code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Any ): snake_case__ : Union[str, Any] = inspect.getfile(accelerate.test_utils ) snake_case__ : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) snake_case__ : Tuple = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowerCamelCase ( self : Tuple ): snake_case__ : Optional[Any] = f"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split() snake_case__ : str = [sys.executable] + distributed_args execute_subprocess_async(snake_case_ , env=os.environ.copy() )
35
"""simple docstring""" from math import sqrt def _UpperCAmelCase ( __lowerCamelCase : int = 1_00_00_00 ) -> int: _snake_case = 0 _snake_case = 0 _snake_case = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__lowerCamelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
288
0
from math import loga def __UpperCamelCase ( _A ): if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_snake_case , _snake_case ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
352
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('''DownBlock2D''', '''AttnDownBlock2D'''), up_block_types=('''AttnUpBlock2D''', '''UpBlock2D'''), ) return model def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.dummy_uncond_unet lowerCAmelCase_ = KarrasVeScheduler() lowerCAmelCase_ = KarrasVePipeline(unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=2, generator=UpperCamelCase__, output_type='''numpy''' ).images lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=2, generator=UpperCamelCase__, output_type='''numpy''', return_dict=UpperCamelCase__ )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = '''google/ncsnpp-celebahq-256''' lowerCAmelCase_ = UNetaDModel.from_pretrained(UpperCamelCase__ ) lowerCAmelCase_ = KarrasVeScheduler() lowerCAmelCase_ = KarrasVePipeline(unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=20, generator=UpperCamelCase__, output_type='''numpy''' ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase_ = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
167
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def lowerCamelCase_ ( _a ): """simple docstring""" return input_array.reshape((input_array.size, 1) ) def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" lowerCAmelCase__ : Any = np.nan for i in range(_a ): lowerCAmelCase__ : Dict = features[:, labels == i] lowerCAmelCase__ : List[str] = data.mean(1 ) # Centralize the data of class i lowerCAmelCase__ : Optional[Any] = data - column_reshape(_a ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_a , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ : str = np.dot(_a , centered_data.T ) return covariance_sum / features.shape[1] def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" lowerCAmelCase__ : int = features.mean(1 ) lowerCAmelCase__ : Any = np.nan for i in range(_a ): lowerCAmelCase__ : List[Any] = features[:, labels == i] lowerCAmelCase__ : Tuple = data.shape[1] lowerCAmelCase__ : Optional[int] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_a ) - column_reshape(_a ) , (column_reshape(_a ) - column_reshape(_a )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCAmelCase__ : int = device_data * np.dot( column_reshape(_a ) - column_reshape(_a ) , (column_reshape(_a ) - column_reshape(_a )).T , ) return covariance_sum / features.shape[1] def lowerCamelCase_ ( _a , _a ): """simple docstring""" if features.any(): lowerCAmelCase__ : Tuple = features.mean(1 ) # Center the dataset lowerCAmelCase__ : Dict = features - np.reshape(_a , (data_mean.size, 1) ) lowerCAmelCase__ : Dict = np.dot(_a , centered_data.T ) / features.shape[1] lowerCAmelCase__ , lowerCAmelCase__ : List[str] = np.linalg.eigh(_a ) # Take all the columns in the reverse order (-1), and then takes only the first lowerCAmelCase__ : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowerCAmelCase__ : Any = np.dot(filtered_eigenvectors.T , _a ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=_a ) logging.error('''Dataset empty''' ) raise AssertionError def lowerCamelCase_ ( _a , _a , _a , _a ): """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = eigh( covariance_between_classes(_a , _a , _a ) , covariance_within_classes(_a , _a , _a ) , ) lowerCAmelCase__ : Optional[Any] = eigenvectors[:, ::-1][:, :dimensions] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = np.linalg.svd(_a ) lowerCAmelCase__ : Optional[Any] = svd_matrix[:, 0:dimensions] lowerCAmelCase__ : Optional[int] = np.dot(filtered_svd_matrix.T , _a ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=_a ) logging.error('''Dataset empty''' ) raise AssertionError def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowerCAmelCase__ : Dict = np.array([0, 0, 0, 1, 1] ) lowerCAmelCase__ : int = 2 lowerCAmelCase__ : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_a ) as error_info: lowerCAmelCase__ : Tuple = linear_discriminant_analysis( _a , _a , _a , _a ) if isinstance(_a , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowerCAmelCase__ : Any = 2 lowerCAmelCase__ : Union[str, Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_a ) as error_info: lowerCAmelCase__ : str = principal_component_analysis(_a , _a ) if not np.allclose(_a , _a ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
131
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger() @dataclass class _a : _a : nn.Module _a : List[nn.Module] = field(default_factory=_lowercase) _a : list = field(default_factory=_lowercase) def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tensor , _SCREAMING_SNAKE_CASE : Tensor )-> Any: lowerCAmelCase__ : str = len(list(m.modules() ) ) == 1 or isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ) or isinstance(_SCREAMING_SNAKE_CASE , nn.BatchNormad ) if has_not_submodules: self.traced.append(_SCREAMING_SNAKE_CASE ) def __call__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tensor )-> str: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_SCREAMING_SNAKE_CASE ) [x.remove() for x in self.handles] return self @property def UpperCAmelCase__( self : Any )-> Union[str, Any]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _SCREAMING_SNAKE_CASE : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _a : _a : nn.Module _a : nn.Module _a : int = 1 _a : List = field(default_factory=_lowercase) _a : List = field(default_factory=_lowercase) _a : bool = True def __call__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Tensor )-> str: lowerCAmelCase__ : List[Any] = Tracker(self.dest )(_SCREAMING_SNAKE_CASE ).parametrized lowerCAmelCase__ : str = Tracker(self.src )(_SCREAMING_SNAKE_CASE ).parametrized lowerCAmelCase__ : List[str] = list(filter(lambda _SCREAMING_SNAKE_CASE : type(_SCREAMING_SNAKE_CASE ) not in self.src_skip , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = list(filter(lambda _SCREAMING_SNAKE_CASE : type(_SCREAMING_SNAKE_CASE ) not in self.dest_skip , _SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ) and self.raise_if_mismatch: raise Exception( F'Numbers of operations are different. Source module has {len(_SCREAMING_SNAKE_CASE )} operations while' F' destination module has {len(_SCREAMING_SNAKE_CASE )}.' ) for dest_m, src_m in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) class _a ( nn.Module): def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : nn.Module )-> Optional[int]: super().__init__() lowerCAmelCase__ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), F'Unexpected layer name {k}' lowerCAmelCase__ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) + 1 feature_blocks.append((F'res{block_index}', v) ) lowerCAmelCase__ : List[str] = nn.ModuleDict(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Tensor )-> List[str]: return get_trunk_forward_outputs( _SCREAMING_SNAKE_CASE , out_feat_keys=_SCREAMING_SNAKE_CASE , feature_blocks=self._feature_blocks , ) class _a ( _lowercase): def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )-> str: lowerCAmelCase__ : int = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str )-> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: lowerCAmelCase__ : Optional[Any] = self.convert_name_to_timm(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = partial(lambda: (timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ).eval(), None) ) else: lowerCAmelCase__ : Any = super().__getitem__(_SCREAMING_SNAKE_CASE ) return val class _a ( _lowercase): def __getitem__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str )-> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: lowerCAmelCase__ : int = RegNetModel else: lowerCAmelCase__ : List[str] = RegNetForImageClassification return val def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" for from_key, to_key in keys: lowerCAmelCase__ : Optional[Any] = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def lowerCamelCase_ ( _a , _a , _a , _a , _a , _a = True , ): """simple docstring""" print(f'Converting {name}...' ) with torch.no_grad(): lowerCAmelCase__ , lowerCAmelCase__ : int = from_model_func() lowerCAmelCase__ : Optional[Any] = our_model_func(_a ).eval() lowerCAmelCase__ : int = ModuleTransfer(src=_a , dest=_a , raise_if_mismatch=_a ) lowerCAmelCase__ : str = torch.randn((1, 3, 224, 224) ) module_transfer(_a ) if from_state_dict is not None: lowerCAmelCase__ : Any = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: lowerCAmelCase__ : List[Any] = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] lowerCAmelCase__ : int = manually_copy_vissl_head(_a , our_model.state_dict() , _a ) our_model.load_state_dict(_a ) lowerCAmelCase__ : List[str] = our_model(_a , output_hidden_states=_a ) lowerCAmelCase__ : Dict = ( our_outputs.logits if isinstance(_a , _a ) else our_outputs.last_hidden_state ) lowerCAmelCase__ : Tuple = from_model(_a ) lowerCAmelCase__ : int = from_output[-1] if type(_a ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: lowerCAmelCase__ : Optional[int] = our_outputs.hidden_states[-1] assert torch.allclose(_a , _a ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=_a , ) lowerCAmelCase__ : Optional[int] = 224 if '''seer''' not in name else 384 # we can use the convnext one lowerCAmelCase__ : int = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=_a ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=_a , ) print(f'Pushed {name}' ) def lowerCamelCase_ ( _a , _a = None , _a = True ): """simple docstring""" lowerCAmelCase__ : str = '''imagenet-1k-id2label.json''' lowerCAmelCase__ : Dict = 1_000 lowerCAmelCase__ : Optional[int] = (1, num_labels) lowerCAmelCase__ : Optional[int] = '''huggingface/label-files''' lowerCAmelCase__ : Tuple = num_labels lowerCAmelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type='''dataset''' ) ) , '''r''' ) ) lowerCAmelCase__ : Dict = {int(_a ): v for k, v in idalabel.items()} lowerCAmelCase__ : List[Any] = idalabel lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Dict = partial(_a , num_labels=_a , idalabel=_a , labelaid=_a ) lowerCAmelCase__ : Tuple = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), } lowerCAmelCase__ : Optional[Any] = NameToOurModelFuncMap() lowerCAmelCase__ : Optional[Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_a , _a ) -> Tuple[nn.Module, Dict]: lowerCAmelCase__ : Tuple = torch.hub.load_state_dict_from_url(_a , model_dir=str(_a ) , map_location='''cpu''' ) lowerCAmelCase__ : int = model_func() # check if we have a head, if yes add it lowerCAmelCase__ : int = files['''classy_state_dict''']['''base_model''']['''model'''] lowerCAmelCase__ : Tuple = model_state_dict['''trunk'''] model.load_state_dict(_a ) return model.eval(), model_state_dict["heads"] # pretrained lowerCAmelCase__ : int = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowerCAmelCase__ : Optional[int] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowerCAmelCase__ : Optional[int] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowerCAmelCase__ : Tuple = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned lowerCAmelCase__ : List[Any] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowerCAmelCase__ : Optional[int] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowerCAmelCase__ : Union[str, Any] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowerCAmelCase__ : Union[str, Any] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _a , _a , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _a , _a , _a , ) return config, expected_shape if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) lowerCamelCase = parser.parse_args() lowerCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
131
1
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE = "cpu",__SCREAMING_SNAKE_CASE = "openai/clip-vit-large-patch14" ): '''simple docstring''' __lowerCAmelCase = device __lowerCAmelCase = CLIPTokenizerFast.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] __lowerCAmelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] __lowerCAmelCase = torchvision.transforms.Normalize(self.image_mean,self.image_std ) __lowerCAmelCase = torchvision.transforms.Resize(2_24 ) __lowerCAmelCase = torchvision.transforms.CenterCrop(2_24 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.resize(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.center_crop(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.normalize(__SCREAMING_SNAKE_CASE ) return images def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.tokenizer(text=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.preprocess_img(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE=10,__SCREAMING_SNAKE_CASE=0.01,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE="image",__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,): '''simple docstring''' super().__init__() __lowerCAmelCase = None __lowerCAmelCase = device if device else get_device() if vqgan: __lowerCAmelCase = vqgan else: __lowerCAmelCase = load_vqgan(self.device,conf_path=__SCREAMING_SNAKE_CASE,ckpt_path=__SCREAMING_SNAKE_CASE ) self.vqgan.eval() if clip: __lowerCAmelCase = clip else: __lowerCAmelCase = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) __lowerCAmelCase = ProcessorGradientFlow(device=self.device ) __lowerCAmelCase = iterations __lowerCAmelCase = lr __lowerCAmelCase = log __lowerCAmelCase = make_grid __lowerCAmelCase = return_val __lowerCAmelCase = quantize __lowerCAmelCase = self.vqgan.decoder.z_shape def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=5,__SCREAMING_SNAKE_CASE=True ): '''simple docstring''' __lowerCAmelCase = [] if output_path is None: __lowerCAmelCase = """./animation.gif""" if input_path is None: __lowerCAmelCase = self.save_path __lowerCAmelCase = sorted(glob(input_path + """/*""" ) ) if not len(__SCREAMING_SNAKE_CASE ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(__SCREAMING_SNAKE_CASE ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) __lowerCAmelCase = total_duration / len(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [frame_duration] * len(__SCREAMING_SNAKE_CASE ) if extend_frames: __lowerCAmelCase = 1.5 __lowerCAmelCase = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(__SCREAMING_SNAKE_CASE ) ) imageio.mimsave(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,duration=__SCREAMING_SNAKE_CASE ) print(f'gif saved to {output_path}' ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError __lowerCAmelCase = preprocess(Image.open(__SCREAMING_SNAKE_CASE ),target_image_size=2_56 ).to(self.device ) __lowerCAmelCase = preprocess_vqgan(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase , *__lowerCAmelCase = self.vqgan.encode(__SCREAMING_SNAKE_CASE ) return z def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.latent.detach().requires_grad_() __lowerCAmelCase = base_latent + transform_vector if self.quantize: __lowerCAmelCase , *__lowerCAmelCase = self.vqgan.quantize(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = trans_latent return self.vqgan.decode(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = self.clip_preprocessor(text=__SCREAMING_SNAKE_CASE,images=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",padding=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.clip(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = clip_outputs.logits_per_image if weights is not None: __lowerCAmelCase = similarity_logits * weights return similarity_logits.sum() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self._get_clip_similarity(pos_prompts["""prompts"""],__SCREAMING_SNAKE_CASE,weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: __lowerCAmelCase = self._get_clip_similarity(neg_prompts["""prompts"""],__SCREAMING_SNAKE_CASE,weights=neg_prompts["""weights"""] ) else: __lowerCAmelCase = torch.tensor([1],device=self.device ) __lowerCAmelCase = -torch.log(__SCREAMING_SNAKE_CASE ) + torch.log(__SCREAMING_SNAKE_CASE ) return loss def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = torch.randn_like(self.latent,requires_grad=__SCREAMING_SNAKE_CASE,device=self.device ) __lowerCAmelCase = torch.optim.Adam([vector],lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __lowerCAmelCase = self._add_vector(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = loop_post_process(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self._get_CLIP_loss(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) print("""CLIP loss""",__SCREAMING_SNAKE_CASE ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=__SCREAMING_SNAKE_CASE ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' wandb.init(reinit=__SCREAMING_SNAKE_CASE,project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: __lowerCAmelCase = Image.open(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = image.resize((2_56, 2_56) ) wandb.log("""Original Image""",wandb.Image(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if not prompts: return [] __lowerCAmelCase = [] __lowerCAmelCase = [] if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(__SCREAMING_SNAKE_CASE,(tuple, list) ): __lowerCAmelCase = prompt[0] __lowerCAmelCase = float(prompt[1] ) elif ":" in prompt: __lowerCAmelCase , __lowerCAmelCase = prompt.split(""":""" ) __lowerCAmelCase = float(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = prompt __lowerCAmelCase = 1.0 processed_prompts.append(__SCREAMING_SNAKE_CASE ) weights.append(__SCREAMING_SNAKE_CASE ) return { "prompts": processed_prompts, "weights": torch.tensor(__SCREAMING_SNAKE_CASE,device=self.device ), } def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if image_path: __lowerCAmelCase = self._get_latent(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.randn(self.latent_dim,device=self.device ) if self.log: self._init_logging(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) assert pos_prompts, "You must provide at least one positive prompt." __lowerCAmelCase = self.process_prompts(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.process_prompts(__SCREAMING_SNAKE_CASE ) if save_final and save_path is None: __lowerCAmelCase = os.path.join("""./outputs/""","""_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(__SCREAMING_SNAKE_CASE ): os.makedirs(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = save_path + """_""" + get_timestamp() os.makedirs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = save_path __lowerCAmelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = loop_post_process(__SCREAMING_SNAKE_CASE ) for iter, transformed_img in enumerate(self._optimize_CLIP(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ): if show_intermediate: show_pil(__SCREAMING_SNAKE_CASE ) if save_intermediate: transformed_img.save(os.path.join(self.save_path,f'iter_{iter:03d}.png' ) ) if self.log: wandb.log({"""Image""": wandb.Image(__SCREAMING_SNAKE_CASE )} ) if show_final: show_pil(__SCREAMING_SNAKE_CASE ) if save_final: transformed_img.save(os.path.join(self.save_path,f'iter_{iter:03d}_final.png' ) )
