = 10 _snake_case = self.dummy_model() _snake_case = self.dummy_sample_deter scheduler.set_timesteps(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): _snake_case = model(_lowerCamelCase , _lowerCamelCase ) _snake_case = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample return sample def lowercase ( self : Any ): _snake_case = dict(self.forward_default_kwargs ) _snake_case = kwargs.pop('''num_inference_steps''' , _lowerCamelCase ) for scheduler_class in self.scheduler_classes: _snake_case = self.get_scheduler_config() _snake_case = scheduler_class(**_lowerCamelCase ) _snake_case = self.dummy_sample _snake_case = 0.1 * sample if num_inference_steps is not None and hasattr(_lowerCamelCase , '''set_timesteps''' ): scheduler.set_timesteps(_lowerCamelCase ) elif num_inference_steps is not None and not hasattr(_lowerCamelCase , '''set_timesteps''' ): _snake_case = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _snake_case = dummy_past_residuals[: scheduler.config.solver_order] _snake_case = scheduler.timesteps[5] _snake_case = scheduler.timesteps[6] _snake_case = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample _snake_case = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase ( self : Any ): _snake_case = UniPCMultistepScheduler(**self.get_scheduler_config() ) _snake_case = self.full_loop(scheduler=_lowerCamelCase ) _snake_case = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 _snake_case = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _snake_case = DEISMultistepScheduler.from_config(scheduler.config ) _snake_case = DPMSolverMultistepScheduler.from_config(scheduler.config ) _snake_case = UniPCMultistepScheduler.from_config(scheduler.config ) _snake_case = self.full_loop(scheduler=_lowerCamelCase ) _snake_case = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def lowercase ( self : Union[str, Any] ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def lowercase ( self : Any ): self.check_over_configs(thresholding=_lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , solver_order=_lowerCamelCase , solver_type=_lowerCamelCase , ) def lowercase ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def lowercase ( self : List[str] ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCamelCase , solver_type=_lowerCamelCase , prediction_type=_lowerCamelCase , ) _snake_case = self.full_loop( solver_order=_lowerCamelCase , solver_type=_lowerCamelCase , prediction_type=_lowerCamelCase , ) assert not torch.isnan(_lowerCamelCase ).any(), "Samples have nan numbers" def lowercase ( self : str ): self.check_over_configs(lower_order_final=_lowerCamelCase ) self.check_over_configs(lower_order_final=_lowerCamelCase ) def lowercase ( self : List[str] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowerCamelCase , time_step=0 ) def lowercase ( self : str ): _snake_case = self.full_loop() _snake_case = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def lowercase ( self : Tuple ): _snake_case = self.full_loop(prediction_type='''v_prediction''' ) _snake_case = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def lowercase ( self : Union[str, Any] ): _snake_case = self.scheduler_classes[0] _snake_case = self.get_scheduler_config(thresholding=_lowerCamelCase , dynamic_thresholding_ratio=0 ) _snake_case = scheduler_class(**_lowerCamelCase ) _snake_case = 10 _snake_case = self.dummy_model() _snake_case = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): _snake_case = model(_lowerCamelCase , _lowerCamelCase ) _snake_case = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa def lowercase ( self : Union[str, Any] , **_lowerCamelCase : Any ): for scheduler_class in self.scheduler_classes: _snake_case = self.get_scheduler_config(**_lowerCamelCase ) _snake_case = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
371
"""simple docstring""" import os import sys import unittest UpperCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCAmelCase__ = os.path.join(git_repo_path, 'src', 'diffusers') class lowerCAmelCase__ ( unittest.TestCase ): def lowercase ( self : Any ): _snake_case = find_backend(''' if not is_torch_available():''' ) self.assertEqual(_lowerCamelCase , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(_lowerCamelCase , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(_lowerCamelCase , '''torch_and_transformers_and_onnx''' ) def lowercase ( self : List[str] ): _snake_case = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , _lowerCamelCase ) self.assertIn('''torch_and_transformers''' , _lowerCamelCase ) self.assertIn('''flax_and_transformers''' , _lowerCamelCase ) self.assertIn('''torch_and_transformers_and_onnx''' , _lowerCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def lowercase ( self : List[str] ): _snake_case = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(_lowerCamelCase , '''\nCONSTANT = None\n''' ) _snake_case = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( _lowerCamelCase , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) _snake_case = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' _snake_case = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : str ): _snake_case = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' _snake_case = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , _lowerCamelCase )
40
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : lowerCamelCase_ : Optional[int] = field( default=128, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCamelCase_ : bool = field( default=_a, metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) }, ) @dataclass class __lowerCAmelCase : lowerCamelCase_ : str = field( default=_a, metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCamelCase_ : str = field( default=_a, metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) lowerCamelCase_ : Optional[bool] = field( default=_a, metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''}, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''}, ) lowerCamelCase_ : str = field( default='''main''', metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''}, ) lowerCamelCase_ : bool = field( default=_a, metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) }, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''}, ) def lowerCamelCase_ ( ) -> Optional[Any]: """simple docstring""" snake_case_ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ : Dict = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) datasets.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case_ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: snake_case_ : Union[str, Any] = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: snake_case_ : Union[str, Any] = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Optional[Any] = train_dataset.features['''label'''].names if training_args.do_eval: snake_case_ : str = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Union[str, Any] = eval_dataset.features['''label'''].names if training_args.do_predict: snake_case_ : Dict = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : str = predict_dataset.features['''label'''].names # Labels snake_case_ : Optional[Any] = len(_UpperCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCamelCase , idalabel={str(_UpperCamelCase ): label for i, label in enumerate(_UpperCamelCase )} , labelaid={label: i for i, label in enumerate(_UpperCamelCase )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : int = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: snake_case_ : Dict = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case_ : Any = False def preprocess_function(_UpperCamelCase ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=_UpperCamelCase , max_length=data_args.max_seq_length , truncation=_UpperCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: snake_case_ : int = min(len(_UpperCamelCase ) , data_args.max_train_samples ) snake_case_ : Tuple = train_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): snake_case_ : str = train_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(_UpperCamelCase ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: snake_case_ : Tuple = min(len(_UpperCamelCase ) , data_args.max_eval_samples ) snake_case_ : Union[str, Any] = eval_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): snake_case_ : Optional[Any] = eval_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: snake_case_ : List[str] = min(len(_UpperCamelCase ) , data_args.max_predict_samples ) snake_case_ : Any = predict_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): snake_case_ : List[Any] = predict_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function snake_case_ : int = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase ): snake_case_ : Optional[Any] = p.predictions[0] if isinstance(p.predictions , _UpperCamelCase ) else p.predictions snake_case_ : Optional[Any] = np.argmax(_UpperCamelCase , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case_ : Dict = default_data_collator elif training_args.fpaa: snake_case_ : Optional[Any] = DataCollatorWithPadding(_UpperCamelCase , pad_to_multiple_of=8 ) else: snake_case_ : str = None # Initialize our Trainer snake_case_ : Union[str, Any] = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: snake_case_ : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: snake_case_ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ : List[Any] = last_checkpoint snake_case_ : Any = trainer.train(resume_from_checkpoint=_UpperCamelCase ) snake_case_ : Union[str, Any] = train_result.metrics snake_case_ : Dict = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase ) ) snake_case_ : int = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , _UpperCamelCase ) trainer.save_metrics('''train''' , _UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case_ : Optional[Any] = trainer.evaluate(eval_dataset=_UpperCamelCase ) snake_case_ : List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCamelCase ) snake_case_ : Any = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''eval''' , _UpperCamelCase ) trainer.save_metrics('''eval''' , _UpperCamelCase ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) snake_case_ , snake_case_ , snake_case_ : List[Any] = trainer.predict(_UpperCamelCase , metric_key_prefix='''predict''' ) snake_case_ : str = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_UpperCamelCase ) ) snake_case_ : Optional[int] = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''predict''' , _UpperCamelCase ) trainer.save_metrics('''predict''' , _UpperCamelCase ) snake_case_ : Dict = np.argmax(_UpperCamelCase , axis=1 ) snake_case_ : Dict = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(_UpperCamelCase , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(_UpperCamelCase ): snake_case_ : Dict = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
279
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=18 , __magic_name__=30 , __magic_name__=400 , __magic_name__=True , __magic_name__=32 , __magic_name__=True , ) -> Dict: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : Union[str, Any] = batch_size snake_case_ : Union[str, Any] = num_channels snake_case_ : Optional[Any] = image_size snake_case_ : int = min_resolution snake_case_ : Any = max_resolution snake_case_ : Tuple = do_resize snake_case_ : str = size_divisor snake_case_ : Optional[Any] = do_rescale def lowerCamelCase (self ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[Any] = GLPNImageProcessor if is_vision_available() else None def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = GLPNImageProcessingTester(self ) @property def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , '''do_resize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''size_divisor''' ) ) self.assertTrue(hasattr(__magic_name__ , '''resample''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_rescale''' ) ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' pass def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
279
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Any = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } __UpperCamelCase : Optional[Any] = {'''mobilebert-uncased''': 5_1_2} __UpperCamelCase : Optional[Any] = {} class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = MobileBertTokenizer def __init__( self : Optional[int] ,lowercase_ : Union[str, Any]=None ,lowercase_ : List[str]=None ,lowercase_ : List[str]=True ,lowercase_ : Optional[Any]="[UNK]" ,lowercase_ : Any="[SEP]" ,lowercase_ : Dict="[PAD]" ,lowercase_ : Optional[Any]="[CLS]" ,lowercase_ : List[Any]="[MASK]" ,lowercase_ : str=True ,lowercase_ : Any=None ,**lowercase_ : List[str] ,): super().__init__( lowercase_ ,tokenizer_file=lowercase_ ,do_lower_case=lowercase_ ,unk_token=lowercase_ ,sep_token=lowercase_ ,pad_token=lowercase_ ,cls_token=lowercase_ ,mask_token=lowercase_ ,tokenize_chinese_chars=lowercase_ ,strip_accents=lowercase_ ,**lowercase_ ,) lowerCAmelCase__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,lowercase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' ,lowercase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,lowercase_ ) != tokenize_chinese_chars ): lowerCAmelCase__ : List[Any] = getattr(lowercase_ ,normalizer_state.pop('''type''' ) ) lowerCAmelCase__ : List[str] = do_lower_case lowerCAmelCase__ : Tuple = strip_accents lowerCAmelCase__ : List[Any] = tokenize_chinese_chars lowerCAmelCase__ : str = normalizer_class(**lowercase_ ) lowerCAmelCase__ : Optional[Any] = do_lower_case def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Dict ,lowercase_ : Optional[Any]=None ): lowerCAmelCase__ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : List[Any] ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ): lowerCAmelCase__ : Optional[int] = [self.sep_token_id] lowerCAmelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Any ,lowercase_ : str ,lowercase_ : Optional[str] = None ): lowerCAmelCase__ : Optional[Any] = self._tokenizer.model.save(lowercase_ ,name=lowercase_ ) return tuple(lowercase_ )
350
"""simple docstring""" from __future__ import annotations __UpperCamelCase : Any = 1.6021e-19 # units = C def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
74
0
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A__ ( _snake_case , unittest.TestCase ): lowercase = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def snake_case_ ( self , UpperCamelCase__=0 ) -> Tuple: '''simple docstring''' A_ = np.random.RandomState(UpperCamelCase__ ) A_ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**UpperCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A_ = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = 3 * [inputs["""prompt"""]] # forward A_ = pipe(**UpperCamelCase__ ) A_ = output.images[0, -3:, -3:, -1] A_ = self.get_dummy_inputs() A_ = 3 * [inputs.pop("""prompt""" )] A_ = pipe.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="""np""" , ) A_ = text_inputs["""input_ids"""] A_ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] A_ = prompt_embeds # forward A_ = pipe(**UpperCamelCase__ ) A_ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = self.get_dummy_inputs() A_ = 3 * ["""this is a negative prompt"""] A_ = negative_prompt A_ = 3 * [inputs["""prompt"""]] # forward A_ = pipe(**UpperCamelCase__ ) A_ = output.images[0, -3:, -3:, -1] A_ = self.get_dummy_inputs() A_ = 3 * [inputs.pop("""prompt""" )] A_ = [] for p in [prompt, negative_prompt]: A_ = pipe.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="""np""" , ) A_ = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) A_ , A_ = embeds # forward A_ = pipe(**UpperCamelCase__ ) A_ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class A__ ( unittest.TestCase ): @property def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = ort.SessionOptions() A_ = False return options def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # using the PNDM scheduler by default A_ = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """A painting of a squirrel eating a burger""" np.random.seed(0 ) A_ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) A_ = output.images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) A_ = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """open neural network exchange""" A_ = np.random.RandomState(0 ) A_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="""np""" ) A_ = output.images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) A_ = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """open neural network exchange""" A_ = np.random.RandomState(0 ) A_ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="""np""" ) A_ = output.images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A_ = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = 0 def test_callback_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: A_ = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) A_ = latents[0, -3:, -3:, -1] A_ = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) A_ = latents[0, -3:, -3:, -1] A_ = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 A_ = False A_ = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = """Andromeda galaxy in a bottle""" A_ = np.random.RandomState(0 ) pipe( prompt=UpperCamelCase__ , num_inference_steps=5 , guidance_scale=7.5 , generator=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert pipe.safety_checker is None A_ = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase__ ) A_ = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None A_ = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
162
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] __lowerCamelCase = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
162
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCAmelCase = logging.get_logger(__name__) class _a ( UpperCamelCase__ ): def __init__( self: Any , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Any ) -> List[str]: """simple docstring""" warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
363
