code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import operator as op def a__ ( A_ ): '''simple docstring''' __magic_name__ = [] __magic_name__ = lambda A_, A_ : int(x / y ) # noqa: E731 integer division operation __magic_name__ = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ), """Action""".center(12 ), """Stack""", sep=""" | """ ) print("""-""" * (30 + len(A_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(A_ ) # append x to stack # output in tabular format print(x.rjust(8 ), ("""push(""" + x + """)""").ljust(12 ), """,""".join(A_ ), sep=""" | """ ) else: __magic_name__ = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ), ("""pop(""" + b + """)""").ljust(12 ), """,""".join(A_ ), sep=""" | """ ) __magic_name__ = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ), ("""pop(""" + a + """)""").ljust(12 ), """,""".join(A_ ), sep=""" | """ ) stack.append( str(opr[x](int(A_ ), int(A_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ("""push(""" + a + x + b + """)""").ljust(12 ), """,""".join(A_ ), sep=""" | """, ) return int(stack[0] ) if __name__ == "__main__": __lowerCAmelCase : str = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
88
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[int] = 1 for i in range(1 , num + 1 ): fact *= i return fact def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[Any] = 0 while number > 0: lowercase__ : str = number % 10 sum_of_digits += last_digit lowercase__ : List[str] = number // 10 # Removing the last_digit from the given number return sum_of_digits def __UpperCamelCase ( UpperCAmelCase = 100 ): lowercase__ : Optional[int] = factorial(UpperCAmelCase ) lowercase__ : Dict = split_and_add(UpperCAmelCase ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
198
0
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Dict = ConsistencyModelPipeline lowerCamelCase : Any = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowerCamelCase : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[str] = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: """simple docstring""" __lowerCAmelCase : str = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : str=False ) -> str: """simple docstring""" if class_cond: __lowerCAmelCase : str = self.dummy_cond_unet else: __lowerCAmelCase : str = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase : Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : Any = { """unet""": unet, """scheduler""": scheduler, } return components def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str=0 ) -> List[str]: """simple docstring""" if str(lowerCAmelCase ).startswith("""mps""" ): __lowerCAmelCase : Tuple = torch.manual_seed(lowerCAmelCase ) else: __lowerCAmelCase : List[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) __lowerCAmelCase : Any = { """batch_size""": 1, """num_inference_steps""": None, """timesteps""": [22, 0], """generator""": generator, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : List[str] = self.get_dummy_components() __lowerCAmelCase : Optional[int] = ConsistencyModelPipeline(**lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = self.get_dummy_inputs(lowerCAmelCase ) __lowerCAmelCase : str = pipe(**lowerCAmelCase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] __lowerCAmelCase : Union[str, Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : Union[str, Any] = self.get_dummy_components(class_cond=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = ConsistencyModelPipeline(**lowerCAmelCase ) __lowerCAmelCase : Optional[int] = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowerCAmelCase : str = self.get_dummy_inputs(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = 0 __lowerCAmelCase : Any = pipe(**lowerCAmelCase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : Any = image[0, -3:, -3:, -1] __lowerCAmelCase : List[Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : Any ) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : Union[str, Any] = self.get_dummy_components() __lowerCAmelCase : Dict = ConsistencyModelPipeline(**lowerCAmelCase ) __lowerCAmelCase : List[str] = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowerCAmelCase : List[Any] = self.get_dummy_inputs(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = 1 __lowerCAmelCase : List[str] = None __lowerCAmelCase : Union[str, Any] = pipe(**lowerCAmelCase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] __lowerCAmelCase : List[str] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : int = self.get_dummy_components(class_cond=lowerCAmelCase ) __lowerCAmelCase : List[Any] = ConsistencyModelPipeline(**lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowerCAmelCase : List[str] = self.get_dummy_inputs(lowerCAmelCase ) __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : int = None __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : Tuple = pipe(**lowerCAmelCase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : str = image[0, -3:, -3:, -1] __lowerCAmelCase : List[str] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Any=0 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : int="cpu" , lowerCAmelCase : List[Any]=torch.floataa , lowerCAmelCase : Union[str, Any]=(1, 3, 64, 64) ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Dict = torch.manual_seed(lowerCAmelCase ) __lowerCAmelCase : Dict = { """num_inference_steps""": None, """timesteps""": [22, 0], """class_labels""": 0, """generator""": generator, """output_type""": """np""", } if get_fixed_latents: __lowerCAmelCase : List[str] = self.get_fixed_latents(seed=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase , shape=lowerCAmelCase ) __lowerCAmelCase : Tuple = latents return inputs def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Dict=0 , lowerCAmelCase : Union[str, Any]="cpu" , lowerCAmelCase : List[Any]=torch.floataa , lowerCAmelCase : Any=(1, 3, 64, 64) ) -> Tuple: """simple docstring""" if type(lowerCAmelCase ) == str: __lowerCAmelCase : List[Any] = torch.device(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) __lowerCAmelCase : List[Any] = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase ) return latents def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __lowerCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : List[Any] = ConsistencyModelPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(torch_device=lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowerCAmelCase : str = self.get_inputs() __lowerCAmelCase : Optional[Any] = pipe(**lowerCAmelCase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] __lowerCAmelCase : int = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __lowerCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : Optional[Any] = ConsistencyModelPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(torch_device=lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowerCAmelCase : int = self.get_inputs() __lowerCAmelCase : Optional[Any] = 1 __lowerCAmelCase : Dict = None __lowerCAmelCase : Any = pipe(**lowerCAmelCase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] __lowerCAmelCase : Optional[Any] = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : str = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __lowerCAmelCase : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : int = ConsistencyModelPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(torch_device=lowerCAmelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowerCAmelCase : int = self.get_inputs(get_fixed_latents=lowerCAmelCase , device=lowerCAmelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCAmelCase , enable_math=lowerCAmelCase , enable_mem_efficient=lowerCAmelCase ): __lowerCAmelCase : Optional[int] = pipe(**lowerCAmelCase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCAmelCase : Union[str, Any] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __lowerCAmelCase : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : List[str] = ConsistencyModelPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(torch_device=lowerCAmelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = self.get_inputs(get_fixed_latents=lowerCAmelCase , device=lowerCAmelCase ) __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : List[str] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCAmelCase , enable_math=lowerCAmelCase , enable_mem_efficient=lowerCAmelCase ): __lowerCAmelCase : List[str] = pipe(**lowerCAmelCase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] __lowerCAmelCase : Dict = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
353
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Dict =(EulerDiscreteScheduler,) lowerCamelCase : Dict =10 def SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowerCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = self.scheduler_classes[0] __lowerCAmelCase : int = self.get_scheduler_config() __lowerCAmelCase : Any = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase : str = torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = self.dummy_model() __lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase : int = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Tuple = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : str = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = output.prev_sample __lowerCAmelCase : str = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.scheduler_classes[0] __lowerCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowerCAmelCase : List[str] = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase : Any = torch.manual_seed(0 ) __lowerCAmelCase : int = self.dummy_model() __lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase : List[Any] = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Any = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : Dict = output.prev_sample __lowerCAmelCase : List[str] = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = self.scheduler_classes[0] __lowerCAmelCase : Dict = self.get_scheduler_config() __lowerCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __lowerCAmelCase : Dict = self.dummy_model() __lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCAmelCase : Dict = sample.to(lowerCAmelCase ) for t in scheduler.timesteps: __lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[str] = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : int = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : Any = output.prev_sample __lowerCAmelCase : int = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : Optional[int] = self.get_scheduler_config() __lowerCAmelCase : List[Any] = scheduler_class(**lowerCAmelCase , use_karras_sigmas=lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase ) __lowerCAmelCase : str = torch.manual_seed(0 ) __lowerCAmelCase : str = self.dummy_model() __lowerCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCAmelCase : int = sample.to(lowerCAmelCase ) for t in scheduler.timesteps: __lowerCAmelCase : int = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Tuple = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : List[Any] = output.prev_sample __lowerCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
139
0
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: a__: Optional[Any] = FunnelConfig.from_json_file(__A ) print(F'Building PyTorch model from configuration: {config}' ) a__: Tuple = FunnelBaseModel(__A ) if base_model else FunnelModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__A , __A , __A ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) lowercase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
290
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a__ : Tuple = {'UserAgent': UserAgent().random} def _UpperCamelCase ( __A ) -> dict: '''simple docstring''' UpperCamelCase__ = script.contents[0] UpperCamelCase__ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase_ : def __init__( self , a ): UpperCamelCase__ = f'''https://www.instagram.com/{username}/''' UpperCamelCase__ = self.get_json() def __a ( self ): UpperCamelCase__ = requests.get(self.url , headers=a ).text UpperCamelCase__ = BeautifulSoup(a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def __a ( self ): return self.user_data["username"] @property def __a ( self ): return self.user_data["full_name"] @property def __a ( self ): return self.user_data["biography"] @property def __a ( self ): return self.user_data["business_email"] @property def __a ( self ): return self.user_data["external_url"] @property def __a ( self ): return self.user_data["edge_followed_by"]["count"] @property def __a ( self ): return self.user_data["edge_follow"]["count"] @property def __a ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __a ( self ): return self.user_data["profile_pic_url_hd"] @property def __a ( self ): return self.user_data["is_verified"] @property def __a ( self ): return self.user_data["is_private"] def _UpperCamelCase ( __A = "github" ) -> None: '''simple docstring''' import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase__ = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a__ : Any = InstagramUser('github') print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
80
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __A ( unittest.TestCase ): """simple docstring""" def __init__( self , __A , __A=7 , __A=3 , __A=30 , __A=400 , __A=True , __A=None , __A=True , __A=[0.5, 0.5, 0.5] , __A=[0.5, 0.5, 0.5] , __A=True , __A=1 / 255 , __A=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p a =size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} a =parent a =batch_size a =num_channels a =min_resolution a =max_resolution a =do_resize a =size a =do_normalize a =image_mean a =image_std a =do_rescale a =rescale_factor a =do_pad def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self , __A , __A=False ) -> Optional[Any]: if not batched: a =image_inputs[0] if isinstance(__A , Image.Image ): a , a =image.size else: a , a =image.shape[1], image.shape[2] if w < h: a =int(self.size['''shortest_edge'''] * h / w ) a =self.size['''shortest_edge'''] elif w > h: a =self.size['''shortest_edge'''] a =int(self.size['''shortest_edge'''] * w / h ) else: a =self.size['''shortest_edge'''] a =self.size['''shortest_edge'''] else: a =[] for image in image_inputs: a , a =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a =max(__A , key=lambda __A : item[0] )[0] a =max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = YolosImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self ) -> Any: a =YolosImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , '''image_mean''' ) ) self.assertTrue(hasattr(__A , '''image_std''' ) ) self.assertTrue(hasattr(__A , '''do_normalize''' ) ) self.assertTrue(hasattr(__A , '''do_resize''' ) ) self.assertTrue(hasattr(__A , '''size''' ) ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __A ) a =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __A ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Initialize image_processing a =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input a =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a , a =self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a , a =self.image_processor_tester.get_expected_values(__A , batched=__A ) a =image_processing(__A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processing a =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input a =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a , a =self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a =image_processing(__A , return_tensors='''pt''' ).pixel_values a , a =self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: # Initialize image_processing a =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input a =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a , a =self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a =image_processing(__A , return_tensors='''pt''' ).pixel_values a , a =self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: # Initialize image_processings a =self.image_processing_class(**self.image_processor_dict ) a =self.image_processing_class(do_resize=__A , do_normalize=__A , do_rescale=__A ) # create random PyTorch tensors a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors a =image_processing_a.pad(__A , return_tensors='''pt''' ) a =image_processing_a(__A , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Tuple: # prepare image and target a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: a =json.loads(f.read() ) a ={'''image_id''': 3_9769, '''annotations''': target} # encode them a =YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) a =image_processing(images=__A , annotations=__A , return_tensors='''pt''' ) # verify pixel values a =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) a =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1E-4 ) ) # verify area a =torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes a =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) a =torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1E-3 ) ) # verify image_id a =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd a =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels a =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify orig_size a =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size a =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[str]: # prepare image, target and masks_path a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: a =json.loads(f.read() ) a ={'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} a =pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them a =YolosImageProcessor(format='''coco_panoptic''' ) a =image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors='''pt''' ) # verify pixel values a =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __A ) a =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __A , atol=1E-4 ) ) # verify area a =torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __A ) ) # verify boxes a =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __A ) a =torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __A , atol=1E-3 ) ) # verify image_id a =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __A ) ) # verify is_crowd a =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __A ) ) # verify class_labels a =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __A ) ) # verify masks a =82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __A ) # verify orig_size a =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __A ) ) # verify size a =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __A ) )
359
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _A ( lowercase ): """simple docstring""" a ={} a =tokenizer(example['''content'''] , truncation=lowercase )['''input_ids'''] a =len(example['''content'''] ) / len(output['''input_ids'''] ) return output lowerCamelCase_ : Optional[int] = HfArgumentParser(PretokenizationArguments) lowerCamelCase_ : Optional[Any] = parser.parse_args() if args.num_workers is None: lowerCamelCase_ : Tuple = multiprocessing.cpu_count() lowerCamelCase_ : Any = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCamelCase_ : Any = time.time() lowerCamelCase_ : int = load_dataset(args.dataset_name, split="""train""") print(F'Dataset loaded in {time.time()-t_start:.2f}s') lowerCamelCase_ : List[str] = time.time() lowerCamelCase_ : str = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'Dataset tokenized in {time.time()-t_start:.2f}s') lowerCamelCase_ : Union[str, Any] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
215
0
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(SCREAMING_SNAKE_CASE__ , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" a_ = _distribute_shards(**SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" a_ = _split_gen_kwargs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if expected is RuntimeError: with pytest.raises(SCREAMING_SNAKE_CASE__ ): _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) else: a_ = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) assert out == expected
243
from decimal import Decimal, getcontext from math import ceil, factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) snake_case_ = precision snake_case_ = ceil(precision / 14 ) snake_case_ = 426880 * Decimal(10005 ).sqrt() snake_case_ = 1 snake_case_ = 13591409 snake_case_ = Decimal(SCREAMING_SNAKE_CASE__ ) for k in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
8
0
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu a = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: a = json.load(f) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str , _UpperCAmelCase : int ): return FSMTTokenizer.from_pretrained(_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : int ): _A = FSMTForConditionalGeneration.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _A = F'''facebook/wmt19-{pair}''' _A = self.get_tokenizer(_UpperCAmelCase ) _A = self.get_model(_UpperCAmelCase ) _A = bleu_data[pair]['src'] _A = bleu_data[pair]['tgt'] _A = tokenizer(_UpperCAmelCase , return_tensors='pt' , truncation=_UpperCAmelCase , padding='longest' ).to(_UpperCAmelCase ) _A = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _A = tokenizer.batch_decode( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) _A = calculate_bleu(_UpperCAmelCase , _UpperCAmelCase ) print(_UpperCAmelCase ) self.assertGreaterEqual(scores['bleu'] , _UpperCAmelCase )
271
"""simple docstring""" import argparse from collections import defaultdict import yaml a = '''docs/source/en/_toctree.yml''' def _snake_case ( _snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' _A = defaultdict(_snake_case ) _A = [] _A = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(_snake_case ) _A = new_doc_list _A = [key for key, value in counts.items() if value > 1] _A = [] for duplicate_key in duplicates: _A = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(_snake_case ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _A = sorted(_snake_case , key=lambda _snake_case : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_snake_case ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(_snake_case ) # Sort return overview_doc def _snake_case ( _snake_case : Tuple=False ) -> List[Any]: '''simple docstring''' with open(_snake_case , encoding='utf-8' ) as f: _A = yaml.safe_load(f.read() ) # Get to the API doc _A = 0 while content[api_idx]["title"] != "API": api_idx += 1 _A = content[api_idx]['sections'] # Then to the model doc _A = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _A = api_doc[scheduler_idx]['sections'] _A = clean_doc_toc(_snake_case ) _A = False if new_scheduler_doc != scheduler_doc: _A = True if overwrite: _A = new_scheduler_doc if diff: if overwrite: _A = api_doc with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_snake_case , allow_unicode=_snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def _snake_case ( _snake_case : str=False ) -> Union[str, Any]: '''simple docstring''' with open(_snake_case , encoding='utf-8' ) as f: _A = yaml.safe_load(f.read() ) # Get to the API doc _A = 0 while content[api_idx]["title"] != "API": api_idx += 1 _A = content[api_idx]['sections'] # Then to the model doc _A = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _A = False _A = api_doc[pipeline_idx]['sections'] _A = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _A = pipeline_doc['section'] _A = clean_doc_toc(_snake_case ) if overwrite: _A = new_sub_pipeline_doc new_pipeline_docs.append(_snake_case ) # sort overall pipeline doc _A = clean_doc_toc(_snake_case ) if new_pipeline_docs != pipeline_docs: _A = True if overwrite: _A = new_pipeline_docs if diff: if overwrite: _A = api_doc with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_snake_case , allow_unicode=_snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
271
1
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : Dict = len(UpperCamelCase_ ) __UpperCAmelCase : Tuple = len(matrix[0] ) __UpperCAmelCase : List[Any] = min(UpperCamelCase_, UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1, UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_, UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __UpperCAmelCase : List[str] = True for i in range(row + 1, UpperCamelCase_ ): if matrix[i][row] != 0: __UpperCAmelCase , __UpperCAmelCase : Tuple = matrix[i], matrix[row] __UpperCAmelCase : Tuple = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): __UpperCAmelCase : Any = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
157
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(UpperCamelCase_ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" ) lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" ) lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = number_of_qubits for i in range(UpperCamelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCamelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ ) # simulate with 10000 shots lowerCAmelCase__ = Aer.get_backend("qasm_simulator" ) lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 ) return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
340
0
"""simple docstring""" import math def UpperCAmelCase__ (lowerCAmelCase_ = 100 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = sum(i * i for i in range(1 , n + 1 ) ) __SCREAMING_SNAKE_CASE = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
365
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Tuple = logging.get_logger(__name__) a__ : List[Any] = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Any = "efficientformer" def __init__( self : Any , UpperCAmelCase__ : List[int] = [3, 2, 6, 4] , UpperCAmelCase__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , UpperCAmelCase__ : List[bool] = [True, True, True, True] , UpperCAmelCase__ : int = 4_4_8 , UpperCAmelCase__ : int = 3_2 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 5 , UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 1_6 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : float = 1E-5 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : float = 1E-12 , UpperCAmelCase__ : int = 2_2_4 , UpperCAmelCase__ : float = 1E-05 , **UpperCAmelCase__ : Tuple , ) -> None: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = mlp_expansion_ratio __SCREAMING_SNAKE_CASE = downsamples __SCREAMING_SNAKE_CASE = dim __SCREAMING_SNAKE_CASE = key_dim __SCREAMING_SNAKE_CASE = attention_ratio __SCREAMING_SNAKE_CASE = resolution __SCREAMING_SNAKE_CASE = pool_size __SCREAMING_SNAKE_CASE = downsample_patch_size __SCREAMING_SNAKE_CASE = downsample_stride __SCREAMING_SNAKE_CASE = downsample_pad __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = num_metaad_blocks __SCREAMING_SNAKE_CASE = distillation __SCREAMING_SNAKE_CASE = use_layer_scale __SCREAMING_SNAKE_CASE = layer_scale_init_value __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = batch_norm_eps
195
0
import operator as op _A = 'scaler.pt' _A = 'pytorch_model' _A = 'random_states' _A = 'optimizer' _A = 'scheduler' _A = 'pytorch_model.bin' _A = 'pytorch_model.bin.index.json' _A = 'model.safetensors' _A = 'model.safetensors.index.json' _A = '1.10.2' _A = 'py38' _A = '4.17.0' _A = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] _A = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] _A = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] _A = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] _A = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] _A = '2.0.1' _A = ['pdsh', 'standard', 'openmpi', 'mvapich'] _A = ['default', 'reduce-overhead', 'max-autotune'] _A = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _A = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] _A = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] _A = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
62
from __future__ import annotations def a ( snake_case__: list[int] , snake_case__: int , snake_case__: int , snake_case__: int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): lowercase_ , lowercase_ = array[indexa], array[indexa] def a ( snake_case__: list[int] , snake_case__: int , snake_case__: int , snake_case__: int ): '''simple docstring''' if length > 1: lowercase_ = int(length / 2 ) for i in range(snake_case__ , low + middle ): comp_and_swap(snake_case__ , snake_case__ , i + middle , snake_case__ ) bitonic_merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) bitonic_merge(snake_case__ , low + middle , snake_case__ , snake_case__ ) def a ( snake_case__: list[int] , snake_case__: int , snake_case__: int , snake_case__: int ): '''simple docstring''' if length > 1: lowercase_ = int(length / 2 ) bitonic_sort(snake_case__ , snake_case__ , snake_case__ , 1 ) bitonic_sort(snake_case__ , low + middle , snake_case__ , 0 ) bitonic_merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() __a = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
30
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Any = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ) __snake_case : Optional[int] = AutoTokenizer.from_pretrained("""google/mt5-small""" ) __snake_case : Union[str, Any] = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids __snake_case : Optional[int] = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids __snake_case : Tuple = model(__magic_name__ , labels=__magic_name__ ).loss __snake_case : Optional[Any] = -tf.math.reduce_mean(__magic_name__ ).numpy() __snake_case : Union[str, Any] = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
13
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = CanineTokenizer lowercase__: Optional[int] = False def lowercase__ ( self : Any ) -> Any: """simple docstring""" super().setUp() __snake_case : Dict = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase__ ( self : str , **__magic_name__ : List[Any] ) -> CanineTokenizer: """simple docstring""" __snake_case : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) __snake_case : Optional[Any] = 10_24 return tokenizer @require_torch def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.canine_tokenizer __snake_case : List[str] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off __snake_case : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __snake_case : str = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = self.canine_tokenizer __snake_case : List[Any] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] __snake_case : Tuple = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , __magic_name__ ) self.assertIn("""attention_mask""" , __magic_name__ ) self.assertIn("""token_type_ids""" , __magic_name__ ) @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.canine_tokenizer __snake_case : Optional[Any] = [ """What's the weater?""", """It's about 25 degrees.""", ] __snake_case : Any = tokenizer( text_target=__magic_name__ , max_length=32 , padding="""max_length""" , truncation=__magic_name__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Dict = tempfile.mkdtemp() __snake_case : str = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : Dict = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) __snake_case : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : List[str] = """ He is very happy, UNwant\u00E9d,running""" __snake_case : Optional[int] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __snake_case : List[Any] = chr(0xE007 ) additional_special_tokens.append(__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) __snake_case : Union[str, Any] = tokenizer.__class__.from_pretrained(__magic_name__ ) __snake_case : int = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn(__magic_name__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : str = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case : Any = self.get_clean_sequence(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE005 __snake_case : Tuple = chr(__magic_name__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __snake_case : Optional[Any] = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) __snake_case : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__magic_name__ ) __snake_case : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Dict = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , input_encoded + special_token_id ) __snake_case : Tuple = tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : Dict = chr(0xE005 ) __snake_case : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__magic_name__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __snake_case : Tuple = tokenizer.tokenize(__magic_name__ ) __snake_case : Any = tokenizer.tokenize(__magic_name__ ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(token_a[0] , __magic_name__ ) self.assertEqual(token_a[0] , __magic_name__ ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : str = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __snake_case : Optional[Any] = 0xE006 __snake_case : List[str] = chr(__magic_name__ ) __snake_case : Optional[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__magic_name__ ) tokenizer.from_pretrained(__magic_name__ ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Any = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __snake_case : Tuple = json.load(__magic_name__ ) # a special token for Canine can be defined as follows: __snake_case : Tuple = 0xE006 __snake_case : int = chr(__magic_name__ ) __snake_case : List[Any] = [new_token_a] __snake_case : Union[str, Any] = [new_token_a] with open(os.path.join(__magic_name__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Tuple = tokenizer_class.from_pretrained(__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __snake_case : Any = 0xE007 __snake_case : Any = chr(__magic_name__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Dict = [AddedToken(__magic_name__ , lstrip=__magic_name__ )] __snake_case : Union[str, Any] = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , extra_ids=0 ) self.assertIn(__magic_name__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : List[str] = """hello world""" if self.space_between_special_tokens: __snake_case : Union[str, Any] = """[CLS] hello world [SEP]""" else: __snake_case : List[Any] = input __snake_case : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) __snake_case : Any = tokenizer.decode(__magic_name__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__magic_name__ , [output, output.lower()] ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __snake_case : Dict = """a""" __snake_case : Tuple = ord(__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , attr + """_id""" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + """_id""" ) , __magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [] ) __snake_case : Dict = 0xE006 __snake_case : str = chr(__magic_name__ ) setattr(__magic_name__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(__magic_name__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass def lowercase__ ( self : str ) -> Tuple: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" pass
13
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __a = logging.get_logger(__name__) class lowercase__( UpperCAmelCase ): """simple docstring""" a :Union[str, Any] = 'linear' a :Union[str, Any] = 'cosine' a :List[str] = 'cosine_with_restarts' a :Dict = 'polynomial' a :Tuple = 'constant' a :int = 'constant_with_warmup' a :Union[str, Any] = 'piecewise_constant' def a ( snake_case__: Optimizer , snake_case__: int = -1 ): '''simple docstring''' return LambdaLR(snake_case__ , lambda snake_case__ : 1 , last_epoch=snake_case__ ) def a ( snake_case__: Optimizer , snake_case__: int , snake_case__: int = -1 ): '''simple docstring''' def lr_lambda(snake_case__: int ): if current_step < num_warmup_steps: return float(snake_case__ ) / float(max(1.0 , snake_case__ ) ) return 1.0 return LambdaLR(snake_case__ , snake_case__ , last_epoch=snake_case__ ) def a ( snake_case__: Optimizer , snake_case__: str , snake_case__: int = -1 ): '''simple docstring''' lowercase_ = {} lowercase_ = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: lowercase_ , lowercase_ = rule_str.split(''':''' ) lowercase_ = int(snake_case__ ) lowercase_ = float(snake_case__ ) lowercase_ = value lowercase_ = float(rule_list[-1] ) def create_rules_function(snake_case__: Optional[int] , snake_case__: int ): def rule_func(snake_case__: int ) -> float: lowercase_ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(snake_case__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase_ = create_rules_function(snake_case__ , snake_case__ ) return LambdaLR(snake_case__ , snake_case__ , last_epoch=snake_case__ ) def a ( snake_case__: List[str] , snake_case__: List[Any] , snake_case__: Dict , snake_case__: int=-1 ): '''simple docstring''' def lr_lambda(snake_case__: int ): if current_step < num_warmup_steps: return float(snake_case__ ) / float(max(1 , snake_case__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(snake_case__ , snake_case__ , snake_case__ ) def a ( snake_case__: Optimizer , snake_case__: int , snake_case__: int , snake_case__: float = 0.5 , snake_case__: int = -1 ): '''simple docstring''' def lr_lambda(snake_case__: List[Any] ): if current_step < num_warmup_steps: return float(snake_case__ ) / float(max(1 , snake_case__ ) ) lowercase_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(snake_case__ ) * 2.0 * progress )) ) return LambdaLR(snake_case__ , snake_case__ , snake_case__ ) def a ( snake_case__: Optimizer , snake_case__: int , snake_case__: int , snake_case__: int = 1 , snake_case__: int = -1 ): '''simple docstring''' def lr_lambda(snake_case__: Any ): if current_step < num_warmup_steps: return float(snake_case__ ) / float(max(1 , snake_case__ ) ) lowercase_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(snake_case__ ) * progress) % 1.0) )) ) return LambdaLR(snake_case__ , snake_case__ , snake_case__ ) def a ( snake_case__: Dict , snake_case__: Dict , snake_case__: List[str] , snake_case__: Union[str, Any]=1e-7 , snake_case__: Tuple=1.0 , snake_case__: Optional[Any]=-1 ): '''simple docstring''' lowercase_ = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(snake_case__: int ): if current_step < num_warmup_steps: return float(snake_case__ ) / float(max(1 , snake_case__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase_ = lr_init - lr_end lowercase_ = num_training_steps - num_warmup_steps lowercase_ = 1 - (current_step - num_warmup_steps) / decay_steps lowercase_ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(snake_case__ , snake_case__ , snake_case__ ) __a = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def a ( snake_case__: Union[str, SchedulerType] , snake_case__: Optimizer , snake_case__: Optional[str] = None , snake_case__: Optional[int] = None , snake_case__: Optional[int] = None , snake_case__: int = 1 , snake_case__: float = 1.0 , snake_case__: int = -1 , ): '''simple docstring''' lowercase_ = SchedulerType(snake_case__ ) lowercase_ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(snake_case__ , last_epoch=snake_case__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(snake_case__ , step_rules=snake_case__ , last_epoch=snake_case__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(snake_case__ , num_warmup_steps=snake_case__ , last_epoch=snake_case__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( snake_case__ , num_warmup_steps=snake_case__ , num_training_steps=snake_case__ , num_cycles=snake_case__ , last_epoch=snake_case__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( snake_case__ , num_warmup_steps=snake_case__ , num_training_steps=snake_case__ , power=snake_case__ , last_epoch=snake_case__ , ) return schedule_func( snake_case__ , num_warmup_steps=snake_case__ , num_training_steps=snake_case__ , last_epoch=snake_case__ )
30
def a ( snake_case__: int = 100 ): '''simple docstring''' lowercase_ = (n * (n + 1) // 2) ** 2 lowercase_ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"{solution() = }")
30
1
from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : int = 'SpeechT5FeatureExtractor' A : Union[str, Any] = 'SpeechT5Tokenizer' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ : Union[str, Any] = kwargs.pop("audio" , _SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = kwargs.pop("text" , _SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = kwargs.pop("text_target" , _SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = kwargs.pop("audio_target" , _SCREAMING_SNAKE_CASE ) snake_case_ : str = kwargs.pop("sampling_rate" , _SCREAMING_SNAKE_CASE ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: snake_case_ : int = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) elif text is not None: snake_case_ : Any = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: snake_case_ : Tuple = None if audio_target is not None: snake_case_ : Optional[int] = self.feature_extractor(audio_target=_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = targets["input_values"] elif text_target is not None: snake_case_ : Dict = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = targets["input_ids"] else: snake_case_ : Optional[Any] = None if inputs is None: return targets if targets is not None: snake_case_ : List[str] = labels snake_case_ : int = targets.get("attention_mask" ) if decoder_attention_mask is not None: snake_case_ : Union[str, Any] = decoder_attention_mask return inputs def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ : int = kwargs.pop("input_values" , _SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = kwargs.pop("input_ids" , _SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = kwargs.pop("labels" , _SCREAMING_SNAKE_CASE ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: snake_case_ : Tuple = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) elif input_ids is not None: snake_case_ : List[str] = self.tokenizer.pad(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: snake_case_ : Tuple = None if labels is not None: if "input_ids" in labels or (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and "input_ids" in labels[0]): snake_case_ : Union[str, Any] = self.tokenizer.pad(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = targets["input_ids"] else: snake_case_ : int = self.feature_extractor.feature_size snake_case_ : Tuple = self.feature_extractor.num_mel_bins snake_case_ : Optional[int] = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : Any = feature_size_hack snake_case_ : int = targets["input_values"] else: snake_case_ : List[str] = None if inputs is None: return targets if targets is not None: snake_case_ : Optional[Any] = labels snake_case_ : int = targets.get("attention_mask" ) if decoder_attention_mask is not None: snake_case_ : List[Any] = decoder_attention_mask return inputs def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
36
import datasets from .evaluate import evaluate lowercase : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' lowercase : int = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' lowercase : int = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ : Union[str, Any] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} snake_case_ : Optional[Any] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] snake_case_ : Any = evaluate(dataset=_SCREAMING_SNAKE_CASE , predictions=_SCREAMING_SNAKE_CASE ) return score
36
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') _UpperCamelCase = logging.getLogger(__name__) @dataclass class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : Dict =field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase_ : str =field( default=lowercase__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase_ : Any =field( default=lowercase__ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) UpperCAmelCase_ : List[Any] =field( default=lowercase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCAmelCase_ : Dict =field( default=lowercase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) UpperCAmelCase_ : Tuple =field( default=lowercase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : Any =field( default=lowercase__ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase_ : str =field( default=lowercase__ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) UpperCAmelCase_ : Optional[Any] =field( default=lowercase__ , metadata={"help": "Train language if it is different from the evaluation language."} ) UpperCAmelCase_ : Optional[int] =field( default=lowercase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase_ : Any =field( default=lowercase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase_ : Any =field( default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCAmelCase_ : int =field( default=lowercase__ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) UpperCAmelCase_ : int =field( default=lowercase__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) UpperCAmelCase_ : Dict =field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) UpperCAmelCase_ : Union[str, Any] =field( default=lowercase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) UpperCAmelCase_ : Tuple =field( default=lowercase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def lowerCAmelCase__( ) -> Union[str, Any]: __snake_case : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __snake_case : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , _A ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Dict = training_args.get_process_log_level() logger.setLevel(_A ) datasets.utils.logging.set_verbosity(_A ) transformers.utils.logging.set_verbosity(_A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __snake_case : int = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: __snake_case : int = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = train_dataset.features["label"].names if training_args.do_eval: __snake_case : Any = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[str] = eval_dataset.features["label"].names if training_args.do_predict: __snake_case : Tuple = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : Any = predict_dataset.features["label"].names # Labels __snake_case : Any = len(_A ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_A , idalabel={str(_A ): label for i, label in enumerate(_A )} , labelaid={label: i for i, label in enumerate(_A )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __snake_case : List[str] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __snake_case : Tuple = False def preprocess_function(lowercase : List[str] ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=_A , max_length=data_args.max_seq_length , truncation=_A , ) if training_args.do_train: if data_args.max_train_samples is not None: __snake_case : Optional[Any] = min(len(_A ) , data_args.max_train_samples ) __snake_case : List[Any] = train_dataset.select(range(_A ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): __snake_case : int = train_dataset.map( _A , batched=_A , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(_A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: __snake_case : str = min(len(_A ) , data_args.max_eval_samples ) __snake_case : int = eval_dataset.select(range(_A ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): __snake_case : Union[str, Any] = eval_dataset.map( _A , batched=_A , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: __snake_case : List[str] = min(len(_A ) , data_args.max_predict_samples ) __snake_case : Dict = predict_dataset.select(range(_A ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): __snake_case : Any = predict_dataset.map( _A , batched=_A , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function __snake_case : Optional[Any] = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase : EvalPrediction ): __snake_case : List[Any] = p.predictions[0] if isinstance(p.predictions , _A ) else p.predictions __snake_case : int = np.argmax(_A , axis=1 ) return metric.compute(predictions=_A , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __snake_case : str = default_data_collator elif training_args.fpaa: __snake_case : Optional[int] = DataCollatorWithPadding(_A , pad_to_multiple_of=8 ) else: __snake_case : str = None # Initialize our Trainer __snake_case : int = Trainer( model=_A , args=_A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_A , tokenizer=_A , data_collator=_A , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : Tuple = last_checkpoint __snake_case : int = trainer.train(resume_from_checkpoint=_A ) __snake_case : int = train_result.metrics __snake_case : List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_A ) ) __snake_case : Tuple = min(_A , len(_A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , _A ) trainer.save_metrics("train" , _A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) __snake_case : Optional[Any] = trainer.evaluate(eval_dataset=_A ) __snake_case : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_A ) __snake_case : Dict = min(_A , len(_A ) ) trainer.log_metrics("eval" , _A ) trainer.save_metrics("eval" , _A ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) __snake_case : str = trainer.predict(_A , metric_key_prefix="predict" ) __snake_case : Tuple = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_A ) ) __snake_case : str = min(_A , len(_A ) ) trainer.log_metrics("predict" , _A ) trainer.save_metrics("predict" , _A ) __snake_case : Optional[int] = np.argmax(_A , axis=1 ) __snake_case : str = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(_A , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(_A ): __snake_case : List[str] = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