368
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class a ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :List[Any] = TextToVideoSDPipeline lowerCamelCase :Any = TEXT_TO_IMAGE_PARAMS lowerCamelCase :Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCamelCase :Optional[int] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def UpperCAmelCase ( self ) -> Dict: torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _A = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) _A = CLIPTextModel(lowerCAmelCase_ ) _A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _A = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ) -> str: if str(lowerCAmelCase_ ).startswith("""mps""" ): _A = torch.manual_seed(lowerCAmelCase_ ) else: _A = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCAmelCase ( self ) -> List[Any]: _A = """cpu""" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = TextToVideoSDPipeline(**lowerCAmelCase_ ) _A = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A = self.get_dummy_inputs(lowerCAmelCase_ ) _A = """np""" _A = sd_pipe(**lowerCAmelCase_ ).frames _A = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _A = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self ) -> int: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase ( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCAmelCase ( self ) -> Union[str, Any]: pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCAmelCase ( self ) -> List[Any]: pass def UpperCAmelCase ( self ) -> Optional[int]: return super().test_progress_bar() @slow @skip_mps class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: _A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _A = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _A = pipe.to("""cuda""" ) _A = """Spiderman is surfing""" _A = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _A = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCAmelCase ( self ) -> int: _A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _A = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _A = pipe.to("""cuda""" ) _A = """Spiderman is surfing""" _A = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _A = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
180
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[Any] = '''bridgetower_vision_model''' def __init__( self , lowerCAmelCase_=7_68 , lowerCAmelCase_=12 , lowerCAmelCase_=3 , lowerCAmelCase_=16 , lowerCAmelCase_=2_88 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-05 , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Any: super().__init__(**lowerCAmelCase_ ) _A = hidden_size _A = num_hidden_layers _A = num_channels _A = patch_size _A = image_size _A = initializer_factor _A = layer_norm_eps _A = stop_gradient _A = share_layernorm _A = remove_last_layer @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ) -> "PretrainedConfig": _A , _A = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("""model_type""" ) == "bridgetower": _A = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = '''bridgetower_text_model''' def __init__( self , lowerCAmelCase_=5_02_65 , lowerCAmelCase_=7_68 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=1 , lowerCAmelCase_=30_72 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_14 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-05 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , **lowerCAmelCase_ , ) -> Optional[Any]: super().__init__(**lowerCAmelCase_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = initializer_factor _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = pad_token_id _A = bos_token_id _A = eos_token_id @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ) -> "PretrainedConfig": _A , _A = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("""model_type""" ) == "bridgetower": _A = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[int] = '''bridgetower''' def __init__( self , lowerCAmelCase_=True , lowerCAmelCase_="gelu" , lowerCAmelCase_=7_68 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-05 , lowerCAmelCase_=False , lowerCAmelCase_="add" , lowerCAmelCase_=12 , lowerCAmelCase_=6 , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> int: # TODO: remove this once the Hub files are updated. _A = kwargs.pop("""text_config_dict""" , lowerCAmelCase_ ) _A = kwargs.pop("""vision_config_dict""" , lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) _A = share_cross_modal_transformer_layers _A = hidden_act _A = hidden_size _A = initializer_factor _A = layer_norm_eps _A = share_link_tower_layers _A = link_tower_type _A = num_attention_heads _A = num_hidden_layers _A = tie_word_embeddings _A = init_layernorm_from_vision_encoder if text_config is None: _A = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _A = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _A = BridgeTowerTextConfig(**lowerCAmelCase_ ) _A = BridgeTowerVisionConfig(**lowerCAmelCase_ ) @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = copy.deepcopy(self.__dict__ ) _A = self.text_config.to_dict() _A = self.vision_config.to_dict() _A = self.__class__.model_type return output
180
1
from ...configuration_utils import PretrainedConfig _snake_case : int = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[Any] = "tapas" def __init__( self : Dict , lowerCamelCase : Any=30522 , lowerCamelCase : int=768 , lowerCamelCase : List[Any]=12 , lowerCamelCase : Optional[Any]=12 , lowerCamelCase : Any=3072 , lowerCamelCase : int="gelu" , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[str]=1024 , lowerCamelCase : str=[3, 256, 256, 2, 256, 256, 10] , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[int]=1E-12 , lowerCamelCase : Tuple=0 , lowerCamelCase : Optional[Any]=10.0 , lowerCamelCase : Dict=0 , lowerCamelCase : Tuple=1.0 , lowerCamelCase : int=None , lowerCamelCase : List[Any]=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : Any=None , lowerCamelCase : List[str]=1.0 , lowerCamelCase : Any=1.0 , lowerCamelCase : Optional[Any]=False , lowerCamelCase : Any=False , lowerCamelCase : List[str]="ratio" , lowerCamelCase : Tuple=None , lowerCamelCase : str=None , lowerCamelCase : Union[str, Any]=64 , lowerCamelCase : Dict=32 , lowerCamelCase : int=False , lowerCamelCase : Dict=True , lowerCamelCase : str=False , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=True , lowerCamelCase : str=False , lowerCamelCase : Any=None , lowerCamelCase : Union[str, Any]=None , **lowerCamelCase : Tuple , ) -> int: super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __snake_case : Dict = vocab_size __snake_case : Tuple = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : Optional[int] = intermediate_size __snake_case : List[str] = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_sizes __snake_case : Union[str, Any] = initializer_range __snake_case : Union[str, Any] = layer_norm_eps # Fine-tuning task hyperparameters __snake_case : Optional[Any] = positive_label_weight __snake_case : Any = num_aggregation_labels __snake_case : Dict = aggregation_loss_weight __snake_case : Any = use_answer_as_supervision __snake_case : Any = answer_loss_importance __snake_case : Optional[int] = use_normalized_answer_loss __snake_case : int = huber_loss_delta __snake_case : str = temperature __snake_case : str = aggregation_temperature __snake_case : Optional[Any] = use_gumbel_for_cells __snake_case : Optional[Any] = use_gumbel_for_aggregation __snake_case : int = average_approximation_function __snake_case : Dict = cell_selection_preference __snake_case : Any = answer_loss_cutoff __snake_case : Optional[int] = max_num_rows __snake_case : int = max_num_columns __snake_case : Tuple = average_logits_per_cell __snake_case : int = select_one_column __snake_case : Union[str, Any] = allow_empty_column_selection __snake_case : int = init_cell_selection_weights_to_zero __snake_case : Optional[Any] = reset_position_index_per_cell __snake_case : Optional[Any] = disable_per_token_loss # Aggregation hyperparameters __snake_case : str = aggregation_labels __snake_case : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , lowerCamelCase ): __snake_case : List[str] = {int(lowerCamelCase ): v for k, v in aggregation_labels.items()}
134
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Dict = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) __snake_case : List[Any] = MaskFormerConfig(backbone_config=__lowerCamelCase ) __snake_case : List[Any] = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok __snake_case : Any = 8_4_7 __snake_case : List[Any] = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok __snake_case : Optional[int] = 1_5_0 __snake_case : int = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok __snake_case : Optional[Any] = 1_7_1 __snake_case : List[str] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO __snake_case : Optional[int] = 1_3_3 __snake_case : int = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok __snake_case : Union[str, Any] = 1_9 __snake_case : Dict = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok __snake_case : Any = 6_5 __snake_case : Any = "mapillary-vistas-id2label.json" __snake_case : str = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) , "r" ) ) __snake_case : Tuple = {int(__lowerCamelCase ): v for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Dict = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Dict = dct.pop(__lowerCamelCase ) __snake_case : Any = val def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __snake_case : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __snake_case : Tuple = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __snake_case : Tuple = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Tuple = in_proj_weight[:dim, :] __snake_case : Tuple = in_proj_bias[: dim] __snake_case : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] __snake_case : Tuple = in_proj_bias[ dim : dim * 2 ] __snake_case : str = in_proj_weight[ -dim :, : ] __snake_case : Any = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): # fmt: off __snake_case : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __snake_case : List[str] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __snake_case : Union[str, Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Any = in_proj_weight[: hidden_size, :] __snake_case : Optional[int] = in_proj_bias[:config.hidden_size] __snake_case : Any = in_proj_weight[hidden_size : hidden_size * 2, :] __snake_case : Any = in_proj_bias[hidden_size : hidden_size * 2] __snake_case : Tuple = in_proj_weight[-hidden_size :, :] __snake_case : Optional[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __snake_case : Optional[Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __snake_case : Union[str, Any] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : int = in_proj_weight[: hidden_size, :] __snake_case : Tuple = in_proj_bias[:config.hidden_size] __snake_case : str = in_proj_weight[hidden_size : hidden_size * 2, :] __snake_case : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] __snake_case : Optional[Any] = in_proj_weight[-hidden_size :, :] __snake_case : Tuple = in_proj_bias[-hidden_size :] # fmt: on def lowerCAmelCase_ ( ): __snake_case : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : List[str] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False ): __snake_case : Optional[int] = get_maskformer_config(__lowerCamelCase ) # load original state_dict with open(__lowerCamelCase , "rb" ) as f: __snake_case : int = pickle.load(__lowerCamelCase ) __snake_case : Optional[int] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __snake_case : Tuple = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase , __lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __snake_case : int = torch.from_numpy(__lowerCamelCase ) # load 🤗 model __snake_case : List[str] = MaskFormerForInstanceSegmentation(__lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCamelCase , param.shape ) __snake_case , __snake_case : List[str] = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __snake_case : Union[str, Any] = prepare_img() if "vistas" in model_name: __snake_case : Optional[int] = 6_5 elif "cityscapes" in model_name: __snake_case : Optional[int] = 6_5_5_3_5 else: __snake_case : Union[str, Any] = 2_5_5 __snake_case : Union[str, Any] = True if "ade" in model_name else False __snake_case : str = MaskFormerImageProcessor(ignore_index=__lowerCamelCase , reduce_labels=__lowerCamelCase ) __snake_case : List[str] = image_processor(__lowerCamelCase , return_tensors="pt" ) __snake_case : Tuple = model(**__lowerCamelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __snake_case : Optional[Any] = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
134
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( __lowerCamelCase : list[float] ,__lowerCamelCase : Optional[int] ): print(F'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(__lowerCamelCase ): print(F'{i}\t\t{d}' ) def UpperCAmelCase_ ( __lowerCamelCase : list[dict[str, int]] ,__lowerCamelCase : list[float] ,__lowerCamelCase : int ): for j in range(__lowerCamelCase ): lowercase_ , lowercase_ , lowercase_ :Optional[Any] = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def UpperCAmelCase_ ( __lowerCamelCase : list[dict[str, int]] ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int ): lowercase_ :Optional[Any] = [float("inf" )] * vertex_count lowercase_ :List[Any] = 0.0 for _ in range(vertex_count - 1 ): for j in range(__lowerCamelCase ): lowercase_ , lowercase_ , lowercase_ :List[Any] = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: lowercase_ :Any = distance[u] + w lowercase_ :Any = check_negative_cycle(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Dict =int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase : str =int(input('''Enter number of edges: ''').strip()) lowerCAmelCase : list[dict[str, int]] =[{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] =( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase : Dict ={'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase : Optional[int] =int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase : int =bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
223
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCAmelCase : Tuple =logging.get_logger(__name__) lowerCAmelCase : List[str] ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCAmelCase : Optional[int] ={ '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } lowerCAmelCase : List[Any] ={ '''RUCAIBox/mvp''': 1_024, } class a_ ( _lowerCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ["input_ids", "attention_mask"] __A = MvpTokenizer def __init__( self : Optional[Any] , lowercase : Any=None , lowercase : List[Any]=None , lowercase : Dict=None , lowercase : int="replace" , lowercase : int="<s>" , lowercase : List[str]="</s>" , lowercase : Optional[Any]="</s>" , lowercase : List[str]="<s>" , lowercase : List[str]="<unk>" , lowercase : List[str]="<pad>" , lowercase : Tuple="<mask>" , lowercase : Tuple=False , lowercase : Dict=True , **lowercase : List[str] , ): """simple docstring""" super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) lowercase_ :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowercase_ :List[str] = getattr(lowercase , pre_tok_state.pop("type" ) ) lowercase_ :int = add_prefix_space lowercase_ :Optional[int] = pre_tok_class(**lowercase ) lowercase_ :Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ :List[Any] = "post_processor" lowercase_ :str = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: lowercase_ :Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ :int = tuple(state["sep"] ) if "cls" in state: lowercase_ :Any = tuple(state["cls"] ) lowercase_ :int = False if state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowercase_ :Union[str, Any] = add_prefix_space lowercase_ :int = True if state.get("trim_offsets" , lowercase ) != trim_offsets: lowercase_ :Any = trim_offsets lowercase_ :int = True if changes_to_apply: lowercase_ :Tuple = getattr(lowercase , state.pop("type" ) ) lowercase_ :Any = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def lowercase__ ( self : Optional[int] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : int , lowercase : Dict ): """simple docstring""" lowercase_ :List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value lowercase_ :Union[str, Any] = value def lowercase__ ( self : Optional[Any] , *lowercase : List[Any] , **lowercase : Any ): """simple docstring""" lowercase_ :Any = kwargs.get("is_split_into_words" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase , **lowercase ) def lowercase__ ( self : Optional[Any] , *lowercase : Optional[int] , **lowercase : int ): """simple docstring""" lowercase_ :Any = kwargs.get("is_split_into_words" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase , **lowercase ) def lowercase__ ( self : Dict , lowercase : str , lowercase : Optional[str] = None ): """simple docstring""" lowercase_ :str = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def lowercase__ ( self : Tuple , lowercase : Dict , lowercase : int=None ): """simple docstring""" lowercase_ :List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : int , lowercase : List[int] , lowercase : Optional[List[int]] = None ): """simple docstring""" lowercase_ :Union[str, Any] = [self.sep_token_id] lowercase_ :Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
223