from collections.abc import Sequence from queue import Queue class _a : def __init__( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Dict=None ) -> Tuple: """simple docstring""" lowercase__ = start lowercase__ = end lowercase__ = val lowercase__ = (start + end) // 2 lowercase__ = left lowercase__ = right def __repr__( self: Optional[int] ) -> Optional[Any]: """simple docstring""" return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class _a : def __init__( self: Any , UpperCamelCase_: Sequence , UpperCamelCase_: Any ) -> List[str]: """simple docstring""" lowercase__ = collection lowercase__ = function if self.collection: lowercase__ = self._build_tree(0 , len(UpperCamelCase_ ) - 1 ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self._update_tree(self.root , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: str , UpperCamelCase_: int , UpperCamelCase_: List[str] ) -> Optional[Any]: """simple docstring""" return self._query_range(self.root , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: Dict ) -> str: """simple docstring""" if start == end: return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.collection[start] ) lowercase__ = (start + end) // 2 lowercase__ = self._build_tree(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self._build_tree(mid + 1 , UpperCamelCase_ ) return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.fn(left.val , right.val ) , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Dict , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] ) -> Dict: """simple docstring""" if node.start == i and node.end == i: lowercase__ = val return if i <= node.mid: self._update_tree(node.left , UpperCamelCase_ , UpperCamelCase_ ) else: self._update_tree(node.right , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.fn(node.left.val , node.right.val ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: Dict ) -> List[Any]: """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , UpperCamelCase_ , UpperCamelCase_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , UpperCamelCase_ , node.mid ) , self._query_range(node.right , node.mid + 1 , UpperCamelCase_ ) , ) else: # range in right child tree return self._query_range(node.right , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" if self.root is not None: lowercase__ = Queue() queue.put(self.root ) while not queue.empty(): lowercase__ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('*' * 50) lowerCAmelCase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
93
0
'''simple docstring''' import math def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ,_UpperCAmelCase : int ) -> int: _a : Any =len(_UpperCAmelCase ) _a : Tuple =int(math.floor(math.sqrt(_UpperCAmelCase ) ) ) _a : List[str] =0 while arr[min(_UpperCAmelCase ,_UpperCAmelCase ) - 1] < x: _a : Dict =step step += int(math.floor(math.sqrt(_UpperCAmelCase ) ) ) if prev >= n: return -1 while arr[prev] < x: _a : str =prev + 1 if prev == min(_UpperCAmelCase ,_UpperCAmelCase ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A__: Any = input('''Enter numbers separated by a comma:\n''').strip() A__: Dict = [int(item) for item in user_input.split(''',''')] A__: Dict = int(input('''Enter the number to be searched:\n''')) A__: Any = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(F"Number {x} is at index {res}")
276
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A__: Union[str, Any] = input('''Enter image url: ''').strip() print(F"Downloading image from {url} ...") A__: Tuple = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image A__: Union[str, Any] = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] A__: List[Any] = requests.get(image_url).content A__: List[str] = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, '''wb''') as fp: fp.write(image_data) print(F"Done. Image saved to disk as {file_name}.")
276
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __snake_case = logging.get_logger(__name__) @dataclass class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Union[str, Any] = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case : str = deprecated_arg[3:] setattr(self , UpperCamelCase__ , not kwargs.pop(UpperCamelCase__ ) ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) snake_case : Union[str, Any] = kwargs.pop("torchscript" , self.torchscript ) snake_case : Optional[int] = kwargs.pop("torch_xla_tpu_print_metrics" , self.torch_xla_tpu_print_metrics ) snake_case : List[Any] = kwargs.pop("fp16_opt_level" , self.fpaa_opt_level ) super().__init__(**UpperCamelCase__ ) __UpperCAmelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Trace the models using torchscript'''} ) __UpperCAmelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) __UpperCAmelCase : str = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def lowerCamelCase ( self ) -> Tuple["torch.device", int]: '''simple docstring''' requires_backends(self , ["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: snake_case : Optional[Any] = torch.device("cpu" ) snake_case : Optional[int] = 0 elif is_torch_tpu_available(): snake_case : Optional[int] = xm.xla_device() snake_case : List[str] = 0 else: snake_case : str = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) snake_case : List[str] = torch.cuda.device_count() return device, n_gpu @property def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def lowerCamelCase ( self ) -> int: '''simple docstring''' requires_backends(self , ["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowerCamelCase ( self ) -> "torch.device": '''simple docstring''' requires_backends(self , ["torch"] ) return self._setup_devices[0] @property def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"] ) return self._setup_devices[1] @property def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' return self.n_gpu > 0
112
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Tuple = '''altclip_text_model''' def __init__( self , UpperCamelCase__=25_0002 , UpperCamelCase__=1024 , UpperCamelCase__=24 , UpperCamelCase__=16 , UpperCamelCase__=4096 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=514 , UpperCamelCase__=1 , UpperCamelCase__=0.02 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-05 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=768 , **UpperCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) snake_case : Any = vocab_size snake_case : List[Any] = hidden_size snake_case : Optional[int] = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Dict = hidden_act snake_case : Dict = intermediate_size snake_case : int = hidden_dropout_prob snake_case : Optional[int] = attention_probs_dropout_prob snake_case : Union[str, Any] = max_position_embeddings snake_case : Optional[int] = type_vocab_size snake_case : Dict = initializer_range snake_case : int = initializer_factor snake_case : Union[str, Any] = layer_norm_eps snake_case : List[Any] = position_embedding_type snake_case : Any = use_cache snake_case : str = project_dim class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Tuple = '''altclip_vision_model''' def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=3072 , UpperCamelCase__=512 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3 , UpperCamelCase__=224 , UpperCamelCase__=32 , UpperCamelCase__="quick_gelu" , UpperCamelCase__=1e-5 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=1.0 , **UpperCamelCase__ , ) -> str: '''simple docstring''' super().__init__(**UpperCamelCase__ ) snake_case : Optional[int] = hidden_size snake_case : str = intermediate_size snake_case : List[str] = projection_dim snake_case : Optional[Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : str = num_channels snake_case : List[str] = patch_size snake_case : List[Any] = image_size snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = initializer_factor snake_case : Any = attention_dropout snake_case : Dict = layer_norm_eps snake_case : List[str] = hidden_act @classmethod def lowerCamelCase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__ ) snake_case ,snake_case : str = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": snake_case : Optional[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : str = '''altclip''' __UpperCAmelCase : Optional[Any] = True def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=2.6592 , **UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : List[str] = kwargs.pop("text_config_dict" , UpperCamelCase__ ) snake_case : Union[str, Any] = kwargs.pop("vision_config_dict" , UpperCamelCase__ ) super().__init__(**UpperCamelCase__ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: snake_case : List[str] = {} # This is the complete result when using `text_config_dict`. snake_case : Dict = AltCLIPTextConfig(**UpperCamelCase__ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: snake_case : Optional[Any] = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: snake_case : Any = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(UpperCamelCase__ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: snake_case : Union[str, Any] = {} # This is the complete result when using `vision_config_dict`. snake_case : int = AltCLIPVisionConfig(**UpperCamelCase__ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: snake_case : Optional[int] = { str(UpperCamelCase__ ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: snake_case : int = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: snake_case : Optional[Any] = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(UpperCamelCase__ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: snake_case : Optional[int] = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: snake_case : Dict = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) snake_case : Dict = AltCLIPTextConfig(**UpperCamelCase__ ) snake_case : Tuple = AltCLIPVisionConfig(**UpperCamelCase__ ) snake_case : int = projection_dim snake_case : List[str] = logit_scale_init_value snake_case : int = 1.0 @classmethod def lowerCamelCase ( cls , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = copy.deepcopy(self.__dict__ ) snake_case : Optional[int] = self.text_config.to_dict() snake_case : str = self.vision_config.to_dict() snake_case : Optional[int] = self.__class__.model_type return output