326
def lowercase_ ( _A : int , _A : int ): """simple docstring""" while a != 0: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = b % a, a return b def lowercase_ ( _A : int , _A : int ): """simple docstring""" if gcd(_A , _A ) != 1: lowerCamelCase__ : List[str] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(_A ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = 1, 0, a lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = 0, 1, m while va != 0: lowerCamelCase__ : Tuple = ua // va lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
184
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } SCREAMING_SNAKE_CASE = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: for attribute in key.split("." ): A__ = getattr(lowercase_ , lowercase_ ) if weight_type is not None: A__ = getattr(lowercase_ , lowercase_ ).shape else: A__ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value else: A__ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: A__ = [] A__ = fairseq_model.state_dict() A__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight A__ = None for name, value in fairseq_dict.items(): A__ = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == "group" , ) A__ = True elif name.split("." )[0] == "proj": A__ = fairseq_model.proj A__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A__ = True if "*" in mapped_key: A__ = name.split(lowercase_ )[0].split("." )[-2] A__ = mapped_key.replace("*" , lowercase_ ) if "weight_g" in name: A__ = "weight_g" elif "weight_v" in name: A__ = "weight_v" elif "bias" in name: A__ = "bias" elif "weight" in name: A__ = "weight" else: A__ = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: A__ = full_name.split("conv_layers." )[-1] A__ = name.split("." ) A__ = int(items[0] ) A__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) A__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) A__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: A__, A__ = emb.weight.shape A__ = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ ) A__ = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: with open(lowercase_ , "r" , encoding="utf-8" ) as f: A__ = f.readlines() A__ = [line.split(" " )[0] for line in lines] A__ = len(lowercase_ ) A__ = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(lowercase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[Any]: A__ = WavaVecaConfig.from_pretrained(lowercase_ ) A__ = SpeechaTextaConfig.from_pretrained( lowercase_ , vocab_size=lowercase_ , decoder_layers=lowercase_ , do_stable_layer_norm=lowercase_ ) A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) A__, A__, A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) A__ = model[0].eval() # set weights for wav2vec2 encoder A__ = WavaVecaModel(lowercase_ ) A__ = recursively_load_weights_wavaveca(model.encoder , lowercase_ ) A__ = SpeechaTextaForCausalLM(lowercase_ ) A__, A__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowercase_ ) # set output linear layer unexpected_keys.remove("embed_out" ) A__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) A__ = SpeechEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) A__ = False # add projection layer A__ = nn.Parameter(projection_layer.weight ) A__ = nn.Parameter(projection_layer.bias ) A__ = create_vocab_dict(lowercase_ ) with open(os.path.join(lowercase_ , "vocab.json" ) , "w" ) as fp: json.dump(lowercase_ , lowercase_ ) A__ = SpeechaTextaTokenizer(os.path.join(lowercase_ , "vocab.json" ) ) tokenizer.save_pretrained(lowercase_ ) A__ = hf_wavavec.config.to_dict() A__ = tokenizer.pad_token_id A__ = tokenizer.bos_token_id A__ = tokenizer.eos_token_id A__ = "speech_to_text_2" A__ = "wav2vec2" A__ = SpeechEncoderDecoderConfig.from_dict(lowercase_ ) hf_wavavec.save_pretrained(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") SCREAMING_SNAKE_CASE = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
362
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : str ) -> Dict: '''simple docstring''' A__ = "ZinengTang/tvlt-base" A__ = tempfile.mkdtemp() def __magic_name__ ( self : int , **snake_case_ : Dict ) -> Union[str, Any]: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **snake_case_ ) def __magic_name__ ( self : Optional[int] , **snake_case_ : str ) -> List[str]: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __magic_name__ ( self : Optional[int] ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self : Tuple ) -> Any: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) A__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) self.assertIsInstance(processor.image_processor , snake_case_ ) def __magic_name__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) A__ = np.ones([12_000] ) A__ = feature_extractor(snake_case_ , return_tensors="np" ) A__ = processor(audio=snake_case_ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) A__ = np.ones([3, 224, 224] ) A__ = image_processor(snake_case_ , return_tensors="np" ) A__ = processor(images=snake_case_ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) A__ = np.ones([12_000] ) A__ = np.ones([3, 224, 224] ) A__ = processor(audio=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def __magic_name__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ = self.get_image_processor() A__ = self.get_feature_extractor() A__ = TvltProcessor(image_processor=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
230
0
import csv import tweepy # Twitter API credentials A_ :int = '''''' A_ :str = '''''' A_ :Dict = '''''' A_ :Optional[int] = '''''' def A ( a_ ) -> None: # authorize twitter, initialize tweepy __UpperCamelCase : str =tweepy.OAuthHandler(a_ ,a_ ) auth.set_access_token(a_ ,a_ ) __UpperCamelCase : Optional[int] =tweepy.API(a_ ) # initialize a list to hold all the tweepy Tweets __UpperCamelCase : Optional[Any] =[] # make initial request for most recent tweets (200 is the maximum allowed count) __UpperCamelCase : str =api.user_timeline(screen_name=a_ ,count=200 ) # save most recent tweets alltweets.extend(a_ ) # save the id of the oldest tweet less one __UpperCamelCase : Any =alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a_ ) > 0: print(F'getting tweets before {oldest}' ) # all subsequent requests use the max_id param to prevent duplicates __UpperCamelCase : Optional[int] =api.user_timeline( screen_name=a_ ,count=200 ,max_id=a_ ) # save most recent tweets alltweets.extend(a_ ) # update the id of the oldest tweet less one __UpperCamelCase : Optional[Any] =alltweets[-1].id - 1 print(F'...{len(a_ )} tweets downloaded so far' ) # transform the tweepy tweets into a 2D array that will populate the csv __UpperCamelCase : Dict =[[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'new_{screen_name}_tweets.csv' ,'w' ) as f: __UpperCamelCase : Optional[int] =csv.writer(a_ ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(a_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
71
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __A ( a ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =tempfile.mkdtemp() __UpperCamelCase : Optional[int] =8 # DPR tok __UpperCamelCase : str =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __UpperCamelCase : Optional[Any] =os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __UpperCamelCase : Dict =os.path.join(lowerCamelCase__ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok __UpperCamelCase : Optional[int] =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __UpperCamelCase : str =dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __UpperCamelCase : Optional[int] =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __UpperCamelCase : Any ={'unk_token': '<unk>'} __UpperCamelCase : Any =os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __UpperCamelCase : Any =os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase : Dict =os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __lowercase ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def __lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =os.path.join(self.tmpdirname , 'rag_tokenizer' ) __UpperCamelCase : Dict =RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __UpperCamelCase : List[Any] =RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowerCamelCase__ ) rag_tokenizer.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : int =RagTokenizer.from_pretrained(lowerCamelCase__ , config=lowerCamelCase__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCamelCase__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowerCamelCase__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =RagTokenizer.from_pretrained('facebook/rag-token-nq' ) __UpperCamelCase : Union[str, Any] =[ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __UpperCamelCase : int =tokenizer(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) __UpperCamelCase : Union[str, Any] =[ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __UpperCamelCase : Any =tokenizer(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
71
1
from __future__ import annotations from typing import Any class A_ ( SCREAMING_SNAKE_CASE__ ): pass class A_ : def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Any): __lowerCamelCase : int = data __lowerCamelCase : Optional[Any] = None def __iter__( self : List[str]): __lowerCamelCase : Optional[int] = self __lowerCamelCase : Optional[Any] = [] while node: if node in visited: raise ContainsLoopError visited.append(a_) yield node.data __lowerCamelCase : int = node.next_node @property def lowerCAmelCase ( self : List[Any]): try: list(self) return False except ContainsLoopError: return True if __name__ == "__main__": a =Node(1) a =Node(2) a =Node(3) a =Node(4) print(root_node.has_loop) # False a =root_node.next_node print(root_node.has_loop) # True a =Node(5) a =Node(6) a =Node(5) a =Node(6) print(root_node.has_loop) # False a =Node(1) print(root_node.has_loop) # False
359
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller a =3 def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: print('Generating primitive root of p' ) while True: __lowerCamelCase : Tuple = random.randrange(3 , lowerCamelCase__ ) if pow(lowerCamelCase__ , 2 , lowerCamelCase__ ) == 1: continue if pow(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) __lowerCamelCase : List[str] = rabin_miller.generate_large_prime(lowerCamelCase__ ) # select large prime number. __lowerCamelCase : Dict = primitive_root(lowerCamelCase__ ) # one primitive root on modulo p. __lowerCamelCase : Optional[int] = random.randrange(3 , lowerCamelCase__ ) # private_key -> have to be greater than 2 for safety. __lowerCamelCase : List[Any] = cryptomath.find_mod_inverse(pow(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase : int = (key_size, e_a, e_a, p) __lowerCamelCase : str = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> None: if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print('\nWARNING:' ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" 'Use a different name or delete these files and re-run this program.' ) sys.exit() __lowerCamelCase , __lowerCamelCase : List[Any] = generate_key(lowerCamelCase__ ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" , 'w' ) as fo: fo.write(F"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" , 'w' ) as fo: fo.write(F"{private_key[0]},{private_key[1]}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 2_0_4_8 ) print('Key files generation successful' ) if __name__ == "__main__": main()
113
0
'''simple docstring''' def lowercase__ ( __lowercase : Union[str, Any] ) -> Union[str, Any]: # noqa: E741 """simple docstring""" __UpperCamelCase = len(__lowercase ) __UpperCamelCase = 0 __UpperCamelCase = [0] * n __UpperCamelCase = [False] * n __UpperCamelCase = [False] * n def dfs(__lowercase : Union[str, Any] , __lowercase : Tuple , __lowercase : Tuple , __lowercase : Any ): if parent == root: out_edge_count += 1 __UpperCamelCase = True __UpperCamelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCamelCase = dfs(__lowercase , __lowercase , __lowercase , __lowercase ) __UpperCamelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCamelCase = True # AP found via cycle if at == low[to]: __UpperCamelCase = True else: __UpperCamelCase = min(low[at] , __lowercase ) return out_edge_count for i in range(__lowercase ): if not visited[i]: __UpperCamelCase = 0 __UpperCamelCase = dfs(__lowercase , __lowercase , -1 , __lowercase ) __UpperCamelCase = out_edge_count > 1 for x in range(len(__lowercase ) ): if is_art[x] is True: print(__lowercase ) # Adjacency list of graph a__ : int ={ 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
53
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=13 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=0.1 , lowercase__=0.1 , lowercase__=224 , lowercase__=1_000 , lowercase__=[3, 3, 6, 4] , lowercase__=[48, 56, 112, 220] , ) -> int: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = num_labels __UpperCAmelCase = image_size __UpperCAmelCase = layer_depths __UpperCAmelCase = embed_dims def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ (self ) -> Optional[Any]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase__ , layer_scale_init_value=1E-5 , ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = SwiftFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: __UpperCAmelCase = self.num_labels __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase = SwiftFormerForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ (self ) -> Optional[int]: ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = SwiftFormerModelTester(self ) __UpperCAmelCase = ConfigTester( self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCAmelCase_ (self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def lowerCAmelCase_ (self ) -> Any: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = SwiftFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self ) -> Union[str, Any]: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = 8 self.assertEqual(len(lowercase__ ) , lowercase__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowerCAmelCase_ (self ) -> Tuple: def _config_zero_init(lowercase__ ): __UpperCAmelCase = copy.deepcopy(lowercase__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase__ , lowercase__ , 1E-10 ) if isinstance(getattr(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ): __UpperCAmelCase = _config_zero_init(getattr(lowercase__ , lowercase__ ) ) setattr(lowercase__ , lowercase__ , lowercase__ ) return configs_no_init __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def __a ( ) -> Any: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> str: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __UpperCAmelCase = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) )
333
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
"""simple docstring""" from collections import defaultdict def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : str = True for v in tree[start]: if v not in visited: ret += dfs(_lowerCamelCase ) if ret % 2 == 0: cuts.append(_lowerCamelCase ) return ret def lowerCamelCase_( ) -> int: '''simple docstring''' dfs(1 ) if __name__ == "__main__": _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = 10, 9 _lowerCAmelCase : str = defaultdict(list) _lowerCAmelCase : dict[int, bool] = {} _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
1
'''simple docstring''' from __future__ import annotations def snake_case_ ( __SCREAMING_SNAKE_CASE : int | str ): """simple docstring""" lowercase_ : Optional[int] = str(__SCREAMING_SNAKE_CASE ) return n == n[::-1] def snake_case_ ( __SCREAMING_SNAKE_CASE : int = 1000000 ): """simple docstring""" lowercase_ : Union[str, Any] = 0 for i in range(1 , __SCREAMING_SNAKE_CASE ): if is_palindrome(__SCREAMING_SNAKE_CASE ) and is_palindrome(bin(__SCREAMING_SNAKE_CASE ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
93
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case : int = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Any = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: __snake_case : Optional[int] = 1_0_2_4 __snake_case : List[Any] = 4_0_9_6 __snake_case : List[Any] = 2_4 __snake_case : Optional[Any] = 1_6 __snake_case : str = [5, 1_1, 1_7, 2_3] __snake_case : List[str] = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] __snake_case : Union[str, Any] = (1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: __snake_case : Tuple = 7_6_8 __snake_case : Any = [1, 1, 1, 0.5] __snake_case : Any = [2_5_6, 5_1_2, 7_6_8, 7_6_8] __snake_case : Any = 1_5_0 __snake_case : Optional[Any] = 1_6 __snake_case : List[str] = (1, 3_8_4, 3_8_4) __snake_case : Tuple = False __snake_case : Optional[Any] = "project" if "ade" in checkpoint_url: __snake_case : Optional[int] = True __snake_case : List[str] = 7_6_8 __snake_case : int = [1, 1, 1, 0.5] __snake_case : Any = 1_5_0 __snake_case : Tuple = 1_6 __snake_case : List[str] = "huggingface/label-files" __snake_case : Union[str, Any] = "ade20k-id2label.json" __snake_case : List[str] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) __snake_case : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : Optional[Any] = idalabel __snake_case : str = {v: k for k, v in idalabel.items()} __snake_case : Tuple = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __snake_case : Tuple = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: __snake_case : Tuple = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: __snake_case : Optional[Any] = name.replace("patch_embed" , "" ) if "pos_embed" in name: __snake_case : Optional[int] = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: __snake_case : List[str] = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: __snake_case : Union[str, Any] = name.replace("proj" , "projection" ) if "blocks" in name: __snake_case : int = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: __snake_case : Tuple = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __snake_case : Any = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: __snake_case : Optional[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: __snake_case : Any = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: __snake_case : Dict = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: __snake_case : Union[str, Any] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: __snake_case : List[Any] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: __snake_case : str = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: __snake_case : List[str] = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: __snake_case : Optional[int] = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: __snake_case : Optional[int] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __snake_case : int = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __snake_case : Any = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: __snake_case : List[Any] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: __snake_case : Tuple = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: __snake_case : List[str] = name.replace("conv1" , "convolution1" ) if "conv2" in name: __snake_case : str = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: __snake_case : Optional[int] = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: __snake_case : List[str] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: __snake_case : Dict = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __snake_case : Tuple = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: __snake_case : int = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: __snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: __snake_case : Optional[Any] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: __snake_case : Optional[int] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: __snake_case : Dict = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: __snake_case : Union[str, Any] = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: __snake_case : Union[str, Any] = name.replace("pretrained" , "dpt" ) if "bn" in name: __snake_case : Tuple = name.replace("bn" , "batch_norm" ) if "head" in name: __snake_case : Dict = name.replace("head" , "head.head" ) if "encoder.norm" in name: __snake_case : Optional[int] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: __snake_case : Tuple = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: __snake_case : str = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: __snake_case : Tuple = name.replace(".." , "." ) if "stem.conv" in name: __snake_case : int = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: __snake_case : Any = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: __snake_case : Optional[int] = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: __snake_case : List[Any] = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: __snake_case : Optional[int] = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: __snake_case : int = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: __snake_case : Optional[Any] = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case : int = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) __snake_case : Any = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : str = in_proj_weight[: config.hidden_size, :] __snake_case : List[Any] = in_proj_bias[: config.hidden_size] __snake_case : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] __snake_case : int = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( ): __snake_case : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : int = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Optional[int] = get_dpt_config(__lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __snake_case : Optional[int] = torch.load(__lowerCamelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): __snake_case : Optional[int] = state_dict.pop(__lowerCamelCase ) __snake_case : Optional[Any] = val # read in qkv matrices read_in_q_k_v(__lowerCamelCase , __lowerCamelCase ) # load HuggingFace model __snake_case : Dict = DPTForSemanticSegmentation(__lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # Check outputs on an image __snake_case : str = 4_8_0 if "ade" in checkpoint_url else 3_8_4 __snake_case : Any = DPTImageProcessor(size=__lowerCamelCase ) __snake_case : int = prepare_img() __snake_case : Union[str, Any] = image_processor(__lowerCamelCase , return_tensors="pt" ) # forward pass __snake_case : Dict = model(**__lowerCamelCase ).logits if "ade" in checkpoint_url else model(**__lowerCamelCase ).predicted_depth if show_prediction: __snake_case : int = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=__lowerCamelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) _snake_case : str = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
123
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
"""simple docstring""" def __A ( a_ :float) -> float: if edge <= 0 or not isinstance(a_ , a_): raise ValueError('''Length must be a positive.''') return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __A ( a_ :float) -> float: if edge <= 0 or not isinstance(a_ , a_): raise ValueError('''Length must be a positive.''') return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
188
0
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Union[str, Any] ): """simple docstring""" _a : Tuple = RemBertConfig.from_json_file(__a ) print('Building PyTorch model from configuration: {}'.format(str(__a ) ) ) _a : Tuple = RemBertModel(__a ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__a , __a , __a ) # Save pytorch-model print('Save PyTorch model to {}'.format(__a ) ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
271
'''simple docstring''' def UpperCAmelCase_ (__a : list , __a : list , __a : int ): """simple docstring""" _a : Optional[Any] = len(__a ) _a : int = [[0] * n for i in range(__a )] for i in range(__a ): _a : Tuple = y_points[i] for i in range(2 , __a ): for j in range(__a , __a ): _a : Tuple = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
271
1
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __a ( _UpperCamelCase: Dict , _UpperCamelCase: Optional[int] , _UpperCamelCase: List[str] ) -> Optional[Any]: """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __a ( _UpperCamelCase: List[Any] , _UpperCamelCase: Optional[Any] , _UpperCamelCase: Dict , _UpperCamelCase: Optional[Any]="attention" ) -> Any: """simple docstring""" _snake_case = _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _snake_case = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _snake_case = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _snake_case = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _snake_case = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _snake_case = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __a ( _UpperCamelCase: Tuple , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int]=False ) -> List[Any]: """simple docstring""" if split_mlp_wi: _snake_case = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _snake_case = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _snake_case = (wi_a, wi_a) else: _snake_case = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _snake_case = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __a ( _UpperCamelCase: Optional[int] , _UpperCamelCase: Dict , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Union[str, Any] ) -> List[Any]: """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __a ( _UpperCamelCase: dict , *, _UpperCamelCase: int , _UpperCamelCase: bool , _UpperCamelCase: bool = False ) -> str: """simple docstring""" _snake_case = traverse_util.flatten_dict(variables["target"] ) _snake_case = {"/".join(_UpperCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _snake_case = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , _UpperCamelCase ) _snake_case = collections.OrderedDict() # Shared embeddings. _snake_case = old["token_embedder/embedding"] # Encoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_attention_layer_norm" ) _snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "attention" ) _snake_case = layer_norm _snake_case = k.T _snake_case = o.T _snake_case = q.T _snake_case = v.T # Block i, layer 1 (MLP). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_mlp_layer_norm" ) _snake_case , _snake_case = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , _UpperCamelCase ) _snake_case = layer_norm if split_mlp_wi: _snake_case = wi[0].T _snake_case = wi[1].T else: _snake_case = wi.T _snake_case = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case = tax_relpos_bias_lookup( _UpperCamelCase , _UpperCamelCase , "encoder" ).T _snake_case = old["encoder/encoder_norm/scale"] if not scalable_attention: _snake_case = tax_relpos_bias_lookup( _UpperCamelCase , 0 , "encoder" ).T _snake_case = tax_relpos_bias_lookup( _UpperCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_self_attention_layer_norm" ) _snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "self_attention" ) _snake_case = layer_norm _snake_case = k.T _snake_case = o.T _snake_case = q.T _snake_case = v.T # Block i, layer 1 (Cross Attention). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) _snake_case , _snake_case , _snake_case , _snake_case = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "encoder_decoder_attention" ) _snake_case = layer_norm _snake_case = k.T _snake_case = o.T _snake_case = q.T _snake_case = v.T # Block i, layer 2 (MLP). _snake_case = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_mlp_layer_norm" ) _snake_case , _snake_case = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , _UpperCamelCase ) _snake_case = layer_norm if split_mlp_wi: _snake_case = wi[0].T _snake_case = wi[1].T else: _snake_case = wi.T _snake_case = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case = tax_relpos_bias_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" ).T _snake_case = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _snake_case = old["decoder/logits_dense/kernel"].T return new def __a ( _UpperCamelCase: Any , _UpperCamelCase: bool ) -> Dict: """simple docstring""" _snake_case = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _snake_case = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _snake_case = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) _snake_case = state_dict["shared.weight"] return state_dict def __a ( _UpperCamelCase: str , _UpperCamelCase: List[str] , _UpperCamelCase: Any , _UpperCamelCase: str , _UpperCamelCase: List[Any] ) -> Dict: """simple docstring""" _snake_case = checkpoints.load_tax_checkpoint(_UpperCamelCase ) _snake_case = convert_tax_to_pytorch( _UpperCamelCase , num_layers=config.num_layers , is_encoder_only=_UpperCamelCase , scalable_attention=_UpperCamelCase ) _snake_case = make_state_dict(_UpperCamelCase , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) def __a ( _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Optional[Any] , _UpperCamelCase: bool = False , _UpperCamelCase: bool = False , ) -> Dict: """simple docstring""" _snake_case = MTaConfig.from_json_file(_UpperCamelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _snake_case = UMTaEncoderModel(_UpperCamelCase ) else: _snake_case = UMTaForConditionalGeneration(_UpperCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_UpperCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCamelCase ) print("Done" ) if __name__ == "__main__": UpperCamelCase_ : Any = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) UpperCamelCase_ : Union[str, Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
142
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ : Union[str, Any] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Optional[int] = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCamelCase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
142
1
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCAmelCase : str = logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , **UpperCamelCase : Any ): '''simple docstring''' super().__init__(**UpperCamelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Union[str, Any] , UpperCamelCase : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase : List[str] ): '''simple docstring''' return super().__call__(UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , **UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : int = {} if "candidate_labels" in kwargs: __UpperCAmelCase : Any = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def lowerCamelCase__ ( self : int , UpperCamelCase : Optional[int] , UpperCamelCase : List[str]=None , UpperCamelCase : List[str]="This is a photo of {}." ): '''simple docstring''' __UpperCAmelCase : int = load_image(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = self.image_processor(images=[image] , return_tensors=self.framework ) __UpperCAmelCase : Union[str, Any] = candidate_labels __UpperCAmelCase : str = [hypothesis_template.format(UpperCamelCase ) for x in candidate_labels] __UpperCAmelCase : str = self.tokenizer(UpperCamelCase , return_tensors=self.framework , padding=UpperCamelCase ) __UpperCAmelCase : List[str] = [text_inputs] return inputs def lowerCamelCase__ ( self : int , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : List[Any] = model_inputs.pop("""candidate_labels""" ) __UpperCAmelCase : str = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , UpperCamelCase ): __UpperCAmelCase : Dict = text_inputs[0] else: # Batching case. __UpperCAmelCase : int = text_inputs[0][0] __UpperCAmelCase : Dict = self.model(**UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Dict = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : List[Any] = model_outputs.pop("""candidate_labels""" ) __UpperCAmelCase : List[str] = model_outputs["""logits"""][0] if self.framework == "pt": __UpperCAmelCase : Optional[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) __UpperCAmelCase : Any = probs.tolist() if not isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : Any = [scores] elif self.framework == "tf": __UpperCAmelCase : Any = stable_softmax(UpperCamelCase , axis=-1 ) __UpperCAmelCase : Tuple = probs.numpy().tolist() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) __UpperCAmelCase : int = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase , UpperCamelCase ) , key=lambda UpperCamelCase : -x[0] ) ] return result
115
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = """ylacombe/bark-small""" __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[Any] = """en_speaker_1""" __UpperCAmelCase : Union[str, Any] = """This is a test string""" __UpperCAmelCase : Dict = """speaker_embeddings_path.json""" __UpperCAmelCase : Any = """speaker_embeddings""" def lowerCamelCase__ ( self : Dict , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Any = BarkProcessor(tokenizer=UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __UpperCAmelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __UpperCAmelCase : List[str] = 35 __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Union[str, Any] = 8 __UpperCAmelCase : Optional[Any] = { """semantic_prompt""": np.ones(UpperCamelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __UpperCAmelCase : Dict = processor(text=self.input_string , voice_preset=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Optional[int] = processor(text=self.input_string , voice_preset=UpperCamelCase ) __UpperCAmelCase : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub __UpperCAmelCase : Dict = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Union[str, Any] = BarkProcessor(tokenizer=UpperCamelCase ) __UpperCAmelCase : List[str] = processor(text=self.input_string ) __UpperCAmelCase : Tuple = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=UpperCamelCase , return_attention_mask=UpperCamelCase , return_token_type_ids=UpperCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
115
1
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=1e-12 ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(lowercase_ ,axis=1 ) ,a_min=lowercase_ ) ).T _UpperCamelCase : int = jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(lowercase_ ,axis=1 ) ,a_min=lowercase_ ) ).T return jnp.matmul(lowercase_ ,norm_emb_a.T ) class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :CLIPConfig SCREAMING_SNAKE_CASE__ :jnp.dtype = jnp.floataa def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Any = FlaxCLIPVisionModule(self.config.vision_config ) _UpperCamelCase : Dict = nn.Dense(self.config.projection_dim , use_bias=__a , dtype=self.dtype ) _UpperCamelCase : Tuple = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) _UpperCamelCase : Tuple = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) _UpperCamelCase : Union[str, Any] = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) _UpperCamelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self : Tuple , __a : str ) -> str: _UpperCamelCase : Union[str, Any] = self.vision_model(__a )[1] _UpperCamelCase : Optional[int] = self.visual_projection(__a ) _UpperCamelCase : Any = jax_cosine_distance(__a , self.special_care_embeds ) _UpperCamelCase : List[str] = jax_cosine_distance(__a , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _UpperCamelCase : int = 0.0 _UpperCamelCase : str = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _UpperCamelCase : Any = jnp.round(__a , 3 ) _UpperCamelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__a ) # Use a lower threshold if an image has any special care concept _UpperCamelCase : Optional[int] = is_special_care * 0.01 _UpperCamelCase : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _UpperCamelCase : List[str] = jnp.round(__a , 3 ) _UpperCamelCase : Union[str, Any] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = CLIPConfig SCREAMING_SNAKE_CASE__ :Dict = "clip_input" SCREAMING_SNAKE_CASE__ :Union[str, Any] = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Dict , __a : CLIPConfig , __a : Optional[Tuple] = None , __a : int = 0 , __a : jnp.dtype = jnp.floataa , __a : bool = True , **__a : Optional[int] , ) -> Tuple: if input_shape is None: _UpperCamelCase : Optional[Any] = (1, 224, 224, 3) _UpperCamelCase : List[str] = self.module_class(config=__a , dtype=__a , **__a ) super().__init__(__a , __a , input_shape=__a , seed=__a , dtype=__a , _do_init=_do_init ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : jax.random.KeyArray , __a : Tuple , __a : FrozenDict = None ) -> FrozenDict: # init input tensor _UpperCamelCase : Optional[int] = jax.random.normal(__a , __a ) _UpperCamelCase : Tuple = jax.random.split(__a ) _UpperCamelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng} _UpperCamelCase : Optional[int] = self.module.init(__a , __a )["params"] return random_params def __call__( self : Tuple , __a : List[Any] , __a : dict = None , ) -> str: _UpperCamelCase : Tuple = jnp.transpose(__a , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__a , dtype=jnp.floataa ) , rngs={} , )
371
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase__ = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "rag" SCREAMING_SNAKE_CASE__ :List[str] = True def __init__( self : List[Any] , __a : Optional[Any]=None , __a : str=True , __a : Tuple=None , __a : Dict=None , __a : Optional[int]=None , __a : Optional[int]=None , __a : List[Any]=None , __a : Dict=" / " , __a : int=" // " , __a : Optional[Any]=5 , __a : Dict=300 , __a : Optional[int]=768 , __a : Tuple=8 , __a : Union[str, Any]="wiki_dpr" , __a : Dict="train" , __a : List[Any]="compressed" , __a : str=None , __a : Tuple=None , __a : int=False , __a : str=False , __a : Optional[int]=0.0 , __a : Dict=True , __a : Tuple=False , __a : Dict=False , __a : str=False , __a : str=True , __a : Optional[Any]=None , **__a : Tuple , ) -> Any: super().__init__( bos_token_id=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , is_encoder_decoder=__a , prefix=__a , vocab_size=__a , **__a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCamelCase : Optional[int] = kwargs.pop("question_encoder" ) _UpperCamelCase : str = question_encoder_config.pop("model_type" ) _UpperCamelCase : Tuple = kwargs.pop("generator" ) _UpperCamelCase : str = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCamelCase : Union[str, Any] = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : str = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : Optional[int] = reduce_loss _UpperCamelCase : str = label_smoothing _UpperCamelCase : int = exclude_bos_score _UpperCamelCase : List[str] = do_marginalize _UpperCamelCase : Optional[int] = title_sep _UpperCamelCase : Optional[int] = doc_sep _UpperCamelCase : Union[str, Any] = n_docs _UpperCamelCase : Tuple = max_combined_length _UpperCamelCase : Union[str, Any] = dataset _UpperCamelCase : Any = dataset_split _UpperCamelCase : List[str] = index_name _UpperCamelCase : int = retrieval_vector_size _UpperCamelCase : str = retrieval_batch_size _UpperCamelCase : Dict = passages_path _UpperCamelCase : str = index_path _UpperCamelCase : Tuple = use_dummy_dataset _UpperCamelCase : Union[str, Any] = output_retrieved _UpperCamelCase : Optional[Any] = do_deduplication _UpperCamelCase : str = use_cache if self.forced_eos_token_id is None: _UpperCamelCase : List[str] = getattr(self.generator , "forced_eos_token_id" , __a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) _UpperCamelCase : List[Any] = self.question_encoder.to_dict() _UpperCamelCase : Tuple = self.generator.to_dict() _UpperCamelCase : Any = self.__class__.model_type return output
310
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Any = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small") SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("google/mt5-small") SCREAMING_SNAKE_CASE_: int = tokenizer("Hello there" , return_tensors="tf").input_ids SCREAMING_SNAKE_CASE_: Any = tokenizer("Hi I am" , return_tensors="tf").input_ids SCREAMING_SNAKE_CASE_: Union[str, Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__).loss SCREAMING_SNAKE_CASE_: str = -tf.math.reduce_mean(lowerCAmelCase__).numpy() SCREAMING_SNAKE_CASE_: Tuple = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2E-4)
13
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
1
import itertools import math def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__magic_name__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case( ) -> Tuple: '''simple docstring''' lowercase : int = 2 while True: if is_prime(__magic_name__ ): yield num num += 1 def snake_case( __magic_name__ = 1_00_01 ) -> int: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , __magic_name__ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
361