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ : List[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = XLMRobertaTokenizer __UpperCamelCase : Optional[int] = XLMRobertaTokenizerFast __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : int = True def lowerCAmelCase__ ( self : int ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_: Any = XLMRobertaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = '<pad>' UpperCamelCase_: Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(_UpperCAmelCase ) , 1002 ) def lowerCAmelCase__ ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: int = XLMRobertaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCamelCase_: Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase_: Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCamelCase_: Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase_: Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowerCAmelCase__ ( self : Dict ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase_: List[str] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: int = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_: Union[str, Any] = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_: Tuple = tempfile.mkdtemp() UpperCamelCase_: Optional[int] = tokenizer_r.save_pretrained(_UpperCAmelCase ) UpperCamelCase_: Dict = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCamelCase_: Optional[int] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way UpperCamelCase_: Any = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCamelCase_: Optional[Any] = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=True UpperCamelCase_: Any = tempfile.mkdtemp() UpperCamelCase_: Dict = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) UpperCamelCase_: Optional[Any] = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way UpperCamelCase_: str = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCamelCase_: str = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=False UpperCamelCase_: Tuple = tempfile.mkdtemp() UpperCamelCase_: str = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) UpperCamelCase_: Tuple = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase_: List[str] = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCamelCase_: Optional[int] = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) @cached_property def lowerCAmelCase__ ( self : int ): return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def lowerCAmelCase__ ( self : Dict ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_UpperCAmelCase , f.name ) UpperCamelCase_: Any = XLMRobertaTokenizer(f.name , keep_accents=_UpperCAmelCase ) UpperCamelCase_: Tuple = pickle.dumps(_UpperCAmelCase ) pickle.loads(_UpperCAmelCase ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Tuple = self.get_tokenizer() UpperCamelCase_: Any = self.get_rust_tokenizer() UpperCamelCase_: List[Any] = 'I was born in 92000, and this is falsé.' UpperCamelCase_: Dict = tokenizer.tokenize(_UpperCAmelCase ) UpperCamelCase_: Union[str, Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_: Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) UpperCamelCase_: Dict = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_: Optional[int] = self.get_rust_tokenizer() UpperCamelCase_: str = tokenizer.encode(_UpperCAmelCase ) UpperCamelCase_: Dict = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: str = 'Hello World!' UpperCamelCase_: Optional[Any] = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Union[str, Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) UpperCamelCase_: str = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowerCAmelCase__ ( self : Union[str, Any] ): # fmt: off UpperCamelCase_: Tuple = {'input_ids': [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
369
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : int = """ctrl""" __UpperCamelCase : Dict = ["""past_key_values"""] __UpperCamelCase : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Dict , snake_case_ : Any=24_6534 , snake_case_ : Dict=256 , snake_case_ : str=1280 , snake_case_ : Optional[int]=8192 , snake_case_ : Union[str, Any]=48 , snake_case_ : Any=16 , snake_case_ : Optional[int]=0.1 , snake_case_ : Any=0.1 , snake_case_ : Any=1e-6 , snake_case_ : Optional[Any]=0.02 , snake_case_ : Optional[int]=True , **snake_case_ : Union[str, Any] , ): UpperCamelCase_: Union[str, Any] = vocab_size UpperCamelCase_: Union[str, Any] = n_positions UpperCamelCase_: Optional[int] = n_embd UpperCamelCase_: int = n_layer UpperCamelCase_: str = n_head UpperCamelCase_: Optional[int] = dff UpperCamelCase_: Optional[Any] = resid_pdrop UpperCamelCase_: Union[str, Any] = embd_pdrop UpperCamelCase_: List[str] = layer_norm_epsilon UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: Optional[Any] = use_cache super().__init__(**snake_case_ )
223
0
"""simple docstring""" from __future__ import annotations import time import numpy as np lowerCamelCase__ = [8, 5, 9, 7] lowerCamelCase__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCamelCase__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : List[str] = claim_vector __lowerCAmelCase : str = allocated_resources_table __lowerCAmelCase : Optional[int] = maximum_claim_table def __lowerCamelCase ( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowerCamelCase ( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowerCamelCase ( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_SCREAMING_SNAKE_CASE ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowerCamelCase ( self ): return {self.__need().index(_SCREAMING_SNAKE_CASE ): i for i in self.__need()} def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = self.__need() __lowerCAmelCase : int = self.__allocated_resources_table __lowerCAmelCase : List[str] = self.__available_resources() __lowerCAmelCase : Dict = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __lowerCAmelCase : Optional[Any] = False for each_need in need_list: __lowerCAmelCase : Optional[int] = True for index, need in enumerate(_SCREAMING_SNAKE_CASE ): if need > available_resources[index]: __lowerCAmelCase : List[Any] = False break if execution: __lowerCAmelCase : Optional[int] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowerCAmelCase : Optional[int] = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(_SCREAMING_SNAKE_CASE ) # update available/freed resources stack __lowerCAmelCase : Optional[int] = np.array(_SCREAMING_SNAKE_CASE ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(_SCREAMING_SNAKE_CASE ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __lowerCamelCase ( self ): print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(_SCREAMING_SNAKE_CASE ) + 1}" + ' '.join(f"{it:>8}" for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(_SCREAMING_SNAKE_CASE ) + 1}" + ' '.join(f"{it:>8}" for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(_SCREAMING_SNAKE_CASE ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(_SCREAMING_SNAKE_CASE ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
86
"""simple docstring""" def lowerCamelCase__ ( __snake_case = 10_00 ) -> int: """simple docstring""" _UpperCamelCase = 2**power _UpperCamelCase = str(__snake_case ) _UpperCamelCase = list(__snake_case ) _UpperCamelCase = 0 for i in list_num: sum_of_num += int(__snake_case ) return sum_of_num if __name__ == "__main__": _a = int(input("""Enter the power of 2: """).strip()) print("""2 ^ """, power, """ = """, 2**power) _a = solution(power) print("""Sum of the digits is: """, result)
194
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _UpperCAmelCase : _lowerCAmelCase : int = 4_2 _lowerCAmelCase : Dict = None # Automatically constructed _lowerCAmelCase : Optional[Any] = """dict""" _lowerCAmelCase : List[str] = None _lowerCAmelCase : Tuple = field(default="""Translation""" , init=__UpperCamelCase , repr=__UpperCamelCase) def __call__( self : str ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def _snake_case ( self : str ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class _UpperCAmelCase : _lowerCAmelCase : List[Any] = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : Optional[Any] = None # Automatically constructed _lowerCAmelCase : Optional[Any] = """dict""" _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Optional[Any] = field(default="""TranslationVariableLanguages""" , init=__UpperCamelCase , repr=__UpperCamelCase) def _snake_case ( self : Optional[int] ): snake_case_ : Tuple = sorted(set(self.languages ) ) if self.languages else None snake_case_ : List[str] = len(self.languages ) if self.languages else None def __call__( self : Union[str, Any] ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def _snake_case ( self : Dict , lowercase_ : Dict ): snake_case_ : Optional[int] = set(self.languages ) if self.languages and set(lowercase_ ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(lowercase_ ) - lang_set ) )}) are not in valid set ({', '.join(lowercase_ )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. snake_case_ : Dict = [] for lang, text in translation_dict.items(): if isinstance(lowercase_ , lowercase_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. snake_case_ : List[Any] = zip(*sorted(lowercase_ ) ) return {"language": languages, "translation": translations} def _snake_case ( self : List[str] ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
351
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
155
0
'''simple docstring''' _SCREAMING_SNAKE_CASE = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on _SCREAMING_SNAKE_CASE = {value: key for key, value in MORSE_CODE_DICT.items()} def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def __a(): '''simple docstring''' _lowerCAmelCase = "Morse code here!" print(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
158
'''simple docstring''' from collections.abc import Sequence def __a(SCREAMING_SNAKE_CASE_ : Sequence[float] , SCREAMING_SNAKE_CASE_ : bool = False ): '''simple docstring''' if not arr: return 0 _lowerCAmelCase = 0 if allow_empty_subarrays else float("-inf" ) _lowerCAmelCase = 0.0 for num in arr: _lowerCAmelCase = max(0 if allow_empty_subarrays else num , curr_sum + num ) _lowerCAmelCase = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _SCREAMING_SNAKE_CASE = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
158
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip snake_case_ : List[Any] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def A__ ( UpperCAmelCase_ ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): return max(metric_fn(UpperCAmelCase_ , UpperCAmelCase_ ) for gt in ground_truths ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = [line.strip() for line in open(UpperCAmelCase_ , 'r' ).readlines()] _UpperCamelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": _UpperCamelCase : Union[str, Any] = pd.read_csv(UpperCAmelCase_ , sep='\t' , header=UpperCAmelCase_ ) for answer_list in data[1]: _UpperCamelCase : List[Any] = ast.literal_eval(UpperCAmelCase_ ) answers.append(UpperCAmelCase_ ) else: _UpperCamelCase : Tuple = [line.strip() for line in open(UpperCAmelCase_ , 'r' ).readlines()] _UpperCamelCase : int = [[reference] for reference in references] _UpperCamelCase : Tuple = 0 for prediction, ground_truths in zip(UpperCAmelCase_ , UpperCAmelCase_ ): total += 1 em += metric_max_over_ground_truths(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) fa += metric_max_over_ground_truths(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = 100.0 * em / total _UpperCamelCase : List[str] = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Tuple = args.k _UpperCamelCase : Tuple = [line.strip() for line in open(UpperCAmelCase_ , 'r' ).readlines()] _UpperCamelCase : int = [line.strip() for line in open(UpperCAmelCase_ , 'r' ).readlines()] _UpperCamelCase : Tuple = 0 for hypo, reference in zip(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : List[str] = set(hypo.split('\t' )[:k] ) _UpperCamelCase : Dict = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _UpperCamelCase : Optional[int] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def strip_title(UpperCAmelCase_ ): if title.startswith('"' ): _UpperCamelCase : Optional[Any] = title[1:] if title.endswith('"' ): _UpperCamelCase : List[Any] = title[:-1] return title _UpperCamelCase : List[str] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCAmelCase_ , return_tensors='pt' , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , )['input_ids'].to(args.device ) _UpperCamelCase : List[Any] = rag_model.rag.question_encoder(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = question_enc_outputs[0] _UpperCamelCase : str = rag_model.retriever( UpperCAmelCase_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) _UpperCamelCase : List[Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _UpperCamelCase : Optional[int] = [] for docs in all_docs: _UpperCamelCase : Any = [strip_title(UpperCAmelCase_ ) for title in docs['title']] provenance_strings.append('\t'.join(UpperCAmelCase_ ) ) return provenance_strings def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): with torch.no_grad(): _UpperCamelCase : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCAmelCase_ , return_tensors='pt' , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = inputs_dict.input_ids.to(args.device ) _UpperCamelCase : str = inputs_dict.attention_mask.to(args.device ) _UpperCamelCase : Tuple = rag_model.generate( # rag_model overwrites generate UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=UpperCAmelCase_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _UpperCamelCase : Dict = rag_model.retriever.generator_tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) if args.print_predictions: for q, a in zip(UpperCAmelCase_ , UpperCAmelCase_ ): logger.info('Q: {} - A: {}'.format(UpperCAmelCase_ , UpperCAmelCase_ ) ) return answers def A__ ( ): _UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=UpperCAmelCase_ , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=UpperCAmelCase_ , choices=['exact', 'compressed', 'legacy'] , type=UpperCAmelCase_ , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=UpperCAmelCase_ , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=UpperCAmelCase_ , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=UpperCAmelCase_ , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=UpperCAmelCase_ , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=UpperCAmelCase_ , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=UpperCAmelCase_ , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=UpperCAmelCase_ , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=UpperCAmelCase_ , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=5_0 , type=UpperCAmelCase_ , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) _UpperCamelCase : str = parser.parse_args() _UpperCamelCase : int = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def A__ ( UpperCAmelCase_ ): _UpperCamelCase : str = {} if args.model_type is None: _UpperCamelCase : List[Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): _UpperCamelCase : Dict = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration _UpperCamelCase : Union[str, Any] = args.n_docs if args.index_name is not None: _UpperCamelCase : Optional[Any] = args.index_name if args.index_path is not None: _UpperCamelCase : List[Any] = args.index_path else: _UpperCamelCase : List[str] = BartForConditionalGeneration _UpperCamelCase : Optional[Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = get_scores if args.eval_mode == 'e2e' else get_precision_at_k _UpperCamelCase : str = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(UpperCAmelCase_ , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(UpperCAmelCase_ ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): _UpperCamelCase : Optional[int] = RagRetriever.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) _UpperCamelCase : Tuple = model_class.from_pretrained(UpperCAmelCase_ , retriever=UpperCAmelCase_ , **UpperCAmelCase_ ) model.retriever.init_retrieval() else: _UpperCamelCase : List[Any] = model_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: _UpperCamelCase : Any = [] for line in tqdm(UpperCAmelCase_ ): questions.append(line.strip() ) if len(UpperCAmelCase_ ) == args.eval_batch_size: _UpperCamelCase : List[str] = evaluate_batch_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) preds_file.write('\n'.join(UpperCAmelCase_ ) + '\n' ) preds_file.flush() _UpperCamelCase : Optional[Any] = [] if len(UpperCAmelCase_ ) > 0: _UpperCamelCase : Dict = evaluate_batch_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) preds_file.write('\n'.join(UpperCAmelCase_ ) ) preds_file.flush() score_fn(UpperCAmelCase_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": snake_case_ : Any = get_args() main(args)
369
'''simple docstring''' from __future__ import annotations def A__ ( UpperCAmelCase_ ): if not nums: return 0 _UpperCamelCase : Any = nums[0] _UpperCamelCase : Optional[int] = 0 for num in nums[1:]: _UpperCamelCase , _UpperCamelCase : Optional[Any] = ( max_excluding + num, max(UpperCAmelCase_ , UpperCAmelCase_ ), ) return max(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
236
0
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : Dict , lowercase_ : Union[str, Any]=sys.maxsize): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = '''bilinear''' SCREAMING_SNAKE_CASE_ : Optional[int] = max_size SCREAMING_SNAKE_CASE_ : Any = short_edge_length def __call__( self : str , lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [] for img in imgs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize SCREAMING_SNAKE_CASE_ : Any = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img SCREAMING_SNAKE_CASE_ : Dict = size * 1.0 / min(lowercase_ , lowercase_) if h < w: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = size, scale * w else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = scale * h, size if max(lowercase_ , lowercase_) > self.max_size: SCREAMING_SNAKE_CASE_ : List[str] = self.max_size * 1.0 / max(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Any = newh * scale SCREAMING_SNAKE_CASE_ : str = neww * scale SCREAMING_SNAKE_CASE_ : int = int(neww + 0.5) SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(newh + 0.5) if img.dtype == np.uinta: SCREAMING_SNAKE_CASE_ : Tuple = Image.fromarray(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) SCREAMING_SNAKE_CASE_ : int = np.asarray(lowercase_) else: SCREAMING_SNAKE_CASE_ : int = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw SCREAMING_SNAKE_CASE_ : int = nn.functional.interpolate( lowercase_ , (newh, neww) , mode=self.interp_method , align_corners=lowercase_).squeeze(0) img_augs.append(lowercase_) return img_augs class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) SCREAMING_SNAKE_CASE_ : Any = cfg.INPUT.FORMAT SCREAMING_SNAKE_CASE_ : List[str] = cfg.SIZE_DIVISIBILITY SCREAMING_SNAKE_CASE_ : List[str] = cfg.PAD_VALUE SCREAMING_SNAKE_CASE_ : List[Any] = cfg.INPUT.MAX_SIZE_TEST SCREAMING_SNAKE_CASE_ : List[Any] = cfg.MODEL.DEVICE SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) SCREAMING_SNAKE_CASE_ : Dict = lambda lowercase_: (x - self.pixel_mean) / self.pixel_std def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = tuple(max(lowercase_) for s in zip(*[img.shape for img in images])) SCREAMING_SNAKE_CASE_ : List[str] = [im.shape[-2:] for im in images] SCREAMING_SNAKE_CASE_ : int = [ nn.functional.pad( lowercase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(lowercase_ , lowercase_) ] return torch.stack(lowercase_), torch.tensor(lowercase_) def __call__( self : Tuple , lowercase_ : Optional[int] , lowercase_ : List[Any]=False): '''simple docstring''' with torch.no_grad(): if not isinstance(lowercase_ , lowercase_): SCREAMING_SNAKE_CASE_ : Optional[Any] = [images] if single_image: assert len(lowercase_) == 1 for i in range(len(lowercase_)): if isinstance(images[i] , torch.Tensor): images.insert(lowercase_ , images.pop(lowercase_).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( lowercase_ , torch.as_tensor(img_tensorize(images.pop(lowercase_) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([im.shape[:2] for im in images]) SCREAMING_SNAKE_CASE_ : Optional[int] = self.aug(lowercase_) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.normalizer(lowercase_) for x in images] # now pad them to do the following operations SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.pad(lowercase_) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad SCREAMING_SNAKE_CASE_ : Optional[int] = torch.true_divide(lowercase_ , lowercase_) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _A (__a , __a ) -> Dict: """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _A (__a , __a ) -> Any: """simple docstring""" assert torch.isfinite(__a ).all(), "Box tensor contains infinite or NaN!" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = box_size tensor[:, 0].clamp_(min=0 , max=__a ) tensor[:, 1].clamp_(min=0 , max=__a ) tensor[:, 2].clamp_(min=0 , max=__a ) tensor[:, 3].clamp_(min=0 , max=__a )