112
1
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 a_ = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class __snake_case ( unittest.TestCase ): """simple docstring""" @classmethod def UpperCamelCase__( cls ): '''simple docstring''' __A : Any = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def UpperCamelCase__( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) __A : List[str] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase__ , repo_id='''test-config''' , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) __A : Optional[int] = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) __A : List[str] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) __A : List[str] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) def UpperCamelCase__( self ): '''simple docstring''' CustomConfig.register_for_auto_class() __A : List[str] = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) __A : List[Any] = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' __A : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __A : Optional[Any] = c.n_embd + 1 # int __A : Any = c.resid_pdrop + 1.0 # float __A : List[Any] = not c.scale_attn_weights # bool __A : List[Any] = c.summary_type + '''foo''' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(UpperCamelCase__ , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(UpperCamelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(UpperCamelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(UpperCamelCase__ , c.summary_type , '''mismatch for key: summary_type''' ) def UpperCamelCase__( self ): '''simple docstring''' __A : str = PretrainedConfig() __A : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCamelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) __A : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCamelCase__ , UpperCamelCase__ )] if len(UpperCamelCase__ ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F""" {', '.join(UpperCamelCase__ )}.""" ) def UpperCamelCase__( self ): '''simple docstring''' with self.assertRaises(UpperCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder __A : Tuple = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) __A : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = mock.Mock() __A : int = 500 __A : List[str] = {} __A : Dict = HTTPError __A : Any = {} # Download this model to make sure it's in the cache. __A : str = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=UpperCamelCase__ ) as mock_head: __A : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = AutoConfig.from_pretrained('''bert-base-cased''' ) __A : int = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCamelCase__ ) __A : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCamelCase__ , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __A : Dict = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __A : str = ['''config.42.0.0.json'''] __A : Dict = 768 configuration.save_pretrained(UpperCamelCase__ ) shutil.move(os.path.join(UpperCamelCase__ , '''config.4.0.0.json''' ) , os.path.join(UpperCamelCase__ , '''config.42.0.0.json''' ) ) __A : Optional[int] = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCamelCase__( self ): '''simple docstring''' __A : int = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers __A : List[Any] = '''v4.0.0''' __A , __A : Dict = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCamelCase__ , return_unused_kwargs=UpperCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __A : Any = '''v3.0.0''' __A : Any = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
179
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "roc_bert" def __init__( self , UpperCamelCase__=30522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__=True , UpperCamelCase__=0 , UpperCamelCase__="absolute" , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=768 , UpperCamelCase__=910 , UpperCamelCase__=512 , UpperCamelCase__=24858 , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps A_ = use_cache A_ = enable_pronunciation A_ = enable_shape A_ = pronunciation_embed_dim A_ = pronunciation_vocab_size A_ = shape_embed_dim A_ = shape_vocab_size A_ = concat_input A_ = position_embedding_type A_ = classifier_dropout super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ )
162
0
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__(self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , ): A_ : str = size if size is not None else {'''height''': 18, '''width''': 18} A_ : Any = parent A_ : List[str] = batch_size A_ : Optional[Any] = num_channels A_ : List[str] = image_size A_ : List[str] = min_resolution A_ : Optional[int] = max_resolution A_ : Optional[int] = do_resize A_ : List[str] = size A_ : Any = do_normalize A_ : str = image_mean A_ : Dict = image_std def _a (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = DPTImageProcessor if is_vision_available() else None def _a (self ): A_ : Tuple = DPTImageProcessingTester(self ) @property def _a (self ): return self.image_processor_tester.prepare_image_processor_dict() def _a (self ): A_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) def _a (self ): A_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) A_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def _a (self ): A_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ : int = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _a (self ): A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input A_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ : Dict = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _a (self ): A_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
356
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=128 , lowercase=32 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): A_ : Union[str, Any] = parent A_ : Optional[int] = batch_size A_ : Any = seq_length A_ : int = is_training A_ : List[str] = use_input_mask A_ : Any = use_token_type_ids A_ : List[Any] = use_labels A_ : Dict = vocab_size A_ : Optional[int] = hidden_size A_ : int = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Dict = intermediate_size A_ : List[str] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : List[Any] = type_sequence_label_size A_ : Tuple = initializer_range A_ : List[Any] = num_labels A_ : str = num_choices A_ : Tuple = scope def _a (self ): A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Tuple = None if self.use_input_mask: A_ : str = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Any = None if self.use_token_type_ids: A_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : Any = None A_ : List[Any] = None if self.use_labels: A_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : int = ids_tensor([self.batch_size] , self.num_choices ) A_ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a (self ): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def _a (self ): ( ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ) : Union[str, Any] = self.prepare_config_and_inputs() A_ : Union[str, Any] = True A_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Union[str, Any] = NezhaModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : int = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) A_ : Optional[Any] = model(lowercase , token_type_ids=lowercase ) A_ : str = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): A_ : Optional[int] = True A_ : Optional[Any] = NezhaModel(lowercase ) model.to(lowercase ) model.eval() A_ : Optional[int] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , ) A_ : str = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , encoder_hidden_states=lowercase , ) A_ : Tuple = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Optional[Any] = NezhaForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() A_ : List[str] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Tuple = NezhaForNextSentencePrediction(config=lowercase ) model.to(lowercase ) model.eval() A_ : Union[str, Any] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : int = NezhaForPreTraining(config=lowercase ) model.to(lowercase ) model.eval() A_ : str = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , next_sentence_label=lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Any = NezhaForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() A_ : Optional[int] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Optional[Any] = self.num_labels A_ : int = NezhaForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() A_ : List[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : List[str] = self.num_labels A_ : Optional[int] = NezhaForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() A_ : int = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : int = self.num_choices A_ : int = NezhaForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() A_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Optional[int] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a (self ): A_ : Tuple = self.prepare_config_and_inputs() ( ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ) : int = config_and_inputs A_ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[Any] = True def _a (self , lowercase , lowercase , lowercase=False ): A_ : Optional[Any] = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class in get_values(lowercase ): A_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase ) A_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def _a (self ): A_ : Optional[int] = NezhaModelTester(self ) A_ : Any = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def _a (self ): self.config_tester.run_common_tests() def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase ) def _a (self ): # This regression test was failing with PyTorch < 1.3 ( ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ) : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() A_ : str = None self.model_tester.create_and_check_model_as_decoder( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) def _a (self ): A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def _a (self ): A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase ) def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) def _a (self ): A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def _a (self ): A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def _a (self ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Any = NezhaModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @slow @require_torch_gpu def _a (self ): A_, A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return A_ : Optional[int] = True A_ : str = model_class(config=lowercase ) A_ : str = self._prepare_for_class(lowercase , lowercase ) A_ : Tuple = torch.jit.trace( lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase , os.path.join(lowercase , """bert.pt""" ) ) A_ : List[str] = torch.jit.load(os.path.join(lowercase , """bert.pt""" ) , map_location=lowercase ) loaded(inputs_dict["""input_ids"""].to(lowercase ) , inputs_dict["""attention_mask"""].to(lowercase ) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): @slow def _a (self ): A_ : Dict = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) A_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A_ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ : Optional[int] = model(lowercase , attention_mask=lowercase )[0] A_ : Optional[int] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , lowercase ) A_ : List[Any] = torch.tensor([[[0.06_85, 0.24_41, 0.11_02], [0.06_00, 0.19_06, 0.13_49], [0.02_21, 0.08_19, 0.05_86]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) ) @slow def _a (self ): A_ : str = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) A_ : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A_ : str = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ : Tuple = model(lowercase , attention_mask=lowercase )[0] A_ : str = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , lowercase ) A_ : List[Any] = torch.tensor( [[-2.79_39, -1.79_02, -2.21_89], [-2.85_85, -1.89_08, -2.37_23], [-2.64_99, -1.77_50, -2.25_58]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
135
0
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Union[str, Any]=7 ) -> str: '''simple docstring''' A__ = None if token is not None: A__ = {"Accept": "application/vnd.github+json", "Authorization": F'Bearer {token}'} # The id of a workflow (not of a workflow run) A__ = "636036" A__ = F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' A__ = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() return result["workflow_runs"] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ = get_daily_ci_runs(SCREAMING_SNAKE_CASE_ ) A__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": A__ = workflow_run["id"] break return workflow_run_id def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: str ) -> List[str]: '''simple docstring''' A__ = get_last_daily_ci_runs(SCREAMING_SNAKE_CASE_ ) if workflow_run_id is not None: A__ = get_artifacts_links(worflow_run_id=SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: A__ = artifacts_links[artifact_name] download_artifact( artifact_name=SCREAMING_SNAKE_CASE_ , artifact_url=SCREAMING_SNAKE_CASE_ , output_dir=SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: List[str] ) -> Optional[int]: '''simple docstring''' get_last_daily_ci_artifacts(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = {} for artifact_name in artifact_names: A__ = os.path.join(SCREAMING_SNAKE_CASE_ , F'{artifact_name}.zip' ) if os.path.isfile(SCREAMING_SNAKE_CASE_ ): A__ = {} with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file with z.open(SCREAMING_SNAKE_CASE_ ) as f: A__ = f.read().decode("UTF-8" ) return results
68
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") __A : Optional[int] = logging.getLogger(__name__) @dataclass class A_ : UpperCAmelCase__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCAmelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A_ : UpperCAmelCase__ = field(default=a_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCAmelCase__ = field( default=a_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase__ = field( default=a_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowercase ( self ): '''simple docstring''' if self.train_file is not None: UpperCAmelCase = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCAmelCase = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A_ : UpperCAmelCase__ = 42 UpperCAmelCase__ = True UpperCAmelCase__ = None UpperCAmelCase__ = None def __call__( self , _A ): '''simple docstring''' UpperCAmelCase = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase = [feature.pop(_A ) for feature in features] UpperCAmelCase = len(_A ) UpperCAmelCase = len(features[0]['''input_ids'''] ) UpperCAmelCase = [ [{k: v[i] for k, v in feature.items()} for i in range(_A )] for feature in features ] UpperCAmelCase = list(chain(*_A ) ) UpperCAmelCase = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten UpperCAmelCase = {k: v.view(_A , _A , -1 ) for k, v in batch.items()} # Add back labels UpperCAmelCase = torch.tensor(_A , dtype=torch.intaa ) return batch def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCAmelCase = {} if data_args.train_file is not None: UpperCAmelCase = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase = data_args.validation_file UpperCAmelCase = data_args.train_file.split('''.''' )[-1] UpperCAmelCase = load_dataset( UpperCamelCase__ , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCAmelCase = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCAmelCase = [F"""ending{i}""" for i in range(4 )] UpperCAmelCase = '''sent1''' UpperCAmelCase = '''sent2''' if data_args.max_seq_length is None: UpperCAmelCase = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) UpperCAmelCase = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) UpperCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCamelCase__ ): UpperCAmelCase = [[context] * 4 for context in examples[context_name]] UpperCAmelCase = examples[question_header_name] UpperCAmelCase = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(UpperCamelCase__ ) ] # Flatten out UpperCAmelCase = list(chain(*UpperCamelCase__ ) ) UpperCAmelCase = list(chain(*UpperCamelCase__ ) ) # Tokenize UpperCAmelCase = tokenizer( UpperCamelCase__ , UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCamelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) UpperCAmelCase = raw_datasets['''train'''] if data_args.max_train_samples is not None: UpperCAmelCase = min(len(UpperCamelCase__ ) , data_args.max_train_samples ) UpperCAmelCase = train_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): UpperCAmelCase = train_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) UpperCAmelCase = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: UpperCAmelCase = min(len(UpperCamelCase__ ) , data_args.max_eval_samples ) UpperCAmelCase = eval_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): UpperCAmelCase = eval_dataset.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCAmelCase = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCamelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCamelCase__ ): UpperCAmelCase , UpperCAmelCase = eval_predictions UpperCAmelCase = np.argmax(UpperCamelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCAmelCase = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase = last_checkpoint UpperCAmelCase = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase = train_result.metrics UpperCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) UpperCAmelCase = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics('''train''' , UpperCamelCase__ ) trainer.save_metrics('''train''' , UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) UpperCAmelCase = min(UpperCamelCase__ , len(UpperCamelCase__ ) ) trainer.log_metrics('''eval''' , UpperCamelCase__ ) trainer.save_metrics('''eval''' , UpperCamelCase__ ) UpperCAmelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