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCAmelCase_ = 'bert-base-cased' lowerCAmelCase_ = 'google/pegasus-xsum' lowerCAmelCase_ = [' Sam ate lunch today.', 'Sams lunch ingredients.'] lowerCAmelCase_ = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] lowerCAmelCase_ = 'patrickvonplaten/t5-tiny-random' lowerCAmelCase_ = 'sshleifer/bart-tiny-random' lowerCAmelCase_ = 'sshleifer/tiny-mbart' lowerCAmelCase_ = 'sshleifer/tiny-marian-en-de' def snake_case( __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = '''\n'''.join(__magic_name__ ) Path(__magic_name__ ).open('''w''' ).writelines(__magic_name__ ) def snake_case( __magic_name__ ) -> Optional[int]: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(__magic_name__ , F"""{split}.source""" ) , __magic_name__ ) _dump_articles(os.path.join(__magic_name__ , F"""{split}.target""" ) , __magic_name__ ) return tmp_dir class _A ( _lowerCamelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self : List[str] , _A : Optional[Any] ) -> Dict: """simple docstring""" lowercase : int = AutoTokenizer.from_pretrained(_A ) lowercase : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase : List[str] = max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) lowercase : Optional[int] = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) lowercase : str = 4 lowercase : List[Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowercase , lowercase : Optional[int] = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. lowercase : int = SeqaSeqDataset( _A , data_dir=_A , type_path='''train''' , max_source_length=_A , max_target_length=_A , src_lang=_A , tgt_lang=_A , ) lowercase : Optional[int] = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_A , _A ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowercase : int = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self : int , _A : Tuple ) -> List[str]: """simple docstring""" lowercase : int = AutoTokenizer.from_pretrained(_A ) lowercase : int = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase : Optional[int] = max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) lowercase : List[Any] = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) lowercase : List[Any] = 4 lowercase : Any = LegacySeqaSeqDataset( _A , data_dir=_A , type_path='''train''' , max_source_length=20 , max_target_length=_A , ) lowercase : Optional[Any] = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self : List[str] ) -> int: """simple docstring""" lowercase : Tuple = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) lowercase : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowercase : Optional[int] = tmp_dir.joinpath('''train.source''' ).open().readlines() lowercase : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_A , _A , 128 , _A ) lowercase : Dict = {x.name for x in tmp_dir.iterdir()} lowercase : Optional[Any] = {x.name for x in save_dir.iterdir()} lowercase : int = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_A ) < len(_A ) assert len(_A ) == 1 assert len(packed_examples[0] ) == sum(len(_A ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def __a ( self : Any ) -> Dict: """simple docstring""" if not FAIRSEQ_AVAILABLE: return lowercase , lowercase , lowercase : Any = self._get_dataset(max_len=64 ) lowercase : List[Any] = 64 lowercase : Any = ds.make_dynamic_sampler(_A , required_batch_size_multiple=_A ) lowercase : Tuple = [len(_A ) for x in batch_sampler] assert len(set(_A ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_A ) == len(_A ) # no dropped or added examples lowercase : str = DataLoader(_A , batch_sampler=_A , collate_fn=ds.collate_fn , num_workers=2 ) lowercase : Optional[int] = [] lowercase : str = [] for batch in data_loader: lowercase : Tuple = batch['''input_ids'''].shape lowercase : List[Any] = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowercase : Dict = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(_A ) if num_src_tokens > (max_tokens * 1.1): failures.append(_A ) assert num_src_per_batch[0] == max(_A ) if failures: raise AssertionError(f"""too many tokens in {len(_A )} batches""" ) def __a ( self : int ) -> Any: """simple docstring""" lowercase , lowercase , lowercase : Tuple = self._get_dataset(max_len=512 ) lowercase : Tuple = 2 lowercase : Union[str, Any] = ds.make_sortish_sampler(_A , shuffle=_A ) lowercase : List[Any] = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 ) lowercase : List[Any] = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 , sampler=_A ) lowercase : int = tokenizer.pad_token_id def count_pad_tokens(_A : List[Any] , _A : Union[str, Any]="input_ids" ): return [batch[k].eq(_A ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_A , k='''labels''' ) ) < sum(count_pad_tokens(_A , k='''labels''' ) ) assert sum(count_pad_tokens(_A ) ) < sum(count_pad_tokens(_A ) ) assert len(_A ) == len(_A ) def __a ( self : Any , _A : Union[str, Any]=1_000 , _A : str=128 ) -> List[Any]: """simple docstring""" if os.getenv('''USE_REAL_DATA''' , _A ): lowercase : Optional[Any] = '''examples/seq2seq/wmt_en_ro''' lowercase : Optional[int] = max_len * 2 * 64 if not Path(_A ).joinpath('''train.len''' ).exists(): save_len_file(_A , _A ) else: lowercase : Tuple = '''examples/seq2seq/test_data/wmt_en_ro''' lowercase : Optional[Any] = max_len * 4 save_len_file(_A , _A ) lowercase : Optional[Any] = AutoTokenizer.from_pretrained(_A ) lowercase : Union[str, Any] = SeqaSeqDataset( _A , data_dir=_A , type_path='''train''' , max_source_length=_A , max_target_length=_A , n_obs=_A , ) return ds, max_tokens, tokenizer def __a ( self : List[str] ) -> List[str]: """simple docstring""" lowercase , lowercase , lowercase : Union[str, Any] = self._get_dataset() lowercase : int = set(DistributedSortishSampler(_A , 256 , num_replicas=2 , rank=0 , add_extra_examples=_A ) ) lowercase : Dict = set(DistributedSortishSampler(_A , 256 , num_replicas=2 , rank=1 , add_extra_examples=_A ) ) assert idsa.intersection(_A ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self : Union[str, Any] , _A : Tuple ) -> Optional[int]: """simple docstring""" lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(_A , use_fast=_A ) if tok_name == MBART_TINY: lowercase : Tuple = SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) lowercase : Union[str, Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowercase : List[Any] = SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) lowercase : Dict = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_A ) == 1 if tok_name == BART_TINY else len(_A ) == 0
116
0
from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase_ : def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCAmelCase : Optional[Any] = len(__a) - 1 def snake_case__ ( self, __a): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCAmelCase : list[float] = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree, __a) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__a), 5) == 1 return output_values def snake_case__ ( self, __a): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCAmelCase : Tuple = self.basis_function(__a) _lowerCAmelCase : Any = 0.0 _lowerCAmelCase : Optional[int] = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def snake_case__ ( self, __a = 0.01): '''simple docstring''' from matplotlib import pyplot as plt # type: ignore _lowerCAmelCase : list[float] = [] # x coordinates of points to plot _lowerCAmelCase : list[float] = [] # y coordinates of points to plot _lowerCAmelCase : List[str] = 0.0 while t <= 1: _lowerCAmelCase : int = self.bezier_curve_function(__a) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size _lowerCAmelCase : List[Any] = [i[0] for i in self.list_of_points] _lowerCAmelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __a, __a, color="blue", label="Curve of Degree " + str(self.degree), ) plt.scatter(__a, __a, color="red", label="Control Points") plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
36
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=24, __a=2, __a=6, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=None, __a=1000, ): '''simple docstring''' _lowerCAmelCase : Tuple = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : int = seq_length _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : Dict = use_input_mask _lowerCAmelCase : List[str] = use_token_type_ids _lowerCAmelCase : str = use_labels _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : int = max_position_embeddings _lowerCAmelCase : Optional[int] = type_vocab_size _lowerCAmelCase : Optional[Any] = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : List[Any] = num_labels _lowerCAmelCase : Tuple = scope _lowerCAmelCase : str = range_bbox def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : Dict = bbox[i, j, 3] _lowerCAmelCase : int = bbox[i, j, 1] _lowerCAmelCase : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : str = bbox[i, j, 2] _lowerCAmelCase : List[Any] = bbox[i, j, 0] _lowerCAmelCase : str = t _lowerCAmelCase : Optional[Any] = None if self.use_input_mask: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = LiltModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model(__a, bbox=__a, attention_mask=__a, token_type_ids=__a) _lowerCAmelCase : str = model(__a, bbox=__a, token_type_ids=__a) _lowerCAmelCase : List[Any] = model(__a, bbox=__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : Optional[Any] = LiltForTokenClassification(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model( __a, bbox=__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = LiltForQuestionAnswering(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Tuple = model( __a, bbox=__a, attention_mask=__a, token_type_ids=__a, start_positions=__a, end_positions=__a, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , a , unittest.TestCase): lowerCamelCase__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' return True def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = LiltModelTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : Any = type self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = LiltModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__a) _lowerCAmelCase : Any = torch.tensor([[1, 2]], device=__a) _lowerCAmelCase : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]], device=__a) # forward pass with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(input_ids=__a, bbox=__a) _lowerCAmelCase : Optional[int] = torch.Size([1, 2, 768]) _lowerCAmelCase : List[str] = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]], device=__a, ) self.assertTrue(outputs.last_hidden_state.shape, __a) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3], __a, atol=1E-3))
36
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCamelCase : int = logging.getLogger() def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: snake_case : Any = {} snake_case : List[str] = os.path.join(lowercase ,"""all_results.json""" ) if os.path.exists(lowercase ): with open(lowercase ,"""r""" ) as f: snake_case : Tuple = json.load(lowercase ) else: raise ValueError(f"""can't find {path}""" ) return results lowerCamelCase : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: import xla_spawn snake_case : List[str] = self.get_auto_remove_tmp_dir() snake_case : str = f""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A , """argv""" , A ): snake_case : Tuple = time() xla_spawn.main() snake_case : Dict = time() snake_case : Any = get_results(A ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0 ) def UpperCAmelCase ( self ) -> Optional[int]: import xla_spawn snake_case : List[str] = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(A , """argv""" , A ): xla_spawn.main()
356
def SCREAMING_SNAKE_CASE__ ( ) -> Dict: snake_case : Optional[int] = [] snake_case : Tuple = 1 while len(lowercase ) < 1E6: constant.append(str(lowercase ) ) i += 1 snake_case : int = """""".join(lowercase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
176
0
from math import pi, sqrt, tan def lowerCAmelCase__ ( lowerCamelCase_ : float): '''simple docstring''' if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''') return 6 * side_length**2 def lowerCAmelCase__ ( lowerCamelCase_ : float ,lowerCamelCase_ : float ,lowerCamelCase_ : float): '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''') return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCAmelCase__ ( lowerCamelCase_ : float): '''simple docstring''' if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''') return 4 * pi * radius**2 def lowerCAmelCase__ ( lowerCamelCase_ : float): '''simple docstring''' if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''') return 3 * pi * radius**2 def lowerCAmelCase__ ( lowerCamelCase_ : float ,lowerCamelCase_ : float): '''simple docstring''' if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''') return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCAmelCase__ ( lowerCamelCase_ : float ,lowerCamelCase_ : float ,lowerCamelCase_ : float): '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''') lowerCAmelCase__ : Dict = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCAmelCase__ ( lowerCamelCase_ : float ,lowerCamelCase_ : float): '''simple docstring''' if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''') return 2 * pi * radius * (height + radius) def lowerCAmelCase__ ( lowerCamelCase_ : float ,lowerCamelCase_ : float): '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''') if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''') return 4 * pow(lowerCamelCase_ ,2) * torus_radius * tube_radius def lowerCAmelCase__ ( lowerCamelCase_ : float ,lowerCamelCase_ : float): '''simple docstring''' if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''') return length * width def lowerCAmelCase__ ( lowerCamelCase_ : float): '''simple docstring''' if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''') return side_length**2 def lowerCAmelCase__ ( lowerCamelCase_ : float ,lowerCamelCase_ : float): '''simple docstring''' if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''') return (base * height) / 2 def lowerCAmelCase__ ( lowerCamelCase_ : float ,lowerCamelCase_ : float ,lowerCamelCase_ : float): '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''') elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''') lowerCAmelCase__ : List[str] = (sidea + sidea + sidea) / 2 lowerCAmelCase__ : List[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCAmelCase__ ( lowerCamelCase_ : float ,lowerCamelCase_ : float): '''simple docstring''' if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''') return base * height def lowerCAmelCase__ ( lowerCamelCase_ : float ,lowerCamelCase_ : float ,lowerCamelCase_ : float): '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''') return 1 / 2 * (basea + basea) * height def lowerCAmelCase__ ( lowerCamelCase_ : float): '''simple docstring''' if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''') return pi * radius**2 def lowerCAmelCase__ ( lowerCamelCase_ : float ,lowerCamelCase_ : float): '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''') return pi * radius_x * radius_y def lowerCAmelCase__ ( lowerCamelCase_ : float ,lowerCamelCase_ : float): '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''') return 1 / 2 * diagonal_a * diagonal_a def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : float): '''simple docstring''' if not isinstance(lowerCamelCase_ ,lowerCamelCase_) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''') elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''') return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f"""Rectangle: {area_rectangle(1_0, 2_0) = }""") print(f"""Square: {area_square(1_0) = }""") print(f"""Triangle: {area_triangle(1_0, 1_0) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }""") print(f"""Parallelogram: {area_parallelogram(1_0, 2_0) = }""") print(f"""Rhombus: {area_rhombus(1_0, 2_0) = }""") print(f"""Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }""") print(f"""Circle: {area_circle(2_0) = }""") print(f"""Ellipse: {area_ellipse(1_0, 2_0) = }""") print('\nSurface Areas of various geometric shapes: \n') print(f"""Cube: {surface_area_cube(2_0) = }""") print(f"""Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }""") print(f"""Sphere: {surface_area_sphere(2_0) = }""") print(f"""Hemisphere: {surface_area_hemisphere(2_0) = }""") print(f"""Cone: {surface_area_cone(1_0, 2_0) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }""") print(f"""Cylinder: {surface_area_cylinder(1_0, 2_0) = }""") print(f"""Torus: {surface_area_torus(2_0, 1_0) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 1_0) = }""") print(f"""Square: {area_reg_polygon(4, 1_0) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 1_0) = }""")
129
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __snake_case : int =logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = 4 lowerCAmelCase__ : List[str] = 3 lowerCAmelCase__ : Any = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } lowerCAmelCase__ : List[str] = self.dummy_input return init_dict, inputs_dict class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Optional[Any] = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (4, 32, 32) @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return (4, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } lowerCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model_accelerate.to(__lowerCamelCase ) model_accelerate.eval() lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : Dict = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model_accelerate(__lowerCamelCase ,__lowerCamelCase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCAmelCase__ , lowerCAmelCase__ : Tuple = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ,low_cpu_mem_usage=__lowerCamelCase ) model_normal_load.to(__lowerCamelCase ) model_normal_load.eval() lowerCAmelCase__ : List[Any] = model_normal_load(__lowerCamelCase ,__lowerCamelCase )['''sample'''] assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[str] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : str = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : str = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ : str = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) ) class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ,__lowerCamelCase=(32, 32) ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } lowerCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.dummy_input lowerCAmelCase__ : Tuple = floats_tensor((4, 3) + (2_56, 2_56) ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = noise lowerCAmelCase__ : Union[str, Any] = model(**__lowerCamelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Dict = 4 lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : List[Any] = (2_56, 2_56) lowerCAmelCase__ : str = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Optional[Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Dict = 3 lowerCAmelCase__ : str = (32, 32) lowerCAmelCase__ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Union[str, Any] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass
129
1
from torch import nn def _A ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
352
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase : Union[str, Any] = 1.054571817E-34 # unit of ℏ : J * s UpperCAmelCase : Union[str, Any] = 3E8 # unit of c : m * s^-1 def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: a__ : Tuple =(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: a__ : Any =(240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: a__ : List[str] =( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
148
0
def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() # edges = list of graph's edges __UpperCAmelCase = get_edges(SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __UpperCAmelCase , __UpperCAmelCase = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE ) chosen_vertices.add(SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE ) return chosen_vertices def __a ( SCREAMING_SNAKE_CASE ) -> set: '''simple docstring''' __UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
333
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
1
snake_case : List[str] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __lowerCamelCase ( UpperCAmelCase_ : bytes ): """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): a :List[str] = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(UpperCAmelCase_ ) a :Union[str, Any] = ''''''.join(bin(UpperCAmelCase_ )[2:].zfill(8 ) for byte in data ) a :Tuple = len(UpperCAmelCase_ ) % 6 != 0 if padding_needed: # The padding that will be added later a :str = B'''=''' * ((6 - len(UpperCAmelCase_ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(UpperCAmelCase_ ) % 6) else: a :Any = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(UpperCAmelCase_ ) , 6 ) ).encode() + padding ) def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): a :List[Any] = ( '''argument should be a bytes-like object or ASCII string, ''' F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(UpperCAmelCase_ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): try: a :int = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) a :List[str] = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(UpperCAmelCase_ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one a :Optional[Any] = encoded_data[:-padding] a :List[str] = ''''''.join( bin(B64_CHARSET.index(UpperCAmelCase_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: a :Tuple = ''''''.join( bin(B64_CHARSET.index(UpperCAmelCase_ ) )[2:].zfill(6 ) for char in encoded_data ) a :List[str] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(UpperCAmelCase_ ) , 8 ) ] return bytes(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
281
def __lowerCamelCase ( UpperCAmelCase_ : int = 100 ): """simple docstring""" a :List[Any] = 0 a :List[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
281
1
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> Any: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> int: '''simple docstring''' A__ = np.max(_outputs , axis=-1 , keepdims=SCREAMING_SNAKE_CASE_ ) A__ = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE_ ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'sigmoid' __lowerCamelCase = 'softmax' __lowerCamelCase = 'none' @add_end_docstrings( snake_case , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = False __lowerCamelCase = ClassificationFunction.NONE def __init__( self , **lowercase ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def UpperCamelCase ( self , lowercase=None , lowercase=None , lowercase="" , **lowercase ) -> Optional[int]: '''simple docstring''' A__ = tokenizer_kwargs A__ = {} if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None: A__ = self.model.config.return_all_scores if isinstance(lowercase , lowercase ) or top_k is None: A__ = top_k A__ = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , lowercase , ) if return_all_scores: A__ = None else: A__ = 1 if isinstance(lowercase , lowercase ): A__ = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: A__ = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *lowercase , **lowercase ) -> Any: '''simple docstring''' A__ = super().__call__(*lowercase , **lowercase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. A__ = "top_k" not in kwargs if isinstance(args[0] , lowercase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def UpperCamelCase ( self , lowercase , **lowercase ) -> Dict[str, GenericTensor]: '''simple docstring''' A__ = self.framework if isinstance(lowercase , lowercase ): return self.tokenizer(**lowercase , return_tensors=lowercase , **lowercase ) elif isinstance(lowercase , lowercase ) and len(lowercase ) == 1 and isinstance(inputs[0] , lowercase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=lowercase , **lowercase ) elif isinstance(lowercase , lowercase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase ) -> Dict: '''simple docstring''' return self.model(**lowercase ) def UpperCamelCase ( self , lowercase , lowercase=None , lowercase=1 , lowercase=True ) -> Tuple: '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: A__ = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: A__ = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None: A__ = self.model.config.function_to_apply else: A__ = ClassificationFunction.NONE A__ = model_outputs["logits"][0] A__ = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: A__ = sigmoid(lowercase ) elif function_to_apply == ClassificationFunction.SOFTMAX: A__ = softmax(lowercase ) elif function_to_apply == ClassificationFunction.NONE: A__ = outputs else: raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} A__ = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(lowercase ) ] if not _legacy: dict_scores.sort(key=lambda lowercase : x["score"] , reverse=lowercase ) if top_k is not None: A__ = dict_scores[:top_k] return dict_scores
68
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class a__ : """simple docstring""" __lowerCamelCase = BlenderbotSmallConfig __lowerCamelCase = {} __lowerCamelCase = 'gelu' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_blenderbot_small_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def UpperCamelCase ( self , lowercase , lowercase ) -> str: '''simple docstring''' A__ = TFBlenderbotSmallModel(config=lowercase ).get_decoder() A__ = inputs_dict["input_ids"] A__ = input_ids[:1, :] A__ = inputs_dict["attention_mask"][:1, :] A__ = inputs_dict["head_mask"] A__ = 1 # first forward pass A__ = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(lowercase , attention_mask=lowercase )[0] A__ = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1e-3 ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Optional[Any]=None , SCREAMING_SNAKE_CASE_: Optional[int]=None , SCREAMING_SNAKE_CASE_: Optional[int]=None , SCREAMING_SNAKE_CASE_: Dict=None , SCREAMING_SNAKE_CASE_: List[str]=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: A__ = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a__ ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __lowerCamelCase = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = TFBlenderbotSmallModelTester(self ) A__ = ConfigTester(self , config_class=lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_tokenizers @require_tf class a__ ( unittest.TestCase ): """simple docstring""" __lowerCamelCase = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] __lowerCamelCase = 'facebook/blenderbot_small-90M' @cached_property def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.tokenizer(self.src_text , return_tensors="tf" ) A__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) A__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
68
1
from collections.abc import Iterable from typing import Any class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ = None ) -> str: _snake_case = value _snake_case = None # Added in order to delete a node easier _snake_case = None _snake_case = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'''{self.value}''': (self.left, self.right)} , indent=1 ) class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ = None ) -> Dict: _snake_case = root def __str__( self ) -> str: return str(self.root ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if new_children is not None: # reset its kids _snake_case = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase_ ): # If it is the right children _snake_case = new_children else: _snake_case = new_children else: _snake_case = new_children def lowerCAmelCase ( self , lowerCAmelCase_ ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def lowerCAmelCase ( self ) -> bool: return self.root is None def lowerCAmelCase ( self , lowerCAmelCase_ ) -> None: _snake_case = Node(lowerCAmelCase_ ) # create a new Node if self.empty(): # if Tree is empty _snake_case = new_node # set its root else: # Tree is not empty _snake_case = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: _snake_case = new_node # We insert the new node in a leaf break else: _snake_case = parent_node.left else: if parent_node.right is None: _snake_case = new_node break else: _snake_case = parent_node.right _snake_case = parent_node def lowerCAmelCase ( self , *lowerCAmelCase_ ) -> None: for value in values: self.__insert(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Node | None: if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: _snake_case = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: _snake_case = node.left if value < node.value else node.right return node def lowerCAmelCase ( self , lowerCAmelCase_ = None ) -> Node | None: if node is None: if self.root is None: return None _snake_case = self.root if not self.empty(): while node.right is not None: _snake_case = node.right return node def lowerCAmelCase ( self , lowerCAmelCase_ = None ) -> Node | None: if node is None: _snake_case = self.root if self.root is None: return None if not self.empty(): _snake_case = self.root while node.left is not None: _snake_case = node.left return node def lowerCAmelCase ( self , lowerCAmelCase_ ) -> None: _snake_case = self.search(lowerCAmelCase_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase_ , lowerCAmelCase_ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase_ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase_ , node.left ) else: _snake_case = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore _snake_case = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowerCAmelCase ( self , lowerCAmelCase_=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if node: self.inorder(lowerCAmelCase_ , node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase_ , node.right ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _snake_case = [] self.inorder(lowerCAmelCase_ , lowerCAmelCase_ ) # append all values to list using inorder traversal return arr[k - 1] def lowerCamelCase__ ( UpperCamelCase__ : Node | None ) -> list[Node]: '''simple docstring''' _snake_case = [] if curr_node is not None: _snake_case = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCamelCase__ ( ) -> None: '''simple docstring''' _snake_case = (8, 3, 6, 1, 10, 14, 13, 4, 7) _snake_case = BinarySearchTree() for i in testlist: t.insert(UpperCamelCase__ ) # Prints all the elements of the list in order traversal print(UpperCamelCase__ ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(UpperCamelCase__ ) print(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
295
from collections.abc import Sequence def lowerCamelCase__ ( UpperCamelCase__ : Sequence[float] , UpperCamelCase__ : bool = False ) -> float: '''simple docstring''' if not arr: return 0 _snake_case = 0 if allow_empty_subarrays else float('-inf' ) _snake_case = 0.0 for num in arr: _snake_case = max(0 if allow_empty_subarrays else num , curr_sum + num ) _snake_case = max(UpperCamelCase__ , UpperCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
295
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _lowerCamelCase( ): print("Making key files..." ) make_key_files("rsa" , 1_0_2_4 ) print("Key files generation successful." ) def _lowerCamelCase( a ): print("Generating prime p..." ) __a = rabinMiller.generate_large_prime(a ) print("Generating prime q..." ) __a = rabinMiller.generate_large_prime(a ) __a = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: __a = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(a , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) __a = cryptoMath.find_mod_inverse(a , (p - 1) * (q - 1) ) __a = (n, e) __a = (n, d) return (public_key, private_key) def _lowerCamelCase( a , a ): if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print("\nWARNING:" ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" "Use a different name or delete these files and re-run this program." ) sys.exit() __a , __a = generate_key(a ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" , "w" ) as out_file: out_file.write(F"{key_size},{public_key[0]},{public_key[1]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" , "w" ) as out_file: out_file.write(F"{key_size},{private_key[0]},{private_key[1]}" ) if __name__ == "__main__": main()
261
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy SCREAMING_SNAKE_CASE__:List[Any] = logging.get_logger(__name__) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ): __a = feature_size __a = sampling_rate __a = padding_value __a = kwargs.pop("padding_side" , "right" ) __a = kwargs.pop("return_attention_mask" , lowerCamelCase ) super().__init__(**lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowerCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __a = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F" to this method that includes {self.model_input_names[0]}, but you provided" F" {list(processed_features.keys() )}" ) __a = processed_features[self.model_input_names[0]] __a = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCamelCase ) == 0: if return_attention_mask: __a = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __a = required_input[0] if isinstance(lowerCamelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __a = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCamelCase ): __a = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCamelCase ): __a = "tf" elif is_torch_tensor(lowerCamelCase ): __a = "pt" elif isinstance(lowerCamelCase , (int, float, list, tuple, np.ndarray) ): __a = "np" else: raise ValueError( F"type of {first_element} unknown: {type(lowerCamelCase )}. " "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __a = to_numpy(lowerCamelCase ) else: __a = [to_numpy(lowerCamelCase ) for v in value] # Convert padding_strategy in PaddingStrategy __a = self._get_padding_strategies(padding=lowerCamelCase , max_length=lowerCamelCase ) __a = processed_features[self.model_input_names[0]] __a = len(lowerCamelCase ) if not all(len(lowerCamelCase ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) __a = [] for i in range(lowerCamelCase ): __a = {k: v[i] for k, v in processed_features.items()} # truncation __a = self._truncate( lowerCamelCase , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , truncation=lowerCamelCase , ) truncated_inputs.append(lowerCamelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __a = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __a = PaddingStrategy.MAX_LENGTH __a = {} for i in range(lowerCamelCase ): # padding __a = self._pad( truncated_inputs[i] , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) for key, value in outputs.items(): if key not in batch_outputs: __a = [] if value.dtype is np.dtype(np.floataa ): __a = value.astype(np.floataa ) batch_outputs[key].append(lowerCamelCase ) return BatchFeature(lowerCamelCase , tensor_type=lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = PaddingStrategy.DO_NOT_PAD , lowerCamelCase = None , lowerCamelCase = None , ): __a = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __a = len(lowerCamelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __a = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __a = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCamelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __a = np.ones(len(lowerCamelCase ) , dtype=np.intaa ) if needs_to_be_padded: __a = max_length - len(lowerCamelCase ) if self.padding_side == "right": if return_attention_mask: __a = np.pad( processed_features["attention_mask"] , (0, difference) ) __a = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __a = np.pad( lowerCamelCase , lowerCamelCase , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __a = np.pad( processed_features["attention_mask"] , (difference, 0) ) __a = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __a = np.pad( lowerCamelCase , lowerCamelCase , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) __a = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __a = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __a = len(lowerCamelCase ) > max_length if needs_to_be_truncated: __a = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __a = processed_features["attention_mask"][:max_length] return processed_features def a__ ( self , lowerCamelCase=False , lowerCamelCase=None ): # Get padding strategy if padding is not False: if padding is True: __a = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCamelCase , lowerCamelCase ): __a = PaddingStrategy(lowerCamelCase ) elif isinstance(lowerCamelCase , lowerCamelCase ): __a = padding else: __a = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
261
1
"""simple docstring""" def UpperCAmelCase ( a_ = 5000_0000 ) -> List[str]: '''simple docstring''' lowerCamelCase : List[str] = set() lowerCamelCase : int = int((limit - 24) ** (1 / 2) ) lowerCamelCase : Tuple = set(range(3, prime_square_limit + 1, 2 ) ) primes.add(2 ) for p in range(3, prime_square_limit + 1, 2 ): if p not in primes: continue primes.difference_update(set(range(p * p, prime_square_limit + 1, a_ ) ) ) for primea in primes: lowerCamelCase : int = primea * primea for primea in primes: lowerCamelCase : int = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCamelCase : Dict = primea * primea * primea * primea lowerCamelCase : Tuple = square + cube + tetr if total >= limit: break ret.add(a_ ) return len(a_ ) if __name__ == "__main__": print(F"""{solution() = }""")
361
"""simple docstring""" from __future__ import annotations _A = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase ( a_, a_, a_, a_, a_, ): '''simple docstring''' lowerCamelCase : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(a_ ) ) ] # the reference grid lowerCamelCase : Union[str, Any] = 1 lowerCamelCase : Any = [ [0 for col in range(len(grid[0] ) )] for row in range(len(a_ ) ) ] # the action grid lowerCamelCase : List[str] = init[0] lowerCamelCase : Optional[Any] = init[1] lowerCamelCase : List[Any] = 0 lowerCamelCase : List[str] = g + heuristic[x][y] # cost from starting cell to destination cell lowerCamelCase : Union[str, Any] = [[f, g, x, y]] lowerCamelCase : Union[str, Any] = False # flag that is set when search is complete lowerCamelCase : str = False # flag set if we can't find expand while not found and not resign: if len(a_ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCamelCase : int = cell.pop() lowerCamelCase : str = next_cell[2] lowerCamelCase : Union[str, Any] = next_cell[3] lowerCamelCase : List[str] = next_cell[1] if x == goal[0] and y == goal[1]: lowerCamelCase : Any = True else: for i in range(len(a_ ) ): # to try out different valid actions lowerCamelCase : Tuple = x + DIRECTIONS[i][0] lowerCamelCase : Union[str, Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(a_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCamelCase : str = g + cost lowerCamelCase : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCamelCase : Union[str, Any] = 1 lowerCamelCase : Any = i lowerCamelCase : Any = [] lowerCamelCase : Optional[int] = goal[0] lowerCamelCase : Dict = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCamelCase : Dict = x - DIRECTIONS[action[x][y]][0] lowerCamelCase : Dict = y - DIRECTIONS[action[x][y]][1] lowerCamelCase : Optional[Any] = xa lowerCamelCase : Union[str, Any] = ya invpath.append([x, y] ) lowerCamelCase : Optional[int] = [] for i in range(len(a_ ) ): path.append(invpath[len(a_ ) - 1 - i] ) return path, action if __name__ == "__main__": _A = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _A = [0, 0] # all coordinates are given in format [y,x] _A = [len(grid) - 1, len(grid[0]) - 1] _A = 1 # the cost map which pushes the path closer to the goal _A = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _A = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _A = 9_9 _A , _A = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
205
0
# flake8: noqa # Lint as: python3 _SCREAMING_SNAKE_CASE : Tuple = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
314
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a__: List[Any] = logging.getLogger() def UpperCamelCase__( )->Union[str, Any]: A__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) A__ = parser.parse_args() return args.f class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def UpperCamelCase ( self ): A__ = logging.StreamHandler(sys.stdout ) logger.addHandler(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0,'''run_glue_deebert.py''' ) with patch.object(__lowerCamelCase,'''argv''',__lowerCamelCase ): A__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__lowerCamelCase,0.666 ) @slow @require_torch_non_multi_gpu def UpperCamelCase ( self ): A__ = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(__lowerCamelCase ) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__lowerCamelCase ) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__lowerCamelCase )
193
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class a__ ( UpperCamelCase__ , unittest.TestCase ): a : List[Any] = RoFormerTokenizer a : Tuple = RoFormerTokenizerFast a : Dict = True a : Optional[Any] = True def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' super().setUp() def lowerCAmelCase_ ( self , **A ) -> Tuple: '''simple docstring''' return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **A ) def lowerCAmelCase_ ( self , **A ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **A ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' a = "永和服装饰品有限公司,今天天气非常好" a = "永和 服装 饰品 有限公司 , 今 天 天 气 非常 好" return input_text, output_text def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = self.get_tokenizer() a , a = self.get_chinese_input_output_texts() a = tokenizer.tokenize(A ) self.assertListEqual(A , output_text.split() ) a = tokens + [tokenizer.unk_token] a = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' a = self.get_rust_tokenizer() a , a = self.get_chinese_input_output_texts() a = tokenizer.tokenize(A ) self.assertListEqual(A , output_text.split() ) a = tokens + [tokenizer.unk_token] a = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' pass def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' pass def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' pass
371
import math def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCamelCase) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 0.1) -> int: a = 3 a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(__UpperCamelCase) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
180
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class A__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , lowercase , lowercase = None , lowercase = None , lowercase = True , lowercase = None , lowercase = False , lowercase = None , lowercase = True , lowercase = "arrow" , **lowercase , ) -> List[Any]: '''simple docstring''' super().__init__( split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , **lowercase , ) a__ : Dict = load_from_cache_file a__ : Tuple = file_format a__ : Dict = Spark( df=lowercase , features=lowercase , cache_dir=lowercase , working_dir=lowercase , **lowercase , ) def __lowercase ( self) -> Any: '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split) a__ : Union[str, Any] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowercase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split)
99
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> str: __lowerCamelCase : Tuple = 0 __lowerCamelCase : Optional[int] = len(UpperCAmelCase_ ) for i in range(n - 1 ): for j in range(i + 1 , UpperCAmelCase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> Optional[int]: if len(UpperCAmelCase_ ) <= 1: return arr, 0 __lowerCamelCase : str = len(UpperCAmelCase_ ) // 2 __lowerCamelCase : List[Any] = arr[0:mid] __lowerCamelCase : List[str] = arr[mid:] __lowerCamelCase , __lowerCamelCase : int = count_inversions_recursive(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = count_inversions_recursive(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Any = _count_cross_inversions(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) -> Optional[Any]: __lowerCamelCase : List[str] = [] __lowerCamelCase : Optional[int] = 0 while i < len(UpperCAmelCase_ ) and j < len(UpperCAmelCase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(UpperCAmelCase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(UpperCAmelCase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCAmelCase__ ( ) -> List[str]: __lowerCamelCase : Any = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCamelCase : Optional[Any] = count_inversions_bf(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Dict = count_inversions_recursive(UpperCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , UpperCAmelCase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCamelCase : Optional[Any] = count_inversions_bf(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : int = count_inversions_recursive(UpperCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , UpperCAmelCase_ ) # an empty list should also have zero inversions __lowerCamelCase : Dict = [] __lowerCamelCase : Optional[Any] = count_inversions_bf(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = count_inversions_recursive(UpperCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , UpperCAmelCase_ ) if __name__ == "__main__": main()
185
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("""Enter image url: """).strip() print(F'''Downloading image from {url} ...''') _SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image _SCREAMING_SNAKE_CASE = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] _SCREAMING_SNAKE_CASE = requests.get(image_url).content _SCREAMING_SNAKE_CASE = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, """wb""") as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
165
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off _SCREAMING_SNAKE_CASE = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] _SCREAMING_SNAKE_CASE = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """whisper""" __lowerCAmelCase = ["""past_key_values"""] __lowerCAmelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowerCamelCase_ : Tuple=5_1865 , lowerCamelCase_ : Dict=80 , lowerCamelCase_ : str=6 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=6 , lowerCamelCase_ : Optional[int]=4 , lowerCamelCase_ : Optional[int]=1536 , lowerCamelCase_ : int=1536 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : str=5_0257 , lowerCamelCase_ : Any=True , lowerCamelCase_ : int=True , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : int=256 , lowerCamelCase_ : str=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Any=0.0_2 , lowerCamelCase_ : str=False , lowerCamelCase_ : List[str]=1500 , lowerCamelCase_ : Dict=448 , lowerCamelCase_ : Tuple=5_0256 , lowerCamelCase_ : Tuple=5_0256 , lowerCamelCase_ : List[Any]=5_0256 , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Optional[int]=[220, 5_0256] , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : Dict=256 , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : List[Any]=0.0_5 , lowerCamelCase_ : Dict=10 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : str=10 , lowerCamelCase_ : Dict=0 , lowerCamelCase_ : Optional[int]=7 , **lowerCamelCase_ : Any , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = num_mel_bins UpperCamelCase = d_model UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = encoder_ffn_dim UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase = max_source_positions UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks UpperCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , suppress_tokens=lowerCamelCase_ , begin_suppress_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCamelCase = {0: """batch"""} else: UpperCamelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction="""inputs""" ) return common_inputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional["TensorType"] = None , lowerCamelCase_ : int = 2_2050 , lowerCamelCase_ : float = 5.0 , lowerCamelCase_ : int = 220 , ): """simple docstring""" UpperCamelCase = OrderedDict() UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase_ , framework=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , time_duration=lowerCamelCase_ , frequency=lowerCamelCase_ , ) UpperCamelCase = encoder_inputs["""input_features"""].shape[2] UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = encoder_inputs.pop("""input_features""" ) UpperCamelCase = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCamelCase = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def lowerCamelCase_ ( self : int ): """simple docstring""" return 1E-3
165
1
'''simple docstring''' import operator def a_ ( __snake_case : list , __snake_case : bool = False , __snake_case : list | None = None ) -> list: """simple docstring""" lowerCamelCase_ =operator.lt if reverse else operator.gt lowerCamelCase_ =solution or [] if not arr: return solution lowerCamelCase_ =[arr.pop(0 )] for i, item in enumerate(_A ): if _operator(_A , sublist[-1] ): sublist.append(_A ) arr.pop(_A ) # merging sublist into solution list if not solution: solution.extend(_A ) else: while sublist: lowerCamelCase_ =sublist.pop(0 ) for i, xx in enumerate(_A ): if not _operator(_A , _A ): solution.insert(_A , _A ) break else: solution.append(_A ) strand_sort(_A , _A , _A ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
75