91
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline a__ : Any = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase__ ( datasets.BuilderConfig): __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = "utf-8" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = True # deprecated __SCREAMING_SNAKE_CASE = None # deprecated __SCREAMING_SNAKE_CASE = 1_0 << 2_0 # 10MB __SCREAMING_SNAKE_CASE = None class UpperCAmelCase__ ( datasets.ArrowBasedBuilder): __SCREAMING_SNAKE_CASE = JsonConfig def __lowerCamelCase ( self ) -> Any: if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) __UpperCamelCase = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def __lowerCamelCase ( self , lowercase ) -> List[Any]: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"""files""": files} ) ) return splits def __lowerCamelCase ( self , lowercase ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): __UpperCamelCase = self.config.features.arrow_schema.field(lowerCAmelCase__ ).type __UpperCamelCase = pa_table.append_column(lowerCAmelCase__ , pa.array([None] * len(lowerCAmelCase__ ) , type=lowerCAmelCase__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(lowerCAmelCase__ , self.config.features.arrow_schema ) return pa_table def __lowerCamelCase ( self , lowercase ) -> Any: for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(lowerCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __UpperCamelCase = json.load(lowerCAmelCase__ ) # We keep only the field we are interested in __UpperCamelCase = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(lowerCAmelCase__ , (list, tuple) ): __UpperCamelCase = set().union(*[row.keys() for row in dataset] ) __UpperCamelCase = {col: [row.get(lowerCAmelCase__ ) for row in dataset] for col in keys} else: __UpperCamelCase = dataset __UpperCamelCase = pa.Table.from_pydict(lowerCAmelCase__ ) yield file_idx, self._cast_table(lowerCAmelCase__ ) # If the file has one json object per line else: with open(lowerCAmelCase__ , """rb""" ) as f: __UpperCamelCase = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __UpperCamelCase = max(self.config.chunksize // 3_2 , 1_6 << 1_0 ) __UpperCamelCase = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: __UpperCamelCase = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(lowerCAmelCase__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __UpperCamelCase = batch.decode(self.config.encoding , errors=lowerCAmelCase__ ).encode("""utf-8""" ) try: while True: try: __UpperCamelCase = paj.read_json( io.BytesIO(lowerCAmelCase__ ) , read_options=paj.ReadOptions(block_size=lowerCAmelCase__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(lowerCAmelCase__ , pa.ArrowInvalid ) and "straddling" not in str(lowerCAmelCase__ ) or block_size > len(lowerCAmelCase__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"Batch of {len(lowerCAmelCase__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}." ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( lowerCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __UpperCamelCase = json.load(lowerCAmelCase__ ) except json.JSONDecodeError: logger.error(f"Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # list is the only sequence type supported in JSON try: __UpperCamelCase = set().union(*[row.keys() for row in dataset] ) __UpperCamelCase = {col: [row.get(lowerCAmelCase__ ) for row in dataset] for col in keys} __UpperCamelCase = pa.Table.from_pydict(lowerCAmelCase__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}" ) raise ValueError(f"Not able to read records in the JSON file at {file}." ) from None yield file_idx, self._cast_table(lowerCAmelCase__ ) break else: logger.error(f"Failed to read file \'{file}\' with error {type(lowerCAmelCase__ )}: {e}" ) raise ValueError( f"Not able to read records in the JSON file at {file}. " f"You should probably indicate the field of the JSON file containing your records. " f"This JSON file contain the following fields: {str(list(dataset.keys() ) )}. " f"Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. " ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) batch_idx += 1
366
'''simple docstring''' import csv import tweepy # Twitter API credentials a__ : Dict = '' a__ : List[str] = '' a__ : Optional[Any] = '' a__ : Any = '' def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = tweepy.OAuthHandler(__A ,__A ) auth.set_access_token(__A ,__A ) __UpperCamelCase = tweepy.API(__A ) # initialize a list to hold all the tweepy Tweets __UpperCamelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) __UpperCamelCase = api.user_timeline(screen_name=__A ,count=200 ) # save most recent tweets alltweets.extend(__A ) # save the id of the oldest tweet less one __UpperCamelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__A ) > 0: print(f"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates __UpperCamelCase = api.user_timeline( screen_name=__A ,count=200 ,max_id=__A ) # save most recent tweets alltweets.extend(__A ) # update the id of the oldest tweet less one __UpperCamelCase = alltweets[-1].id - 1 print(f"...{len(__A )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv __UpperCamelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"new_{screen_name}_tweets.csv" ,"""w""" ) as f: __UpperCamelCase = csv.writer(__A ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(__A ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
243
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor lowercase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :Dict , *a :Optional[int] , **a :List[str] ) -> None: warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , a , ) super().__init__(*a , **a )
232
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase : Optional[Any] = TypeVar('T') class lowerCamelCase__ ( Generic[T]): '''simple docstring''' _A = 42 # Cache store of keys _A = 42 # References of the keys in cache _A = 1_0 # Maximum capacity of cache def __init__( self :Optional[Any] , a :int ) -> None: __UpperCamelCase : Union[str, Any] = deque() __UpperCamelCase : str = set() if not n: __UpperCamelCase : Union[str, Any] = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: __UpperCamelCase : Any = n def _lowerCamelCase ( self :Tuple , a :T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __UpperCamelCase : int = self.dq_store.pop() self.key_reference.remove(a ) else: self.dq_store.remove(a ) self.dq_store.appendleft(a ) self.key_reference.add(a ) def _lowerCamelCase ( self :Any ) -> None: for k in self.dq_store: print(a ) def __repr__( self :Tuple ) -> str: return f'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() lowercase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
232
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __SCREAMING_SNAKE_CASE = """src/diffusers""" __SCREAMING_SNAKE_CASE = """.""" # This is to make sure the diffusers module imported is the one in the repo. __SCREAMING_SNAKE_CASE = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) __SCREAMING_SNAKE_CASE = spec.loader.load_module() def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): return line.startswith(_lowerCamelCase ) or len(_lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , _lowerCamelCase ) is not None def UpperCAmelCase ( _lowerCamelCase ): A : int = object_name.split("." ) A : List[str] = 0 # First let's find the module where our object lives. A : Optional[Any] = parts[i] while i < len(_lowerCamelCase ) and not os.path.isfile(os.path.join(_lowerCamelCase , f"""{module}.py""" ) ): i += 1 if i < len(_lowerCamelCase ): A : int = os.path.join(_lowerCamelCase , parts[i] ) if i >= len(_lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(_lowerCamelCase , f"""{module}.py""" ) , "r" , encoding="utf-8" , newline="\n" ) as f: A : List[str] = f.readlines() # Now let's find the class / func in the code! A : Optional[int] = "" A : int = 0 for name in parts[i + 1 :]: while ( line_index < len(_lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A : Dict = line_index while line_index < len(_lowerCamelCase ) and _should_continue(lines[line_index] , _lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A : Optional[Any] = lines[start_index:line_index] return "".join(_lowerCamelCase ) __SCREAMING_SNAKE_CASE = re.compile(r"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") __SCREAMING_SNAKE_CASE = re.compile(r"""^\s*(\S+)->(\S+)(\s+.*|$)""") __SCREAMING_SNAKE_CASE = re.compile(r"""<FILL\s+[^>]*>""") def UpperCAmelCase ( _lowerCamelCase ): A : Optional[int] = code.split("\n" ) A : Dict = 0 while idx < len(_lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_lowerCamelCase ): return re.search(R"^(\s*)\S" , lines[idx] ).groups()[0] return "" def UpperCAmelCase ( _lowerCamelCase ): A : Union[str, Any] = len(get_indent(_lowerCamelCase ) ) > 0 if has_indent: A : Dict = f"""class Bla:\n{code}""" A : Optional[int] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_lowerCamelCase ) A : Union[str, Any] = black.format_str(_lowerCamelCase , mode=_lowerCamelCase ) A , A : List[str] = style_docstrings_in_code(_lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase=False ): with open(_lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: A : Dict = f.readlines() A : List[str] = [] A : Any = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_lowerCamelCase ): A : List[str] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A , A , A : Tuple = search.groups() A : Dict = find_code_in_diffusers(_lowerCamelCase ) A : Optional[int] = get_indent(_lowerCamelCase ) A : str = line_index + 1 if indent == theoretical_indent else line_index + 2 A : str = theoretical_indent A : Optional[int] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A : Tuple = True while line_index < len(_lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(_lowerCamelCase ): break A : str = lines[line_index] A : int = _should_continue(_lowerCamelCase , _lowerCamelCase ) and re.search(f"""^{indent}# End copy""" , _lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A : int = lines[start_index:line_index] A : int = "".join(_lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies A : List[str] = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(_lowerCamelCase ) is None] A : Tuple = "\n".join(_lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_lowerCamelCase ) > 0: A : Optional[Any] = replace_pattern.replace("with" , "" ).split("," ) A : Tuple = [_re_replace_pattern.search(_lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue A , A , A : str = pattern.groups() A : Tuple = re.sub(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if option.strip() == "all-casing": A : Dict = re.sub(obja.lower() , obja.lower() , _lowerCamelCase ) A : Dict = re.sub(obja.upper() , obja.upper() , _lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A : List[Any] = blackify(lines[start_index - 1] + theoretical_code ) A : str = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A : int = lines[:start_index] + [theoretical_code] + lines[line_index:] A : List[Any] = start_index + 1 if overwrite and len(_lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_lowerCamelCase ) return diffs def UpperCAmelCase ( _lowerCamelCase = False ): A : List[str] = glob.glob(os.path.join(_lowerCamelCase , "**/*.py" ) , recursive=_lowerCamelCase ) A : Optional[int] = [] for filename in all_files: A : List[str] = is_copy_consistent(_lowerCamelCase , _lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(_lowerCamelCase ) > 0: A : int = "\n".join(_lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __SCREAMING_SNAKE_CASE = parser.parse_args() check_copies(args.fix_and_overwrite)
256
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCamelCase_ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : Any ) -> Optional[Any]: raise NotImplementedError() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[Any]: raise NotImplementedError() class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : "AutoTokenizer" , __lowerCamelCase : bool = False , **__lowerCamelCase : Optional[Any] ) -> Optional[int]: A : str = tokenizer A : Tuple = skip_prompt A : Optional[Any] = decode_kwargs # variables used in the streaming process A : Any = [] A : Tuple = 0 A : List[str] = True def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : Optional[Any] ) -> int: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: A : List[str] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: A : Tuple = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) A : str = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): A : int = text[self.print_len :] A : Union[str, Any] = [] A : Any = 0 # If the last token is a CJK character, we print the characters. elif len(__lowerCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): A : Optional[int] = text[self.print_len :] self.print_len += len(__lowerCamelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: A : Union[str, Any] = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(__lowerCamelCase ) self.on_finalized_text(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: # Flush the cache, if it exists if len(self.token_cache ) > 0: A : Optional[int] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) A : Optional[Any] = text[self.print_len :] A : Optional[int] = [] A : List[str] = 0 else: A : List[Any] = "" A : Union[str, Any] = True self.on_finalized_text(__lowerCamelCase , stream_end=__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : bool = False ) -> List[str]: print(__lowerCamelCase , flush=__lowerCamelCase , end="" if not stream_end else None ) def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : int ) -> Dict: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_e_0_0 and cp <= 0X9_f_f_f) or (cp >= 0X3_4_0_0 and cp <= 0X4_d_b_f) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_a_6_d_f) # or (cp >= 0X2_a_7_0_0 and cp <= 0X2_b_7_3_f) # or (cp >= 0X2_b_7_4_0 and cp <= 0X2_b_8_1_f) # or (cp >= 0X2_b_8_2_0 and cp <= 0X2_c_e_a_f) # or (cp >= 0Xf_9_0_0 and cp <= 0Xf_a_f_f) or (cp >= 0X2_f_8_0_0 and cp <= 0X2_f_a_1_f) # ): # return True return False class lowerCamelCase_ ( _A ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : "AutoTokenizer" , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[float] = None , **__lowerCamelCase : Dict ) -> Any: super().__init__(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) A : Tuple = Queue() A : Dict = None A : List[str] = timeout def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : bool = False ) -> Any: self.text_queue.put(__lowerCamelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : int ) -> Tuple: return self def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: A : int = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
256
1
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ = logging.get_logger(__name__) a__ = {'''vocab_file''': '''spiece.model'''} a__ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } a__ = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class UpperCAmelCase_ ( __a ): """simple docstring""" UpperCAmelCase__ : Tuple = VOCAB_FILES_NAMES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : List[int] = [] def __init__( self , _a , _a="<unk>" , _a="<s>" , _a="</s>" , _a="<pad>" , _a="[SEP]" , _a="[MASK]" , _a="[CLS]" , _a = None , **_a , ) -> List[str]: _a : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token _a : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token _a : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token _a : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token _a : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token _a : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _a : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token _a : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) _a : Tuple = vocab_file _a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) @property def __lowercase ( self ) -> Union[str, Any]: return self.sp_model.get_piece_size() def __lowercase ( self ) -> int: _a : List[str] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: _a : Union[str, Any] = self.__dict__.copy() _a : Dict = None return state def __setstate__( self , _a ) -> Any: _a : str = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a : str = {} _a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self , _a ) -> Union[str, Any]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __lowercase ( self , _a ) -> int: return self.sp_model.piece_to_id(lowerCAmelCase__ ) def __lowercase ( self , _a ) -> Tuple: _a : Union[str, Any] = self.sp_model.IdToPiece(lowerCAmelCase__ ) return token def __lowercase ( self , _a ) -> str: _a : Optional[Any] = [] _a : str = '''''' _a : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token _a : Union[str, Any] = True _a : Optional[Any] = [] else: current_sub_tokens.append(lowerCAmelCase__ ) _a : List[str] = False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def __lowercase ( self , _a , _a = False , _a = None , _a = True , **_a , ) -> str: _a : Tuple = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ ) _a : int = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _a : List[Any] = [] _a : Optional[int] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) _a : Dict = [] sub_texts.append(lowerCAmelCase__ ) else: current_sub_text.append(lowerCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _a : int = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(lowerCAmelCase__ ) ) else: _a : Dict = ''''''.join(lowerCAmelCase__ ) _a : Any = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _a : Union[str, Any] = self.clean_up_tokenization(lowerCAmelCase__ ) return clean_text else: return text def __lowercase ( self , _a , _a = None ) -> Union[str, Any]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Optional[int] = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , '''wb''' ) as fi: _a : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __lowercase ( self , _a , _a = None ) -> List[str]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : Optional[Any] = [self.cls_token_id] _a : int = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __lowercase ( self , _a , _a = None , _a = False ) -> Any: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def __lowercase ( self , _a , _a = None ) -> Optional[Any]: _a : str = [self.sep_token_id] _a : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
235