273
0
"""simple docstring""" def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" _UpperCamelCase : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack _UpperCamelCase : set[int] = set() return any( node not in visited and depth_first_search(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) for node in graph ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> bool: """simple docstring""" visited.add(lowercase_ ) rec_stk.add(lowercase_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowercase_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
310
"""simple docstring""" from __future__ import annotations from math import pi def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
310
1
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE lowercase__ : int = 'config.json' lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin' lowercase__ : List[str] = 'diffusion_flax_model.msgpack' lowercase__ : str = 'model.onnx' lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors' lowercase__ : List[str] = 'weights.pb' lowercase__ : str = 'https://huggingface.co' lowercase__ : str = default_cache_path lowercase__ : Optional[int] = 'diffusers_modules' lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) lowercase__ : Tuple = ['fp16', 'non-ema'] lowercase__ : int = '.self_attn'
324
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" _UpperCamelCase = iter(lowercase ) while True: _UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) ) if not chunk: return yield chunk def a__ ( lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) _UpperCamelCase = '''''' if len(lowercase ) < 2: return dirty for i in range(len(lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowercase ) & 1: clean += "X" return clean def a__ ( lowercase : str ) -> list[str]: """simple docstring""" _UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _UpperCamelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowercase ) return table def a__ ( lowercase : str, lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = generate_table(lowercase ) _UpperCamelCase = prepare_input(lowercase ) _UpperCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase, 2 ): _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def a__ ( lowercase : str, lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = generate_table(lowercase ) _UpperCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase, 2 ): _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
324
1
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __A : Any = logging.getLogger() def UpperCamelCase_ ( A__ : Path , A__ : list ): '''simple docstring''' lowerCAmelCase_ : int = """\n""".join(A__ ) Path(A__ ).open("""w""" ).writelines(A__ ) __A : Optional[int] = "patrickvonplaten/t5-tiny-random" __A : Optional[int] = "sshleifer/bart-tiny-random" __A : Dict = "sshleifer/tiny-mbart" __A : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __lowercase ( self : Optional[int] , lowerCamelCase : str ) -> Any: lowerCAmelCase_ : Tuple = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" lowerCAmelCase_ : str = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() lowerCAmelCase_ : List[str] = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : List[str] = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" ) lowerCAmelCase_ : Union[str, Any] = """translation_en_to_de""" if model == T5_TINY else """summarization""" lowerCAmelCase_ : Any = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def __lowercase ( self : Optional[int] ) -> List[str]: self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def __lowercase ( self : str , lowerCamelCase : str ) -> Optional[int]: self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def __lowercase ( self : List[Any] , lowerCamelCase : Tuple ) -> Optional[Any]: lowerCAmelCase_ : Tuple = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" lowerCAmelCase_ : List[Any] = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() lowerCAmelCase_ : Union[str, Any] = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } lowerCAmelCase_ : Dict = Path(self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ : Any = str(tmp_dir / """scores.json""" ) lowerCAmelCase_ : List[Any] = str(tmp_dir / """val.target""" ) _dump_articles(lowerCamelCase , text["""en"""] ) _dump_articles(lowerCamelCase , text["""de"""] ) lowerCAmelCase_ : str = """translation_en_to_de""" if model == T5_TINY else """summarization""" lowerCAmelCase_ : int = F'\n run_eval_search.py\n {model}\n {str(lowerCamelCase )}\n {str(lowerCamelCase )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] ) with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): with CaptureStdout() as cs: run_search() lowerCAmelCase_ : Optional[int] = [""" num_beams | length_penalty""", model, """Best score args"""] lowerCAmelCase_ : Tuple = ["""Info"""] if "translation" in task: expected_strings.append("""bleu""" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
89
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCamelCase_ ( A__ : bytes , A__ : int ): '''simple docstring''' lowerCAmelCase_ : int = f'{sampling_rate}' lowerCAmelCase_ : str = """1""" lowerCAmelCase_ : Optional[int] = """f32le""" lowerCAmelCase_ : Any = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(A__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase_ : Optional[int] = ffmpeg_process.communicate(A__ ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error lowerCAmelCase_ : Optional[Any] = output_stream[0] lowerCAmelCase_ : Optional[int] = np.frombuffer(A__ , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def UpperCamelCase_ ( A__ : int , A__ : float , A__ : str = "f32le" , ): '''simple docstring''' lowerCAmelCase_ : int = f'{sampling_rate}' lowerCAmelCase_ : Any = """1""" if format_for_conversion == "s16le": lowerCAmelCase_ : Optional[Any] = 2 elif format_for_conversion == "f32le": lowerCAmelCase_ : Union[str, Any] = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) lowerCAmelCase_ : int = platform.system() if system == "Linux": lowerCAmelCase_ : int = """alsa""" lowerCAmelCase_ : int = """default""" elif system == "Darwin": lowerCAmelCase_ : List[str] = """avfoundation""" lowerCAmelCase_ : Union[str, Any] = """:0""" elif system == "Windows": lowerCAmelCase_ : List[Any] = """dshow""" lowerCAmelCase_ : Union[str, Any] = """default""" lowerCAmelCase_ : Tuple = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] lowerCAmelCase_ : Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase_ : List[str] = _ffmpeg_stream(A__ , A__ ) for item in iterator: yield item def UpperCamelCase_ ( A__ : int , A__ : float , A__ : Optional[int] = None , A__ : Optional[Union[Tuple[float, float], float]] = None , A__ : str = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: lowerCAmelCase_ : Union[str, Any] = stream_chunk_s else: lowerCAmelCase_ : Tuple = chunk_length_s lowerCAmelCase_ : List[Any] = ffmpeg_microphone(A__ , A__ , format_for_conversion=A__ ) if format_for_conversion == "s16le": lowerCAmelCase_ : Tuple = np.intaa lowerCAmelCase_ : List[Any] = 2 elif format_for_conversion == "f32le": lowerCAmelCase_ : Dict = np.floataa lowerCAmelCase_ : int = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: lowerCAmelCase_ : Optional[Any] = chunk_length_s / 6 lowerCAmelCase_ : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(A__ , (int, float) ): lowerCAmelCase_ : int = [stride_length_s, stride_length_s] lowerCAmelCase_ : str = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase_ : List[str] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase_ : Dict = datetime.datetime.now() lowerCAmelCase_ : Any = datetime.timedelta(seconds=A__ ) for item in chunk_bytes_iter(A__ , A__ , stride=(stride_left, stride_right) , stream=A__ ): # Put everything back in numpy scale lowerCAmelCase_ : Optional[int] = np.frombuffer(item["""raw"""] , dtype=A__ ) lowerCAmelCase_ : Dict = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) lowerCAmelCase_ : Dict = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCamelCase_ ( A__ : Any , A__ : int , A__ : Tuple[int, int] , A__ : bool = False ): '''simple docstring''' lowerCAmelCase_ : List[str] = B"""""" lowerCAmelCase_, lowerCAmelCase_ : Any = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) lowerCAmelCase_ : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(A__ ) < chunk_len: lowerCAmelCase_ : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(A__ ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase_ : Optional[Any] = (_stride_left, stride_right) lowerCAmelCase_ : List[str] = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: lowerCAmelCase_ : List[Any] = False yield item lowerCAmelCase_ : str = stride_left lowerCAmelCase_ : str = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(A__ ) > stride_left: lowerCAmelCase_ : Tuple = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: lowerCAmelCase_ : Optional[Any] = False yield item def UpperCamelCase_ ( A__ : List[str] , A__ : int ): '''simple docstring''' lowerCAmelCase_ : Dict = 2**24 # 16Mo try: with subprocess.Popen(A__ , stdout=subprocess.PIPE , bufsize=A__ ) as ffmpeg_process: while True: lowerCAmelCase_ : Union[str, Any] = ffmpeg_process.stdout.read(A__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