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A : Any = logging.get_logger(__name__) __A : Dict = {'vocab_file': 'spiece.model'} __A : List[Any] = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<sep>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<cls>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=["<eop>", "<eod>"] , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> None: lowerCamelCase_ =AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token lowerCamelCase_ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =3 lowerCamelCase_ =do_lower_case lowerCamelCase_ =remove_space lowerCamelCase_ =keep_accents lowerCamelCase_ =vocab_file lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) lowerCamelCase_ =jieba lowerCamelCase_ =str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self )-> Any: return len(self.sp_model ) def _snake_case ( self )-> Dict: lowerCamelCase_ ={self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self )-> List[Any]: lowerCamelCase_ =self.__dict__.copy() lowerCamelCase_ =None return state def __setstate__( self , _SCREAMING_SNAKE_CASE )-> List[Any]: lowerCamelCase_ =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase_ ={} lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> int: if self.remove_space: lowerCamelCase_ =""" """.join(inputs.strip().split() ) else: lowerCamelCase_ =inputs lowerCamelCase_ =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowerCamelCase_ =unicodedata.normalize("""NFKD""" , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ ="""""".join([c for c in outputs if not unicodedata.combining(_SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: lowerCamelCase_ =outputs.lower() return outputs def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> List[str]: lowerCamelCase_ =self.preprocess_text(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[] for piece in pieces: if len(_SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCamelCase_ =self.sp_model.EncodeAsPieces(piece[:-1].replace(_SCREAMING_SNAKE_CASE , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase_ =cur_pieces[1:] else: lowerCamelCase_ =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_SCREAMING_SNAKE_CASE ) else: new_pieces.append(_SCREAMING_SNAKE_CASE ) return new_pieces def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: lowerCamelCase_ ="""""".join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )-> List[int]: lowerCamelCase_ =[self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )-> List[int]: lowerCamelCase_ =[self.sep_token_id] lowerCamelCase_ =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )-> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase_ =os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , """wb""" ) as fi: lowerCamelCase_ =self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> Any: lowerCamelCase_ =super()._decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
154
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = KandinskyVaaControlnetPipeline lowerCamelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] lowerCamelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] lowerCamelCase__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCamelCase__ = False @property def __A ( self : int ) -> str: return 32 @property def __A ( self : List[Any] ) -> Optional[int]: return 32 @property def __A ( self : Dict ) -> str: return self.time_input_dim @property def __A ( self : Any ) -> List[str]: return self.time_input_dim * 4 @property def __A ( self : List[Any] ) -> List[str]: return 100 @property def __A ( self : Optional[Any] ) -> int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE_ = UNetaDConditionModel(**__magic_name__ ) return model @property def __A ( self : List[str] ) -> Tuple: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __A ( self : Union[str, Any] ) -> Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.dummy_unet SCREAMING_SNAKE_CASE_ = self.dummy_movq SCREAMING_SNAKE_CASE_ = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , steps_offset=1 , prediction_type="epsilon" , thresholding=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __A ( self : Dict , __magic_name__ : Tuple , __magic_name__ : Optional[int]=0 ) -> int: SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __magic_name__ ) # create hint SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) if str(__magic_name__ ).startswith("mps" ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def __A ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = "cpu" SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = self.pipeline_class(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" ) SCREAMING_SNAKE_CASE_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(np.array(__magic_name__ ) ).float() / 255.0 SCREAMING_SNAKE_CASE_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "A robot, 4k photo" SCREAMING_SNAKE_CASE_ = torch.Generator(device="cuda" ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() SCREAMING_SNAKE_CASE_ = torch.Generator(device="cuda" ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipeline( image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , hint=__magic_name__ , generator=__magic_name__ , num_inference_steps=100 , output_type="np" , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
305
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A : int = logging.get_logger(__name__) A : str = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_text_model''' def __init__( self : Optional[Any] , __magic_name__ : Union[str, Any]=30_522 , __magic_name__ : Tuple=768 , __magic_name__ : List[str]=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : str=3_072 , __magic_name__ : Dict="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : Any=2 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : int=1e-12 , __magic_name__ : str=0 , __magic_name__ : Optional[Any]="absolute" , __magic_name__ : Optional[Any]=True , **__magic_name__ : Tuple , ) -> Union[str, Any]: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = pad_token_id @classmethod def __A ( cls : Any , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_vision_model''' def __init__( self : List[str] , __magic_name__ : int = 3 , __magic_name__ : int = 600 , __magic_name__ : float = 2.0 , __magic_name__ : float = 3.1 , __magic_name__ : int = 8 , __magic_name__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , __magic_name__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , __magic_name__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , __magic_name__ : List[int] = [] , __magic_name__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , __magic_name__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , __magic_name__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , __magic_name__ : float = 0.25 , __magic_name__ : str = "swish" , __magic_name__ : int = 2_560 , __magic_name__ : str = "mean" , __magic_name__ : float = 0.02 , __magic_name__ : float = 0.001 , __magic_name__ : float = 0.99 , __magic_name__ : float = 0.2 , **__magic_name__ : List[Any] , ) -> Tuple: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = width_coefficient SCREAMING_SNAKE_CASE_ = depth_coefficient SCREAMING_SNAKE_CASE_ = depth_divisor SCREAMING_SNAKE_CASE_ = kernel_sizes SCREAMING_SNAKE_CASE_ = in_channels SCREAMING_SNAKE_CASE_ = out_channels SCREAMING_SNAKE_CASE_ = depthwise_padding SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = num_block_repeats SCREAMING_SNAKE_CASE_ = expand_ratios SCREAMING_SNAKE_CASE_ = squeeze_expansion_ratio SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = pooling_type SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = batch_norm_eps SCREAMING_SNAKE_CASE_ = batch_norm_momentum SCREAMING_SNAKE_CASE_ = drop_connect_rate SCREAMING_SNAKE_CASE_ = sum(__magic_name__ ) * 4 @classmethod def __A ( cls : List[str] , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Dict ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align''' lowerCamelCase__ = True def __init__( self : Optional[Any] , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : str=640 , __magic_name__ : Any=1.0 , __magic_name__ : Dict=0.02 , **__magic_name__ : Union[str, Any] , ) -> int: super().__init__(**__magic_name__ ) if text_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) SCREAMING_SNAKE_CASE_ = AlignTextConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = AlignVisionConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = projection_dim SCREAMING_SNAKE_CASE_ = temperature_init_value SCREAMING_SNAKE_CASE_ = initializer_range @classmethod def __A ( cls : List[str] , __magic_name__ : AlignTextConfig , __magic_name__ : AlignVisionConfig , **__magic_name__ : Tuple ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ ) def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
305
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _snake_case ( ) -> Any: lowerCamelCase_ : Union[str, Any] ="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" lowerCamelCase_ : Union[str, Any] =Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("RGB" ) return image def _snake_case ( lowerCamelCase__ : Dict ) -> Optional[int]: lowerCamelCase_ : List[str] =[] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any ) -> Any: lowerCamelCase_ : Dict =dct.pop(UpperCamelCase__ ) lowerCamelCase_ : Union[str, Any] =val def _snake_case ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] ) -> List[str]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCamelCase_ : Optional[int] =state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowerCamelCase_ : Optional[int] =state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowerCamelCase_ : Optional[Any] =torch.cat((q_bias, torch.zeros_like(UpperCamelCase__ , requires_grad=UpperCamelCase__ ), v_bias) ) lowerCamelCase_ : str =qkv_bias def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] ) -> Optional[int]: lowerCamelCase_ : Tuple =364 if "coco" in model_name else 224 lowerCamelCase_ : List[str] =BlipaVisionConfig(image_size=UpperCamelCase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCamelCase_ : Tuple =OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=UpperCamelCase__ ).to_dict() elif "opt-6.7b" in model_name: lowerCamelCase_ : List[str] =OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=UpperCamelCase__ ).to_dict() elif "t5-xl" in model_name: lowerCamelCase_ : Optional[Any] =TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCamelCase_ : Dict =TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() lowerCamelCase_ : List[Any] =BlipaConfig(vision_config=UpperCamelCase__ , text_config=UpperCamelCase__ ) return config, image_size @torch.no_grad() def _snake_case ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : List[Any]=False ) -> Optional[Any]: lowerCamelCase_ : List[str] =( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) lowerCamelCase_ : Tuple =tokenizer("\n" , add_special_tokens=UpperCamelCase__ ).input_ids[0] lowerCamelCase_ , lowerCamelCase_ : Optional[int] =get_blipa_config(UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] =BlipaForConditionalGeneration(UpperCamelCase__ ).eval() lowerCamelCase_ : Tuple ={ "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } lowerCamelCase_ , lowerCamelCase_ : List[Any] =model_name_to_original[model_name] # load original model print("Loading original model..." ) lowerCamelCase_ : Union[str, Any] ="cuda" if torch.cuda.is_available() else "cpu" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : str =load_model_and_preprocess( name=UpperCamelCase__ , model_type=UpperCamelCase__ , is_eval=UpperCamelCase__ , device=UpperCamelCase__ ) original_model.eval() print("Done!" ) # update state dict keys lowerCamelCase_ : str =original_model.state_dict() lowerCamelCase_ : Optional[int] =create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCamelCase_ : Dict =state_dict.pop(UpperCamelCase__ ) if key.startswith("Qformer.bert" ): lowerCamelCase_ : Union[str, Any] =key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: lowerCamelCase_ : int =key.replace("self" , "attention" ) if "opt_proj" in key: lowerCamelCase_ : List[Any] =key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: lowerCamelCase_ : int =key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): lowerCamelCase_ : List[Any] =key.replace("opt" , "language" ) if key.startswith("t5" ): lowerCamelCase_ : Optional[Any] =key.replace("t5" , "language" ) lowerCamelCase_ : str =val # read in qv biases read_in_q_v_bias(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ : int =hf_model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCamelCase_ : str =load_demo_image() lowerCamelCase_ : Optional[int] =vis_processors["eval"](UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] =tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(UpperCamelCase__ ) # create processor lowerCamelCase_ : Optional[int] =BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ ) lowerCamelCase_ : str =BlipaProcessor(image_processor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) lowerCamelCase_ : int =processor(images=UpperCamelCase__ , return_tensors="pt" ).pixel_values.to(UpperCamelCase__ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) hf_model.to(UpperCamelCase__ ) with torch.no_grad(): if "opt" in model_name: lowerCamelCase_ : List[Any] =original_model({"image": original_pixel_values, "text_input": [""]} ).logits lowerCamelCase_ : int =hf_model(UpperCamelCase__ , UpperCamelCase__ ).logits else: lowerCamelCase_ : Union[str, Any] =original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits lowerCamelCase_ : Union[str, Any] =input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowerCamelCase_ : Any =hf_model(UpperCamelCase__ , UpperCamelCase__ , labels=UpperCamelCase__ ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCamelCase_ : Dict =torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=UpperCamelCase__ ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCamelCase_ : Any =torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=UpperCamelCase__ ) else: # cast to same type lowerCamelCase_ : Dict =logits.dtype assert torch.allclose(original_logits.to(UpperCamelCase__ ) , UpperCamelCase__ , atol=1e-2 ) print("Looks ok!" ) print("Generating a caption..." ) lowerCamelCase_ : Dict ="" lowerCamelCase_ : Union[str, Any] =tokenizer(UpperCamelCase__ , return_tensors="pt" ).input_ids.to(UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] =original_model.generate({"image": original_pixel_values} ) lowerCamelCase_ : List[Any] =hf_model.generate( UpperCamelCase__ , UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] =input_ids.shape[1] lowerCamelCase_ : str =processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCamelCase__ ) lowerCamelCase_ : List[str] =[text.strip() for text in output_text] print("HF generation:" , UpperCamelCase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": A__ : Optional[Any] = argparse.ArgumentParser() A__ : List[str] = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) A__ : Union[str, Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
144
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : List[Any] = logging.get_logger() @dataclass class lowercase : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : List[nn.Module] = field(default_factory=lowercase_ ) __SCREAMING_SNAKE_CASE : list = field(default_factory=lowercase_ ) def a ( self , snake_case , snake_case , snake_case ): snake_case_ = len(list(m.modules() ) ) == 1 or isinstance(snake_case , nn.Convad ) or isinstance(snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self , snake_case ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def a ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowercase : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : List = field(default_factory=lowercase_ ) __SCREAMING_SNAKE_CASE : List = field(default_factory=lowercase_ ) def __call__( self , snake_case ): snake_case_ = Tracker(self.dest )(snake_case ).parametrized snake_case_ = Tracker(self.src )(snake_case ).parametrized snake_case_ = list(filter(lambda snake_case : type(snake_case ) not in self.src_skip , snake_case ) ) snake_case_ = list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip , snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( F'''Numbers of operations are different. Source module has {len(snake_case )} operations while''' F''' destination module has {len(snake_case )}.''' ) for dest_m, src_m in zip(snake_case , snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): snake_case_ = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() snake_case_ = ResNetForImageClassification(UpperCamelCase__ ).eval() snake_case_ = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) snake_case_ = torch.randn((1, 3, 224, 224) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." snake_case_ = F'''resnet{"-".join(name.split("resnet" ) )}''' print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one snake_case_ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=UpperCamelCase__ , ) print(F'''Pushed {checkpoint_name}''' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = 1000 snake_case_ = (1, num_labels) snake_case_ = 'huggingface/label-files' snake_case_ = num_labels snake_case_ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) snake_case_ = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) _UpperCAmelCase : Optional[Any] = parser.parse_args() _UpperCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
285
0
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __UpperCamelCase ( nn.Module ): def __init__(self : Any , __SCREAMING_SNAKE_CASE : int = 1_6 , __SCREAMING_SNAKE_CASE : int = 8_8 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : int = 3_2 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : str = "geglu" , __SCREAMING_SNAKE_CASE : Optional[int] = None , ): super().__init__() A = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , cross_attention_dim=__SCREAMING_SNAKE_CASE , attention_bias=__SCREAMING_SNAKE_CASE , sample_size=__SCREAMING_SNAKE_CASE , num_vector_embeds=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , num_embeds_ada_norm=__SCREAMING_SNAKE_CASE , ) for _ in range(2) ]) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A = [7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A = [1, 0] def SCREAMING_SNAKE_CASE__ (self : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : bool = True , ): A = hidden_states A = [] A = 0 # attention_mask is not used yet for i in range(2): # for each of the two transformers, pass the corresponding condition tokens A = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A = self.transformer_index_for_condition[i] A = self.transformers[transformer_index]( __SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , cross_attention_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] encoded_states.append(encoded_state - input_states) tokens_start += self.condition_lengths[i] A = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE)
57
"""simple docstring""" from __future__ import annotations class __UpperCamelCase : def __init__(self : Tuple , __SCREAMING_SNAKE_CASE : int = 0): A = key def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(__SCREAMING_SNAKE_CASE) ^ key) for ch in content] def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(__SCREAMING_SNAKE_CASE) ^ key) for ch in content] def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 0): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned A = "" for ch in content: ans += chr(ord(__SCREAMING_SNAKE_CASE) ^ key) return ans def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 0): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned A = "" for ch in content: ans += chr(ord(__SCREAMING_SNAKE_CASE) ^ key) return ans def SCREAMING_SNAKE_CASE__ (self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 0): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) try: with open(__SCREAMING_SNAKE_CASE) as fin, open("encrypt.out" , "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) except OSError: return False return True def SCREAMING_SNAKE_CASE__ (self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) try: with open(__SCREAMING_SNAKE_CASE) as fin, open("decrypt.out" , "w+") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
57
1
def a_ ( __lowercase : List[Any] , __lowercase : Union[str, Any] ) -> Union[str, Any]: return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
282
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __lowerCamelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __lowerCamelCase = "main" # Default branch name __lowerCamelCase = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) __lowerCamelCase = "aaaaaaa" # This commit does not exist, so we should 404. __lowerCamelCase = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes __lowerCamelCase = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def UpperCAmelCase ( ): """simple docstring""" print('Bonjour!' ) yield print('Au revoir!' ) class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> List[str]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class UpperCamelCase__( unittest.TestCase ): @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> Dict: with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() ,'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> List[str]: with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def snake_case__ ( self ,__UpperCAmelCase ) -> Any: with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def snake_case__ ( self ) -> Union[str, Any]: self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['start_positions', 'end_positions'] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) @require_tf def snake_case__ ( self ) -> str: self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,['start_positions', 'end_positions'] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,['labels'] ) @require_flax def snake_case__ ( self ) -> List[Any]: # Flax models don't have labels self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) self.assertEqual(find_labels(__UpperCAmelCase ) ,[] ) class UpperCamelCase__( __A ): pass self.assertEqual(find_labels(__UpperCAmelCase ) ,[] )
221
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowercase =logging.get_logger(__name__) lowercase ={ 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="dpt" def __init__( self , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-1_2 , snake_case=3_8_4 , snake_case=1_6 , snake_case=3 , snake_case=False , snake_case=True , snake_case=[2, 5, 8, 1_1] , snake_case="project" , snake_case=[4, 2, 1, 0.5] , snake_case=[9_6, 1_9_2, 3_8_4, 7_6_8] , snake_case=2_5_6 , snake_case=-1 , snake_case=False , snake_case=True , snake_case=0.4 , snake_case=2_5_5 , snake_case=0.1 , snake_case=[1, 1_0_2_4, 2_4, 2_4] , snake_case=[0, 1] , snake_case=None , **snake_case , ) -> List[Any]: '''simple docstring''' super().__init__(**snake_case) _UpperCAmelCase : Any =hidden_size _UpperCAmelCase : Union[str, Any] =is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.') _UpperCAmelCase : List[Any] ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } _UpperCAmelCase : Optional[Any] =BitConfig(**snake_case) elif isinstance(snake_case , snake_case): logger.info('Initializing the config with a `BiT` backbone.') _UpperCAmelCase : Any =BitConfig(**snake_case) elif isinstance(snake_case , snake_case): _UpperCAmelCase : Any =backbone_config else: raise ValueError( f"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.") _UpperCAmelCase : Optional[Any] =backbone_featmap_shape _UpperCAmelCase : str =neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.') else: _UpperCAmelCase : Optional[Any] =None _UpperCAmelCase : Any =None _UpperCAmelCase : Optional[int] =[] _UpperCAmelCase : str =num_hidden_layers _UpperCAmelCase : Optional[Any] =num_attention_heads _UpperCAmelCase : List[Any] =intermediate_size _UpperCAmelCase : Union[str, Any] =hidden_act _UpperCAmelCase : Optional[Any] =hidden_dropout_prob _UpperCAmelCase : List[Any] =attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] =initializer_range _UpperCAmelCase : Union[str, Any] =layer_norm_eps _UpperCAmelCase : List[str] =image_size _UpperCAmelCase : Optional[int] =patch_size _UpperCAmelCase : Optional[int] =num_channels _UpperCAmelCase : Any =qkv_bias _UpperCAmelCase : List[Any] =backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']') _UpperCAmelCase : int =readout_type _UpperCAmelCase : int =reassemble_factors _UpperCAmelCase : Optional[int] =neck_hidden_sizes _UpperCAmelCase : str =fusion_hidden_size _UpperCAmelCase : str =head_in_index _UpperCAmelCase : Union[str, Any] =use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase : Union[str, Any] =use_auxiliary_head _UpperCAmelCase : Dict =auxiliary_loss_weight _UpperCAmelCase : List[str] =semantic_loss_ignore_index _UpperCAmelCase : Any =semantic_classifier_dropout def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCAmelCase : List[Any] =self.backbone_config.to_dict() _UpperCAmelCase : str =self.__class__.model_type return output
242
'''simple docstring''' from typing import Any def lowerCamelCase__ ( __lowerCamelCase : list , __lowerCamelCase : list , __lowerCamelCase : dict , __lowerCamelCase : dict , __lowerCamelCase : dict , ): '''simple docstring''' _validation( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) # Creates data structures and fill initial step _UpperCAmelCase : dict ={} _UpperCAmelCase : dict ={} for state in states_space: _UpperCAmelCase : int =observations_space[0] _UpperCAmelCase : int =( initial_probabilities[state] * emission_probabilities[state][observation] ) _UpperCAmelCase : int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__lowerCamelCase ) ): _UpperCAmelCase : List[Any] =observations_space[o] _UpperCAmelCase : Optional[int] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _UpperCAmelCase : List[str] ='' _UpperCAmelCase : Dict =-1 for k_state in states_space: _UpperCAmelCase : List[str] =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _UpperCAmelCase : int =probability _UpperCAmelCase : List[Any] =k_state # Update probabilities and pointers dicts _UpperCAmelCase : str =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _UpperCAmelCase : List[Any] =arg_max # The final observation _UpperCAmelCase : int =observations_space[len(__lowerCamelCase ) - 1] # argmax for given final observation _UpperCAmelCase : Any ='' _UpperCAmelCase : Union[str, Any] =-1 for k_state in states_space: _UpperCAmelCase : Optional[int] =probabilities[(k_state, final_observation)] if probability > max_probability: _UpperCAmelCase : Union[str, Any] =probability _UpperCAmelCase : int =k_state _UpperCAmelCase : int =arg_max # Process pointers backwards _UpperCAmelCase : List[str] =last_state _UpperCAmelCase : Optional[int] =[] for o in range(len(__lowerCamelCase ) - 1 , -1 , -1 ): result.append(__lowerCamelCase ) _UpperCAmelCase : Optional[Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): '''simple docstring''' _validate_not_empty( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _validate_lists(__lowerCamelCase , __lowerCamelCase ) _validate_dicts( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any ): '''simple docstring''' _validate_list(__lowerCamelCase , 'observations_space' ) _validate_list(__lowerCamelCase , 'states_space' ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : str ): '''simple docstring''' if not isinstance(_object , __lowerCamelCase ): _UpperCAmelCase : Any =f"{var_name} must be a list" raise ValueError(__lowerCamelCase ) else: for x in _object: if not isinstance(__lowerCamelCase , __lowerCamelCase ): _UpperCAmelCase : Optional[int] =f"{var_name} must be a list of strings" raise ValueError(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , ): '''simple docstring''' _validate_dict(__lowerCamelCase , 'initial_probabilities' , __lowerCamelCase ) _validate_nested_dict(__lowerCamelCase , 'transition_probabilities' ) _validate_nested_dict(__lowerCamelCase , 'emission_probabilities' ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : str ): '''simple docstring''' _validate_dict(_object , __lowerCamelCase , __lowerCamelCase ) for x in _object.values(): _validate_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : type , __lowerCamelCase : bool = False ): '''simple docstring''' if not isinstance(_object , __lowerCamelCase ): _UpperCAmelCase : List[str] =f"{var_name} must be a dict" raise ValueError(__lowerCamelCase ) if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object ): _UpperCAmelCase : str =f"{var_name} all keys must be strings" raise ValueError(__lowerCamelCase ) if not all(isinstance(__lowerCamelCase , __lowerCamelCase ) for x in _object.values() ): _UpperCAmelCase : int ='nested dictionary ' if nested else '' _UpperCAmelCase : Optional[int] =f"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
242
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
1
from PIL import Image def snake_case ( snake_case__ :Image , snake_case__ :int) -> Image: _A = (259 * (level + 255)) / (255 * (259 - level)) def contrast(snake_case__ :int) -> int: return int(128 + factor * (c - 128)) return img.point(snake_case__) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 _SCREAMING_SNAKE_CASE = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
81
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def snake_case ( snake_case__ :str = "dhaka" , snake_case__ :int = 5) -> int: _A = min(snake_case__ , 50) # Prevent abuse! _A = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } _A = requests.get("""https://www.google.com/search""" , params=snake_case__ , headers=snake_case__) _A = BeautifulSoup(html.text , """html.parser""") _A = """""".join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""")))) _A = json.dumps(snake_case__) _A = json.loads(snake_case__) _A = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , snake_case__ , ) if not matched_google_image_data: return 0 _A = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(snake_case__) , ) _A = re.findall( R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , snake_case__ , ) for index, fixed_full_res_image in enumerate(snake_case__): if index >= max_images: return index _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = urllib.request.build_opener() _A = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(snake_case__) _A = F'''query_{query.replace(' ' , '_')}''' if not os.path.exists(snake_case__): os.makedirs(snake_case__) urllib.request.urlretrieve( # noqa: S310 snake_case__ , F'''{path_name}/original_size_img_{index}.jpg''') return index if __name__ == "__main__": try: _SCREAMING_SNAKE_CASE = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
81
1
from collections import namedtuple import requests from lxml import html # type: ignore lowercase : Optional[Any] = namedtuple('covid_data', 'cases deaths recovered') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str = "https://www.worldometers.info/coronavirus/") -> Tuple: '''simple docstring''' __UpperCamelCase : List[str] = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(__lowerCAmelCase).content).xpath(__lowerCAmelCase)) lowercase : Optional[int] = '''Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}''' print(fmt.format(*covid_stats()))
232
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case : Union[str, Any] = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[Any] = ['''pixel_values'''] def __init__( self :Optional[int] ,__snake_case :bool = True ,__snake_case :Optional[Dict[str, int]] = None ,__snake_case :PILImageResampling = PILImageResampling.BICUBIC ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :Union[int, float] = 1 / 2_55 ,__snake_case :Dict[str, int] = None ,__snake_case :bool = True ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,**__snake_case :Dict ,) -> None: super().__init__(**__snake_case ) a__ = size if size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ) a__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ,param_name='crop_size' ) a__ = do_resize a__ = do_rescale a__ = do_normalize a__ = do_center_crop a__ = crop_size a__ = size a__ = resample a__ = rescale_factor a__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase__( self :Dict ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :List[Any] ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "shortest_edge" in size: a__ = get_resize_output_image_size(__snake_case ,size=size['shortest_edge'] ,default_to_square=__snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: a__ = (size['height'], size['width']) else: raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(__snake_case ,size=__snake_case ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Dict ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Any ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__snake_case ,size=(size['height'], size['width']) ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :int ) -> np.ndarray: return rescale(__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Tuple ,__snake_case :np.ndarray ,__snake_case :Union[float, List[float]] ,__snake_case :Union[float, List[float]] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Any ,) -> np.ndarray: return normalize(__snake_case ,mean=__snake_case ,std=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :ImageInput ,__snake_case :Optional[bool] = None ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = None ,__snake_case :bool = None ,__snake_case :int = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[float] = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[str, TensorType]] = None ,__snake_case :Union[str, ChannelDimension] = ChannelDimension.FIRST ,**__snake_case :Optional[int] ,) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = do_center_crop if do_center_crop is not None else self.do_center_crop a__ = crop_size if crop_size is not None else self.crop_size a__ = get_size_dict(__snake_case ,param_name='crop_size' ,default_to_square=__snake_case ) a__ = resample if resample is not None else self.resample a__ = rescale_factor if rescale_factor is not None else self.rescale_factor a__ = image_mean if image_mean is not None else self.image_mean a__ = image_std if image_std is not None else self.image_std a__ = size if size is not None else self.size a__ = get_size_dict(__snake_case ) if not is_batched(__snake_case ): a__ = [images] if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for image in images] if do_resize: a__ = [self.resize(image=__snake_case ,size=__snake_case ,resample=__snake_case ) for image in images] if do_center_crop: a__ = [self.center_crop(image=__snake_case ,size=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(image=__snake_case ,scale=__snake_case ) for image in images] if do_normalize: a__ = [self.normalize(image=__snake_case ,mean=__snake_case ,std=__snake_case ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
240
0
"""simple docstring""" from collections import defaultdict class lowerCamelCase__ : def __init__( self ,A ,A ): UpperCAmelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCAmelCase = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(__A ) ) ] UpperCAmelCase = defaultdict(__A ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCAmelCase = (1 << len(__A )) - 1 def _UpperCamelCase ( self ,A ,A ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCAmelCase = self.count_ways_until(__A ,task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) ,task_no + 1 ) # save the value. UpperCAmelCase = total_ways_util return self.dp[mask][task_no] def _UpperCamelCase ( self ,A ): # Store the list of persons for each task for i in range(len(__A ) ): for j in task_performed[i]: self.task[j].append(__A ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 ,1 ) if __name__ == "__main__": _UpperCamelCase = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _UpperCamelCase = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
361
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCamelCase = {"""UserAgent""": UserAgent().random} def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = script.contents[0] UpperCAmelCase = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCamelCase__ : def __init__( self ,A ): UpperCAmelCase = F'''https://www.instagram.com/{username}/''' UpperCAmelCase = self.get_json() def _UpperCamelCase ( self ): UpperCAmelCase = requests.get(self.url ,headers=A ).text UpperCAmelCase = BeautifulSoup(A ,"""html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def _UpperCamelCase ( self ): return self.user_data["username"] @property def _UpperCamelCase ( self ): return self.user_data["full_name"] @property def _UpperCamelCase ( self ): return self.user_data["biography"] @property def _UpperCamelCase ( self ): return self.user_data["business_email"] @property def _UpperCamelCase ( self ): return self.user_data["external_url"] @property def _UpperCamelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def _UpperCamelCase ( self ): return self.user_data["edge_follow"]["count"] @property def _UpperCamelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _UpperCamelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def _UpperCamelCase ( self ): return self.user_data["is_verified"] @property def _UpperCamelCase ( self ): return self.user_data["is_private"] def _a ( _snake_case = "github" ): """simple docstring""" import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions UpperCAmelCase = InstagramUser(_snake_case ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _snake_case ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = InstagramUser("""github""") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
234
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _A = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
278
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Optional[int] = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''unispeech''' def __init__(self : int , _UpperCAmelCase : str=32 , _UpperCAmelCase : int=768 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Union[str, Any]=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Any="group" , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : Dict=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase : int=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Tuple=128 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[Any]=0.05 , _UpperCAmelCase : int=10 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Optional[int]=10 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : Dict=320 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Tuple=100 , _UpperCAmelCase : Optional[int]=256 , _UpperCAmelCase : Optional[int]=256 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Any="mean" , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Any=256 , _UpperCAmelCase : Union[str, Any]=80 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Any=0.5 , **_UpperCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = feat_extract_norm lowercase__ = feat_extract_activation lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = list(_UpperCAmelCase ) lowercase__ = conv_bias lowercase__ = num_conv_pos_embeddings lowercase__ = num_conv_pos_embedding_groups lowercase__ = len(self.conv_dim ) lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_attention_heads lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = feat_proj_dropout lowercase__ = final_dropout lowercase__ = layerdrop lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = num_ctc_classes lowercase__ = vocab_size lowercase__ = do_stable_layer_norm lowercase__ = use_weighted_layer_sum lowercase__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = apply_spec_augment lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ = num_codevectors_per_group lowercase__ = num_codevector_groups lowercase__ = contrastive_logits_temperature lowercase__ = feat_quantizer_dropout lowercase__ = num_negatives lowercase__ = codevector_dim lowercase__ = proj_codevector_dim lowercase__ = diversity_loss_weight # ctc loss lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # pretraining loss lowercase__ = replace_prob @property def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
370
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate A : int = trt.Logger(trt.Logger.WARNING) A : Dict = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) A : Union[str, Any] = logging.getLogger(__name__) A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=3_8_4, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=1_2_8, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=2_0, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=3_0, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=4_2, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) A : List[Any] = parser.parse_args() if args.tokenizer_name: A : Dict = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) A : Optional[Any] = args.per_device_eval_batch_size A : Tuple = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties A : Any = True A : Optional[int] = 'temp_engine/bert-fp32.engine' if args.fpaa: A : Union[str, Any] = 'temp_engine/bert-fp16.engine' if args.inta: A : Optional[int] = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') A : List[str] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network A : List[str] = [network.get_input(i) for i in range(network.num_inputs)] A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: A : Union[str, Any] = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) A : Dict = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) A : int = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) lowercase__ = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) lowercase__ = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __magic_name__ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __magic_name__ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __magic_name__ ) # start time lowercase__ = time.time() # Run inference context.execute_async( bindings=[int(__magic_name__ ) for d_inp in d_inputs] + [int(__magic_name__ ), int(__magic_name__ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__magic_name__ , __magic_name__ , __magic_name__ ) cuda.memcpy_dtoh_async(__magic_name__ , __magic_name__ , __magic_name__ ) # Synchronize the stream and take time stream.synchronize() # end time lowercase__ = time.time() lowercase__ = end_time - start_time lowercase__ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. A : Dict = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. A : str = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. A : str = raw_datasets['validation'].column_names A : Any = 'question' if 'question' in column_names else column_names[0] A : int = 'context' if 'context' in column_names else column_names[1] A : Tuple = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). A : Dict = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) A : str = min(args.max_seq_length, tokenizer.model_max_length) def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowercase__ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=__magic_name__ , stride=args.doc_stride , return_overflowing_tokens=__magic_name__ , return_offsets_mapping=__magic_name__ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowercase__ = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowercase__ = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowercase__ = tokenized_examples.sequence_ids(__magic_name__ ) lowercase__ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowercase__ = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowercase__ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples A : Optional[Any] = raw_datasets['validation'] # Validation Feature Creation A : int = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) A : Dict = default_data_collator A : Union[str, Any] = eval_dataset.remove_columns(['example_id', 'offset_mapping']) A : Optional[Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any]="eval" ) -> List[Any]: """simple docstring""" lowercase__ = postprocess_qa_predictions( examples=__magic_name__ , features=__magic_name__ , predictions=__magic_name__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__magic_name__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowercase__ = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: lowercase__ = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] lowercase__ = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__magic_name__ , label_ids=__magic_name__ ) A : Union[str, Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" return trt.volume(engine.get_binding_shape(__magic_name__ ) ) * engine.get_binding_dtype(__magic_name__ ).itemsize # Allocate device memory for inputs and outputs. A : Union[str, Any] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) A : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) A : List[str] = cuda.mem_alloc(h_outputa.nbytes) A : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') A : List[Any] = 0.0 A : Any = 0 A : str = timeit.default_timer() A : Tuple = None for step, batch in enumerate(eval_dataloader): A , A : Optional[int] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 A , A : int = outputs A : str = torch.tensor(start_logits) A : int = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) A : Tuple = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) A : Any = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) A : str = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: A : List[str] = nested_truncate(all_preds, len(eval_dataset)) A : List[Any] = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0)) logger.info('Total Number of Inference = %d', niter) A : Dict = post_processing_function(eval_examples, eval_dataset, all_preds) A : Any = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
146
0
'''simple docstring''' import os from collections.abc import Iterator def SCREAMING_SNAKE_CASE( __lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(__lowercase ): A: Tuple = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowercase )[1] in (".py", ".ipynb"): yield os.path.join(__lowercase , __lowercase ).lstrip('''./''' ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: return F"""{i * ' '}*""" if i else "\n##" def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str: A: str = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowercase ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(__lowercase )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def SCREAMING_SNAKE_CASE( __lowercase = "." ) -> None: A: str = '''''' for filepath in sorted(good_file_paths(__lowercase ) ): A , A: Union[str, Any] = os.path.split(__lowercase ) if filepath != old_path: A: Any = print_path(__lowercase , __lowercase ) A: str = (filepath.count(os.sep ) + 1) if filepath else 0 A: Optional[int] = F"""{filepath}/{filename}""".replace(''' ''' , '''%20''' ) A: Union[str, Any] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F"""{md_prefix(__lowercase )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('''.''')