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Dict = '''informer''' __lowercase : Union[str, Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "student_t" , lowerCAmelCase__ = "nll" , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = "mean" , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 6_4 , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = True , lowerCAmelCase__ = "gelu" , lowerCAmelCase__ = 0.05 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 1_0_0 , lowerCAmelCase__ = 0.02 , lowerCAmelCase__=True , lowerCAmelCase__ = "prob" , lowerCAmelCase__ = 5 , lowerCAmelCase__ = True , **lowerCAmelCase__ , ): # time series specific configuration __SCREAMING_SNAKE_CASE = prediction_length __SCREAMING_SNAKE_CASE = context_length or prediction_length __SCREAMING_SNAKE_CASE = distribution_output __SCREAMING_SNAKE_CASE = loss __SCREAMING_SNAKE_CASE = input_size __SCREAMING_SNAKE_CASE = num_time_features __SCREAMING_SNAKE_CASE = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __SCREAMING_SNAKE_CASE = scaling __SCREAMING_SNAKE_CASE = num_dynamic_real_features __SCREAMING_SNAKE_CASE = num_static_real_features __SCREAMING_SNAKE_CASE = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""") __SCREAMING_SNAKE_CASE = cardinality else: __SCREAMING_SNAKE_CASE = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""") __SCREAMING_SNAKE_CASE = embedding_dimension else: __SCREAMING_SNAKE_CASE = [min(5_0 , (cat + 1) // 2) for cat in self.cardinality] __SCREAMING_SNAKE_CASE = num_parallel_samples # Transformer architecture configuration __SCREAMING_SNAKE_CASE = input_size * len(self.lags_sequence) + self._number_of_features __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = use_cache # Informer __SCREAMING_SNAKE_CASE = attention_type __SCREAMING_SNAKE_CASE = sampling_factor __SCREAMING_SNAKE_CASE = distil super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__) @property def snake_case_ ( self): return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
100
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' __lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' __lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCAmelCase , hypotheses=UpperCAmelCase , min_len=UpperCAmelCase , max_len=UpperCAmelCase ) }
270
'''simple docstring''' from math import sqrt def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = 0 for i in range(1 , int(sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) ): if n % i == 0 and i != sqrt(_SCREAMING_SNAKE_CASE ): total += i + n // i elif i == sqrt(_SCREAMING_SNAKE_CASE ): total += i return total - n def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 1_0000 ): _snake_case = sum( i for i in range(1 , _SCREAMING_SNAKE_CASE ) if sum_of_divisors(sum_of_divisors(_SCREAMING_SNAKE_CASE ) ) == i and sum_of_divisors(_SCREAMING_SNAKE_CASE ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
270
1
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" lowerCAmelCase_ : List[Any] = [False] * len(lowerCAmelCase__ ) lowerCAmelCase_ : str = [-1] * len(lowerCAmelCase__ ) def dfs(lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] ): lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : List[str] = c for u in graph[v]: if not visited[u]: dfs(lowerCAmelCase__ , 1 - c ) for i in range(len(lowerCAmelCase__ ) ): if not visited[i]: dfs(lowerCAmelCase__ , 0 ) for i in range(len(lowerCAmelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowercase__ : Optional[int] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
224
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while b: lowerCAmelCase , lowerCAmelCase = b, a % b return a def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(SCREAMING_SNAKE_CASE , a % b ) def UpperCAmelCase__ ( ): '''simple docstring''' print(F'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(F'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(F'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(F'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(F'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(F'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(F'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(F'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
46
0
"""simple docstring""" import string from math import logaa def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : int = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) lowerCAmelCase__ : str = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : List[str] = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase__ : List[Any] = corpus_without_punctuation.split('''\n''' ) lowerCAmelCase__ : Optional[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(A_ )) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_=False ): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): return round(tf * idf , 3 )
361
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] ,lowercase_ : List[str] ,lowercase_ : int=1_3 ,lowercase_ : Optional[int]=3_0 ,lowercase_ : int=2 ,lowercase_ : List[Any]=3 ,lowercase_ : str=True ,lowercase_ : int=True ,lowercase_ : str=3_2 ,lowercase_ : Optional[int]=5 ,lowercase_ : Optional[Any]=4 ,lowercase_ : Any=3_7 ,lowercase_ : str="gelu" ,lowercase_ : Any=0.1 ,lowercase_ : List[Any]=0.1 ,lowercase_ : int=1_0 ,lowercase_ : str=0.02 ,): lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : int = batch_size lowerCAmelCase__ : str = image_size lowerCAmelCase__ : Dict = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Union[str, Any] = is_training lowerCAmelCase__ : Optional[int] = use_labels lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : Dict = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : Optional[int] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : int = (image_size // patch_size) ** 2 lowerCAmelCase__ : Dict = num_patches + 1 def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : List[Any] = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase_ ,initializer_range=self.initializer_range ,) return config, pixel_values def __lowerCAmelCase ( self : Tuple ,lowercase_ : List[Any] ,lowercase_ : Optional[int] ): lowerCAmelCase__ : Optional[Any] = FlaxViTModel(config=lowercase_ ) lowerCAmelCase__ : Dict = model(lowercase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : int = (self.image_size, self.image_size) lowerCAmelCase__ : int = (self.patch_size, self.patch_size) lowerCAmelCase__ : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def __lowerCAmelCase ( self : int ,lowercase_ : List[Any] ,lowercase_ : List[str] ): lowerCAmelCase__ : Optional[int] = self.type_sequence_label_size lowerCAmelCase__ : Any = FlaxViTForImageClassification(config=lowercase_ ) lowerCAmelCase__ : Any = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ : List[Any] = 1 lowerCAmelCase__ : Tuple = FlaxViTForImageClassification(lowercase_ ) lowerCAmelCase__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : str = model(lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Tuple = FlaxViTModelTester(self ) lowerCAmelCase__ : List[str] = ConfigTester(self ,config_class=lowercase_ ,has_text_modality=lowercase_ ,hidden_size=3_7 ) def __lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Union[str, Any] = model_class(lowercase_ ) lowerCAmelCase__ : List[str] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : List[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase_ ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ : Dict = self._prepare_for_class(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Tuple = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : List[Any] ,**lowercase_ : Optional[int] ): return model(pixel_values=lowercase_ ,**lowercase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ : Optional[Any] = model_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ : Optional[int] = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) ,len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ ,lowercase_ ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def __lowerCAmelCase ( self : List[Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) lowerCAmelCase__ : Optional[int] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(lowercase_ )
74
0
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class lowerCAmelCase ( A ): lowerCAmelCase_ = "codegen" lowerCAmelCase_ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , __lowercase : str=50400 , __lowercase : List[str]=2048 , __lowercase : Any=2048 , __lowercase : Optional[Any]=4096 , __lowercase : Optional[Any]=28 , __lowercase : Tuple=16 , __lowercase : str=64 , __lowercase : str=None , __lowercase : Any="gelu_new" , __lowercase : List[Any]=0.0 , __lowercase : Union[str, Any]=0.0 , __lowercase : Any=0.0 , __lowercase : List[Any]=1E-5 , __lowercase : Optional[Any]=0.0_2 , __lowercase : Any=True , __lowercase : Optional[int]=50256 , __lowercase : List[str]=50256 , __lowercase : Optional[int]=False , **__lowercase : Union[str, Any] , ): """simple docstring""" __lowercase =vocab_size __lowercase =n_ctx __lowercase =n_positions __lowercase =n_embd __lowercase =n_layer __lowercase =n_head __lowercase =n_inner __lowercase =rotary_dim __lowercase =activation_function __lowercase =resid_pdrop __lowercase =embd_pdrop __lowercase =attn_pdrop __lowercase =layer_norm_epsilon __lowercase =initializer_range __lowercase =use_cache __lowercase =bos_token_id __lowercase =eos_token_id super().__init__( bos_token_id=__lowercase , eos_token_id=__lowercase , tie_word_embeddings=__lowercase , **__lowercase ) class lowerCAmelCase ( A ): def __init__( self : Any , __lowercase : PretrainedConfig , __lowercase : str = "default" , __lowercase : List[PatchingSpec] = None , __lowercase : bool = False , ): """simple docstring""" super().__init__(__lowercase , task=__lowercase , patching_specs=__lowercase , use_past=__lowercase ) if not getattr(self._config , 'pad_token_id' , __lowercase ): # TODO: how to do that better? __lowercase =0 @property def snake_case ( self : Optional[Any] ): """simple docstring""" __lowercase =OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(__lowercase , direction='inputs' ) __lowercase ={0: 'batch', 1: 'past_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case ( self : Optional[int] ): """simple docstring""" return self._config.n_layer @property def snake_case ( self : int ): """simple docstring""" return self._config.n_head def snake_case ( self : Union[str, Any] , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ): """simple docstring""" __lowercase =super(__lowercase , self ).generate_dummy_inputs( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) # We need to order the input in the way they appears in the forward() __lowercase =OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase =seqlen + 2 __lowercase =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowercase =[ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(self.num_layers ) ] __lowercase =common_inputs['attention_mask'] if self.use_past: __lowercase =ordered_inputs['attention_mask'].dtype __lowercase =torch.cat( [ordered_inputs['attention_mask'], torch.ones(__lowercase , __lowercase , dtype=__lowercase )] , dim=1 ) return ordered_inputs @property def snake_case ( self : Dict ): """simple docstring""" return 13
141
'''simple docstring''' import datasets UpperCAmelCase = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' UpperCAmelCase = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' UpperCAmelCase = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def __UpperCamelCase ( lowercase__ : Optional[Any], lowercase__ : List[str] ): '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def snake_case ( self : int ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def snake_case ( self : List[str] , __lowercase : Dict , __lowercase : Optional[Any] ): """simple docstring""" return {"accuracy": simple_accuracy(__lowercase , __lowercase )}
141
1
'''simple docstring''' import random def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Any = a[left_index] __UpperCAmelCase : Optional[Any] = left_index + 1 for j in range(left_index + 1, _UpperCAmelCase ): if a[j] < pivot: __UpperCAmelCase , __UpperCAmelCase : List[Any] = a[i], a[j] i += 1 __UpperCAmelCase , __UpperCAmelCase : Dict = a[i - 1], a[left_index] return i - 1 def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): if left < right: __UpperCAmelCase : Any = random.randint(_UpperCAmelCase, right - 1 ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound __UpperCAmelCase : str = partition(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) quick_sort_random( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( _UpperCAmelCase, pivot_index + 1, _UpperCAmelCase ) # recursive quicksort to the right of the pivot point def __UpperCamelCase ( ): __UpperCAmelCase : Dict = input("Enter numbers separated by a comma:\n" ).strip() __UpperCAmelCase : Optional[Any] = [int(_UpperCAmelCase ) for item in user_input.split("," )] quick_sort_random(_UpperCAmelCase, 0, len(_UpperCAmelCase ) ) print(_UpperCAmelCase ) if __name__ == "__main__": main()
37
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : Any = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = PegasusTokenizer SCREAMING_SNAKE_CASE = PegasusTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def lowerCamelCase_ ( self : int ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Tuple = PegasusTokenizer(UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def lowerCamelCase_ ( self : List[Any] , **UpperCAmelCase_ : List[str] ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowerCamelCase_ ( self : str , UpperCAmelCase_ : int ): """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : List[str] = "</s>" __UpperCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" __UpperCAmelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(UpperCAmelCase_ ) , 1_103 ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : int = self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) __UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids[0] __UpperCAmelCase : int = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __UpperCAmelCase : Tuple = "<mask_1> To ensure a <mask_2> flow of bank resolutions." __UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] __UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ ).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" __UpperCAmelCase : Dict = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 __UpperCAmelCase : Tuple = "To ensure a smooth flow of bank resolutions." __UpperCAmelCase : str = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] __UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ ).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : List[Any] = ["This is going to be way too long." * 150, "short example"] __UpperCAmelCase : Optional[int] = ["not super long but more than 5 tokens", "tiny"] __UpperCAmelCase : str = self._large_tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="pt" ) __UpperCAmelCase : Union[str, Any] = self._large_tokenizer( text_target=UpperCAmelCase_ , max_length=5 , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="pt" ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(UpperCAmelCase_ ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase_ ( self : Any ): """simple docstring""" # fmt: off __UpperCAmelCase : Tuple = {"input_ids": [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = PegasusTokenizer SCREAMING_SNAKE_CASE = PegasusTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : List[str] = PegasusTokenizer(UpperCAmelCase_ , offset=0 , mask_token_sent=UpperCAmelCase_ , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def lowerCamelCase_ ( self : Union[str, Any] , **UpperCAmelCase_ : int ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowerCamelCase_ ( self : str , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : List[str] = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) __UpperCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids[0] __UpperCAmelCase : int = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @require_torch def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Any = ["This is going to be way too long." * 1_000, "short example"] __UpperCAmelCase : List[Any] = ["not super long but more than 5 tokens", "tiny"] __UpperCAmelCase : int = self._large_tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="pt" ) __UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=UpperCAmelCase_ , max_length=5 , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="pt" ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(UpperCAmelCase_ ) == 2 # input_ids, attention_mask. def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : List[Any] = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) __UpperCAmelCase : int = self._large_tokenizer(UpperCAmelCase_ ).input_ids self.assertListEqual( UpperCAmelCase_ , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
37
1
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _SCREAMING_SNAKE_CASE : Any = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _snake_case ( datasets.BuilderConfig ): lowerCAmelCase_ : Optional[datasets.Features] = None def UpperCamelCase_( snake_case : "pyspark.sql.DataFrame" , snake_case : List[int] , ): '''simple docstring''' import pyspark def generate_fn(): snake_case_ = df.select("*" , pyspark.sql.functions.spark_partition_id().alias("part_id" ) ) for partition_id in partition_order: snake_case_ = df_with_partition_id.select("*" ).where(f'part_id = {partition_id}' ).drop("part_id" ) snake_case_ = partition_df.collect() snake_case_ = 0 for row in rows: yield f'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class _snake_case ( _BaseExamplesIterable ): def __init__( self , a__ , a__=None , ) -> Any: '''simple docstring''' snake_case_ = df snake_case_ = partition_order or range(self.df.rdd.getNumPartitions() ) snake_case_ = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> Union[str, Any]: '''simple docstring''' yield from self.generate_examples_fn() def lowerCAmelCase__ ( self , a__ ) -> "SparkExamplesIterable": '''simple docstring''' snake_case_ = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(a__ ) return SparkExamplesIterable(self.df , partition_order=a__ ) def lowerCAmelCase__ ( self , a__ , a__ ) -> "SparkExamplesIterable": '''simple docstring''' snake_case_ = self.split_shard_indices_by_worker(a__ , a__ ) return SparkExamplesIterable(self.df , partition_order=a__ ) @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return len(self.partition_order ) class _snake_case ( datasets.DatasetBuilder ): lowerCAmelCase_ : Dict = SparkConfig def __init__( self , a__ , a__ = None , a__ = None , **a__ , ) -> str: '''simple docstring''' import pyspark snake_case_ = pyspark.sql.SparkSession.builder.getOrCreate() snake_case_ = df snake_case_ = working_dir super().