89
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCAmelCase : Dict ={ """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int =["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any =["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str =[ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] =[ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
128
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = 0 @slow def _lowerCamelCase ( self ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(snake_case__ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(snake_case__ ) , 0 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoConfig.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) # Check that tokenizer_type ≠ model_type UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , config=snake_case__ ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(snake_case__ , "vocab.txt" ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="bert" , use_fast=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(snake_case__ , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(snake_case__ , "merges.txt" ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="gpt2" , use_fast=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(snake_case__ , "vocab.txt" ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="bert" ) self.assertIsInstance(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(snake_case__ , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(snake_case__ , "merges.txt" ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="gpt2" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' with pytest.raises(snake_case__ ): AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx" ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCamelCase_ = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) if isinstance(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , snake_case__ ) else: self.assertEqual(tokenizer.do_lower_case , snake_case__ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( snake_case__ , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ): UpperCamelCase_ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = TOKENIZER_MAPPING.values() UpperCamelCase_ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(snake_case__ ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=snake_case__ ) , snake_case__ ) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) , snake_case__ ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=snake_case__ ) UpperCamelCase_ = "Hello, world. How are you?" UpperCamelCase_ = tokenizer.tokenize(snake_case__ ) self.assertEqual("[UNK]" , tokens[0] ) UpperCamelCase_ = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=snake_case__ ) UpperCamelCase_ = tokenizer.tokenize(snake_case__ ) self.assertEqual("[UNK]" , tokens[0] ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" ) self.assertEqual(type(snake_case__ ) , snake_case__ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , "[UNK]" ) self.assertEqual(tokenizer.padding_side , "right" ) self.assertEqual(tokenizer.truncation_side , "right" ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained("ctrl" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = get_tokenizer_config("bert-base-cased" ) UpperCamelCase_ = config.pop("_commit_hash" , snake_case__ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(snake_case__ , {"do_lower_case": False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCamelCase_ = get_tokenizer_config(snake_case__ ) self.assertDictEqual(snake_case__ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = get_tokenizer_config(snake_case__ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] , "BertTokenizer" ) def _lowerCamelCase ( self ): '''simple docstring''' try: AutoConfig.register("custom" , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) UpperCamelCase_ = CustomTokenizer.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' try: AutoConfig.register("custom" , snake_case__ ) # Can register in two steps AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( snake_case__ , slow_tokenizer_class=snake_case__ , fast_tokenizer_class=snake_case__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ = BertTokenizerFast.from_pretrained(snake_case__ ) bert_tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = CustomTokenizerFast.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , use_fast=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(snake_case__ ): UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) @require_tokenizers def _lowerCamelCase ( self ): '''simple docstring''' class _lowercase (a_ ): '''simple docstring''' lowercase__ = False class _lowercase (a_ ): '''simple docstring''' lowercase__ = NewTokenizer lowercase__ = False try: AutoConfig.register("custom" , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ ) # If remote code is not set, the default is to use local UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertTrue(tokenizer.special_attribute_present ) UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=snake_case__ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version UpperCamelCase_ = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def _lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex( snake_case__ , "bert-base is not a local folder and is not a valid model identifier" ): UpperCamelCase_ = AutoTokenizer.from_pretrained("bert-base" ) def _lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex( snake_case__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCamelCase_ = AutoTokenizer.from_pretrained(snake_case__ , revision="aaaaaa" ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: UpperCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
128
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if "model" in orig_key: __UpperCamelCase :str = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: __UpperCamelCase :List[Any] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: __UpperCamelCase :int = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: __UpperCamelCase :int = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: __UpperCamelCase :Any = orig_key.split('''.''' )[0].split('''_''' )[-1] __UpperCamelCase :List[Any] = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: __UpperCamelCase :List[str] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: __UpperCamelCase :str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: __UpperCamelCase :Optional[Any] = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: __UpperCamelCase :List[Any] = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: __UpperCamelCase :Tuple = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: __UpperCamelCase :Tuple = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: __UpperCamelCase :Union[str, Any] = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: __UpperCamelCase :Optional[Any] = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: __UpperCamelCase :Optional[int] = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: __UpperCamelCase :str = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: __UpperCamelCase :Optional[int] = '''yoso.''' + orig_key return orig_key def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __UpperCamelCase :int = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if ("pooler" in key) or ("sen_class" in key): continue else: __UpperCamelCase :str = val __UpperCamelCase :List[str] = orig_state_dict['''cls.predictions.decoder.bias'''] __UpperCamelCase :Any = torch.arange(SCREAMING_SNAKE_CASE ).expand((1, -1) ) + 2 return orig_state_dict def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model_state_dict'''] __UpperCamelCase :Tuple = YosoConfig.from_json_file(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Union[str, Any] = YosoForMaskedLM(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = convert_checkpoint_helper(config.max_position_embeddings , SCREAMING_SNAKE_CASE ) print(model.load_state_dict(SCREAMING_SNAKE_CASE ) ) model.eval() model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