319
'''simple docstring''' import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Any: A: Any = [x.strip() for x in open(__lowercase ).readlines()] A: Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] A: Union[str, Any] = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
319
1
import tensorflow as tf from ...tf_utils import shape_list class _SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): def __init__( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Dict ): super().__init__(**__lowerCamelCase ) UpperCamelCase :Tuple = vocab_size UpperCamelCase :Tuple = d_embed UpperCamelCase :Any = d_proj UpperCamelCase :Optional[int] = cutoffs + [vocab_size] UpperCamelCase :Optional[int] = [0] + self.cutoffs UpperCamelCase :Union[str, Any] = div_val UpperCamelCase :List[str] = self.cutoffs[0] UpperCamelCase :Tuple = len(self.cutoffs ) - 1 UpperCamelCase :Union[str, Any] = self.shortlist_size + self.n_clusters UpperCamelCase :int = keep_order UpperCamelCase :Dict = [] UpperCamelCase :Dict = [] def _A ( self : Optional[Any] , __lowerCamelCase : Any ): if self.n_clusters > 0: UpperCamelCase :Dict = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=__lowerCamelCase , name="""cluster_weight""" ) UpperCamelCase :Dict = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=__lowerCamelCase , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCamelCase :Dict = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=__lowerCamelCase , name=F"""out_projs_._{i}""" , ) self.out_projs.append(__lowerCamelCase ) else: self.out_projs.append(__lowerCamelCase ) UpperCamelCase :List[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=__lowerCamelCase , name=F"""out_layers_._{i}_._weight""" , ) UpperCamelCase :List[Any] = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=__lowerCamelCase , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase :List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase :Tuple = self.d_embed // (self.div_val**i) UpperCamelCase :Tuple = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=__lowerCamelCase , name=F"""out_projs_._{i}""" ) self.out_projs.append(__lowerCamelCase ) UpperCamelCase :Optional[int] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=__lowerCamelCase , name=F"""out_layers_._{i}_._weight""" , ) UpperCamelCase :Union[str, Any] = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=__lowerCamelCase , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(__lowerCamelCase ) @staticmethod def _A ( __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=None ): UpperCamelCase :Optional[Any] = x if proj is not None: UpperCamelCase :Tuple = tf.einsum("""ibd,ed->ibe""" , __lowerCamelCase , __lowerCamelCase ) return tf.einsum("""ibd,nd->ibn""" , __lowerCamelCase , __lowerCamelCase ) + b @staticmethod def _A ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): UpperCamelCase :Dict = shape_list(__lowerCamelCase ) UpperCamelCase :Dict = tf.range(lp_size[0] , dtype=target.dtype ) UpperCamelCase :Optional[Any] = tf.stack([r, target] , 1 ) return tf.gather_nd(__lowerCamelCase , __lowerCamelCase ) def _A ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple=False ): UpperCamelCase :Optional[int] = 0 if self.n_clusters == 0: UpperCamelCase :List[str] = self._logit(__lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: UpperCamelCase :Optional[int] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__lowerCamelCase , logits=__lowerCamelCase ) UpperCamelCase :Dict = tf.nn.log_softmax(__lowerCamelCase , axis=-1 ) else: UpperCamelCase :Union[str, Any] = shape_list(__lowerCamelCase ) UpperCamelCase :Optional[int] = [] UpperCamelCase :Tuple = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCamelCase :List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCamelCase :Tuple = (target >= l_idx) & (target < r_idx) UpperCamelCase :Union[str, Any] = tf.where(__lowerCamelCase ) UpperCamelCase :Tuple = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) - l_idx if self.div_val == 1: UpperCamelCase :Optional[Any] = self.out_layers[0][0][l_idx:r_idx] UpperCamelCase :Optional[int] = self.out_layers[0][1][l_idx:r_idx] else: UpperCamelCase :Optional[int] = self.out_layers[i][0] UpperCamelCase :int = self.out_layers[i][1] if i == 0: UpperCamelCase :str = tf.concat([cur_W, self.cluster_weight] , 0 ) UpperCamelCase :Tuple = tf.concat([cur_b, self.cluster_bias] , 0 ) UpperCamelCase :Union[str, Any] = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[0] ) UpperCamelCase :List[str] = tf.nn.log_softmax(__lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCamelCase :Optional[Any] = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :str = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) else: UpperCamelCase :str = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[i] ) UpperCamelCase :Dict = tf.nn.log_softmax(__lowerCamelCase ) UpperCamelCase :str = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCamelCase :Optional[Any] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__lowerCamelCase ) if target is not None: UpperCamelCase :List[Any] = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Any = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Dict = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__lowerCamelCase , -cur_logprob , shape_list(__lowerCamelCase ) ) UpperCamelCase :Union[str, Any] = tf.concat(__lowerCamelCase , axis=-1 ) if target is not None: if return_mean: UpperCamelCase :List[Any] = tf.reduce_mean(__lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__lowerCamelCase , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
369
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Any=7 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Optional[Any]=30 , __lowerCamelCase : Union[str, Any]=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Tuple=None , __lowerCamelCase : int=True , __lowerCamelCase : Dict=[0.5, 0.5, 0.5] , __lowerCamelCase : int=[0.5, 0.5, 0.5] , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=1 / 255 , __lowerCamelCase : str=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCamelCase :List[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333} UpperCamelCase :Tuple = parent UpperCamelCase :int = batch_size UpperCamelCase :str = num_channels UpperCamelCase :Dict = min_resolution UpperCamelCase :Any = max_resolution UpperCamelCase :int = do_resize UpperCamelCase :str = size UpperCamelCase :Dict = do_normalize UpperCamelCase :Tuple = image_mean UpperCamelCase :Optional[int] = image_std UpperCamelCase :Tuple = do_rescale UpperCamelCase :Optional[Any] = rescale_factor UpperCamelCase :List[Any] = do_pad def _A ( self : List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _A ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[int]=False ): if not batched: UpperCamelCase :Optional[Any] = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): UpperCamelCase , UpperCamelCase :Union[str, Any] = image.size else: UpperCamelCase , UpperCamelCase :Optional[int] = image.shape[1], image.shape[2] if w < h: UpperCamelCase :int = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase :Tuple = self.size["""shortest_edge"""] elif w > h: UpperCamelCase :List[Any] = self.size["""shortest_edge"""] UpperCamelCase :str = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase :List[Any] = self.size["""shortest_edge"""] UpperCamelCase :str = self.size["""shortest_edge"""] else: UpperCamelCase :List[Any] = [] for image in image_inputs: UpperCamelCase , UpperCamelCase :int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase :int = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] UpperCamelCase :Tuple = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : Optional[int] = DeformableDetrImageProcessor if is_vision_available() else None def _A ( self : Optional[Any] ): UpperCamelCase :str = DeformableDetrImageProcessingTester(self ) @property def _A ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Dict ): UpperCamelCase :int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_rescale""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_pad""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) def _A ( self : str ): UpperCamelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) UpperCamelCase :int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def _A ( self : List[Any] ): pass def _A ( self : Dict ): # Initialize image_processing UpperCamelCase :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase :Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Optional[int] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase :str = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) UpperCamelCase :int = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self : Tuple ): # Initialize image_processing UpperCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase :Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Dict = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self : Any ): # Initialize image_processing UpperCamelCase :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _A ( self : Optional[Any] ): # prepare image and target UpperCamelCase :int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase :str = json.loads(f.read() ) UpperCamelCase :List[Any] = {"""image_id""": 39_769, """annotations""": target} # encode them UpperCamelCase :Optional[int] = DeformableDetrImageProcessor() UpperCamelCase :Dict = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase :Union[str, Any] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , __lowerCamelCase ) UpperCamelCase :Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area UpperCamelCase :str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCamelCase ) ) # verify boxes UpperCamelCase :List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCamelCase ) UpperCamelCase :List[str] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id UpperCamelCase :Tuple = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCamelCase ) ) # verify is_crowd UpperCamelCase :List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCamelCase ) ) # verify class_labels UpperCamelCase :Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCamelCase ) ) # verify orig_size UpperCamelCase :Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCamelCase ) ) # verify size UpperCamelCase :int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCamelCase ) ) @slow def _A ( self : str ): # prepare image, target and masks_path UpperCamelCase :Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase :Any = json.loads(f.read() ) UpperCamelCase :int = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target} UpperCamelCase :Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase :Tuple = DeformableDetrImageProcessor(format="""coco_panoptic""" ) UpperCamelCase :Dict = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase :Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , __lowerCamelCase ) UpperCamelCase :Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area UpperCamelCase :List[str] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCamelCase ) ) # verify boxes UpperCamelCase :List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCamelCase ) UpperCamelCase :List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id UpperCamelCase :str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCamelCase ) ) # verify is_crowd UpperCamelCase :Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCamelCase ) ) # verify class_labels UpperCamelCase :List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCamelCase ) ) # verify masks UpperCamelCase :Union[str, Any] = 822_873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __lowerCamelCase ) # verify orig_size UpperCamelCase :Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCamelCase ) ) # verify size UpperCamelCase :str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCamelCase ) )
62
0
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# UpperCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] UpperCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] UpperCAmelCase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks UpperCAmelCase = F'''down_blocks.{i}.resnets.{j}.''' UpperCAmelCase = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 UpperCAmelCase = F'''down_blocks.{i}.attentions.{j}.''' UpperCAmelCase = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks UpperCAmelCase = F'''up_blocks.{i}.resnets.{j}.''' UpperCAmelCase = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 UpperCAmelCase = F'''up_blocks.{i}.attentions.{j}.''' UpperCAmelCase = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 UpperCAmelCase = F'''down_blocks.{i}.downsamplers.0.conv.''' UpperCAmelCase = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 UpperCAmelCase = F'''up_blocks.{i}.upsamplers.0.''' UpperCAmelCase = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) UpperCAmelCase = """mid_block.attentions.0.""" UpperCAmelCase = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): UpperCAmelCase = F'''mid_block.resnets.{j}.''' UpperCAmelCase = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowercase ( a__ : Optional[int] ) -> Dict: # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. _UpperCamelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _UpperCamelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _UpperCamelCase = v.replace(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _UpperCamelCase = v.replace(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = v _UpperCamelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# UpperCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): UpperCAmelCase = F'''encoder.down_blocks.{i}.resnets.{j}.''' UpperCAmelCase = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: UpperCAmelCase = F'''down_blocks.{i}.downsamplers.0.''' UpperCAmelCase = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) UpperCAmelCase = F'''up_blocks.{i}.upsamplers.0.''' UpperCAmelCase = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): UpperCAmelCase = F'''decoder.up_blocks.{i}.resnets.{j}.''' UpperCAmelCase = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): UpperCAmelCase = F'''mid_block.resnets.{i}.''' UpperCAmelCase = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) UpperCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def lowercase ( a__ : Tuple ) -> Dict: # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def lowercase ( a__ : Dict ) -> Any: _UpperCamelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _UpperCamelCase = v.replace(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _UpperCamelCase = v.replace(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = v _UpperCamelCase = {v: vae_state_dict[k] for k, v in mapping.items()} _UpperCamelCase = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'''mid.attn_1.{weight_name}.weight''' in k: print(F'''Reshaping {k} for SD format''' ) _UpperCamelCase = reshape_weight_for_sd(__UpperCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# UpperCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] UpperCAmelCase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} UpperCAmelCase = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp UpperCAmelCase = {"""q""": 0, """k""": 1, """v""": 2} def lowercase ( a__ : Any ) -> List[str]: _UpperCamelCase = {} _UpperCamelCase = {} _UpperCamelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): _UpperCamelCase = k[: -len('''.q_proj.weight''' )] _UpperCamelCase = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: _UpperCamelCase = [None, None, None] _UpperCamelCase = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): _UpperCamelCase = k[: -len('''.q_proj.bias''' )] _UpperCamelCase = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: _UpperCamelCase = [None, None, None] _UpperCamelCase = v continue _UpperCamelCase = textenc_pattern.sub(lambda a__ : protected[re.escape(m.group(0 ) )] , __UpperCamelCase ) _UpperCamelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _UpperCamelCase = textenc_pattern.sub(lambda a__ : protected[re.escape(m.group(0 ) )] , __UpperCamelCase ) _UpperCamelCase = torch.cat(__UpperCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _UpperCamelCase = textenc_pattern.sub(lambda a__ : protected[re.escape(m.group(0 ) )] , __UpperCamelCase ) _UpperCamelCase = torch.cat(__UpperCamelCase ) return new_state_dict def lowercase ( a__ : List[str] ) -> str: return text_enc_dict if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) UpperCAmelCase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors UpperCAmelCase = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") UpperCAmelCase = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") UpperCAmelCase = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): UpperCAmelCase = load_file(unet_path, device="""cpu""") else: UpperCAmelCase = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") UpperCAmelCase = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): UpperCAmelCase = load_file(vae_path, device="""cpu""") else: UpperCAmelCase = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") UpperCAmelCase = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): UpperCAmelCase = load_file(text_enc_path, device="""cpu""") else: UpperCAmelCase = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") UpperCAmelCase = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model UpperCAmelCase = convert_unet_state_dict(unet_state_dict) UpperCAmelCase = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model UpperCAmelCase = convert_vae_state_dict(vae_state_dict) UpperCAmelCase = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper UpperCAmelCase = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm UpperCAmelCase = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} UpperCAmelCase = convert_text_enc_state_dict_vaa(text_enc_dict) UpperCAmelCase = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: UpperCAmelCase = convert_text_enc_state_dict(text_enc_dict) UpperCAmelCase = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint UpperCAmelCase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: UpperCAmelCase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: UpperCAmelCase = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
256
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ConvNextFeatureExtractor'] a_ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
249
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A : str = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys _A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
from __future__ import annotations def lowercase_ ( A__ , A__ , A__ ) -> int | float: """simple docstring""" if len(A__ ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(A__ ) or left < -len(A__ ) or right >= len(A__ ) or right < -len(A__ ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A__ , A__ , A__ ) # find max in range[left, mid] snake_case = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
137
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) _lowerCAmelCase :List[Any] = logging.getLogger(__name__) _lowerCAmelCase :List[str] = {'facebook/bart-base': BartForConditionalGeneration} _lowerCAmelCase :Optional[Any] = {'facebook/bart-base': BartTokenizer} def lowerCamelCase_ (): _UpperCAmelCase : Tuple = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=UpperCamelCase_ , default=UpperCamelCase_ , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=UpperCamelCase_ , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=UpperCamelCase_ , default=UpperCamelCase_ , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=UpperCamelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=UpperCamelCase_ , ) parser.add_argument( '''--config_name''' , type=UpperCamelCase_ , default=UpperCamelCase_ , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=UpperCamelCase_ , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=UpperCamelCase_ , default=UpperCamelCase_ , help='''Where to store the final ONNX file.''' ) _UpperCAmelCase : List[Any] = parser.parse_args() return args def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any]="cpu" ): _UpperCAmelCase : Optional[Any] = model_dict[model_name].from_pretrained(UpperCamelCase_ ).to(UpperCamelCase_ ) _UpperCAmelCase : Optional[int] = tokenizer_dict[model_name].from_pretrained(UpperCamelCase_ ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[Any] = 0 return huggingface_model, tokenizer def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): model.eval() _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Any = torch.jit.script(BARTBeamSearchGenerator(UpperCamelCase_ ) ) with torch.no_grad(): _UpperCAmelCase : Dict = '''My friends are cool but they eat too many carbs.''' _UpperCAmelCase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device ) _UpperCAmelCase : List[Any] = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=UpperCamelCase_ , max_length=UpperCamelCase_ , early_stopping=UpperCamelCase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( UpperCamelCase_ , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , UpperCamelCase_ , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=UpperCamelCase_ , ) logger.info('''Model exported to {}'''.format(UpperCamelCase_ ) ) _UpperCAmelCase : List[str] = remove_dup_initializers(os.path.abspath(UpperCamelCase_ ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(UpperCamelCase_ ) ) _UpperCAmelCase : Tuple = onnxruntime.InferenceSession(UpperCamelCase_ ) _UpperCAmelCase : int = ort_sess.run( UpperCamelCase_ , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(UpperCamelCase_ ), '''max_length''': np.array(UpperCamelCase_ ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def lowerCamelCase_ (): _UpperCAmelCase : Union[str, Any] = parse_args() _UpperCAmelCase : List[Any] = 5 _UpperCAmelCase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase : Tuple = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = load_model_tokenizer(args.model_name_or_path , UpperCamelCase_ ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(UpperCamelCase_ ) if args.max_length: _UpperCAmelCase : Optional[Any] = args.max_length if args.num_beams: _UpperCAmelCase : Dict = args.num_beams if args.output_file_path: _UpperCAmelCase : Optional[int] = args.output_file_path else: _UpperCAmelCase : Union[str, Any] = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
263
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlnet""" a_ =["""mems"""] a_ ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCAmelCase__ = d_model // n_head lowerCAmelCase__ = ff_activation lowerCAmelCase__ = d_inner lowerCAmelCase__ = untie_r lowerCAmelCase__ = attn_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = dropout lowerCAmelCase__ = mem_len lowerCAmelCase__ = reuse_len lowerCAmelCase__ = bi_data lowerCAmelCase__ = clamp_len lowerCAmelCase__ = same_length lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_last_dropout lowerCAmelCase__ = start_n_top lowerCAmelCase__ = end_n_top lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs["use_cache"] lowerCAmelCase__ = use_mems_eval lowerCAmelCase__ = use_mems_train super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
340
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCamelCase_ ( unittest.TestCase ): _A : Optional[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _A : Union[str, Any] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case__ , tokenizer=snake_case__ ) return generator, ["Something to write", "Something else"] def UpperCamelCase_ ( self , snake_case__ , snake_case__ ) -> Dict: """simple docstring""" UpperCAmelCase = generator("""Something there""" ) self.assertEqual(snake_case__ , [{"""generated_text""": ANY(snake_case__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) UpperCAmelCase = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ [{"""generated_text""": ANY(snake_case__ )}, {"""generated_text""": ANY(snake_case__ )}], [{"""generated_text""": ANY(snake_case__ )}, {"""generated_text""": ANY(snake_case__ )}], ] , ) UpperCAmelCase = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case__ ) self.assertEqual( snake_case__ , [ [{"""generated_text""": ANY(snake_case__ )}, {"""generated_text""": ANY(snake_case__ )}], [{"""generated_text""": ANY(snake_case__ )}, {"""generated_text""": ANY(snake_case__ )}], ] , ) with self.assertRaises(snake_case__ ): generator(4 ) @require_torch def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility UpperCAmelCase = generator("""Something there""" , do_sample=snake_case__ ) self.assertEqual(snake_case__ , [{"""generated_text""": """"""}] ) UpperCAmelCase = 3 UpperCAmelCase = generator( """Something there""" , num_return_sequences=snake_case__ , num_beams=snake_case__ , ) UpperCAmelCase = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(snake_case__ , snake_case__ ) UpperCAmelCase = generator("""This is a test""" , do_sample=snake_case__ , num_return_sequences=2 , return_tensors=snake_case__ ) self.assertEqual( snake_case__ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) UpperCAmelCase = generator.model.config.eos_token_id UpperCAmelCase = """<pad>""" UpperCAmelCase = generator( ["""This is a test""", """This is a second test"""] , do_sample=snake_case__ , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case__ , ) self.assertEqual( snake_case__ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility UpperCAmelCase = generator("""Something there""" , do_sample=snake_case__ ) self.assertEqual(snake_case__ , [{"""generated_text""": """"""}] )
248
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = 1 UpperCAmelCase = 3 UpperCAmelCase = (32, 32) UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=snake_case__ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(snake_case__ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet_upscale UpperCAmelCase = DDPMScheduler() UpperCAmelCase = DDIMScheduler(prediction_type="""v_prediction""" ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) UpperCAmelCase = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = """A painting of a squirrel eating a burger""" UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase = output.images UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=snake_case__ , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet_upscale UpperCAmelCase = DDPMScheduler() UpperCAmelCase = DDIMScheduler(prediction_type="""v_prediction""" ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) UpperCAmelCase = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = """A painting of a squirrel eating a burger""" UpperCAmelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase = output.images assert image.shape[0] == 2 UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.dummy_cond_unet_upscale UpperCAmelCase = DDPMScheduler() UpperCAmelCase = DDIMScheduler(prediction_type="""v_prediction""" ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase = unet.half() UpperCAmelCase = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) UpperCAmelCase = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = """A painting of a squirrel eating a burger""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="""np""" , ).images UpperCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) UpperCAmelCase = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase = StableDiffusionUpscalePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase = """a cat sitting on a park bench""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="""np""" , ) UpperCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) UpperCAmelCase = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase = """a cat sitting on a park bench""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="""np""" , ) UpperCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) UpperCAmelCase = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase = """a cat sitting on a park bench""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=5 , output_type="""np""" , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
248
1
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase_ : def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[str]=99 , lowerCAmelCase_ : List[str]=36 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : List[Any]=37 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Dict=512 , lowerCAmelCase_ : List[Any]=16 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Union[str, Any]=0.0_2 , lowerCAmelCase_ : str=6 , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Tuple=1_000 , ) -> Tuple: UpperCAmelCase_ : str = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_input_mask UpperCAmelCase_ : Union[str, Any] = use_token_type_ids UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Any = type_vocab_size UpperCAmelCase_ : str = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Dict = coordinate_size UpperCAmelCase_ : Tuple = shape_size UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase_ : Optional[int] = text_seq_length UpperCAmelCase_ : List[str] = (image_size // patch_size) ** 2 + 1 UpperCAmelCase_ : Union[str, Any] = self.text_seq_length + self.image_seq_length def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCAmelCase_ : Optional[Any] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ : Dict = bbox[i, j, 3] UpperCAmelCase_ : Optional[int] = bbox[i, j, 1] UpperCAmelCase_ : Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ : List[Any] = bbox[i, j, 2] UpperCAmelCase_ : Dict = bbox[i, j, 0] UpperCAmelCase_ : Tuple = tmp_coordinate UpperCAmelCase_ : str = tf.constant(lowerCAmelCase_ ) UpperCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase_ : Any = None if self.use_token_type_ids: UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCAmelCase_ : Union[str, Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = TFLayoutLMvaModel(config=lowerCAmelCase_ ) # text + image UpperCAmelCase_ : Any = model(lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , training=lowerCAmelCase_ , ) UpperCAmelCase_ : Dict = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase_ : str = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase_ : List[str] = model({"pixel_values": pixel_values} , training=lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ) -> str: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : List[str] = TFLayoutLMvaForSequenceClassification(config=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : str = TFLayoutLMvaForTokenClassification(config=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Any ) -> Any: UpperCAmelCase_ : int = 2 UpperCAmelCase_ : Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , training=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : str = config_and_inputs UpperCAmelCase_ : str = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class UpperCamelCase_ (UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __magic_name__ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) __magic_name__ = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ) -> Optional[Any]: return True def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=False ) -> dict: UpperCAmelCase_ : str = copy.deepcopy(lowerCAmelCase_ ) if model_class in get_values(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[Any] = { k: tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCAmelCase_ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCAmelCase_ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase_ ): UpperCAmelCase_ : Any = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: UpperCAmelCase_ : Union[str, Any] = TFLayoutLMvaModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = model_class(lowerCAmelCase_ ) if getattr(lowerCAmelCase_ , "hf_compute_loss" , lowerCAmelCase_ ): # The number of elements in the loss should be the same as the number of elements in the label UpperCAmelCase_ : int = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCAmelCase_ )[0] ] UpperCAmelCase_ : Optional[int] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCAmelCase_ : Optional[int] = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = prepared_for_class.pop("input_ids" ) UpperCAmelCase_ : Optional[Any] = model(lowerCAmelCase_ , **lowerCAmelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCAmelCase_ : Tuple = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: UpperCAmelCase_ : Dict = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCAmelCase_ : Optional[Any] = -100 UpperCAmelCase_ : Any = tf.convert_to_tensor(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = model(lowerCAmelCase_ , **lowerCAmelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCAmelCase_ : Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowerCAmelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCAmelCase_ : List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) # Get keys that were added with the _prepare_for_class function UpperCAmelCase_ : List[str] = prepared_for_class.keys() - inputs_dict.keys() UpperCAmelCase_ : int = inspect.signature(model.call ).parameters UpperCAmelCase_ : Union[str, Any] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCAmelCase_ : int = {0: "input_ids"} for label_key in label_keys: UpperCAmelCase_ : Dict = signature_names.index(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = label_key UpperCAmelCase_ : Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCAmelCase_ : List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCAmelCase_ : List[str] = prepared_for_class[value] UpperCAmelCase_ : Tuple = tuple(lowerCAmelCase_ ) # Send to model UpperCAmelCase_ : Optional[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : List[str] = type self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = TFLayoutLMvaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case ( ): UpperCAmelCase_ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class UpperCamelCase_ (unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: return LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase_ ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: UpperCAmelCase_ : Dict = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : int = prepare_img() UpperCAmelCase_ : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="tf" ).pixel_values UpperCAmelCase_ : Dict = tf.constant([[1, 2]] ) UpperCAmelCase_ : str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCAmelCase_ : Optional[Any] = model(input_ids=lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits UpperCAmelCase_ : List[str] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
268
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : Dict = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''gptj''' __SCREAMING_SNAKE_CASE = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowercase=5_0_4_0_0 , lowercase=2_0_4_8 , lowercase=4_0_9_6 , lowercase=2_8 , lowercase=1_6 , lowercase=6_4 , lowercase=None , lowercase="gelu_new" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=5_0_2_5_6 , lowercase=5_0_2_5_6 , lowercase=False , **lowercase , ) -> Tuple: __UpperCamelCase = vocab_size __UpperCamelCase = n_positions __UpperCamelCase = n_embd __UpperCamelCase = n_layer __UpperCamelCase = n_head __UpperCamelCase = n_inner __UpperCamelCase = rotary_dim __UpperCamelCase = activation_function __UpperCamelCase = resid_pdrop __UpperCamelCase = embd_pdrop __UpperCamelCase = attn_pdrop __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_range __UpperCamelCase = use_cache __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id super().__init__( bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ) -> List[str]: super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase ) if not getattr(self._config , """pad_token_id""" , lowercase ): # TODO: how to do that better? __UpperCamelCase = 0 @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowercase , direction="""inputs""" ) __UpperCamelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __UpperCamelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def __lowerCamelCase ( self ) -> int: return self._config.n_layer @property def __lowerCamelCase ( self ) -> int: return self._config.n_head def __lowerCamelCase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]: __UpperCamelCase = super(lowercase , self ).generate_dummy_inputs( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) # We need to order the input in the way they appears in the forward() __UpperCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __UpperCamelCase , __UpperCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __UpperCamelCase = seqlen + 2 __UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers ) ] __UpperCamelCase = common_inputs["""attention_mask"""] if self.use_past: __UpperCamelCase = ordered_inputs["""attention_mask"""].dtype __UpperCamelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) return ordered_inputs @property def __lowerCamelCase ( self ) -> int: return 1_3
349
0
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __UpperCAmelCase : str = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def a ( SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase : int = list(s_dict.keys() ) for key in keys: UpperCamelCase : Optional[Any] = R'''.*/layers_(\d+)''' UpperCamelCase : Any = key if re.match(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = R'''(encoder|decoder)\/''' if re.match(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = re.match(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).groups() if groups[0] == "encoder": UpperCamelCase : Optional[int] = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , SCREAMING_SNAKE_CASE_ ) elif groups[0] == "decoder": UpperCamelCase : Union[str, Any] = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , SCREAMING_SNAKE_CASE_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCamelCase : Union[str, Any] = new_key.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F"""{key} -> {new_key}""" ) UpperCamelCase : Optional[Any] = s_dict.pop(SCREAMING_SNAKE_CASE_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCamelCase : Tuple = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCamelCase : str = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCamelCase : List[Any] = s_dict[key].shape[0] UpperCamelCase : Any = s_dict[key] for idx in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(SCREAMING_SNAKE_CASE_ ) return s_dict __UpperCAmelCase : Any = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" import regex as re with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as f: UpperCamelCase : int = f.read() UpperCamelCase : Optional[int] = re.findall(R'''(.*) = ([0-9.]*)''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCamelCase : Any = float(SCREAMING_SNAKE_CASE_ ) if '''.''' in value else int(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase : Tuple = str(activation[1] ) UpperCamelCase : List[Any] = num_experts UpperCamelCase : Optional[Any] = SwitchTransformersConfig(**SCREAMING_SNAKE_CASE_ ) return config def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : int="./" , SCREAMING_SNAKE_CASE_ : str=8 ): """simple docstring""" print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCamelCase : List[Any] = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE_ ) if gin_file is not None: UpperCamelCase : Optional[int] = convert_gin_to_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Tuple = SwitchTransformersConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = SwitchTransformersForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = flax_params['''target'''] UpperCamelCase : int = flatten_dict(SCREAMING_SNAKE_CASE_ , sep='''/''' ) UpperCamelCase : str = rename_keys(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = unflatten_dict(SCREAMING_SNAKE_CASE_ , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") __UpperCAmelCase : Tuple = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
315
from __future__ import annotations import collections import pprint from pathlib import Path def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return "".join(sorted(SCREAMING_SNAKE_CASE_ ) ) def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return word_by_signature[signature(SCREAMING_SNAKE_CASE_ )] __UpperCAmelCase : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") __UpperCAmelCase : Tuple = sorted({word.strip().lower() for word in data.splitlines()}) __UpperCAmelCase : Union[str, Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __UpperCAmelCase : int = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
315
1
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a__ ( snake_case__ ) -> List[Any]: lowerCamelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ F'{test_file} instead.' ) lowerCamelCase = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(F'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( F'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) lowerCamelCase = components[:-1] + [test_fn.replace(""".py""" , """""" )] lowerCamelCase = """.""".join(snake_case__ ) return test_module_path def a__ ( snake_case__ ) -> Tuple: lowerCamelCase = get_module_path(snake_case__ ) lowerCamelCase = importlib.import_module(snake_case__ ) return test_module def a__ ( snake_case__ ) -> int: lowerCamelCase = [] lowerCamelCase = get_test_module(snake_case__ ) for attr in dir(snake_case__ ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(snake_case__ , snake_case__ ) ) # sort with class names return sorted(snake_case__ , key=lambda snake_case__ : x.__name__ ) def a__ ( snake_case__ ) -> Any: lowerCamelCase = [] lowerCamelCase = get_test_module(snake_case__ ) for attr in dir(snake_case__ ): lowerCamelCase = getattr(snake_case__ , snake_case__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase = getattr(snake_case__ , """all_model_classes""" , [] ) if len(snake_case__ ) > 0: test_classes.append(snake_case__ ) # sort with class names return sorted(snake_case__ , key=lambda snake_case__ : x.__name__ ) def a__ ( snake_case__ ) -> Tuple: lowerCamelCase = get_test_classes(snake_case__ ) lowerCamelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(snake_case__ , key=lambda snake_case__ : x.__name__ ) def a__ ( snake_case__ ) -> List[str]: lowerCamelCase = test_class() if hasattr(snake_case__ , """setUp""" ): test.setUp() lowerCamelCase = None if hasattr(snake_case__ , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase = test.model_tester.__class__ return model_tester def a__ ( snake_case__ , snake_case__ ) -> Tuple: lowerCamelCase = get_test_classes(snake_case__ ) lowerCamelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(snake_case__ ) # sort with class names return sorted(snake_case__ , key=lambda snake_case__ : x.__name__ ) def a__ ( snake_case__ , snake_case__ ) -> Optional[int]: lowerCamelCase = get_test_classes_for_model(snake_case__ , snake_case__ ) lowerCamelCase = [] for test_class in test_classes: lowerCamelCase = get_model_tester_from_test_class(snake_case__ ) if tester_class is not None: tester_classes.append(snake_case__ ) # sort with class names return sorted(snake_case__ , key=lambda snake_case__ : x.__name__ ) def a__ ( snake_case__ ) -> Any: lowerCamelCase = get_test_classes(snake_case__ ) lowerCamelCase = {test_class: get_model_tester_from_test_class(snake_case__ ) for test_class in test_classes} return test_tester_mapping def a__ ( snake_case__ ) -> Optional[int]: lowerCamelCase = get_model_classes(snake_case__ ) lowerCamelCase = { model_class: get_test_classes_for_model(snake_case__ , snake_case__ ) for model_class in model_classes } return model_test_mapping def a__ ( snake_case__ ) -> int: lowerCamelCase = get_model_classes(snake_case__ ) lowerCamelCase = { model_class: get_tester_classes_for_model(snake_case__ , snake_case__ ) for model_class in model_classes } return model_to_tester_mapping def a__ ( snake_case__ ) -> Any: if isinstance(snake_case__ , snake_case__ ): return o elif isinstance(snake_case__ , snake_case__ ): return o.__name__ elif isinstance(snake_case__ , (list, tuple) ): return [to_json(snake_case__ ) for x in o] elif isinstance(snake_case__ , snake_case__ ): return {to_json(snake_case__ ): to_json(snake_case__ ) for k, v in o.items()} else: return o