__init__( cache_dir=a__ , config_name=str(self.df.semanticHash() ) , **a__ , ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' def create_cache_and_write_probe(a__ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=a__ ) snake_case_ = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(a__ , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: snake_case_ = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(a__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self , a__ ) -> Optional[Any]: '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCAmelCase__ ( self , a__ ) -> Union[str, Any]: '''simple docstring''' import pyspark def get_arrow_batch_size(a__ ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) snake_case_ = self.df.count() snake_case_ = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. snake_case_ = ( self.df.limit(a__ ) .repartition(1 ) .mapInArrow(a__ , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) snake_case_ = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. snake_case_ = min(a__ , int(approx_total_size / max_shard_size ) ) snake_case_ = self.df.repartition(a__ ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: '''simple docstring''' import pyspark snake_case_ = ParquetWriter if file_format == "parquet" else ArrowWriter snake_case_ = os.path.join(self._working_dir , os.path.basename(a__ ) ) if self._working_dir else fpath snake_case_ = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. snake_case_ = self.config.features snake_case_ = self._writer_batch_size snake_case_ = self._fs.storage_options def write_arrow(a__ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. snake_case_ = pyspark.TaskContext().taskAttemptId() snake_case_ = next(a__ , a__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) snake_case_ = 0 snake_case_ = writer_class( features=a__ , path=working_fpath.replace("SSSSS" , F'{shard_id:05d}' ).replace("TTTTT" , F'{task_id:05d}' ) , writer_batch_size=a__ , storage_options=a__ , embed_local_files=a__ , ) snake_case_ = pa.Table.from_batches([first_batch] ) writer.write_table(a__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: snake_case_ , snake_case_ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 snake_case_ = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , F'{shard_id:05d}' ).replace("TTTTT" , F'{task_id:05d}' ) , writer_batch_size=a__ , storage_options=a__ , embed_local_files=a__ , ) snake_case_ = pa.Table.from_batches([batch] ) writer.write_table(a__ ) if writer._num_bytes > 0: snake_case_ , snake_case_ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(a__ ) ): snake_case_ = os.path.join(os.path.dirname(a__ ) , os.path.basename(a__ ) ) shutil.move(a__ , a__ ) snake_case_ = ( self.df.mapInArrow(a__ , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCAmelCase__ ( self , a__ , a__ = "arrow" , a__ = None , a__ = None , **a__ , ) -> int: '''simple docstring''' self._validate_cache_dir() snake_case_ = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(a__ ) snake_case_ = not is_remote_filesystem(self._fs ) snake_case_ = os.path.join if is_local else posixpath.join snake_case_ = "-TTTTT-SSSSS-of-NNNNN" snake_case_ = F'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' snake_case_ = path_join(self._output_dir , a__ ) snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = [] snake_case_ = [] for task_id, content in self._prepare_split_single(a__ , a__ , a__ ): ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(a__ ) snake_case_ = total_num_examples snake_case_ = total_num_bytes # should rename everything at the end logger.debug(F'Renaming {total_shards} shards.' ) if total_shards > 1: snake_case_ = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. snake_case_ = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( a__ , a__ , a__ , ): rename( a__ , fpath.replace("SSSSS" , F'{shard_id:05d}' ).replace("TTTTT" , F'{task_id:05d}' ) , fpath.replace("TTTTT-SSSSS" , F'{global_shard_id:05d}' ).replace("NNNNN" , F'{total_shards:05d}' ) , ) snake_case_ = [] snake_case_ = 0 for i in range(len(a__ ) ): snake_case_ , snake_case_ = task_id_and_num_shards[i] for shard_id in range(a__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(a__ , len(a__ ) ).map(lambda a__ : _rename_shard(*a__ ) ).collect() else: # don't use any pattern snake_case_ = 0 snake_case_ = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , F'{shard_id:05d}' ).replace("TTTTT" , F'{task_id:05d}' ) , fpath.replace(a__ , "" ) , ) def lowerCAmelCase__ ( self , a__ , ) -> SparkExamplesIterable: '''simple docstring''' return SparkExamplesIterable(self.df )
85
'''simple docstring''' from __future__ import annotations import requests def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(snake_case ).json() def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" snake_case_ = requests.get(snake_case ).json()[:max_stories] return [get_hackernews_story(snake_case ) for story_id in story_ids] def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = hackernews_top_stories(snake_case ) return "\n".join("* [{title}]({url})".format(**snake_case ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
85
1
import os from pathlib import Path def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: """simple docstring""" lowerCamelCase__ : Optional[Any] = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase__ : List[str] = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } lowerCamelCase__ : Union[str, Any] = f"{src_lang}-{tgt_lang}" lowerCamelCase__ : Any = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = os.path.join(UpperCAmelCase , '''README.md''' ) print(f"Generating {path}" ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(UpperCAmelCase ) # make sure we are under the root of the project _A : Any = Path(__file__).resolve().parent.parent.parent _A : Any = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _A : str = model_name.split('-') _A : List[str] = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
359
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _a ( *UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase=True , UpperCAmelCase=2 ) -> str: """simple docstring""" from .. import __version__ lowerCamelCase__ : Optional[Any] = take_from lowerCamelCase__ : Any = () if not isinstance(args[0] , UpperCAmelCase ): lowerCamelCase__ : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCAmelCase ).base_version ) >= version.parse(UpperCAmelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowerCamelCase__ : List[Any] = None if isinstance(UpperCAmelCase , UpperCAmelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCAmelCase ),) lowerCamelCase__ : Tuple = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(UpperCAmelCase , UpperCAmelCase ): values += (getattr(UpperCAmelCase , UpperCAmelCase ),) lowerCamelCase__ : Union[str, Any] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowerCamelCase__ : int = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowerCamelCase__ : int = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , UpperCAmelCase , stacklevel=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) > 0: lowerCamelCase__ : Tuple = inspect.getouterframes(inspect.currentframe() )[1] lowerCamelCase__ : Optional[Any] = call_frame.filename lowerCamelCase__ : List[Any] = call_frame.lineno lowerCamelCase__ : Optional[Any] = call_frame.function lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(UpperCAmelCase ) == 0: return elif len(UpperCAmelCase ) == 1: return values[0] return values
265
0
import functools def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' # Validation if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(SCREAMING_SNAKE_CASE ) == 0: return 0 if min(SCREAMING_SNAKE_CASE ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(SCREAMING_SNAKE_CASE ) >= 3_6_6: raise ValueError('''All days elements should be less than 366''' ) __UpperCAmelCase = set(SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(SCREAMING_SNAKE_CASE ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
333
def __a ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] A_ : Union[str, Any] = generate_large_matrix() A_ : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' assert all(row == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE , reverse=SCREAMING_SNAKE_CASE ) for col in zip(*SCREAMING_SNAKE_CASE ) ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase = (left + right) // 2 __UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE ): if number < 0: total += len(SCREAMING_SNAKE_CASE ) - i break return total def __a ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase = timeit(f'''{func}(grid=grid)''' , setup=SCREAMING_SNAKE_CASE , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
333
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase = logging.get_logger(__name__) class A ( A_ , A_ ): UpperCamelCase_ : List[str] ='''maskformer-swin''' UpperCamelCase_ : List[str] ={ '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__(self , lowerCAmelCase=2_2_4 , lowerCAmelCase=4 , lowerCAmelCase=3 , lowerCAmelCase=9_6 , lowerCAmelCase=[2, 2, 6, 2] , lowerCAmelCase=[3, 6, 1_2, 2_4] , lowerCAmelCase=7 , lowerCAmelCase=4.0 , lowerCAmelCase=True , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.1 , lowerCAmelCase="gelu" , lowerCAmelCase=False , lowerCAmelCase=0.02 , lowerCAmelCase=1E-5 , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) __lowercase= image_size __lowercase= patch_size __lowercase= num_channels __lowercase= embed_dim __lowercase= depths __lowercase= len(lowerCAmelCase ) __lowercase= num_heads __lowercase= window_size __lowercase= mlp_ratio __lowercase= qkv_bias __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= drop_path_rate __lowercase= hidden_act __lowercase= use_absolute_embeddings __lowercase= layer_norm_eps __lowercase= initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase= int(embed_dim * 2 ** (len(lowerCAmelCase ) - 1) ) __lowercase= ['stem'] + [f'stage{idx}' for idx in range(1 , len(lowerCAmelCase ) + 1 )] __lowercase, __lowercase= get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names )
304
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCAmelCase = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class A : UpperCamelCase_ : int UpperCamelCase_ : Node | None class A : def __init__(self , lowerCAmelCase ): __lowercase= None for i in sorted(lowerCAmelCase , reverse=lowerCAmelCase ): __lowercase= Node(lowerCAmelCase , self.head ) def __iter__(self ): __lowercase= self.head while node: yield node.data __lowercase= node.next_node def __len__(self ): return sum(1 for _ in self ) def __str__(self ): return " -> ".join([str(lowerCAmelCase ) for node in self] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
304
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _A = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
278
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments lowercase = logging.getLogger(__name__) @dataclass class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) lowerCAmelCase = field(default=snake_case_ , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) lowerCAmelCase = field( default=snake_case_ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field(default=snake_case_ , metadata={'''help''': '''whether to use adafactor'''} ) lowerCAmelCase = field( default=snake_case_ , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) lowerCAmelCase = field( default=snake_case_ , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) lowerCAmelCase = field(default=snake_case_ , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) lowerCAmelCase = field( default=snake_case_ , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) lowerCAmelCase = field( default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
178
0
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Union[List[PIL.Image.Image], np.ndarray] A_ : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
357
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : Any=False ): """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : str = len(set_a.intersection(lowerCAmelCase ) ) if alternative_union: __magic_name__ : List[str] = len(lowerCAmelCase ) + len(lowerCAmelCase ) else: __magic_name__ : Any = len(set_a.union(lowerCAmelCase ) ) return intersection / union if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(lowerCAmelCase , (list, tuple) ): __magic_name__ : str = [element for element in set_a if element in set_b] if alternative_union: __magic_name__ : Dict = len(lowerCAmelCase ) + len(lowerCAmelCase ) return len(lowerCAmelCase ) / union else: __magic_name__ : Any = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase ) / len(lowerCAmelCase ) return len(lowerCAmelCase ) / len(lowerCAmelCase ) return None if __name__ == "__main__": lowerCAmelCase :Dict = {'''a''', '''b''', '''c''', '''d''', '''e'''} lowerCAmelCase :Tuple = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
275
0
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase = logging.getLogger(__name__) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =np.argmax(_lowerCAmelCase , axis=1 ) return np.sum(outputs == labels ) def _A ( _lowerCAmelCase ): """simple docstring""" with open(_lowerCAmelCase , encoding='utf_8' ) as f: __lowercase =csv.reader(_lowerCAmelCase ) __lowercase =[] next(_lowerCAmelCase ) # skip the first line for line in tqdm(_lowerCAmelCase ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =[] for dataset in encoded_datasets: __lowercase =len(_lowerCAmelCase ) __lowercase =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __lowercase =np.zeros((n_batch, 2) , dtype=np.intaa ) __lowercase =np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) __lowercase =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_lowerCAmelCase ): __lowercase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __lowercase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __lowercase =with_conta __lowercase =with_conta __lowercase =len(_lowerCAmelCase ) - 1 __lowercase =len(_lowerCAmelCase ) - 1 __lowercase =with_conta __lowercase =with_conta __lowercase =mc_label __lowercase =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_lowerCAmelCase ) for t in all_inputs ) ) return tensor_datasets def _A ( ): """simple docstring""" __lowercase =argparse.ArgumentParser() parser.add_argument('--model_name' , type=_lowerCAmelCase , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=_lowerCAmelCase , default='' ) parser.add_argument('--eval_dataset' , type=_lowerCAmelCase , default='' ) parser.add_argument('--seed' , type=_lowerCAmelCase , default=42 ) parser.add_argument('--num_train_epochs' , type=_lowerCAmelCase , default=3 ) parser.add_argument('--train_batch_size' , type=_lowerCAmelCase , default=8 ) parser.add_argument('--eval_batch_size' , type=_lowerCAmelCase , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=_lowerCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=_lowerCAmelCase , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=_lowerCAmelCase , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=_lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=_lowerCAmelCase , default=6.2_5e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=_lowerCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=_lowerCAmelCase , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=_lowerCAmelCase , default=0.01 ) parser.add_argument('--lm_coef' , type=_lowerCAmelCase , default=0.9 ) parser.add_argument('--n_valid' , type=_lowerCAmelCase , default=374 ) parser.add_argument('--server_ip' , type=_lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) __lowercase =parser.parse_args() print(_lowerCAmelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowerCAmelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __lowercase =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __lowercase =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(_lowerCAmelCase , _lowerCAmelCase ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __lowercase =['_start_', '_delimiter_', '_classify_'] __lowercase =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_lowerCAmelCase ) __lowercase =tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) __lowercase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_lowerCAmelCase ) ) model.to(_lowerCAmelCase ) # Load and encode the datasets def tokenize_and_encode(_lowerCAmelCase ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_lowerCAmelCase ) ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return obj return [tokenize_and_encode(_lowerCAmelCase ) for o in obj] logger.info('Encoding dataset...' ) __lowercase =load_rocstories_dataset(args.train_dataset ) __lowercase =load_rocstories_dataset(args.eval_dataset ) __lowercase =(train_dataset, eval_dataset) __lowercase =tokenize_and_encode(_lowerCAmelCase ) # Compute the max input length for the Transformer __lowercase =model.config.n_positions // 2 - 2 __lowercase =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __lowercase =min(_lowerCAmelCase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __lowercase =pre_process_datasets(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) __lowercase , __lowercase =tensor_datasets[0], tensor_datasets[1] __lowercase =TensorDataset(*_lowerCAmelCase ) __lowercase =RandomSampler(_lowerCAmelCase ) __lowercase =DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase , batch_size=args.train_batch_size ) __lowercase =TensorDataset(*_lowerCAmelCase ) __lowercase =SequentialSampler(_lowerCAmelCase ) __lowercase =DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __lowercase =args.max_steps __lowercase =args.max_steps // (len(_lowerCAmelCase ) // args.gradient_accumulation_steps) + 1 else: __lowercase =len(_lowerCAmelCase ) // args.gradient_accumulation_steps * args.num_train_epochs __lowercase =list(model.named_parameters() ) __lowercase =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] __lowercase =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] __lowercase =AdamW(_lowerCAmelCase , lr=args.learning_rate , eps=args.adam_epsilon ) __lowercase =get_linear_schedule_with_warmup( _lowerCAmelCase , num_warmup_steps=args.warmup_steps , num_training_steps=_lowerCAmelCase ) if args.do_train: __lowercase , __lowercase , __lowercase =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): __lowercase =0 __lowercase =0 __lowercase =tqdm(_lowerCAmelCase , desc='Training' ) for step, batch in enumerate(_lowerCAmelCase ): __lowercase =tuple(t.to(_lowerCAmelCase ) for t in batch ) __lowercase , __lowercase , __lowercase , __lowercase =batch __lowercase =model(_lowerCAmelCase , mc_token_ids=_lowerCAmelCase , lm_labels=_lowerCAmelCase , mc_labels=_lowerCAmelCase ) __lowercase =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __lowercase =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __lowercase ='Training loss: {:.2e} lr: {:.2e}'.format(_lowerCAmelCase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __lowercase =model.module if hasattr(_lowerCAmelCase , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __lowercase =os.path.join(args.output_dir , _lowerCAmelCase ) __lowercase =os.path.join(args.output_dir , _lowerCAmelCase ) torch.save(model_to_save.state_dict() , _lowerCAmelCase ) model_to_save.config.to_json_file(_lowerCAmelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __lowercase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __lowercase =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_lowerCAmelCase ) if args.do_eval: model.eval() __lowercase , __lowercase =0, 0 __lowercase , __lowercase =0, 0 for batch in tqdm(_lowerCAmelCase , desc='Evaluating' ): __lowercase =tuple(t.to(_lowerCAmelCase ) for t in batch ) __lowercase , __lowercase , __lowercase , __lowercase =batch with torch.no_grad(): __lowercase , __lowercase , __lowercase , __lowercase =model( _lowerCAmelCase , mc_token_ids=_lowerCAmelCase , lm_labels=_lowerCAmelCase , mc_labels=_lowerCAmelCase ) __lowercase =mc_logits.detach().cpu().numpy() __lowercase =mc_labels.to('cpu' ).numpy() __lowercase =accuracy(_lowerCAmelCase , _lowerCAmelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __lowercase =eval_loss / nb_eval_steps __lowercase =eval_accuracy / nb_eval_examples __lowercase =tr_loss / nb_tr_steps if args.do_train else None __lowercase ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} __lowercase =os.path.join(args.output_dir , 'eval_results.txt' ) with open(_lowerCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _lowerCAmelCase , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
166