105
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> int: __UpperCamelCase :str = 0 def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''') self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Dict = Path(__lowercase) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :Union[str, Any] = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :str = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Union[str, Any] = Path(__lowercase) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = CLIPConfig() # Create a dummy config file with image_proceesor_type __UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Optional[Any] = Path(__lowercase) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained(__lowercase).to_dict() config_dict.pop('''image_processor_type''') __UpperCamelCase :List[str] = CLIPImageProcessor(**__lowercase) # save in new folder model_config.save_pretrained(__lowercase) config.save_pretrained(__lowercase) __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase) # make sure private variable is not incorrectly saved __UpperCamelCase :Union[str, Any] = json.loads(config.to_json_string()) self.assertTrue('''_processor_class''' not in dict_as_saved) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) __UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with self.assertRaisesRegex( __lowercase , '''clip-base is not a local folder and is not a valid model identifier'''): __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''clip-base''') def UpperCamelCase__ ( self) -> List[Any]: with self.assertRaisesRegex( __lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): __UpperCamelCase :str = AutoImageProcessor.from_pretrained(__lowercase , revision='''aaaaaa''') def UpperCamelCase__ ( self) -> List[str]: with self.assertRaisesRegex( __lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''') def UpperCamelCase__ ( self) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase): __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''') # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase): __UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase) __UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained(__lowercase , trust_remote_code=__lowercase) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''') def UpperCamelCase__ ( self) -> Optional[Any]: try: AutoConfig.register('''custom''' , __lowercase) AutoImageProcessor.register(__lowercase , __lowercase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase): AutoImageProcessor.register(__lowercase , __lowercase) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :List[str] = Path(__lowercase) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :int = CustomImageProcessor.from_pretrained(__lowercase) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase) __UpperCamelCase :int = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self) -> List[Any]: class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] = True try: AutoConfig.register('''custom''' , __lowercase) AutoImageProcessor.register(__lowercase , __lowercase) # If remote code is not set, the default is to use local __UpperCamelCase :str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''') self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub __UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(not hasattr(__lowercase , '''is_local''')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
105
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = filter(lambda __A : p.requires_grad, model.parameters() ) UpperCAmelCase__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase_ ( __A, __A ) -> str: '''simple docstring''' if metric == "rouge2": UpperCAmelCase__ = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": UpperCAmelCase__ = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": UpperCAmelCase__ = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) UpperCAmelCase__ = ModelCheckpoint( dirpath=__A, filename=__A, monitor=f"""val_{metric}""", mode="max", save_top_k=3, every_n_epochs=1, ) return checkpoint_callback def lowerCAmelCase_ ( __A, __A ) -> List[Any]: '''simple docstring''' return EarlyStopping( monitor=f"""val_{metric}""", mode="min" if "loss" in metric else "max", patience=__A, verbose=__A, ) class A ( pl.Callback ): def lowercase_ (self : int , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = {f"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__UpperCAmelCase ) @rank_zero_only def lowercase_ (self : str , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule , __UpperCAmelCase : str , __UpperCAmelCase : List[Any]=True ) -> None: """simple docstring""" logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) UpperCAmelCase__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results UpperCAmelCase__ = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase__ = od / "test_results.txt" UpperCAmelCase__ = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase__ = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" UpperCAmelCase__ = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__UpperCAmelCase ) generations_file.parent.mkdir(exist_ok=__UpperCAmelCase ) with open(__UpperCAmelCase , "a+" ) as writer: for key in sorted(__UpperCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase__ = metrics[key] if isinstance(__UpperCAmelCase , torch.Tensor ): UpperCAmelCase__ = val.item() UpperCAmelCase__ = f"""{key}: {val:.6f}\n""" writer.write(__UpperCAmelCase ) if not save_generations: return if "preds" in metrics: UpperCAmelCase__ = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__UpperCAmelCase ) @rank_zero_only def lowercase_ (self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" try: UpperCAmelCase__ = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase__ = pl_module.model.num_parameters() UpperCAmelCase__ = count_trainable_parameters(__UpperCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def lowercase_ (self : List[Any] , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) -> Union[str, Any]: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__UpperCAmelCase , __UpperCAmelCase , "test" ) @rank_zero_only def lowercase_ (self : Tuple , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : Union[str, Any] ) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
65
"""simple docstring""" from itertools import permutations def lowercase ( A_ )-> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False a : Optional[int] = [7, 11, 13, 17] for i, test in enumerate(A_ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase ( A_ = 10 )-> int: '''simple docstring''' return sum( int("".join(map(A_ , A_ ) ) ) for num in permutations(range(A_ ) ) if is_substring_divisible(A_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
40
0
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCamelCase__ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def A(__a: List[str]=None ): if subparsers is not None: lowerCAmelCase_ = subparsers.add_parser("tpu-config" , description=_description ) else: lowerCAmelCase_ = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments lowerCAmelCase_ = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=__a , default=__a , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=__a , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=__a , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) lowerCAmelCase_ = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=__a , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=__a ) return parser def A(__a: str ): lowerCAmelCase_ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__a ): lowerCAmelCase_ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowerCAmelCase_ = defaults.command_file if not args.command and defaults.commands is not None: lowerCAmelCase_ = defaults.commands if not args.tpu_name: lowerCAmelCase_ = defaults.tpu_name if not args.tpu_zone: lowerCAmelCase_ = defaults.tpu_zone if args.accelerate_version == "dev": lowerCAmelCase_ = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": lowerCAmelCase_ = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , __a ): lowerCAmelCase_ = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: lowerCAmelCase_ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __a ): lowerCAmelCase_ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowerCAmelCase_ = ["cd /usr/share"] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command lowerCAmelCase_ = "; ".join(__a ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowerCAmelCase_ = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(__a )}" ) return subprocess.run(__a ) print("Successfully setup pod." ) def A(): lowerCAmelCase_ = tpu_command_parser() lowerCAmelCase_ = parser.parse_args() tpu_command_launcher(__a )
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0