291
"""simple docstring""" def a__ ( snake_case__ ) -> bool: lowerCamelCase = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def a__ ( snake_case__ = 50_00 ) -> int: lowerCamelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , snake_case__ )] for i, pentagonal_i in enumerate(snake_case__ ): for j in range(snake_case__ , len(snake_case__ ) ): lowerCamelCase = pentagonal_nums[j] lowerCamelCase = pentagonal_i + pentagonal_j lowerCamelCase = pentagonal_j - pentagonal_i if is_pentagonal(snake_case__ ) and is_pentagonal(snake_case__ ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
291
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase :Dict = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :str = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys lowerCamelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
135
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase :Dict = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :str = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
135
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=4 , ) -> Union[str, Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_attention_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_choices def _a ( self ) -> Dict: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_attention_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self ) -> Tuple: __UpperCamelCase =FlaxAlbertModelTester(self ) @slow def _a ( self ) -> str: for model_class_name in self.all_model_classes: __UpperCamelCase =model_class_name.from_pretrained('albert-base-v2' ) __UpperCamelCase =model(np.ones((1, 1) ) ) self.assertIsNotNone(A_ ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> str: __UpperCamelCase =FlaxAlbertModel.from_pretrained('albert-base-v2' ) __UpperCamelCase =np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase =np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCamelCase =model(A_ , attention_mask=A_ )[0] __UpperCamelCase =(1, 11, 768) self.assertEqual(output.shape , A_ ) __UpperCamelCase =np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A_ , atol=1E-4 ) )
62
"""simple docstring""" import math class a : def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : list[list[float]] , __lowerCAmelCase : list[int] ): _UpperCAmelCase = 0.0 _UpperCAmelCase = 0.0 for i in range(len(__lowerCAmelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : list[list[int | float]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : float ): for i in range(len(__lowerCAmelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __UpperCAmelCase ( ): """simple docstring""" # Training Examples ( m, n ) _UpperCAmelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCAmelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCAmelCase = SelfOrganizingMap() _UpperCAmelCase = 3 _UpperCAmelCase = 0.5 for _ in range(lowercase ): for j in range(len(lowercase ) ): # training sample _UpperCAmelCase = training_samples[j] # Compute the winning vector _UpperCAmelCase = self_organizing_map.get_winner(lowercase ,lowercase ) # Update the winning vector _UpperCAmelCase = self_organizing_map.update(lowercase ,lowercase ,lowercase ,lowercase ) # classify test sample _UpperCAmelCase = [0, 0, 0, 1] _UpperCAmelCase = self_organizing_map.get_winner(lowercase ,lowercase ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
289
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class A__ ( __magic_name__ ): lowercase = 'informer' lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[Any] , a : Optional[int] = None , a : Optional[int] = None , a : str = "student_t" , a : str = "nll" , a : int = 1 , a : List[int] = None , a : Optional[Union[str, bool]] = "mean" , a : int = 0 , a : int = 0 , a : int = 0 , a : int = 0 , a : Optional[List[int]] = None , a : Optional[List[int]] = None , a : int = 64 , a : int = 32 , a : int = 32 , a : int = 2 , a : int = 2 , a : int = 2 , a : int = 2 , a : bool = True , a : str = "gelu" , a : float = 0.0_5 , a : float = 0.1 , a : float = 0.1 , a : float = 0.1 , a : float = 0.1 , a : int = 100 , a : float = 0.0_2 , a : Optional[int]=True , a : str = "prob" , a : int = 5 , a : bool = True , **a : int , ): '''simple docstring''' lowerCAmelCase__ : Any = prediction_length lowerCAmelCase__ : str = context_length or prediction_length lowerCAmelCase__ : Dict = distribution_output lowerCAmelCase__ : int = loss lowerCAmelCase__ : Any = input_size lowerCAmelCase__ : List[str] = num_time_features lowerCAmelCase__ : List[str] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase__ : Optional[int] = scaling lowerCAmelCase__ : Any = num_dynamic_real_features lowerCAmelCase__ : List[Any] = num_static_real_features lowerCAmelCase__ : int = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(a ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase__ : Union[str, Any] = cardinality else: lowerCAmelCase__ : int = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(a ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase__ : str = embedding_dimension else: lowerCAmelCase__ : List[str] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase__ : Any = num_parallel_samples # Transformer architecture configuration lowerCAmelCase__ : List[str] = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase__ : List[Any] = d_model lowerCAmelCase__ : str = encoder_attention_heads lowerCAmelCase__ : Optional[int] = decoder_attention_heads lowerCAmelCase__ : List[Any] = encoder_ffn_dim lowerCAmelCase__ : List[str] = decoder_ffn_dim lowerCAmelCase__ : List[Any] = encoder_layers lowerCAmelCase__ : Dict = decoder_layers lowerCAmelCase__ : str = dropout lowerCAmelCase__ : Any = attention_dropout lowerCAmelCase__ : Any = activation_dropout lowerCAmelCase__ : Union[str, Any] = encoder_layerdrop lowerCAmelCase__ : Optional[Any] = decoder_layerdrop lowerCAmelCase__ : Optional[int] = activation_function lowerCAmelCase__ : int = init_std lowerCAmelCase__ : Optional[int] = use_cache # Informer lowerCAmelCase__ : Dict = attention_type lowerCAmelCase__ : Optional[int] = sampling_factor lowerCAmelCase__ : int = distil super().__init__(is_encoder_decoder=a , **a ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
307
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ = concatenate_datasets lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadManager lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class snake_case__ : def __init__( self : Optional[int] , _A : int , _A : Optional[int]=13 , _A : Dict=7 , _A : Dict=True , _A : Optional[int]=True , _A : str=True , _A : str=True , _A : Optional[int]=99 , _A : List[Any]=[1, 1, 2] , _A : Tuple=1 , _A : int=32 , _A : List[Any]=4 , _A : Optional[int]=8 , _A : Union[str, Any]=37 , _A : Union[str, Any]="gelu_new" , _A : Tuple=0.1 , _A : str=0.1 , _A : Optional[int]=0.0 , _A : List[Any]=5_12 , _A : List[str]=3 , _A : int=0.02 , _A : str=3 , _A : Optional[Any]=4 , _A : Dict=None , _A : str=False , ) -> int: UpperCAmelCase_ : str = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Tuple = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : List[Any] = use_input_mask UpperCAmelCase_ : Optional[int] = use_token_type_ids UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Dict = block_sizes UpperCAmelCase_ : Union[str, Any] = num_decoder_layers UpperCAmelCase_ : Tuple = d_model UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : int = d_head UpperCAmelCase_ : str = d_inner UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : int = hidden_dropout UpperCAmelCase_ : Optional[Any] = attention_dropout UpperCAmelCase_ : List[Any] = activation_dropout UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : Dict = 2 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = num_choices UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : Optional[Any] = initializer_std # Used in the tests to check the size of the first attention layer UpperCAmelCase_ : Union[str, Any] = n_head # Used in the tests to check the size of the first hidden state UpperCAmelCase_ : List[Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions UpperCAmelCase_ : Dict = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: UpperCAmelCase_ : Optional[int] = self.num_hidden_layers + 2 def A ( self : Union[str, Any] ) -> str: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Dict = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : str = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Union[str, Any] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def A ( self : List[Any] , _A : Any , _A : Tuple , _A : Optional[int] , _A : Dict , _A : Union[str, Any] , _A : Optional[int] , _A : Optional[int] , ) -> Any: UpperCAmelCase_ : Tuple = TFFunnelModel(config=_A ) UpperCAmelCase_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : Optional[int] = model(_A ) UpperCAmelCase_ : Union[str, Any] = [input_ids, input_mask] UpperCAmelCase_ : List[Any] = model(_A ) UpperCAmelCase_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : Optional[Any] = TFFunnelModel(config=_A ) UpperCAmelCase_ : Tuple = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : Tuple = TFFunnelModel(config=_A ) UpperCAmelCase_ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def A ( self : Optional[Any] , _A : Optional[Any] , _A : List[Any] , _A : int , _A : str , _A : Optional[Any] , _A : Tuple , _A : int , ) -> str: UpperCAmelCase_ : List[str] = TFFunnelBaseModel(config=_A ) UpperCAmelCase_ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : Optional[Any] = model(_A ) UpperCAmelCase_ : Union[str, Any] = [input_ids, input_mask] UpperCAmelCase_ : Any = model(_A ) UpperCAmelCase_ : Tuple = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) UpperCAmelCase_ : int = False UpperCAmelCase_ : List[str] = TFFunnelBaseModel(config=_A ) UpperCAmelCase_ : str = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Any = TFFunnelBaseModel(config=_A ) UpperCAmelCase_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def A ( self : int , _A : str , _A : Optional[int] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] , _A : Optional[Any] , _A : List[str] , ) -> List[Any]: UpperCAmelCase_ : Dict = TFFunnelForPreTraining(config=_A ) UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , _A : int , _A : int , _A : Any , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : Dict , ) -> Optional[Any]: UpperCAmelCase_ : Dict = TFFunnelForMaskedLM(config=_A ) UpperCAmelCase_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[str] , _A : List[Any] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : List[str] , _A : Dict , _A : Union[str, Any] , ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : List[str] = TFFunnelForSequenceClassification(config=_A ) UpperCAmelCase_ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : Any = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Optional[Any] , _A : List[str] , _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : str , _A : List[Any] , _A : Union[str, Any] , ) -> Tuple: UpperCAmelCase_ : List[str] = self.num_choices UpperCAmelCase_ : Any = TFFunnelForMultipleChoice(config=_A ) UpperCAmelCase_ : List[Any] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : Optional[int] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : List[str] = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : Optional[Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase_ : Optional[Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Any , _A : List[Any] , _A : Optional[Any] , _A : str , _A : Optional[Any] , _A : str , _A : str , _A : Optional[Any] , ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : List[str] = TFFunnelForTokenClassification(config=_A ) UpperCAmelCase_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : List[Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : List[Any] , _A : List[str] , _A : Any , _A : List[str] , _A : Union[str, Any] , _A : Dict , _A : Tuple , _A : List[Any] , ) -> Dict: UpperCAmelCase_ : Tuple = TFFunnelForQuestionAnswering(config=_A ) UpperCAmelCase_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : Any = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : int ) -> str: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Tuple = config_and_inputs UpperCAmelCase_ : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) a_ = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def A ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = TFFunnelModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self , config_class=_A ) def A ( self : Any ) -> Union[str, Any]: self.config_tester.run_common_tests() def A ( self : int ) -> Optional[Any]: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Optional[Any] ) -> str: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def A ( self : Tuple ) -> str: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def A ( self : Dict ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @require_tf class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) a_ = False a_ = False def A ( self : int ) -> int: UpperCAmelCase_ : List[str] = TFFunnelModelTester(self , base=_A ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=_A ) def A ( self : List[str] ) -> Optional[Any]: self.config_tester.run_common_tests() def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*_A ) def A ( self : List[Any] ) -> Any: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def A ( self : Dict ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A )
304
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( A : int , A : Any="shi-labs/oneformer_demo" ) -> Dict: with open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(A ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] for key, info in class_info.items(): UpperCAmelCase_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A ) ) UpperCAmelCase_ : Any = thing_ids UpperCAmelCase_ : Union[str, Any] = class_names return metadata class snake_case__ ( unittest.TestCase): def __init__( self : Any , _A : str , _A : Optional[int]=7 , _A : Tuple=3 , _A : Tuple=30 , _A : List[Any]=4_00 , _A : Tuple=None , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : List[str]=10 , _A : Optional[int]=False , _A : Union[str, Any]=2_55 , _A : List[Any]="shi-labs/oneformer_demo" , _A : str="ade20k_panoptic.json" , _A : List[Any]=10 , ) -> Any: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Tuple = min_resolution UpperCAmelCase_ : Optional[int] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Tuple = {'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = class_info_file UpperCAmelCase_ : Optional[Any] = prepare_metadata(_A , _A ) UpperCAmelCase_ : Tuple = num_text UpperCAmelCase_ : Union[str, Any] = repo_path # for the post_process_functions UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : Dict = 10 UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = do_reduce_labels UpperCAmelCase_ : str = ignore_index def A ( self : Dict ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A ( self : Any , _A : List[Any] , _A : List[str]=False ) -> Optional[Any]: if not batched: UpperCAmelCase_ : Any = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Union[str, Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ : int = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ : List[Any] = self.size['''shortest_edge'''] UpperCAmelCase_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ : Dict = self.size['''shortest_edge'''] UpperCAmelCase_ : str = self.size['''shortest_edge'''] else: UpperCAmelCase_ : Dict = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : int = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width def A ( self : Tuple ) -> str: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ = image_processing_class def A ( self : Optional[int] ) -> Any: UpperCAmelCase_ : int = OneFormerImageProcessorTester(self ) @property def A ( self : Any ) -> int: return self.image_processing_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''ignore_index''' ) ) self.assertTrue(hasattr(_A , '''class_info_file''' ) ) self.assertTrue(hasattr(_A , '''num_text''' ) ) self.assertTrue(hasattr(_A , '''repo_path''' ) ) self.assertTrue(hasattr(_A , '''metadata''' ) ) self.assertTrue(hasattr(_A , '''do_reduce_labels''' ) ) def A ( self : Dict ) -> Dict: pass def A ( self : Tuple ) -> Dict: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : int = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Dict ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processing_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : int = self.image_processing_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase_ : Optional[int] = image_processor( _A , ['''semantic'''] * len(_A ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : int , _A : Any=False , _A : List[Any]=False , _A : Any="np" ) -> str: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase_ : Tuple = self.image_processing_tester.num_labels UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=_A ) if with_segmentation_maps: UpperCAmelCase_ : Any = num_labels if is_instance_map: UpperCAmelCase_ : Any = list(range(_A ) ) * 2 UpperCAmelCase_ : Optional[Any] = dict(enumerate(_A ) ) UpperCAmelCase_ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase_ : Dict = [Image.fromarray(_A ) for annotation in annotations] UpperCAmelCase_ : Tuple = image_processor( _A , ['''semantic'''] * len(_A ) , _A , return_tensors='''pt''' , instance_id_to_semantic_id=_A , pad_and_return_pixel_mask=_A , ) return inputs def A ( self : int ) -> str: pass def A ( self : Tuple ) -> Union[str, Any]: def common(_A : Optional[int]=False , _A : str=None ): UpperCAmelCase_ : List[str] = self.comm_get_image_processor_inputs( with_segmentation_maps=_A , is_instance_map=_A , segmentation_type=_A ) UpperCAmelCase_ : List[Any] = inputs['''mask_labels'''] UpperCAmelCase_ : Optional[Any] = inputs['''class_labels'''] UpperCAmelCase_ : int = inputs['''pixel_values'''] UpperCAmelCase_ : Tuple = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(_A , _A , _A ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_A ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_A ) common(is_instance_map=_A , segmentation_type='''pil''' ) common(is_instance_map=_A , segmentation_type='''pil''' ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : int = np.zeros((20, 50) ) UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = binary_mask_to_rle(_A ) self.assertEqual(len(_A ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A ( self : Any ) -> List[Any]: UpperCAmelCase_ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(_A ) self.assertEqual(len(_A ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase_ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase_ : Any = fature_extractor.post_process_semantic_segmentation(_A , target_sizes=_A ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Dict = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_instance_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) UpperCAmelCase_ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase_ : List[Any] = image_processor.post_process_panoptic_segmentation(_A , threshold=0 ) self.assertTrue(len(_A ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , _A ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase_( snake_case : list[float] ): '''simple docstring''' if len(snake_case ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) snake_case_ = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
92
'''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = "Alexander Joslin" import operator as op from .stack import Stack def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} snake_case_ = Stack() snake_case_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(snake_case ) ) elif i in operators: # RULE 2 operator_stack.push(snake_case ) elif i == ")": # RULE 4 snake_case_ = operator_stack.peek() operator_stack.pop() snake_case_ = operand_stack.peek() operand_stack.pop() snake_case_ = operand_stack.peek() operand_stack.pop() snake_case_ = operators[opr](snake_case , snake_case ) operand_stack.push(snake_case ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
92
1
import sys lowercase_ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def a ( A__ : str = N ) -> Union[str, Any]: """simple docstring""" _lowercase =-sys.maxsize - 1 for i in range(len(A__ ) - 12 ): _lowercase =1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _lowercase =product return largest_product if __name__ == "__main__": print(f"{solution() = }")
205
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __UpperCamelCase : str = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE : torch.nn.Module , SCREAMING_SNAKE_CASE : BnbQuantizationConfig , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] = None , SCREAMING_SNAKE_CASE : Optional[Dict[str, Union[int, str, torch.device]]] = None , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , SCREAMING_SNAKE_CASE : Optional[Dict[Union[int, str], Union[int, str]]] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = bnb_quantization_config.load_in_abit UpperCamelCase__ : List[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) UpperCamelCase__ : int = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: UpperCamelCase__ : int = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCamelCase__ : List[Any] = get_keys_to_not_convert(SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : List[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE ) # compatibility with peft UpperCamelCase__ : Optional[Any] = load_in_abit UpperCamelCase__ : List[str] = load_in_abit UpperCamelCase__ : str = get_parameter_device(SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) UpperCamelCase__ : Union[str, Any] = replace_with_bnb_layers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) # convert param to the right dtype UpperCamelCase__ : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCamelCase__ : Union[str, Any] = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE ): param.to(SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F"The model device type is {model_device.type}. However, cuda is needed for quantization." '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): UpperCamelCase__ : str = replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = get_quantized_model_device_map( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_memory=SCREAMING_SNAKE_CASE , no_split_module_classes=SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCamelCase__ : Dict = True UpperCamelCase__ : str = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE , offload_state_dict=SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE , device_map=SCREAMING_SNAKE_CASE , offload_dir=SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : str=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): UpperCamelCase__ : int = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) UpperCamelCase__ : str = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Union[str, Any] = special_dtypes UpperCamelCase__ : Optional[int] = no_split_module_classes UpperCamelCase__ : int = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCamelCase__ : Dict = get_balanced_memory( SCREAMING_SNAKE_CASE , low_zero=(device_map == '''balanced_low_0''') , max_memory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Tuple = max_memory UpperCamelCase__ : Dict = infer_auto_device_map(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu UpperCamelCase__ : List[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCamelCase__ : Dict = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : int=None ): """simple docstring""" if modules_to_not_convert is None: UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ , UpperCamelCase__ : Dict = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): """simple docstring""" UpperCamelCase__ : str = False for name, module in model.named_children(): if current_key_name is None: UpperCamelCase__ : Tuple = [] current_key_name.append(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCamelCase__ : int = '''.'''.join(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCamelCase__ : List[str] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCamelCase__ : int = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCamelCase__ : Optional[int] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) UpperCamelCase__ : List[Any] = module.weight.data if module.bias is not None: UpperCamelCase__ : List[str] = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE ) setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = True if len(list(module.children() ) ) > 0: UpperCamelCase__ , UpperCamelCase__ : Tuple = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" with init_empty_weights(): UpperCamelCase__ : Dict = deepcopy(SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCamelCase__ : str = find_tied_parameters(SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[str] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase__ : int = sum(SCREAMING_SNAKE_CASE , [] ) UpperCamelCase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model UpperCamelCase__ : str = False if hasattr(SCREAMING_SNAKE_CASE , '''base_model_prefix''' ): UpperCamelCase__ : int = not hasattr(SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase__ : Tuple = list(model.named_children() ) UpperCamelCase__ : str = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase__ : Dict = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = list(set(SCREAMING_SNAKE_CASE ) ) + list(SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys UpperCamelCase__ : int = ['''.weight''', '''.bias'''] UpperCamelCase__ : Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase__ : int = name.replace(SCREAMING_SNAKE_CASE , '''''' ) filtered_module_names.append(SCREAMING_SNAKE_CASE ) return filtered_module_names def _a ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def _a ( SCREAMING_SNAKE_CASE : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 , dtype=SCREAMING_SNAKE_CASE , value=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = param_name UpperCamelCase__ : str = model if "." in tensor_name: UpperCamelCase__ : List[Any] = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) UpperCamelCase__ : Optional[int] = new_module UpperCamelCase__ : List[str] = splits[-1] # offload weights UpperCamelCase__ : Any = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , ) else: offload_weight(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) offload_weight(SCREAMING_SNAKE_CASE , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''meta''' , dtype=SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
146
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : List[str]=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : int=5 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Tuple=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Union[str, Any]=512 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : str=4 , ) -> Any: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" lowercase__ = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_UpperCAmelCase ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_UpperCAmelCase ) lowercase__ = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , _UpperCAmelCase ) # compare the actual values for a slice. lowercase__ = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_UpperCAmelCase ) lowercase__ = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) lowercase__ = model(_UpperCAmelCase )[0] # compare the actual values for a slice. lowercase__ = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
146
A : Tuple = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def UpperCamelCase ( ) -> None: """simple docstring""" lowercase__ = input("""Enter message: """ ) lowercase__ = input("""Enter key [alphanumeric]: """ ) lowercase__ = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): lowercase__ = """encrypt""" lowercase__ = encrypt_message(__magic_name__ , __magic_name__ ) elif mode.lower().startswith("""d""" ): lowercase__ = """decrypt""" lowercase__ = decrypt_message(__magic_name__ , __magic_name__ ) print(f'''\n{mode.title()}ed message:''' ) print(__magic_name__ ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> str: """simple docstring""" return translate_message(__magic_name__ , __magic_name__ , """encrypt""" ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> str: """simple docstring""" return translate_message(__magic_name__ , __magic_name__ , """decrypt""" ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : str ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = 0 lowercase__ = key.upper() for symbol in message: lowercase__ = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__magic_name__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__magic_name__ ): lowercase__ = 0 else: translated.append(__magic_name__ ) return "".join(__magic_name__ ) if __name__ == "__main__": main()
146
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class A__ ( A__ ): A__ = 42 A__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(">=", "0.0.12") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class A__ ( A__ ): A__ = 42 A__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
47
def A ( _UpperCAmelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def A ( _UpperCAmelCase : str ) -> bool: '''simple docstring''' _UpperCAmelCase = credit_card_number _UpperCAmelCase = 0 _UpperCAmelCase = len(_UpperCAmelCase ) - 2 for i in range(_UpperCAmelCase , -1 , -2 ): # double the value of every second digit _UpperCAmelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _UpperCAmelCase = cc_number[:i] + str(_UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def A ( _UpperCAmelCase : str ) -> bool: '''simple docstring''' _UpperCAmelCase = F"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(F"{error_message} it has nonnumerical characters." ) return False if not 13 <= len(_UpperCAmelCase ) <= 16: print(F"{error_message} of its length." ) return False if not validate_initial_digits(_UpperCAmelCase ): print(F"{error_message} of its first two digits." ) return False if not luhn_validation(_UpperCAmelCase ): print(F"{error_message} it fails the Luhn check." ) return False print(F"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
339
0
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=10 , __a=3 , __a=2 , __a=2 , __a=2 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=0.9 , __a=None , ) -> List[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = patch_size _UpperCamelCase = tubelet_size _UpperCamelCase = num_frames _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = mask_ratio _UpperCamelCase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _UpperCamelCase = int(mask_ratio * self.seq_length) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> str: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = VideoMAEModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = VideoMAEForPreTraining(__a) model.to(__a) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCamelCase = torch.ones((self.num_masks,)) _UpperCamelCase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) _UpperCamelCase = mask.expand(self.batch_size , -1).bool() _UpperCamelCase = model(__a , __a) # model only returns predictions for masked patches _UpperCamelCase = mask.sum().item() _UpperCamelCase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase__ = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = VideoMAEModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self , __a , __a , __a=False) -> Tuple: '''simple docstring''' _UpperCamelCase = copy.deepcopy(__a) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCamelCase = torch.ones((self.model_tester.num_masks,)) _UpperCamelCase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) _UpperCamelCase = mask.expand(self.model_tester.batch_size , -1).bool() _UpperCamelCase = bool_masked_pos.to(__a) if return_labels: if model_class in [ *get_values(__a), ]: _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a) return inputs_dict def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__a) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = VideoMAEModel.from_pretrained(__a) self.assertIsNotNone(__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' if not self.has_attentions: pass else: _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = True for model_class in self.all_model_classes: _UpperCamelCase = self.model_tester.seq_length - self.model_tester.num_masks _UpperCamelCase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _UpperCamelCase = len(__a) # Check attention is always last and order is fine _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) self.assertEqual(out_len + 1 , len(__a)) _UpperCamelCase = outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__a) , __a) _UpperCamelCase = self.model_tester.seq_length - self.model_tester.num_masks _UpperCamelCase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' ) _UpperCamelCase = np.load(__snake_case ) return list(__snake_case ) @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''').to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_video() _UpperCamelCase = image_processor(__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 4_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([0.3669, -0.0688, -0.2421]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''').to(__a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_video() _UpperCamelCase = image_processor(__a , return_tensors='''pt''').to(__a) # add boolean mask, indicating which patches to mask _UpperCamelCase = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''') _UpperCamelCase = torch.load(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size([1, 14_08, 15_36]) _UpperCamelCase = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=__a) self.assertEqual(outputs.logits.shape , __a) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __a , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `True`) _UpperCamelCase = torch.tensor([0.5142] , device=__a) self.assertTrue(torch.allclose(outputs.loss , __a , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `False`) _UpperCamelCase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=__a).to( __a) with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = torch.tensor(torch.tensor([0.6469]) , device=__a) self.assertTrue(torch.allclose(outputs.loss , __a , atol=1e-4))
100
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=10_00 , ) -> str: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = range_bbox def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) # convert bbox to numpy since TF does not support item assignment _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCamelCase = bbox[i, j, 3] _UpperCamelCase = bbox[i, j, 1] _UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCamelCase = bbox[i, j, 2] _UpperCamelCase = bbox[i, j, 0] _UpperCamelCase = t _UpperCamelCase = tf.convert_to_tensor(__a) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = TFLayoutLMModel(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , __a , token_type_ids=__a) _UpperCamelCase = model(__a , __a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFLayoutLMForMaskedLM(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFLayoutLMForSequenceClassification(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFLayoutLMForTokenClassification(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFLayoutLMForQuestionAnswering(config=__a) _UpperCamelCase = model(__a , __a , attention_mask=__a , token_type_ids=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowercase__ = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = True lowercase__ = 10 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFLayoutLMModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> str: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFLayoutLMModel.from_pretrained(__a) self.assertIsNotNone(__a) @unittest.skip('''Onnx compliancy broke with TF 2.10''') def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' pass def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 _UpperCamelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _UpperCamelCase = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 _UpperCamelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _UpperCamelCase = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''') _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase = model(input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a) # test the sequence output on [0, :3, :3] _UpperCamelCase = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-3)) # test the pooled output on [1, :3] _UpperCamelCase = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , __a , atol=1e-3)) @slow def UpperCAmelCase ( self) -> Any: '''simple docstring''' # initialize model with randomly initialized sequence classification head _UpperCamelCase = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase = model( input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a , labels=tf.convert_to_tensor([1, 1]) , ) # test whether we get a loss as a scalar _UpperCamelCase = outputs.loss _UpperCamelCase = (2,) self.assertEqual(loss.shape , __a) # test the shape of the logits _UpperCamelCase = outputs.logits _UpperCamelCase = (2, 2) self.assertEqual(logits.shape , __a) @slow def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' # initialize model with randomly initialized token classification head _UpperCamelCase = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=13) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase = model( input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a , labels=__a) # test the shape of the logits _UpperCamelCase = outputs.logits _UpperCamelCase = tf.convert_to_tensor((2, 25, 13)) self.assertEqual(logits.shape , __a) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' # initialize model with randomly initialized token classification head _UpperCamelCase = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''') _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase = model(input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a) # test the shape of the logits _UpperCamelCase = tf.convert_to_tensor((2, 25)) self.assertEqual(outputs.start_logits.shape , __a) self.assertEqual(outputs.end_logits.shape , __a)
100
1
'''simple docstring''' def _UpperCamelCase ( __A ) -> str: '''simple docstring''' UpperCamelCase__ = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _UpperCamelCase ( __A ) -> dict[str, str]: '''simple docstring''' UpperCamelCase__ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key UpperCamelCase__ = remove_duplicates(key.upper() ) UpperCamelCase__ = len(__A ) # First fill cipher with key characters UpperCamelCase__ = {alphabet[i]: char for i, char in enumerate(__A )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__A ) , 26 ): UpperCamelCase__ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 UpperCamelCase__ = alphabet[i - offset] UpperCamelCase__ = char return cipher_alphabet def _UpperCamelCase ( __A , __A ) -> str: '''simple docstring''' return "".join(cipher_map.get(__A , __A ) for ch in message.upper() ) def _UpperCamelCase ( __A , __A ) -> str: '''simple docstring''' UpperCamelCase__ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__A , __A ) for ch in message.upper() ) def _UpperCamelCase ( ) -> None: '''simple docstring''' UpperCamelCase__ = input("Enter message to encode or decode: " ).strip() UpperCamelCase__ = input("Enter keyword: " ).strip() UpperCamelCase__ = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: UpperCamelCase__ = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) UpperCamelCase__ = create_cipher_map(__A ) print(func(__A , __A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
80
'''simple docstring''' from ....utils import logging a__ : Optional[Any] = logging.get_logger(__name__) class lowercase_ ( a__ ): def __init__( self , a , a=None , a=20_48 ): UpperCamelCase__ = config.__dict__ UpperCamelCase__ = modal_hidden_size if num_labels: UpperCamelCase__ = num_labels
80
1