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """umt5""" lowerCAmelCase__ = ["""past_key_values"""] def __init__( self : Optional[int] , _lowerCAmelCase : int=2_5_0_1_1_2 , _lowerCAmelCase : Union[str, Any]=5_1_2 , _lowerCAmelCase : List[Any]=6_4 , _lowerCAmelCase : Optional[Any]=1_0_2_4 , _lowerCAmelCase : Union[str, Any]=8 , _lowerCAmelCase : Any=None , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : str=3_2 , _lowerCAmelCase : List[str]=1_2_8 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Tuple=1e-6 , _lowerCAmelCase : List[Any]=1.0 , _lowerCAmelCase : Union[str, Any]="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : Tuple="T5Tokenizer" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Any=0 , **_lowerCAmelCase : int , ): '''simple docstring''' super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase =vocab_size __lowercase =d_model __lowercase =d_kv __lowercase =d_ff __lowercase =num_layers __lowercase =( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase =num_heads __lowercase =relative_attention_num_buckets __lowercase =relative_attention_max_distance __lowercase =dropout_rate __lowercase =layer_norm_epsilon __lowercase =initializer_factor __lowercase =feed_forward_proj __lowercase =use_cache __lowercase =self.feed_forward_proj.split('-') __lowercase =act_info[-1] __lowercase =act_info[0] == 'gated' if len(_lowerCAmelCase) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": __lowercase ='gelu_new' @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return self.d_model @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return self.num_heads @property def __lowerCamelCase ( self : int): '''simple docstring''' return self.num_layers class _UpperCamelCase ( A ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase ={ 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase ='past_encoder_sequence + sequence' __lowercase ={0: 'batch'} __lowercase ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'decoder_sequence'} __lowercase ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return 1_3 @property def __lowerCamelCase ( self : int): '''simple docstring''' return 5e-4
166
1
"""simple docstring""" lowerCamelCase_ = tuple[float, float, float] lowerCamelCase_ = tuple[float, float, float] def __lowerCamelCase ( a_ : Pointad , a_ : Pointad ) -> Vectorad: __SCREAMING_SNAKE_CASE :int = end_pointa[0] - end_pointa[0] __SCREAMING_SNAKE_CASE :List[str] = end_pointa[1] - end_pointa[1] __SCREAMING_SNAKE_CASE :str = end_pointa[2] - end_pointa[2] return (x, y, z) def __lowerCamelCase ( a_ : Vectorad , a_ : Vectorad ) -> Vectorad: __SCREAMING_SNAKE_CASE :Tuple = ab[1] * ac[2] - ab[2] * ac[1] # *i __SCREAMING_SNAKE_CASE :str = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __SCREAMING_SNAKE_CASE :Union[str, Any] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __lowerCamelCase ( a_ : Vectorad , a_ : int ) -> bool: return tuple(round(a_ , a_ ) for x in vector ) == (0, 0, 0) def __lowerCamelCase ( a_ : Pointad , a_ : Pointad , a_ : Pointad , a_ : int = 10 ) -> bool: __SCREAMING_SNAKE_CASE :Optional[int] = create_vector(a_ , a_ ) __SCREAMING_SNAKE_CASE :Tuple = create_vector(a_ , a_ ) return is_zero_vector(get_ad_vectors_cross(a_ , a_ ) , a_ )
239
"""simple docstring""" import math import unittest def __lowerCamelCase ( a_ : int ) -> bool: assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) ,'''Zero doesn\'t have any positive factors, primes must have exactly two.''' ,) self.assertFalse( is_prime(1 ) ,'''One only has 1 positive factor, primes must have exactly two.''' ,) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
239
1
from math import sqrt def __magic_name__ ( A : int ): '''simple docstring''' a = 0 for i in range(1, int(sqrt(A ) + 1 ) ): if n % i == 0 and i != sqrt(A ): total += i + n // i elif i == sqrt(A ): total += i return total - n def __magic_name__ ( A : int = 10000 ): '''simple docstring''' a = sum( i for i in range(1, A ) if sum_of_divisors(sum_of_divisors(A ) ) == i and sum_of_divisors(A ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
107
'''simple docstring''' import re from filelock import FileLock try: import nltk _A : int = True except (ImportError, ModuleNotFoundError): _A : Optional[Any] = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def UpperCamelCase_ ( snake_case_ : str ) -> str: '''simple docstring''' re.sub("""<n>""" , """""" , snake_case_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(snake_case_ ) )
229
0
"""simple docstring""" import os def UpperCAmelCase ( a_ = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(a_ ), a_ ) ) as input_file: lowerCamelCase : Optional[Any] = [ [int(a_ ) for element in line.split(',' )] for line in input_file.readlines() ] lowerCamelCase : Union[str, Any] = len(a_ ) lowerCamelCase : Tuple = len(matrix[0] ) lowerCamelCase : List[Any] = [[-1 for _ in range(a_ )] for _ in range(a_ )] for i in range(a_ ): lowerCamelCase : List[str] = matrix[i][0] for j in range(1, a_ ): for i in range(a_ ): lowerCamelCase : List[Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1, a_ ): lowerCamelCase : List[str] = min( minimal_path_sums[i][j], minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2, -1, -1 ): lowerCamelCase : int = min( minimal_path_sums[i][j], minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
205
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( __UpperCAmelCase ): lowercase_ = ['image_processor', 'tokenizer'] lowercase_ = 'ChineseCLIPImageProcessor' lowercase_ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ ) -> List[str]: lowerCamelCase : Tuple = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase_ , ) lowerCamelCase : int = kwargs.pop('feature_extractor' ) lowerCamelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : Tuple = self.image_processor def __call__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ ) -> str: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase : Any = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if images is not None: lowerCamelCase : Dict = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and images is not None: lowerCamelCase : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _UpperCamelCase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[str]: return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _UpperCamelCase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[int]: return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : List[Any] = self.tokenizer.model_input_names lowerCamelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCamelCase ( self ) -> List[str]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase_ , ) return self.image_processor_class
205
1
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class A__ : @staticmethod def __UpperCamelCase( *A_ , **A_ ): '''simple docstring''' pass def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Union[str, Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase ) -> Dict: UpperCamelCase : Dict = np.array(_lowerCAmelCase ) UpperCamelCase : Optional[int] = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class A__ ( unittest.TestCase ): _UpperCAmelCase :Tuple = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _UpperCAmelCase :List[str] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = MaskGenerationPipeline(model=A_ , image_processor=A_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def __UpperCamelCase( self ): '''simple docstring''' pass @slow @require_torch def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) UpperCamelCase : Optional[Any] = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing UpperCamelCase : Optional[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(A_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_21}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.99_67}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.9_93}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.99_09}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.98_79}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.98_34}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.97_16}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.96_12}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.95_99}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.95_52}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.95_32}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.95_16}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.94_99}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.94_83}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.94_64}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.9_43}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.94_08}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.93_35}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.93_26}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.92_62}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.89_99}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.89_86}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.89_84}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.88_73}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.88_71} ] , ) # fmt: on @require_torch @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = "facebook/sam-vit-huge" UpperCamelCase : Optional[Any] = pipeline("mask-generation" , model=A_ ) UpperCamelCase : Optional[Any] = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing UpperCamelCase : Dict = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(A_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.02_10}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53}, ] , )
52
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: str = XLMTokenizer A: Optional[Any] = False def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCamelCase__ : Optional[int] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) UpperCamelCase__ : Optional[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Dict ) -> Tuple: '''simple docstring''' UpperCamelCase__ : int = '''lower newer''' UpperCamelCase__ : List[str] = '''lower newer''' return input_text, output_text def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase__ : Tuple = '''lower''' UpperCamelCase__ : Dict = ['''low''', '''er</w>'''] UpperCamelCase__ : Optional[int] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = tokens + ['''<unk>'''] UpperCamelCase__ : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Any = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) UpperCamelCase__ : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) UpperCamelCase__ : Any = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
146
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _SCREAMING_SNAKE_CASE = """bart""" _SCREAMING_SNAKE_CASE = True @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( ): if LOAD_DENSE_INDEX: snake_case_ : Dict = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) snake_case_ : Tuple = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) snake_case_ : Dict = qar_model.eval() else: snake_case_ ,snake_case_ : Union[str, Any] = (None, None) if MODEL_TYPE == "bart": snake_case_ : Optional[int] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) snake_case_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) snake_case_ : Optional[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) snake_case_ : List[str] = sas_model.eval() else: snake_case_ ,snake_case_ : Tuple = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( ): if LOAD_DENSE_INDEX: snake_case_ : str = faiss.StandardGpuResources() snake_case_ : Any = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] snake_case_ : Union[str, Any] = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 1_28) , ) snake_case_ : Dict = faiss.IndexFlatIP(1_28 ) snake_case_ : Any = faiss.index_cpu_to_gpu(SCREAMING_SNAKE_CASE_ , 1 , SCREAMING_SNAKE_CASE_ ) wikiaab_gpu_index_flat.add(SCREAMING_SNAKE_CASE_ ) # TODO fix for larger GPU else: snake_case_ ,snake_case_ : Union[str, Any] = (None, None) snake_case_ : int = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Union[str, Any] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) snake_case_ : str = elia['train_eli5'] snake_case_ : List[Any] = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 1_28) ) snake_case_ : List[str] = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(SCREAMING_SNAKE_CASE_ ) return (elia_train, eli5_train_q_index) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = load_indexes() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = load_models() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = load_train_data() def SCREAMING_SNAKE_CASE__ ( __a , __a=10 ): snake_case_ : Optional[Any] = embed_questions_for_retrieval([question] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) snake_case_ ,snake_case_ : Dict = eli5_train_q_index.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) snake_case_ : Optional[Any] = [elia_train[int(SCREAMING_SNAKE_CASE_ )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE__ ( __a , __a="wiki40b" , __a="dense" , __a=10 ): if source == "none": snake_case_ ,snake_case_ : Tuple = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": snake_case_ ,snake_case_ : List[str] = query_qa_dense_index( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: snake_case_ ,snake_case_ : int = query_es_index( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index_name='english_wiki40b_snippets_100w' , n_results=SCREAMING_SNAKE_CASE_ , ) snake_case_ : Union[str, Any] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] snake_case_ : Union[str, Any] = 'question: {} context: {}'.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __a : None), } ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a=64 , __a=2_56 , __a=False , __a=2 , __a=0.95 , __a=0.8 ): with torch.no_grad(): snake_case_ : Any = qa_sas_generate( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , num_answers=1 , num_beams=SCREAMING_SNAKE_CASE_ , min_len=SCREAMING_SNAKE_CASE_ , max_len=SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , temp=SCREAMING_SNAKE_CASE_ , top_p=SCREAMING_SNAKE_CASE_ , top_k=SCREAMING_SNAKE_CASE_ , max_input_length=10_24 , device='cuda:0' , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _SCREAMING_SNAKE_CASE = """<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>""" _SCREAMING_SNAKE_CASE = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _SCREAMING_SNAKE_CASE = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _SCREAMING_SNAKE_CASE = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _SCREAMING_SNAKE_CASE = st.sidebar.checkbox("""Demo options""") if demo_options: _SCREAMING_SNAKE_CASE = st.sidebar.selectbox( """""", action_list, index=3, ) _SCREAMING_SNAKE_CASE = action_list.index(action_st) _SCREAMING_SNAKE_CASE = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _SCREAMING_SNAKE_CASE = show_type == """Show full text of passages""" else: _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _SCREAMING_SNAKE_CASE = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _SCREAMING_SNAKE_CASE = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _SCREAMING_SNAKE_CASE = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _SCREAMING_SNAKE_CASE = """wiki40b""" _SCREAMING_SNAKE_CASE = """dense""" _SCREAMING_SNAKE_CASE = """beam""" _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 64 _SCREAMING_SNAKE_CASE = 2_56 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = st.sidebar.checkbox("""Generation options""") if generate_options: _SCREAMING_SNAKE_CASE = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. """ st.sidebar.markdown(generate_info) _SCREAMING_SNAKE_CASE = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _SCREAMING_SNAKE_CASE = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) _SCREAMING_SNAKE_CASE = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": _SCREAMING_SNAKE_CASE = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _SCREAMING_SNAKE_CASE = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) _SCREAMING_SNAKE_CASE = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) _SCREAMING_SNAKE_CASE = None # start main text _SCREAMING_SNAKE_CASE = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What\'s the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What\'s the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _SCREAMING_SNAKE_CASE = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _SCREAMING_SNAKE_CASE = st.text_input("""Enter your question here:""", """""") else: _SCREAMING_SNAKE_CASE = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = make_support(question, source=wiki_source, method="""dense""", n_results=10) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _SCREAMING_SNAKE_CASE = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _SCREAMING_SNAKE_CASE = support_list[:10] _SCREAMING_SNAKE_CASE = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _SCREAMING_SNAKE_CASE = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _SCREAMING_SNAKE_CASE = res[1].strip() if sec_titles == "": _SCREAMING_SNAKE_CASE = """[{}]({})""".format(res[0], wiki_url) else: _SCREAMING_SNAKE_CASE = sec_titles.split(""" & """) _SCREAMING_SNAKE_CASE = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _SCREAMING_SNAKE_CASE = find_nearest_training(question) _SCREAMING_SNAKE_CASE = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _SCREAMING_SNAKE_CASE = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _SCREAMING_SNAKE_CASE = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
366
_SCREAMING_SNAKE_CASE = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
88
0
from __future__ import annotations import math def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> int: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> List[str]: '''simple docstring''' A__ = str(snake_case__ ) A__ = [n] for i in range(1 , len(snake_case__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> str: '''simple docstring''' if len(str(snake_case__ ) ) > 3: if not is_prime(int(str(snake_case__ )[-3:] ) ) or not is_prime(int(str(snake_case__ )[:3] ) ): return False return True def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int = 1_1 ) -> Optional[Any]: '''simple docstring''' A__ = [] A__ = 1_3 while len(snake_case__ ) != count: if validate(snake_case__ ): A__ = list_truncated_nums(snake_case__ ) if all(is_prime(snake_case__ ) for i in list_nums ): list_truncated_primes.append(snake_case__ ) num += 2 return list_truncated_primes def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' return sum(compute_truncated_primes(1_1 ) ) if __name__ == "__main__": print(f"""{sum(compute_truncated_primes(1_1)) = }""")
68