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __snake_case : Tuple = logging.get_logger(__name__) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Any: return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def _lowercase ( __snake_case ,__snake_case ,__snake_case = None ) -> Tuple: __lowerCAmelCase : Tuple = tesseract_config if tesseract_config is not None else "" # apply OCR __lowerCAmelCase : List[str] = to_pil_image(__snake_case ) __lowerCAmelCase : Optional[int] = pil_image.size __lowerCAmelCase : str = pytesseract.image_to_data(__snake_case ,lang=__snake_case ,output_type="dict" ,config=__snake_case ) __lowerCAmelCase : Tuple = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates __lowerCAmelCase : List[str] = [idx for idx, word in enumerate(__snake_case ) if not word.strip()] __lowerCAmelCase : Any = [word for idx, word in enumerate(__snake_case ) if idx not in irrelevant_indices] __lowerCAmelCase : Any = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] __lowerCAmelCase : List[Any] = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] __lowerCAmelCase : List[Any] = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] __lowerCAmelCase : List[str] = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase : List[Any] = [] for x, y, w, h in zip(__snake_case ,__snake_case ,__snake_case ,__snake_case ): __lowerCAmelCase : Optional[Any] = [x, y, x + w, y + h] actual_boxes.append(__snake_case ) # finally, normalize the bounding boxes __lowerCAmelCase : Optional[Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__snake_case ,__snake_case ,__snake_case ) ) assert len(__snake_case ) == len(__snake_case ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: PILImageResampling = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "" , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = size if size is not None else {"height": 224, "width": 224} __lowerCAmelCase : List[str] = get_size_dict(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = do_resize __lowerCAmelCase : Optional[int] = size __lowerCAmelCase : Union[str, Any] = resample __lowerCAmelCase : Dict = apply_ocr __lowerCAmelCase : Dict = ocr_lang __lowerCAmelCase : List[str] = tesseract_config def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Dict[str, int] , _SCREAMING_SNAKE_CASE: PILImageResampling = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: Any , ) -> np.ndarray: """simple docstring""" __lowerCAmelCase : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""") __lowerCAmelCase : Dict = (size["height"], size["width"]) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: PILImageResampling = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: List[str] , ) -> PIL.Image.Image: """simple docstring""" __lowerCAmelCase : str = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase : Optional[int] = size if size is not None else self.size __lowerCAmelCase : int = get_size_dict(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = resample if resample is not None else self.resample __lowerCAmelCase : Any = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase : List[str] = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase : Tuple = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase : str = make_list_of_images(_SCREAMING_SNAKE_CASE) if not valid_images(_SCREAMING_SNAKE_CASE): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") # All transformations expect numpy arrays. __lowerCAmelCase : List[str] = [to_numpy_array(_SCREAMING_SNAKE_CASE) for image in images] if apply_ocr: requires_backends(self , "pytesseract") __lowerCAmelCase : Tuple = [] __lowerCAmelCase : Optional[int] = [] for image in images: __lowerCAmelCase : Any = apply_tesseract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) words_batch.append(_SCREAMING_SNAKE_CASE) boxes_batch.append(_SCREAMING_SNAKE_CASE) if do_resize: __lowerCAmelCase : Optional[int] = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase : List[str] = [flip_channel_order(_SCREAMING_SNAKE_CASE) for image in images] __lowerCAmelCase : str = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) for image in images] __lowerCAmelCase : int = BatchFeature(data={"pixel_values": images} , tensor_type=_SCREAMING_SNAKE_CASE) if apply_ocr: __lowerCAmelCase : Optional[int] = words_batch __lowerCAmelCase : Optional[int] = boxes_batch return data
351
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
58
0
from math import factorial def lowerCAmelCase__( lowercase : int , lowercase : int ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(lowercase ) // (factorial(lowercase ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( '''If a class of 40 students must be arranged into groups of''', F'''4 for group projects, there are {combinations(40, 4)} ways''', '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', F'''are {combinations(10, 3)} ways that first, second and''', '''third place can be awarded.''', )
326
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
1
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Optional[Any] = """align_text_model""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , **__UpperCAmelCase , ) ->Union[str, Any]: super().__init__(**__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = pad_token_id @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase , **__UpperCAmelCase) ->"PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase) a_ , a_ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type") == "align": a_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = """align_vision_model""" def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 6_00 , __UpperCAmelCase = 2.0 , __UpperCAmelCase = 3.1 , __UpperCAmelCase = 8 , __UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , __UpperCAmelCase = [32, 16, 24, 40, 80, 1_12, 1_92] , __UpperCAmelCase = [16, 24, 40, 80, 1_12, 1_92, 3_20] , __UpperCAmelCase = [] , __UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , __UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , __UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , __UpperCAmelCase = 0.25 , __UpperCAmelCase = "swish" , __UpperCAmelCase = 25_60 , __UpperCAmelCase = "mean" , __UpperCAmelCase = 0.02 , __UpperCAmelCase = 0.001 , __UpperCAmelCase = 0.99 , __UpperCAmelCase = 0.2 , **__UpperCAmelCase , ) ->List[str]: super().__init__(**__UpperCAmelCase) a_ = num_channels a_ = image_size a_ = width_coefficient a_ = depth_coefficient a_ = depth_divisor a_ = kernel_sizes a_ = in_channels a_ = out_channels a_ = depthwise_padding a_ = strides a_ = num_block_repeats a_ = expand_ratios a_ = squeeze_expansion_ratio a_ = hidden_act a_ = hidden_dim a_ = pooling_type a_ = initializer_range a_ = batch_norm_eps a_ = batch_norm_momentum a_ = drop_connect_rate a_ = sum(__UpperCAmelCase) * 4 @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase , **__UpperCAmelCase) ->"PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase) a_ , a_ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type") == "align": a_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Optional[Any] = """align""" a_ : Tuple = True def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=6_40 , __UpperCAmelCase=1.0 , __UpperCAmelCase=0.02 , **__UpperCAmelCase , ) ->Tuple: super().__init__(**__UpperCAmelCase) if text_config is None: a_ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values.") if vision_config is None: a_ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values.") a_ = AlignTextConfig(**__UpperCAmelCase) a_ = AlignVisionConfig(**__UpperCAmelCase) a_ = projection_dim a_ = temperature_init_value a_ = initializer_range @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) ->str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = copy.deepcopy(self.__dict__) a_ = self.text_config.to_dict() a_ = self.vision_config.to_dict() a_ = self.__class__.model_type return output
303
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ): '''simple docstring''' super().__init__() _snake_case = nn.Linear(3 , 4 ) _snake_case = nn.BatchNormad(4 ) _snake_case = nn.Linear(4 , 5 ) def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(lowercase ) ) ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Optional[int] ): '''simple docstring''' _snake_case = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase , model.state_dict() ) _snake_case = os.path.join(lowercase , 'index.json' ) self.assertTrue(os.path.isfile(lowercase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: _snake_case = os.path.join(lowercase , f'''{key}.dat''' ) self.assertTrue(os.path.isfile(lowercase ) ) # TODO: add tests on the fact weights are properly loaded def A ( self : str ): '''simple docstring''' _snake_case = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: _snake_case = torch.randn(2 , 3 , dtype=lowercase ) with TemporaryDirectory() as tmp_dir: _snake_case = offload_weight(lowercase , 'weight' , lowercase , {} ) _snake_case = os.path.join(lowercase , 'weight.dat' ) self.assertTrue(os.path.isfile(lowercase ) ) self.assertDictEqual(lowercase , {'weight': {'shape': [2, 3], 'dtype': str(lowercase ).split('.' )[1]}} ) _snake_case = load_offloaded_weight(lowercase , index['weight'] ) self.assertTrue(torch.equal(lowercase , lowercase ) ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = ModelForTest() _snake_case = model.state_dict() _snake_case = {k: v for k, v in state_dict.items() if 'linear2' not in k} _snake_case = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase , lowercase ) _snake_case = OffloadedWeightsLoader(state_dict=lowercase , save_folder=lowercase ) # Every key is there with the right value self.assertEqual(sorted(lowercase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase , weight_map[key] ) ) _snake_case = {k: v for k, v in state_dict.items() if 'weight' in k} _snake_case = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase , lowercase ) _snake_case = OffloadedWeightsLoader(state_dict=lowercase , save_folder=lowercase ) # Every key is there with the right value self.assertEqual(sorted(lowercase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase , lowercase ) # Duplicates are removed _snake_case = OffloadedWeightsLoader(state_dict=lowercase , save_folder=lowercase ) # Every key is there with the right value self.assertEqual(sorted(lowercase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase , weight_map[key] ) ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = {'a.1': 0, 'a.10': 1, 'a.2': 2} _snake_case = extract_submodules_state_dict(lowercase , ['a.1', 'a.2'] ) self.assertDictEqual(lowercase , {'a.1': 0, 'a.2': 2} ) _snake_case = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} _snake_case = extract_submodules_state_dict(lowercase , ['a.1', 'a.2'] ) self.assertDictEqual(lowercase , {'a.1.a': 0, 'a.2.a': 2} )
282
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Tuple , lowercase : int , lowercase : int , lowercase : float = 0 ): '''simple docstring''' _snake_case , _snake_case = row, column _snake_case = [[default_value for c in range(lowercase )] for r in range(lowercase )] def __str__( self : int ): '''simple docstring''' _snake_case = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier _snake_case = 0 for row_vector in self.array: for obj in row_vector: _snake_case = max(lowercase , len(str(lowercase ) ) ) _snake_case = f'''%{max_element_length}s''' # Make string and return def single_line(lowercase : list[float] ) -> str: nonlocal string_format_identifier _snake_case = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowercase ) for row_vector in self.array ) return s def __repr__( self : Dict ): '''simple docstring''' return str(self ) def A ( self : str , lowercase : tuple[int, int] ): '''simple docstring''' if not (isinstance(lowercase , (list, tuple) ) and len(lowercase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Dict , lowercase : tuple[int, int] ): '''simple docstring''' assert self.validate_indicies(lowercase ) return self.array[loc[0]][loc[1]] def __setitem__( self : str , lowercase : tuple[int, int] , lowercase : float ): '''simple docstring''' assert self.validate_indicies(lowercase ) _snake_case = value def __add__( self : str , lowercase : Matrix ): '''simple docstring''' assert isinstance(lowercase , lowercase ) assert self.row == another.row and self.column == another.column # Add _snake_case = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _snake_case = self[r, c] + another[r, c] return result def __neg__( self : Tuple ): '''simple docstring''' _snake_case = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _snake_case = -self[r, c] return result def __sub__( self : List[str] , lowercase : Matrix ): '''simple docstring''' return self + (-another) def __mul__( self : Dict , lowercase : int | float | Matrix ): '''simple docstring''' if isinstance(lowercase , (int, float) ): # Scalar multiplication _snake_case = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _snake_case = self[r, c] * another return result elif isinstance(lowercase , lowercase ): # Matrix multiplication assert self.column == another.row _snake_case = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: _snake_case = f'''Unsupported type given for another ({type(lowercase )})''' raise TypeError(lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): _snake_case = self[r, c] return result def A ( self : List[Any] , lowercase : Matrix , lowercase : Matrix ): '''simple docstring''' assert isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _snake_case = v.transpose() _snake_case = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ) -> None: # a^(-1) _snake_case = Matrix(3 , 3 , 0 ) for i in range(3 ): _snake_case = 1 print(f'''a^(-1) is {ainv}''' ) # u, v _snake_case = Matrix(3 , 1 , 0 ) _snake_case , _snake_case , _snake_case = 1, 2, -3 _snake_case = Matrix(3 , 1 , 0 ) _snake_case , _snake_case , _snake_case = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(__lowercase , __lowercase )}''' ) def a_ ( ) -> None: import doctest doctest.testmod() testa()
282
1
'''simple docstring''' from math import pow def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase , ) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count __lowerCAmelCase = int(pow(lowercase , lowercase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n __lowerCAmelCase , __lowerCAmelCase = backtrack( lowercase , lowercase , current_number + 1 , lowercase , lowercase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. __lowerCAmelCase , __lowerCAmelCase = backtrack( lowercase , lowercase , current_number + 1 , lowercase , lowercase ) return current_sum, solutions_count def _lowerCAmelCase ( lowercase , lowercase ) -> int: if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(lowercase , lowercase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
46
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : List[str] = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
1
"""simple docstring""" UpperCamelCase : List[str] = "Input must be a string of 8 numbers plus letter" UpperCamelCase : Optional[int] = "TRWAGMYFPDXBNJZSQVHLCKE" def A ( snake_case :str ) -> bool: if not isinstance(snake_case , snake_case ): __UpperCamelCase = f'Expected string as input, found {type(snake_case ).__name__}' raise TypeError(snake_case ) __UpperCamelCase = spanish_id.replace('-' , '' ).upper() if len(snake_case ) != 9: raise ValueError(snake_case ) try: __UpperCamelCase = int(spanish_id_clean[0:8] ) __UpperCamelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(snake_case ) from ex if letter.isdigit(): raise ValueError(snake_case ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
1
def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): if height >= 1: move_tower(height - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) move_disk(__magic_name__ , __magic_name__ ) move_tower(height - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) def _A ( __magic_name__ , __magic_name__ ): print("moving disk from" , __magic_name__ , "to" , __magic_name__ ) def _A ( ): lowercase__ = int(input("Height of hanoi: " ).strip() ) move_tower(__magic_name__ , "A" , "B" , "C" ) if __name__ == "__main__": main()
201
from __future__ import annotations def _A ( __magic_name__ , __magic_name__ ): lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__ = i + 1 else: lowercase__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
201
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset a__ = pd.read_csv( '''https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/''' '''position_salaries.csv''' ) a__ = dataset.iloc[:, 1:2].values a__ = dataset.iloc[:, 2].values a__ , a__ , a__ , a__ = train_test_split(X, y, test_size=0.2, random_state=0) a__ = PolynomialFeatures(degree=4) a__ = poly_reg.fit_transform(X) a__ = LinearRegression() pol_reg.fit(X_poly, y) def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" plt.scatter(__a ,__a ,color='''red''' ) plt.plot(__a ,pol_reg.predict(poly_reg.fit_transform(__a ) ) ,color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
235
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "roformer" def __init__( self , _a=5_0_0_0_0 , _a=None , _a=7_6_8 , _a=1_2 , _a=1_2 , _a=3_0_7_2 , _a="gelu" , _a=0.1 , _a=0.1 , _a=1_5_3_6 , _a=2 , _a=0.02 , _a=1e-1_2 , _a=0 , _a=False , _a=True , **_a , ) -> List[str]: super().__init__(pad_token_id=_a , **_a ) _a : Tuple = vocab_size _a : List[Any] = hidden_size if embedding_size is None else embedding_size _a : Any = hidden_size _a : Any = num_hidden_layers _a : List[Any] = num_attention_heads _a : str = hidden_act _a : Any = intermediate_size _a : Dict = hidden_dropout_prob _a : Optional[Any] = attention_probs_dropout_prob _a : str = max_position_embeddings _a : Dict = type_vocab_size _a : List[Any] = initializer_range _a : Dict = layer_norm_eps _a : Dict = rotary_value _a : Dict = use_cache class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a : List[Any] = {0: '''batch''', 1: '''sequence'''} _a : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
235
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class _lowerCAmelCase ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class _lowerCAmelCase ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
367
'''simple docstring''' UpperCamelCase__ : Optional[Any] = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] UpperCamelCase__ : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] UpperCamelCase__ : Optional[Any] = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] UpperCamelCase__ : List[Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] UpperCamelCase__ : Optional[Any] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] UpperCamelCase__ : str = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] UpperCamelCase__ : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] UpperCamelCase__ : List[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
164
0
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __magic_name__ ( ): '''simple docstring''' a = ArgumentParser("Transformers CLI tool", usage="transformers-cli <command> [<args>]" ) a = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(A ) DownloadCommand.register_subcommand(A ) EnvironmentCommand.register_subcommand(A ) RunCommand.register_subcommand(A ) ServeCommand.register_subcommand(A ) UserCommands.register_subcommand(A ) AddNewModelCommand.register_subcommand(A ) AddNewModelLikeCommand.register_subcommand(A ) LfsCommands.register_subcommand(A ) PTtoTFCommand.register_subcommand(A ) # Let's go a = parser.parse_args() if not hasattr(A, "func" ): parser.print_help() exit(1 ) # Run a = args.func(A ) service.run() if __name__ == "__main__": main()
107
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __magic_name__ ( A : Union[str, Any], A : str, A : Optional[int]=None, A : List[str]=None ): '''simple docstring''' if attention_mask is None: a = tf.cast(tf.math.not_equal(A, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : int = OPTConfig SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : List[str] = """gelu""" def __init__( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=13 , __lowerCamelCase : int=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Optional[Any]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : int=4 , __lowerCamelCase : Any=4 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Dict=20 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=16 , ) -> Any: a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id a = embed_dim a = word_embed_proj_dim a = False def __UpperCAmelCase ( self : str ) -> int: a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a = tf.concat([input_ids, eos_tensor] , axis=1 ) a = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__lowerCamelCase , **self.config_updates , ) a = prepare_opt_inputs_dict(__lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def __UpperCAmelCase ( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ) -> List[str]: a = TFOPTModel(config=__lowerCamelCase ) a = inputs_dict["input_ids"] a = input_ids[:1, :] a = inputs_dict["attention_mask"][:1, :] a = 1 # first forward pass a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) a , a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a = tf.concat([input_ids, next_tokens] , axis=-1 ) a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a = output_from_no_past[:, -3:, random_slice_idx] a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1e-3 ) @require_tf class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Tuple = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : List[str] = 10 def __UpperCAmelCase ( self : Tuple ) -> List[str]: a = TFOPTModelTester(self ) a = ConfigTester(self , config_class=__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> List[str]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: a , a = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__lowerCamelCase : Tuple , __lowerCamelCase : int ): if hasattr(__lowerCamelCase , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__lowerCamelCase , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings a = model_class(config=__lowerCamelCase ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_input_embeddings() ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__lowerCamelCase ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_input_embeddings() ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. a = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __lowerCamelCase ) # check that weights remain the same after resizing a = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: a = False self.assertTrue(__lowerCamelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __lowerCamelCase ) a = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: a = False self.assertTrue(__lowerCamelCase ) def __magic_name__ ( A : List[Any] ): '''simple docstring''' return tf.constant(A, dtype=tf.intaa ) @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 99 def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = tf.ones((4, 1) , dtype=tf.intaa ) * 2 a = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) a = input_ids.shape[0] a = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = TFOPTModel.from_pretrained("facebook/opt-350m" ) a = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) a = tf.not_equal(__lowerCamelCase , model.config.pad_token_id ) with tf.GradientTape(): a = model(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ).last_hidden_state a = (1, 11, 5_12) self.assertEqual(output.shape , __lowerCamelCase ) a = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=4e-3 ) ) a = tf.function(__lowerCamelCase , jit_compile=__lowerCamelCase ) a = xla_generate(__lowerCamelCase , __lowerCamelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=4e-2 ) ) @require_tf @slow class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: super().setUp() a = "facebook/opt-350m" def __UpperCAmelCase ( self : Any ) -> Tuple: a = TFOPTForCausalLM.from_pretrained(self.path_model ) a = GPTaTokenizer.from_pretrained(self.path_model ) a = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False a = tokenizer(__lowerCamelCase , return_tensors="tf" , padding=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) a = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) a = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-4 ) ) a = tf.function(__lowerCamelCase , jit_compile=__lowerCamelCase ) a = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-4 ) ) @require_tf @slow class snake_case__ (unittest.TestCase ): """simple docstring""" @property def __UpperCAmelCase ( self : Any ) -> str: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: a = "facebook/opt-125m" a = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] a = [] a = GPTaTokenizer.from_pretrained(__lowerCamelCase ) a = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) for prompt in self.prompts: a = tokenizer(__lowerCamelCase , return_tensors="tf" ).input_ids a = model.generate(__lowerCamelCase , max_length=10 ) a = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> Dict: a = "facebook/opt-350m" a = GPTaTokenizer.from_pretrained(__lowerCamelCase ) a = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) a = "left" # use different length sentences to test batching a = [ "Hello, my dog is a little", "Today, I", ] a = tokenizer(__lowerCamelCase , return_tensors="tf" , padding=__lowerCamelCase ) a = inputs["input_ids"] a = model.generate(input_ids=__lowerCamelCase , attention_mask=inputs["attention_mask"] ) a = tokenizer(sentences[0] , return_tensors="tf" ).input_ids a = model.generate(input_ids=__lowerCamelCase ) a = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) a = tokenizer(sentences[1] , return_tensors="tf" ).input_ids a = model.generate(input_ids=__lowerCamelCase , max_length=model.config.max_length - num_paddings ) a = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__lowerCamelCase ) a = tokenizer.decode(output_padded[0] , skip_special_tokens=__lowerCamelCase ) a = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , [non_padded_sentence, padded_sentence] ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: a = "facebook/opt-350m" a = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] a = [] a = GPTaTokenizer.from_pretrained(__lowerCamelCase ) a = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) for prompt in self.prompts: a = tokenizer(__lowerCamelCase , return_tensors="tf" ).input_ids a = model.generate(__lowerCamelCase , max_length=10 ) a = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
107
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase( lowercase_ ) -> List[Any]: '''simple docstring''' snake_case_ = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case_ = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case_ = 0.01 with locka.acquire(): with pytest.raises(UpperCamelCase__ ): snake_case_ = time.time() locka.acquire(UpperCamelCase__ ) assert time.time() - _start > timeout def UpperCamelCase( lowercase_ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = """a""" * 1000 + """.lock""" snake_case_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCamelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 snake_case_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCamelCase__ ): locka.acquire(0 )
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase_ = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
34
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int ) -> str: '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" __UpperCAmelCase : List[str] = False if num < 0: __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : int = -num __UpperCAmelCase : Optional[Any] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(UpperCamelCase_ ) for e in binary ) return "0b" + "".join(str(UpperCamelCase_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
115
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[str] = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
from typing import TYPE_CHECKING from ...utils import _LazyModule A : Optional[Any] = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } SCREAMING_SNAKE_CASE = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(__snake_case ) ,__snake_case ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ) self.assertTrue(np.allclose(transpose(__snake_case ) ,x.transpose() ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ,5 ) self.assertTrue(np.allclose(transpose(__snake_case ,axes=(1, 2, 0) ) ,x.transpose((1, 2, 0) ) ) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ) SCREAMING_SNAKE_CASE = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) ,transpose(__snake_case ).numpy() ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ,5 ) SCREAMING_SNAKE_CASE = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ,axes=(1, 2, 0) ) ,transpose(__snake_case ,axes=(1, 2, 0) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ) SCREAMING_SNAKE_CASE = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) ,transpose(__snake_case ).numpy() ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ,5 ) SCREAMING_SNAKE_CASE = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ,axes=(1, 2, 0) ) ,transpose(__snake_case ,axes=(1, 2, 0) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ) SCREAMING_SNAKE_CASE = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) ,np.asarray(transpose(__snake_case ) ) ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ,5 ) SCREAMING_SNAKE_CASE = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ,axes=(1, 2, 0) ) ,np.asarray(transpose(__snake_case ,axes=(1, 2, 0) ) ) ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ) self.assertTrue(np.allclose(reshape(__snake_case ,(4, 3) ) ,np.reshape(__snake_case ,(4, 3) ) ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ,5 ) self.assertTrue(np.allclose(reshape(__snake_case ,(12, 5) ) ,np.reshape(__snake_case ,(12, 5) ) ) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ) SCREAMING_SNAKE_CASE = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case ,(4, 3) ) ,reshape(__snake_case ,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ,5 ) SCREAMING_SNAKE_CASE = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case ,(12, 5) ) ,reshape(__snake_case ,(12, 5) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ) SCREAMING_SNAKE_CASE = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case ,(4, 3) ) ,reshape(__snake_case ,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ,5 ) SCREAMING_SNAKE_CASE = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case ,(12, 5) ) ,reshape(__snake_case ,(12, 5) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ) SCREAMING_SNAKE_CASE = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case ,(4, 3) ) ,np.asarray(reshape(__snake_case ,(4, 3) ) ) ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ,5 ) SCREAMING_SNAKE_CASE = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case ,(12, 5) ) ,np.asarray(reshape(__snake_case ,(12, 5) ) ) ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(1 ,3 ,4 ) self.assertTrue(np.allclose(squeeze(__snake_case ) ,np.squeeze(__snake_case ) ) ) SCREAMING_SNAKE_CASE = np.random.randn(1 ,4 ,1 ,5 ) self.assertTrue(np.allclose(squeeze(__snake_case ,axis=2 ) ,np.squeeze(__snake_case ,axis=2 ) ) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(1 ,3 ,4 ) SCREAMING_SNAKE_CASE = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) ,squeeze(__snake_case ).numpy() ) ) SCREAMING_SNAKE_CASE = np.random.randn(1 ,4 ,1 ,5 ) SCREAMING_SNAKE_CASE = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ,axis=2 ) ,squeeze(__snake_case ,axis=2 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(1 ,3 ,4 ) SCREAMING_SNAKE_CASE = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) ,squeeze(__snake_case ).numpy() ) ) SCREAMING_SNAKE_CASE = np.random.randn(1 ,4 ,1 ,5 ) SCREAMING_SNAKE_CASE = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ,axis=2 ) ,squeeze(__snake_case ,axis=2 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(1 ,3 ,4 ) SCREAMING_SNAKE_CASE = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) ,np.asarray(squeeze(__snake_case ) ) ) ) SCREAMING_SNAKE_CASE = np.random.randn(1 ,4 ,1 ,5 ) SCREAMING_SNAKE_CASE = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ,axis=2 ) ,np.asarray(squeeze(__snake_case ,axis=2 ) ) ) ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ) self.assertTrue(np.allclose(expand_dims(__snake_case ,axis=1 ) ,np.expand_dims(__snake_case ,axis=1 ) ) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ) SCREAMING_SNAKE_CASE = torch.tensor(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case ,axis=1 ) ,expand_dims(__snake_case ,axis=1 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE__ ( self : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ) SCREAMING_SNAKE_CASE = tf.constant(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case ,axis=1 ) ,expand_dims(__snake_case ,axis=1 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = np.random.randn(3 ,4 ) SCREAMING_SNAKE_CASE = jnp.array(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case ,axis=1 ) ,np.asarray(expand_dims(__snake_case ,axis=1 ) ) ) )
296
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a__( nn.Module ): def __init__( self : Any , __snake_case : int = 16 , __snake_case : int = 88 , __snake_case : Optional[int] = None , __snake_case : int = 1 , __snake_case : float = 0.0 , __snake_case : int = 32 , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "geglu" , __snake_case : Optional[int] = None , ): super().__init__() a : Optional[int] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__snake_case , attention_head_dim=__snake_case , in_channels=__snake_case , num_layers=__snake_case , dropout=__snake_case , norm_num_groups=__snake_case , cross_attention_dim=__snake_case , attention_bias=__snake_case , sample_size=__snake_case , num_vector_embeds=__snake_case , activation_fn=__snake_case , num_embeds_ada_norm=__snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference a : Union[str, Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` a : Tuple = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` a : Any = [1, 0] def lowercase_ ( self : str , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any]=None , __snake_case : int=None , __snake_case : Dict=None , __snake_case : bool = True , ): a : Dict = hidden_states a : Tuple = [] a : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens a : Union[str, Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] a : Tuple = self.transformer_index_for_condition[i] a : Union[str, Any] = self.transformers[transformer_index]( __snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case , cross_attention_kwargs=__snake_case , return_dict=__snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] a : Optional[Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) a : int = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__snake_case )
297
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = CycleDiffusionPipeline UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } UpperCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''}) UpperCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE_ ( self : int ): torch.manual_seed(0 ) lowercase_ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase_ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) lowercase_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase_ : int = CLIPTextModel(lowercase_ ) lowercase_ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str , lowercase_ : int=0 ): lowercase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowercase_ : int = image / 2 + 0.5 if str(lowercase_ ).startswith("""mps""" ): lowercase_ : Dict = torch.manual_seed(lowercase_ ) else: lowercase_ : List[str] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase_ : Optional[int] = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ : Any = self.get_dummy_components() lowercase_ : List[Any] = CycleDiffusionPipeline(**lowercase_ ) lowercase_ : Any = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Dict = self.get_dummy_inputs(lowercase_ ) lowercase_ : Any = pipe(**lowercase_ ) lowercase_ : Dict = output.images lowercase_ : Dict = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowercase_ : List[Any] = np.array([0.44_59, 0.49_43, 0.45_44, 0.66_43, 0.54_74, 0.43_27, 0.57_01, 0.59_59, 0.51_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : int = self.get_dummy_components() for name, module in components.items(): if hasattr(lowercase_ , """half""" ): lowercase_ : List[str] = module.half() lowercase_ : str = CycleDiffusionPipeline(**lowercase_ ) lowercase_ : Optional[Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : str = self.get_dummy_inputs(lowercase_ ) lowercase_ : List[Any] = pipe(**lowercase_ ) lowercase_ : int = output.images lowercase_ : Union[str, Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowercase_ : List[Any] = np.array([0.35_06, 0.45_43, 0.4_46, 0.45_75, 0.51_95, 0.41_55, 0.52_73, 0.5_18, 0.41_16] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def SCREAMING_SNAKE_CASE_ ( self : List[str] ): return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): return super().test_inference_batch_single_identical() @skip_mps def SCREAMING_SNAKE_CASE_ ( self : Dict ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def SCREAMING_SNAKE_CASE_ ( self : str ): return super().test_save_load_optional_components() @skip_mps def SCREAMING_SNAKE_CASE_ ( self : str ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) lowercase_ : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) lowercase_ : int = init_image.resize((512, 512) ) lowercase_ : Optional[int] = """CompVis/stable-diffusion-v1-4""" lowercase_ : Any = DDIMScheduler.from_pretrained(lowercase_ , subfolder="""scheduler""" ) lowercase_ : List[Any] = CycleDiffusionPipeline.from_pretrained( lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowercase_ : Tuple = """A black colored car""" lowercase_ : Optional[Any] = """A blue colored car""" lowercase_ : List[Any] = torch.manual_seed(0 ) lowercase_ : Union[str, Any] = pipe( prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type="""np""" , ) lowercase_ : List[str] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) lowercase_ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) lowercase_ : str = init_image.resize((512, 512) ) lowercase_ : Any = """CompVis/stable-diffusion-v1-4""" lowercase_ : int = DDIMScheduler.from_pretrained(lowercase_ , subfolder="""scheduler""" ) lowercase_ : Any = CycleDiffusionPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowercase_ : List[Any] = """A black colored car""" lowercase_ : List[Any] = """A blue colored car""" lowercase_ : Any = torch.manual_seed(0 ) lowercase_ : Optional[Any] = pipe( prompt=lowercase_ , source_prompt=lowercase_ , image=lowercase_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase_ , output_type="""np""" , ) lowercase_ : List[str] = output.images assert np.abs(image - expected_image ).max() < 2E-2
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__: Optional[Any] = logging.get_logger(__name__) A__: Optional[Any] = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : List[str] = "xlm" __UpperCamelCase : Tuple = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :int=3_0_1_4_5 , SCREAMING_SNAKE_CASE :str=2_0_4_8 , SCREAMING_SNAKE_CASE :Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE :List[str]=1_6 , SCREAMING_SNAKE_CASE :Tuple=0.1 , SCREAMING_SNAKE_CASE :List[str]=0.1 , SCREAMING_SNAKE_CASE :Union[str, Any]=True , SCREAMING_SNAKE_CASE :List[Any]=False , SCREAMING_SNAKE_CASE :Union[str, Any]=False , SCREAMING_SNAKE_CASE :Tuple=False , SCREAMING_SNAKE_CASE :str=1 , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :str=2_0_4_8**-0.5 , SCREAMING_SNAKE_CASE :Tuple=1e-12 , SCREAMING_SNAKE_CASE :str=0.02 , SCREAMING_SNAKE_CASE :Dict=0 , SCREAMING_SNAKE_CASE :Optional[int]=1 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Any=3 , SCREAMING_SNAKE_CASE :List[Any]=5 , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[Any]="first" , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Optional[int]=None , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :Optional[Any]=0.1 , SCREAMING_SNAKE_CASE :Tuple=5 , SCREAMING_SNAKE_CASE :Dict=5 , SCREAMING_SNAKE_CASE :str=0 , SCREAMING_SNAKE_CASE :int=0 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Tuple=0 , **SCREAMING_SNAKE_CASE :List[Any] , ) -> int: '''simple docstring''' _a : List[str] =vocab_size _a : Optional[Any] =emb_dim _a : Optional[int] =n_layers _a : List[str] =n_heads _a : Any =dropout _a : Tuple =attention_dropout _a : Dict =gelu_activation _a : Optional[Any] =sinusoidal_embeddings _a : Dict =causal _a : List[str] =asm _a : Tuple =n_langs _a : Any =use_lang_emb _a : Tuple =layer_norm_eps _a : Optional[Any] =bos_index _a : Tuple =eos_index _a : Dict =pad_index _a : List[str] =unk_index _a : Union[str, Any] =mask_index _a : int =is_encoder _a : Tuple =max_position_embeddings _a : Optional[int] =embed_init_std _a : str =init_std _a : Optional[int] =summary_type _a : Union[str, Any] =summary_use_proj _a : Tuple =summary_activation _a : Optional[int] =summary_proj_to_labels _a : Tuple =summary_first_dropout _a : List[str] =start_n_top _a : List[Any] =end_n_top _a : Any =mask_token_id _a : List[Any] =lang_id if "n_words" in kwargs: _a : Tuple =kwargs["""n_words"""] super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class A__ ( UpperCAmelCase__ ): @property def __UpperCAmelCase ( self :List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _a : Optional[int] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: _a : Any ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
276
'''simple docstring''' class A__ : def __init__( self :List[str] ) -> List[Any]: '''simple docstring''' _a : Tuple =0 _a : Any =0 _a : int ={} def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :List[str] ) -> Optional[int]: '''simple docstring''' if vertex not in self.adjacency: _a : Dict ={} self.num_vertices += 1 def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Any ) -> List[str]: '''simple docstring''' self.add_vertex(SCREAMING_SNAKE_CASE ) self.add_vertex(SCREAMING_SNAKE_CASE ) if head == tail: return _a : Any =weight _a : Tuple =weight def __UpperCAmelCase ( self :Dict ) -> Optional[int]: '''simple docstring''' _a : Union[str, Any] =self.get_edges() for edge in edges: _a , _a , _a : List[str] =edge edges.remove((tail, head, weight) ) for i in range(len(SCREAMING_SNAKE_CASE ) ): _a : str =list(edges[i] ) edges.sort(key=lambda SCREAMING_SNAKE_CASE : e[2] ) for i in range(len(SCREAMING_SNAKE_CASE ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a : Union[str, Any] =edges[i][2] + 1 for edge in edges: _a , _a , _a : Tuple =edge _a : Tuple =weight _a : List[Any] =weight def __str__( self :int ) -> str: '''simple docstring''' _a : int ="""""" for tail in self.adjacency: for head in self.adjacency[tail]: _a : str =self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("""\n""" ) def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' _a : Union[str, Any] =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' return self.adjacency.keys() @staticmethod def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[Any]=None ) -> Optional[int]: '''simple docstring''' _a : str =Graph() if vertices is None: _a : Union[str, Any] =[] if edges is None: _a : List[Any] =[] for vertex in vertices: g.add_vertex(SCREAMING_SNAKE_CASE ) for edge in edges: g.add_edge(*SCREAMING_SNAKE_CASE ) return g class A__ : def __init__( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' _a : Optional[int] ={} _a : List[str] ={} def __len__( self :List[Any] ) -> List[Any]: '''simple docstring''' return len(self.parent ) def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Tuple ) -> Dict: '''simple docstring''' if item in self.parent: return self.find(SCREAMING_SNAKE_CASE ) _a : Optional[Any] =item _a : List[str] =0 return item def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :Dict ) -> List[str]: '''simple docstring''' if item not in self.parent: return self.make_set(SCREAMING_SNAKE_CASE ) if item != self.parent[item]: _a : str =self.find(self.parent[item] ) return self.parent[item] def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :List[Any] ) -> Optional[Any]: '''simple docstring''' _a : Optional[int] =self.find(SCREAMING_SNAKE_CASE ) _a : Dict =self.find(SCREAMING_SNAKE_CASE ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a : Any =roota return roota if self.rank[roota] < self.rank[roota]: _a : List[str] =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a : List[Any] =roota return roota return None @staticmethod def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :Dict ) -> Union[str, Any]: '''simple docstring''' _a : Any =graph.num_vertices _a : Union[str, Any] =Graph.UnionFind() _a : Optional[int] =[] while num_components > 1: _a : str ={} for vertex in graph.get_vertices(): _a : List[str] =-1 _a : Any =graph.get_edges() for edge in edges: _a , _a , _a : Tuple =edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a : Any =edge _a : Any =union_find.find(SCREAMING_SNAKE_CASE ) _a : List[Any] =union_find.find(SCREAMING_SNAKE_CASE ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a : Optional[int] =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a : List[Any] =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a : Optional[Any] =cheap_edge[vertex] if union_find.find(SCREAMING_SNAKE_CASE ) != union_find.find(SCREAMING_SNAKE_CASE ): union_find.union(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) mst_edges.append(cheap_edge[vertex] ) _a : str =num_components - 1 _a : str =Graph.build(edges=SCREAMING_SNAKE_CASE ) return mst
276
1
from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: if tokenize_kwargs is None: __lowerCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) __lowerCAmelCase = truncation __lowerCAmelCase = tokenize_kwargs __lowerCAmelCase = {} if return_tensors is not None: __lowerCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def lowercase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : str ) -> Dict[str, GenericTensor]: __lowerCAmelCase = self.framework __lowerCAmelCase = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) return model_inputs def lowercase ( self : int , lowerCAmelCase_ : Optional[int] ) -> int: __lowerCAmelCase = self.model(**lowerCAmelCase_ ) return model_outputs def lowercase ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int=False ) -> Tuple: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : List[str] ) -> str: return super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ )
207
from math import factorial class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ) -> Union[str, Any]: __lowerCAmelCase = real if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = [1] * rank else: __lowerCAmelCase = rank def __repr__( self : Optional[Any] ) -> Tuple: return ( f"""{self.real}+""" f"""{"+".join(str(lowerCAmelCase_ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def lowercase ( self : str ) -> Dict: __lowerCAmelCase = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowerCAmelCase_ ) def __add__( self : Union[str, Any] , lowerCAmelCase_ : Tuple ) -> Optional[Any]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return Dual(self.real + other , self.duals ) __lowerCAmelCase = self.duals.copy() __lowerCAmelCase = other.duals.copy() if len(lowerCAmelCase_ ) > len(lowerCAmelCase_ ): o_dual.extend([1] * (len(lowerCAmelCase_ ) - len(lowerCAmelCase_ )) ) elif len(lowerCAmelCase_ ) < len(lowerCAmelCase_ ): s_dual.extend([1] * (len(lowerCAmelCase_ ) - len(lowerCAmelCase_ )) ) __lowerCAmelCase = [] for i in range(len(lowerCAmelCase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowerCAmelCase_ ) a_ = __add__ def __sub__( self : int , lowerCAmelCase_ : Dict ) -> Optional[Any]: return self + other * -1 def __mul__( self : int , lowerCAmelCase_ : Optional[int] ) -> Dict: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowerCAmelCase_ ) __lowerCAmelCase = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowerCAmelCase_ ) a_ = __mul__ def __truediv__( self : Union[str, Any] , lowerCAmelCase_ : str ) -> Dict: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowerCAmelCase_ ) raise ValueError def __floordiv__( self : str , lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowerCAmelCase_ ) raise ValueError def __pow__( self : Tuple , lowerCAmelCase_ : Dict ) -> List[str]: if n < 0 or isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self __lowerCAmelCase = self for _ in range(n - 1 ): x *= self return x def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): if not callable(lowerCAmelCase_ ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(lowerCAmelCase_, (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ): raise ValueError('differentiate() requires an int as input for order' ) __lowerCAmelCase = Dual(lowerCAmelCase_, 1 ) __lowerCAmelCase = func(lowerCAmelCase_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() def a_ ( lowerCAmelCase_ : int ): return y**2 * y**4 print(differentiate(f, 9, 2))
207
1
"""simple docstring""" import os import pytest from attr import dataclass _UpperCamelCase : Any = "us-east-1" # defaults region @dataclass class UpperCAmelCase_ : lowerCamelCase__ : str lowerCamelCase__ : List[Any] = "arn:aws:iam::558105141721:role/sagemaker_execution_role" lowerCamelCase__ : str = { "task_name": "mnli", "per_device_train_batch_size": 1_6, "per_device_eval_batch_size": 1_6, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 5_0_0, "save_steps": 5_5_0_0, } lowerCamelCase__ : Optional[int] = {**hyperparameters, "max_steps": 1_0_0_0} @property def _UpperCAmelCase ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _UpperCAmelCase ( self ) -> str: return f"""{self.framework}-transfromers-test""" @property def _UpperCAmelCase ( self ) -> str: return f"""./tests/sagemaker/scripts/{self.framework}""" @property def _UpperCAmelCase ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Tuple = SageMakerTestEnvironment(framework=request.cls.framework )
77
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness A_ :List[str] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' A_ :Any = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' A_ :Tuple = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' A_ :List[str] = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' A_ :Tuple = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def __lowercase ( self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=[1, 10, 100] , lowerCamelCase__=4 , lowerCamelCase__=3.0 ): """simple docstring""" if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: __UpperCamelCase : List[str] =[] __UpperCamelCase : Any =Counter() __UpperCamelCase : List[Any] =0 __UpperCamelCase : int =defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): for candidate in candidates: __UpperCamelCase : str =candidate + '\n' + test_case __UpperCamelCase : Any =(test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase : Optional[Any] =executor.submit(lowerCamelCase__ , *lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): __UpperCamelCase : str =future.result() results[result["task_id"]].append((result['completion_id'], result) ) __UpperCamelCase , __UpperCamelCase : int =[], [] for result in results.values(): result.sort() __UpperCamelCase : str =[r[1]['passed'] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) __UpperCamelCase : Optional[int] =np.array(lowerCamelCase__ ) __UpperCamelCase : List[str] =np.array(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =k __UpperCamelCase : List[Any] ={f'pass@{k}': estimate_pass_at_k(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A ( a_ ,a_ ,a_ ) -> Optional[int]: def estimator(a_ ,a_ ,a_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(a_ ,a_ ): __UpperCamelCase : Optional[int] =itertools.repeat(a_ ,len(a_ ) ) else: assert len(a_ ) == len(a_ ) __UpperCamelCase : List[Any] =iter(a_ ) return np.array([estimator(int(a_ ) ,int(a_ ) ,a_ ) for n, c in zip(a_ ,a_ )] )
71
0
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : str = 0 if start < end: __snake_case : Optional[int] = randint(__lowerCamelCase , __lowerCamelCase ) __snake_case : Tuple = a[end] __snake_case : str = a[pivot] __snake_case : Dict = temp __snake_case : Tuple = _in_place_partition(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) count += _in_place_quick_sort(__lowerCamelCase , __lowerCamelCase , p - 1 ) count += _in_place_quick_sort(__lowerCamelCase , p + 1 , __lowerCamelCase ) return count def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : List[str] = 0 __snake_case : str = randint(__lowerCamelCase , __lowerCamelCase ) __snake_case : Union[str, Any] = a[end] __snake_case : Union[str, Any] = a[pivot] __snake_case : Tuple = temp __snake_case : Dict = start - 1 for index in range(__lowerCamelCase , __lowerCamelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __snake_case : Optional[int] = new_pivot_index + 1 __snake_case : Optional[Any] = a[new_pivot_index] __snake_case : Optional[int] = a[index] __snake_case : Tuple = temp __snake_case : Any = a[new_pivot_index + 1] __snake_case : int = a[end] __snake_case : Dict = temp return new_pivot_index + 1, count _snake_case : Any = TemporaryFile() _snake_case : Dict = 100 # 1000 elements are to be sorted _snake_case : Dict = 0, 1 # mean and standard deviation _snake_case : Optional[int] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _snake_case : Optional[int] = np.load(outfile) _snake_case : Tuple = len(M) - 1 _snake_case : Dict = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
356
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP _snake_case : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case : Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=8 ): __snake_case : List[Any] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __snake_case : Optional[int] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : MultilingualCLIP , lowerCamelCase : XLMRobertaTokenizer , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : Union[DDIMScheduler, DDPMScheduler] , lowerCamelCase : VQModel , ) -> Optional[int]: super().__init__() self.register_modules( text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , movq=lowerCamelCase , ) __snake_case : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __snake_case ( self : Any , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : int ) -> Any: if latents is None: __snake_case : str = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __snake_case : Optional[int] = latents.to(lowerCamelCase ) __snake_case : List[Any] = latents * scheduler.init_noise_sigma return latents def __snake_case ( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str=None , ) -> List[str]: __snake_case : Tuple = len(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else 1 # get prompt text embeddings __snake_case : Optional[int] = self.tokenizer( lowerCamelCase , padding="max_length" , truncation=lowerCamelCase , max_length=77 , return_attention_mask=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors="pt" , ) __snake_case : List[str] = text_inputs.input_ids __snake_case : List[Any] = self.tokenizer(lowerCamelCase , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowerCamelCase , lowerCamelCase ): __snake_case : Optional[Any] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __snake_case : Any = text_input_ids.to(lowerCamelCase ) __snake_case : List[str] = text_inputs.attention_mask.to(lowerCamelCase ) __snake_case , __snake_case : List[str] = self.text_encoder( input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) __snake_case : List[Any] = prompt_embeds.repeat_interleave(lowerCamelCase , dim=0 ) __snake_case : List[str] = text_encoder_hidden_states.repeat_interleave(lowerCamelCase , dim=0 ) __snake_case : Optional[int] = text_mask.repeat_interleave(lowerCamelCase , dim=0 ) if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Any = [""] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=' F' {type(lowerCamelCase )}.' ) elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[Any] = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: __snake_case : int = negative_prompt __snake_case : Dict = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=77 , truncation=lowerCamelCase , return_attention_mask=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors="pt" , ) __snake_case : Dict = uncond_input.input_ids.to(lowerCamelCase ) __snake_case : List[Any] = uncond_input.attention_mask.to(lowerCamelCase ) __snake_case , __snake_case : Tuple = self.text_encoder( input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Dict = negative_prompt_embeds.shape[1] __snake_case : int = negative_prompt_embeds.repeat(1 , lowerCamelCase ) __snake_case : List[str] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCamelCase ) __snake_case : Union[str, Any] = uncond_text_encoder_hidden_states.shape[1] __snake_case : Tuple = uncond_text_encoder_hidden_states.repeat(1 , lowerCamelCase , 1 ) __snake_case : str = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowerCamelCase , -1 ) __snake_case : Optional[int] = uncond_text_mask.repeat_interleave(lowerCamelCase , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) __snake_case : List[Any] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __snake_case : Any = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __snake_case ( self : List[str] , lowerCamelCase : Dict=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) __snake_case : Optional[int] = torch.device(F'cuda:{gpu_id}' ) __snake_case : Optional[Any] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase , lowerCamelCase ) def __snake_case ( self : List[Any] , lowerCamelCase : int=0 ) -> Optional[int]: if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) __snake_case : Optional[Any] = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __snake_case : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __snake_case , __snake_case : List[Any] = cpu_offload_with_hook(lowerCamelCase , lowerCamelCase , prev_module_hook=lowerCamelCase ) if self.safety_checker is not None: __snake_case , __snake_case : Optional[int] = cpu_offload_with_hook(self.safety_checker , lowerCamelCase , prev_module_hook=lowerCamelCase ) # We'll offload the last model manually. __snake_case : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case ( self : List[Any] ) -> Optional[int]: if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase ) def __call__( self : Dict , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 100 , lowerCamelCase : float = 4.0 , lowerCamelCase : int = 1 , lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , ) -> List[Any]: if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Optional[int] = 1 elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[Any] = len(lowerCamelCase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}' ) __snake_case : Any = self._execution_device __snake_case : Any = batch_size * num_images_per_prompt __snake_case : Any = guidance_scale > 1.0 __snake_case , __snake_case , __snake_case : Optional[Any] = self._encode_prompt( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[Any] = torch.cat(lowerCamelCase , dim=0 ) if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : str = torch.cat(lowerCamelCase , dim=0 ) if do_classifier_free_guidance: __snake_case : Dict = image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) __snake_case : Optional[Any] = negative_image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) __snake_case : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=lowerCamelCase ) self.scheduler.set_timesteps(lowerCamelCase , device=lowerCamelCase ) __snake_case : Tuple = self.scheduler.timesteps __snake_case : Union[str, Any] = self.unet.config.in_channels __snake_case , __snake_case : Tuple = get_new_h_w(lowerCamelCase , lowerCamelCase , self.movq_scale_factor ) # create initial latent __snake_case : Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowerCamelCase , lowerCamelCase , lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __snake_case : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : int = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} __snake_case : Optional[Any] = self.unet( sample=lowerCamelCase , timestep=lowerCamelCase , encoder_hidden_states=lowerCamelCase , added_cond_kwargs=lowerCamelCase , return_dict=lowerCamelCase , )[0] if do_classifier_free_guidance: __snake_case , __snake_case : Any = noise_pred.split(latents.shape[1] , dim=1 ) __snake_case , __snake_case : Union[str, Any] = noise_pred.chunk(2 ) __snake_case , __snake_case : str = variance_pred.chunk(2 ) __snake_case : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __snake_case : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __snake_case , __snake_case : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __snake_case : str = self.scheduler.step( lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase , ).prev_sample # post-processing __snake_case : str = self.movq.decode(lowerCamelCase , force_not_quantize=lowerCamelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __snake_case : Union[str, Any] = image * 0.5 + 0.5 __snake_case : Union[str, Any] = image.clamp(0 , 1 ) __snake_case : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : str = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
134
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int = 1_00 ): '''simple docstring''' lowerCAmelCase = 0 lowerCAmelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'{solution() = }')
46
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while b: lowerCAmelCase , lowerCAmelCase = b, a % b return a def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(SCREAMING_SNAKE_CASE , a % b ) def UpperCAmelCase__ ( ): '''simple docstring''' print(F'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(F'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(F'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(F'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(F'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(F'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(F'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(F'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
46
1
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: if len(snake_case_ ) != 2 or len(a[0] ) != 2 or len(snake_case_ ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) snake_case_ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case_ ) ) ] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case_ ) ) ] def UpperCAmelCase ( UpperCAmelCase ) -> Any: if len(snake_case_ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) snake_case_ = len(snake_case_ ) snake_case_ = matrix_length // 2 snake_case_ = [[a[i][j] for j in range(snake_case_ , snake_case_ )] for i in range(snake_case_ )] snake_case_ = [ [a[i][j] for j in range(snake_case_ , snake_case_ )] for i in range(snake_case_ , snake_case_ ) ] snake_case_ = [[a[i][j] for j in range(snake_case_ )] for i in range(snake_case_ )] snake_case_ = [[a[i][j] for j in range(snake_case_ )] for i in range(snake_case_ , snake_case_ )] return top_left, top_right, bot_left, bot_right def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: return len(snake_case_ ), len(matrix[0] ) def UpperCAmelCase ( UpperCAmelCase ) -> Dict: print('\n'.join(str(snake_case_ ) for line in matrix ) ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: if matrix_dimensions(snake_case_ ) == (2, 2): return default_matrix_multiplication(snake_case_ , snake_case_ ) snake_case_ = split_matrix(snake_case_ ) snake_case_ = split_matrix(snake_case_ ) snake_case_ = actual_strassen(snake_case_ , matrix_subtraction(snake_case_ , snake_case_ ) ) snake_case_ = actual_strassen(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) snake_case_ = actual_strassen(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) snake_case_ = actual_strassen(snake_case_ , matrix_subtraction(snake_case_ , snake_case_ ) ) snake_case_ = actual_strassen(matrix_addition(snake_case_ , snake_case_ ) , matrix_addition(snake_case_ , snake_case_ ) ) snake_case_ = actual_strassen(matrix_subtraction(snake_case_ , snake_case_ ) , matrix_addition(snake_case_ , snake_case_ ) ) snake_case_ = actual_strassen(matrix_subtraction(snake_case_ , snake_case_ ) , matrix_addition(snake_case_ , snake_case_ ) ) snake_case_ = matrix_addition(matrix_subtraction(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) , snake_case_ ) snake_case_ = matrix_addition(snake_case_ , snake_case_ ) snake_case_ = matrix_addition(snake_case_ , snake_case_ ) snake_case_ = matrix_subtraction(matrix_subtraction(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) , snake_case_ ) # construct the new matrix from our 4 quadrants snake_case_ = [] for i in range(len(snake_case_ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(snake_case_ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: if matrix_dimensions(snake_case_ )[1] != matrix_dimensions(snake_case_ )[0]: snake_case_ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'Matrix A: {matrixa}\n' f'Matrix B: {matrixa}' ) raise Exception(snake_case_ ) snake_case_ = matrix_dimensions(snake_case_ ) snake_case_ = matrix_dimensions(snake_case_ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case_ = max(*snake_case_ , *snake_case_ ) snake_case_ = int(math.pow(2 , math.ceil(math.loga(snake_case_ ) ) ) ) snake_case_ = matrixa snake_case_ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , snake_case_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case_ = actual_strassen(snake_case_ , snake_case_ ) # Removing the additional zeros for i in range(0 , snake_case_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case_ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": __UpperCamelCase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] __UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
201
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> bool: return str(__UpperCAmelCase ) == str(__UpperCAmelCase )[::-1] def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> int: return int(__UpperCAmelCase ) + int(str(__UpperCAmelCase )[::-1] ) def lowerCAmelCase_ ( __UpperCAmelCase: int = 1_0000 ) -> int: UpperCamelCase__ : Optional[Any] = [] for num in range(1 , __UpperCAmelCase ): UpperCamelCase__ : str = 0 UpperCamelCase__ : Any = num while iterations < 50: UpperCamelCase__ : List[Any] = sum_reverse(__UpperCAmelCase ) iterations += 1 if is_palindrome(__UpperCAmelCase ): break else: lychrel_nums.append(__UpperCAmelCase ) return len(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
201
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Optional[Any] =get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __a ( A__ , unittest.TestCase ): _lowerCAmelCase : List[str] = XLNetTokenizer _lowerCAmelCase : Union[str, Any] = XLNetTokenizerFast _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : List[str] = True def __lowercase ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ : Tuple = XLNetTokenizer(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Any = "<s>" UpperCamelCase__ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 10_06 ) def __lowercase ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[int] = XLNetTokenizer(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(SCREAMING_SNAKE_CASE , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , [2_85, 46, 10, 1_70, 3_82] ) UpperCamelCase__ : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCamelCase__ : str = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) UpperCamelCase__ : int = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ) self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Any = XLNetTokenizer(SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : str = XLNetTokenizer(SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Dict = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) UpperCamelCase__ : Optional[Any] = tokenizer.encode("sequence builders" , add_special_tokens=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = tokenizer.encode("multi-sequence build" , add_special_tokens=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : str = {"input_ids": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
196
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None ) -> None: if start is None: UpperCamelCase__ : Union[str, Any] = 0 if end is None: UpperCamelCase__ : List[Any] = len(__lowerCAmelCase ) - 1 if start >= end: return UpperCamelCase__ : Union[str, Any] = (start + end) // 2 slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) if sequence[end] < sequence[mid]: UpperCamelCase__ , UpperCamelCase__ : Optional[int] = sequence[mid], sequence[end] slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
196
1
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) class lowercase__ ( lowercase ): lowercase__ = ["""pixel_values"""] def __init__( self : Optional[Any] ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Union[int, float] = 1 / 255 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN ,lowerCamelCase__ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCamelCase : Tuple = size if size is not None else {'shortest_edge': 224} _UpperCamelCase : Optional[Any] = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) _UpperCamelCase : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} _UpperCamelCase : List[Any] = get_size_dict(lowerCamelCase__ ,param_name='crop_size' ) _UpperCamelCase : int = do_resize _UpperCamelCase : Tuple = size _UpperCamelCase : int = resample _UpperCamelCase : Optional[int] = do_center_crop _UpperCamelCase : Optional[int] = crop_size _UpperCamelCase : str = do_rescale _UpperCamelCase : List[Any] = rescale_factor _UpperCamelCase : int = do_normalize _UpperCamelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Dict[str, int] ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : int ,): '''simple docstring''' _UpperCamelCase : List[Any] = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _UpperCamelCase : int = int((256 / 224) * size['shortest_edge'] ) _UpperCamelCase : int = get_resize_output_image_size(lowerCamelCase__ ,size=lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) _UpperCamelCase : Dict = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( lowerCamelCase__ ,size=(size_dict['height'], size_dict['width']) ,resample=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Dict[str, int] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' _UpperCamelCase : List[str] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(lowerCamelCase__ ,size=(size['height'], size['width']) ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Union[int, float] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : List[str] ,): '''simple docstring''' return rescale(lowerCamelCase__ ,scale=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Union[float, List[float]] ,lowerCamelCase__ : Union[float, List[float]] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Any ,): '''simple docstring''' return normalize(lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : ImageInput ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[Dict[str, int]] = None ,lowerCamelCase__ : PILImageResampling = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[Dict[str, int]] = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[float] = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[Union[float, Iterable[float]]] = None ,lowerCamelCase__ : Optional[Union[float, Iterable[float]]] = None ,lowerCamelCase__ : Optional[TensorType] = None ,lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST ,**lowerCamelCase__ : Optional[int] ,): '''simple docstring''' _UpperCamelCase : Any = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Any = resample if resample is not None else self.resample _UpperCamelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : Any = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) _UpperCamelCase : Any = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : List[Any] = get_size_dict(lowerCamelCase__ ,param_name='crop_size' ) _UpperCamelCase : Optional[int] = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _UpperCamelCase : Union[str, Any] = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: _UpperCamelCase : Dict = [self.resize(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) for image in images] if do_center_crop: _UpperCamelCase : Dict = [self.center_crop(lowerCamelCase__ ,lowerCamelCase__ ) for image in images] if do_rescale: _UpperCamelCase : int = [self.rescale(lowerCamelCase__ ,lowerCamelCase__ ) for image in images] if do_normalize: _UpperCamelCase : Union[str, Any] = [self.normalize(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) for image in images] _UpperCamelCase : Optional[Any] = [to_channel_dimension_format(lowerCamelCase__ ,lowerCamelCase__ ) for image in images] _UpperCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowerCamelCase__ ,tensor_type=lowerCamelCase__ )
83
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
0
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCAmelCase = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
145
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __UpperCAmelCase = 'Usage of script: script_name <size_of_canvas:int>' __UpperCAmelCase = [0] * 100 + [1] * 10 random.shuffle(choice) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Any = [[False for i in range(__snake_case )] for j in range(__snake_case )] return canvas def lowercase__ ( __snake_case : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(__snake_case ): for j, _ in enumerate(__snake_case ): UpperCAmelCase_ : Tuple = bool(random.getrandbits(1 ) ) def lowercase__ ( __snake_case : list[list[bool]] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = np.array(__snake_case ) UpperCAmelCase_ : Any = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__snake_case ): for c, pt in enumerate(__snake_case ): UpperCAmelCase_ : Optional[int] = __judge_point( __snake_case , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) UpperCAmelCase_ : List[Any] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. UpperCAmelCase_ : list[list[bool]] = current_canvas.tolist() return return_canvas def lowercase__ ( __snake_case : bool , __snake_case : list[list[bool]] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : List[Any] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. UpperCAmelCase_ : List[Any] = pt if pt: if alive < 2: UpperCAmelCase_ : str = False elif alive == 2 or alive == 3: UpperCAmelCase_ : int = True elif alive > 3: UpperCAmelCase_ : List[Any] = False else: if alive == 3: UpperCAmelCase_ : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __UpperCAmelCase = int(sys.argv[1]) # main working structure of this module. __UpperCAmelCase = create_canvas(canvas_size) seed(c) __UpperCAmelCase , __UpperCAmelCase = plt.subplots() fig.show() __UpperCAmelCase = ListedColormap(['w', 'k']) try: while True: __UpperCAmelCase = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
145
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Any , A : int ) -> None: lowercase_ : List[str] = value lowercase_ : Node | None = None lowercase_ : Node | None = None class _UpperCAmelCase : def __init__( self : Optional[int] , A : Node ) -> None: lowercase_ : Optional[Any] = tree def A ( self : Any , A : Node | None ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
33
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _a ( __a ): __a : Union[str, Any] = """encodec""" def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**lowercase ) @property def A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A ( self : Union[str, Any] ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A ( self : Any ): '''simple docstring''' UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A ( self : Optional[int] ): '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
34
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] _a = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
144
"""simple docstring""" _a = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
144
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase = 16 _lowerCAmelCase = 32 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase = 16 ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ : int = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase , max_length=UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ : Optional[int] = datasets.map( UpperCamelCase , batched=UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ : Optional[int] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ : Dict = 8 else: lowerCAmelCase__ : Any = None return tokenizer.pad( UpperCamelCase , padding="""longest""" , max_length=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase__ : List[Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) lowerCAmelCase__ : List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase = mocked_dataloaders # noqa: F811 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase ) == "1": lowerCAmelCase__ : Tuple = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCAmelCase__ : Dict = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: lowerCAmelCase__ : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ : List[str] = config["""lr"""] lowerCAmelCase__ : Any = int(config["""num_epochs"""] ) lowerCAmelCase__ : List[str] = int(config["""seed"""] ) lowerCAmelCase__ : List[str] = int(config["""batch_size"""] ) set_seed(UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = get_dataloaders(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : str = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ : Dict = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ : str = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ : str = AdamW(params=model.parameters() , lr=UpperCamelCase ) # Instantiate scheduler lowerCAmelCase__ : Dict = get_linear_schedule_with_warmup( optimizer=UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = accelerator.prepare( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCAmelCase__ : Dict = os.path.split(UpperCamelCase )[-1].split(""".""" )[0] accelerator.init_trackers(UpperCamelCase , UpperCamelCase ) # Now we train the model for epoch in range(UpperCamelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCAmelCase__ : Dict = 0 for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ : Tuple = model(**UpperCamelCase ) lowerCAmelCase__ : List[str] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCAmelCase__ : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**UpperCamelCase ) lowerCAmelCase__ : Optional[int] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCamelCase , references=UpperCamelCase , ) lowerCAmelCase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , UpperCamelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(UpperCamelCase ), """epoch""": epoch, } , step=UpperCamelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase , default=UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=UpperCamelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) lowerCAmelCase__ : List[Any] = parser.parse_args() lowerCAmelCase__ : Any = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": main()
37
from math import isqrt, loga def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case , snake_case ): _lowerCAmelCase = False return [i for i in range(2 , snake_case ) if is_prime[i]] def _UpperCAmelCase ( snake_case = 80_08_00 , snake_case = 80_08_00 ): """simple docstring""" _lowerCAmelCase = degree * loga(snake_case ) _lowerCAmelCase = int(snake_case ) _lowerCAmelCase = calculate_prime_numbers(snake_case ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
82
0
def UpperCamelCase ( _a = 5_0 ) -> int: '''simple docstring''' lowercase_ :int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"{solution() = }")
252
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class UpperCamelCase : '''simple docstring''' lowercase : Optional[str] =field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """The column name of the images in the files."""} ) lowercase : Optional[str] =field(default=lowercase__ , metadata={"""help""": """A folder containing the training data."""} ) lowercase : Optional[str] =field(default=lowercase__ , metadata={"""help""": """A folder containing the validation data."""} ) lowercase : Optional[float] =field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowercase : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase : Optional[int] =field( default=lowercase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCamelCase ( self ): lowercase_ :int = {} if self.train_dir is not None: lowercase_ :Union[str, Any] = self.train_dir if self.validation_dir is not None: lowercase_ :int = self.validation_dir lowercase_ :str = data_files if data_files else None @dataclass class UpperCamelCase : '''simple docstring''' lowercase : str =field( default=lowercase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) lowercase : Optional[str] =field( default=lowercase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) lowercase : Optional[str] =field( default=lowercase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowercase : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase : str =field(default=lowercase__ , metadata={"""help""": """Name or path of preprocessor config."""} ) lowercase : bool =field( default=lowercase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowercase : float =field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) lowercase : bool =field( default=lowercase__ , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : float =field( default=1E-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def UpperCamelCase ( _a ) -> int: '''simple docstring''' lowercase_ :Tuple = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' lowercase_ :str = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ :int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ :Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , _a , _a ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ :Dict = training_args.get_process_log_level() logger.setLevel(_a ) transformers.utils.logging.set_verbosity(_a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowercase_ :Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ :List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowercase_ :Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ :Dict = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _a ) and data_args.train_val_split > 0.0: lowercase_ :int = ds['''train'''].train_test_split(data_args.train_val_split ) lowercase_ :Tuple = split['''train'''] lowercase_ :Optional[int] = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ :int = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase_ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.config_name , **_a ) elif model_args.model_name_or_path: lowercase_ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_a ) else: lowercase_ :str = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowercase_ :int = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_a ) elif model_args.model_name_or_path: lowercase_ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_a ) else: lowercase_ :Optional[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: lowercase_ :Dict = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase_ :str = ViTMAEForPreTraining(_a ) if training_args.do_train: lowercase_ :str = ds['''train'''].column_names else: lowercase_ :Tuple = ds['''validation'''].column_names if data_args.image_column_name is not None: lowercase_ :Optional[Any] = data_args.image_column_name elif "image" in column_names: lowercase_ :str = '''image''' elif "img" in column_names: lowercase_ :Any = '''img''' else: lowercase_ :Optional[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowercase_ :int = image_processor.size['''shortest_edge'''] else: lowercase_ :Union[str, Any] = (image_processor.size['''height'''], image_processor.size['''width''']) lowercase_ :List[str] = Compose( [ Lambda(lambda _a : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(_a , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_a ): lowercase_ :List[Any] = [transforms(_a ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase_ :Tuple = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_a ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase_ :str = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_a ) # Compute absolute learning rate lowercase_ :Any = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowercase_ :str = training_args.base_learning_rate * total_train_batch_size / 2_5_6 # Initialize our trainer lowercase_ :Any = Trainer( model=_a , args=_a , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: lowercase_ :Any = None if training_args.resume_from_checkpoint is not None: lowercase_ :Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ :Tuple = last_checkpoint lowercase_ :List[Any] = trainer.train(resume_from_checkpoint=_a ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ :str = trainer.evaluate() trainer.log_metrics('''eval''' , _a ) trainer.save_metrics('''eval''' , _a ) # Write model card and (optionally) push to hub lowercase_ :List[Any] = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**_a ) else: trainer.create_model_card(**_a ) def UpperCamelCase ( _a ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
252
1