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _lowercase = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str _lowerCamelCase: Optional[str] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A , A , A = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[int] ) -> Dict: return F'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.major, self.minor, self.patch def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Tuple ) -> Union[str, Any]: if isinstance(A_ ,A_ ): return Version(A_ ) elif isinstance(A_ ,A_ ): return other raise TypeError(F'{other} (type {type(A_ )}) cannot be compared to version.' ) def __eq__( self : List[Any] ,A_ : Dict ) -> Any: try: A = self._validate_operand(A_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : List[Any] ,A_ : Optional[int] ) -> Tuple: A = self._validate_operand(A_ ) return self.tuple < other.tuple def __hash__( self : Union[str, Any] ) -> Union[str, Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,A_ : List[str] ) -> List[str]: A = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.version_str def _snake_case ( snake_case__ : List[str] ): A = _VERSION_REG.match(snake_case__ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(snake_case__ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def _snake_case ( snake_case__ : str ): return ".".join(str(snake_case__ ) for v in version_tuple )
74
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : int = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( a__): lowerCAmelCase_ = """deta""" lowerCAmelCase_ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A_=None , A_=900 , A_=2048 , A_=6 , A_=2048 , A_=8 , A_=6 , A_=1024 , A_=8 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=True , A_=False , A_="sine" , A_=5 , A_=4 , A_=4 , A_=True , A_=300 , A_=True , A_=True , A_=1 , A_=5 , A_=2 , A_=1 , A_=1 , A_=5 , A_=2 , A_=0.1 , A_=0.25 , **A_ , )-> Optional[Any]: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) UpperCamelCase = CONFIG_MAPPING["resnet"](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(A_ , A_ ): UpperCamelCase = backbone_config.pop('model_type' ) UpperCamelCase = CONFIG_MAPPING[backbone_model_type] UpperCamelCase = config_class.from_dict(A_ ) UpperCamelCase = backbone_config UpperCamelCase = num_queries UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = init_xavier_std UpperCamelCase = encoder_layerdrop UpperCamelCase = auxiliary_loss UpperCamelCase = position_embedding_type # deformable attributes UpperCamelCase = num_feature_levels UpperCamelCase = encoder_n_points UpperCamelCase = decoder_n_points UpperCamelCase = two_stage UpperCamelCase = two_stage_num_proposals UpperCamelCase = with_box_refine UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher UpperCamelCase = class_cost UpperCamelCase = bbox_cost UpperCamelCase = giou_cost # Loss coefficients UpperCamelCase = mask_loss_coefficient UpperCamelCase = dice_loss_coefficient UpperCamelCase = bbox_loss_coefficient UpperCamelCase = giou_loss_coefficient UpperCamelCase = eos_coefficient UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=A_ , **A_ ) @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return self.d_model def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.backbone_config.to_dict() UpperCamelCase = self.__class__.model_type return output
370
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
251
0
'''simple docstring''' import functools def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ) or not all(isinstance(UpperCamelCase , UpperCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(UpperCamelCase ) != 3 or not all(isinstance(UpperCamelCase , UpperCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(UpperCamelCase ) == 0: return 0 if min(UpperCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(UpperCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) lowerCAmelCase__ : Any = set(UpperCamelCase ) @functools.cache def dynamic_programming(UpperCamelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
37
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowerCAmelCase__ : str = set() # Replace all the whitespace in our sentence lowerCAmelCase__ : Tuple = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCamelCase ) == 26 def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowerCAmelCase__ : Any = [False] * 26 for char in input_str: if char.islower(): lowerCAmelCase__ : Optional[Any] = True elif char.isupper(): lowerCAmelCase__ : Any = True return all(UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" from timeit import timeit lowerCAmelCase__ : Union[str, Any] = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=UpperCamelCase ) ) print(timeit("""is_pangram_faster()""" , setup=UpperCamelCase ) ) print(timeit("""is_pangram_fastest()""" , setup=UpperCamelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
37
1
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": snake_case__ = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') snake_case__ = parser.parse_args() if args.model_type == "bert": snake_case__ = BertForMaskedLM.from_pretrained(args.model_name) snake_case__ = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') snake_case__ = model.state_dict() snake_case__ = {} for w in ["word_embeddings", "position_embeddings"]: snake_case__ = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: snake_case__ = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] snake_case__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 snake_case__ = state_dict['''cls.predictions.decoder.weight'''] snake_case__ = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: snake_case__ = state_dict[f"""cls.predictions.transform.dense.{w}"""] snake_case__ = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
370
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """camembert""" def __init__( self , __lowerCAmelCase=3_0_5_2_2 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase="absolute" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = position_embedding_type lowerCamelCase__ = use_cache lowerCamelCase__ = classifier_dropout class __A ( lowerCAmelCase ): '''simple docstring''' @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
209
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __A = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any) ->None: '''simple docstring''' warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_)
273
from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0) ->None: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Any =row, column lowerCamelCase__: List[str] =[[default_value for c in range(UpperCAmelCase_)] for r in range(UpperCAmelCase_)] def __str__(self : Tuple) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] =F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier lowerCamelCase__: List[str] =0 for row_vector in self.array: for obj in row_vector: lowerCamelCase__: int =max(UpperCAmelCase_ , len(str(UpperCAmelCase_))) lowerCamelCase__: Any =F"""%{max_element_length}s""" # Make string and return def single_line(UpperCAmelCase_ : list[float]) -> str: nonlocal string_format_identifier lowerCamelCase__: Tuple ="[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(UpperCAmelCase_) for row_vector in self.array) return s def __repr__(self : Optional[int]) ->str: '''simple docstring''' return str(self) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : tuple[int, int]) ->bool: '''simple docstring''' if not (isinstance(UpperCAmelCase_ , (list, tuple)) and len(UpperCAmelCase_) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self : int , UpperCAmelCase_ : tuple[int, int]) ->Any: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase_) return self.array[loc[0]][loc[1]] def __setitem__(self : Optional[Any] , UpperCAmelCase_ : tuple[int, int] , UpperCAmelCase_ : float) ->None: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase_) lowerCamelCase__: str =value def __add__(self : Dict , UpperCAmelCase_ : Matrix) ->Matrix: '''simple docstring''' assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == another.row and self.column == another.column # Add lowerCamelCase__: Dict =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: List[str] =self[r, c] + another[r, c] return result def __neg__(self : str) ->Matrix: '''simple docstring''' lowerCamelCase__: List[Any] =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Union[str, Any] =-self[r, c] return result def __sub__(self : str , UpperCAmelCase_ : Matrix) ->Matrix: '''simple docstring''' return self + (-another) def __mul__(self : List[str] , UpperCAmelCase_ : int | float | Matrix) ->Matrix: '''simple docstring''' if isinstance(UpperCAmelCase_ , (int, float)): # Scalar multiplication lowerCamelCase__: List[Any] =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Union[str, Any] =self[r, c] * another return result elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Matrix multiplication assert self.column == another.row lowerCamelCase__: Dict =Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase__: int =F"""Unsupported type given for another ({type(UpperCAmelCase_)})""" raise TypeError(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Matrix: '''simple docstring''' lowerCamelCase__: Optional[Any] =Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Optional[int] =self[r, c] return result def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix) ->Any: '''simple docstring''' assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase__: Tuple =v.transpose() lowerCamelCase__: Optional[Any] =(v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCAmelCase_ ( ) -> None: """simple docstring""" lowerCamelCase__: List[str] =Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCamelCase__: Union[str, Any] =1 print(F"""a^(-1) is {ainv}""" ) # u, v lowerCamelCase__: Optional[int] =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =1, 2, -3 lowerCamelCase__: Optional[Any] =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =4, -2, 5 print(F"""u is {u}""" ) print(F"""v is {v}""" ) print(F"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(__a , __a )}""" ) def lowerCAmelCase_ ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
273
1
'''simple docstring''' def __UpperCAmelCase ( A : list[int] , A : int ) -> bool: UpperCAmelCase_ : Optional[int] = len(A ) UpperCAmelCase_ : Tuple = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): UpperCAmelCase_ : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): UpperCAmelCase_ : List[str] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: UpperCAmelCase_ : str = subset[i - 1][j] if arr[i - 1] <= j: UpperCAmelCase_ : Optional[int] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
304
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
1
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str]=None ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =None if token is not None: _SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': f"Bearer {token}"} _SCREAMING_SNAKE_CASE =f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" _SCREAMING_SNAKE_CASE =requests.get(_UpperCamelCase , headers=_UpperCamelCase ).json() _SCREAMING_SNAKE_CASE ={} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) _SCREAMING_SNAKE_CASE =math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =requests.get(url + f"&page={i + 2}" , headers=_UpperCamelCase ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=None ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =None if token is not None: _SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': f"Bearer {token}"} _SCREAMING_SNAKE_CASE =f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" _SCREAMING_SNAKE_CASE =requests.get(_UpperCamelCase , headers=_UpperCamelCase ).json() _SCREAMING_SNAKE_CASE ={} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) _SCREAMING_SNAKE_CASE =math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =requests.get(url + f"&page={i + 2}" , headers=_UpperCamelCase ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =None if token is not None: _SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': f"Bearer {token}"} _SCREAMING_SNAKE_CASE =requests.get(_UpperCamelCase , headers=_UpperCamelCase , allow_redirects=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =result.headers['Location'] _SCREAMING_SNAKE_CASE =requests.get(_UpperCamelCase , allow_redirects=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =os.path.join(_UpperCamelCase , f"{artifact_name}.zip" ) with open(_UpperCamelCase , 'wb' ) as fp: fp.write(response.content ) def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any]=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =None with zipfile.ZipFile(_UpperCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCamelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_UpperCamelCase ) as f: for line in f: _SCREAMING_SNAKE_CASE =line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _SCREAMING_SNAKE_CASE =line[: line.index(': ' )] _SCREAMING_SNAKE_CASE =line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed _SCREAMING_SNAKE_CASE =line[len('FAILED ' ) :] failed_tests.append(_UpperCamelCase ) elif filename == "job_name.txt": _SCREAMING_SNAKE_CASE =line if len(_UpperCamelCase ) != len(_UpperCamelCase ): raise ValueError( f"`errors` and `failed_tests` should have the same number of elements. Got {len(_UpperCamelCase )} for `errors` " f"and {len(_UpperCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" ' problem.' ) _SCREAMING_SNAKE_CASE =None if job_name and job_links: _SCREAMING_SNAKE_CASE =job_links.get(_UpperCamelCase , _UpperCamelCase ) # A list with elements of the form (line of error, error, failed test) _SCREAMING_SNAKE_CASE =[x + [y] + [job_link] for x, y in zip(_UpperCamelCase , _UpperCamelCase )] return result def _lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : str=None ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[os.path.join(_UpperCamelCase , _UpperCamelCase ) for p in os.listdir(_UpperCamelCase ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(_UpperCamelCase , job_links=_UpperCamelCase ) ) return errors def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Any=None ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =Counter() counter.update([x[1] for x in logs] ) _SCREAMING_SNAKE_CASE =counter.most_common() _SCREAMING_SNAKE_CASE ={} for error, count in counts: if error_filter is None or error not in error_filter: _SCREAMING_SNAKE_CASE ={'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} _SCREAMING_SNAKE_CASE =dict(sorted(r.items() , key=lambda _UpperCamelCase : item[1]["count"] , reverse=_UpperCamelCase ) ) return r def _lowerCAmelCase ( _UpperCamelCase : str ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =test.split('::' )[0] if test.startswith('tests/models/' ): _SCREAMING_SNAKE_CASE =test.split('/' )[2] else: _SCREAMING_SNAKE_CASE =None return test def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : str=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =[(x[0], x[1], get_model(x[2] )) for x in logs] _SCREAMING_SNAKE_CASE =[x for x in logs if x[2] is not None] _SCREAMING_SNAKE_CASE ={x[2] for x in logs} _SCREAMING_SNAKE_CASE ={} for test in tests: _SCREAMING_SNAKE_CASE =Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _SCREAMING_SNAKE_CASE =counter.most_common() _SCREAMING_SNAKE_CASE ={error: count for error, count in counts if (error_filter is None or error not in error_filter)} _SCREAMING_SNAKE_CASE =sum(error_counts.values() ) if n_errors > 0: _SCREAMING_SNAKE_CASE ={'count': n_errors, 'errors': error_counts} _SCREAMING_SNAKE_CASE =dict(sorted(r.items() , key=lambda _UpperCamelCase : item[1]["count"] , reverse=_UpperCamelCase ) ) return r def _lowerCAmelCase ( _UpperCamelCase : Any ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='| no. | error | status |' _SCREAMING_SNAKE_CASE ='|-:|:-|:-|' _SCREAMING_SNAKE_CASE =[header, sep] for error in reduced_by_error: _SCREAMING_SNAKE_CASE =reduced_by_error[error]['count'] _SCREAMING_SNAKE_CASE =f"| {count} | {error[:1_00]} | |" lines.append(_UpperCamelCase ) return "\n".join(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : str ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='| model | no. of errors | major error | count |' _SCREAMING_SNAKE_CASE ='|-:|-:|-:|-:|' _SCREAMING_SNAKE_CASE =[header, sep] for model in reduced_by_model: _SCREAMING_SNAKE_CASE =reduced_by_model[model]['count'] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =list(reduced_by_model[model]['errors'].items() )[0] _SCREAMING_SNAKE_CASE =f"| {model} | {count} | {error[:60]} | {_count} |" lines.append(_UpperCamelCase ) return "\n".join(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") lowerCamelCase : List[str] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCamelCase : List[Any] = get_job_links(args.workflow_run_id, token=args.token) lowerCamelCase : str = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCamelCase : int = k.find(" / ") lowerCamelCase : List[Any] = k[index + len(" / ") :] lowerCamelCase : Optional[Any] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCamelCase : Optional[Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCamelCase : List[Any] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCamelCase : Any = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCamelCase : Union[str, Any] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCamelCase : List[str] = reduce_by_error(errors) lowerCamelCase : Union[str, Any] = reduce_by_model(errors) lowerCamelCase : str = make_github_table(reduced_by_error) lowerCamelCase : str = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
355
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase : List[str] = {"UserAgent": UserAgent().random} def _lowerCAmelCase ( _UpperCamelCase : str ) -> dict: """simple docstring""" _SCREAMING_SNAKE_CASE =script.contents[0] _SCREAMING_SNAKE_CASE =json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A__ : def __init__( self : int , _a : List[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =f"https://www.instagram.com/{username}/" _SCREAMING_SNAKE_CASE =self.get_json() def A ( self : Optional[int] ) -> dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =requests.get(self.url , headers=_a ).text _SCREAMING_SNAKE_CASE =BeautifulSoup(_a , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : str ) -> str: '''simple docstring''' return f"{self.__class__.__name__}('{self.username}')" def __str__( self : Optional[int] ) -> str: '''simple docstring''' return f"{self.fullname} ({self.username}) is {self.biography}" @property def A ( self : List[Any] ) -> str: '''simple docstring''' return self.user_data["username"] @property def A ( self : str ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def A ( self : Any ) -> str: '''simple docstring''' return self.user_data["biography"] @property def A ( self : Optional[Any] ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def A ( self : Tuple ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def A ( self : Optional[int] ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def A ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def A ( self : List[str] ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def A ( self : Union[str, Any] ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def A ( self : Dict ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def A ( self : Tuple ) -> bool: '''simple docstring''' return self.user_data["is_private"] def _lowerCAmelCase ( _UpperCamelCase : str = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions _SCREAMING_SNAKE_CASE =InstagramUser(_UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Optional[int] = InstagramUser("github") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
114
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a :str = { 'configuration_chinese_clip': [ 'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ChineseCLIPConfig', 'ChineseCLIPOnnxConfig', 'ChineseCLIPTextConfig', 'ChineseCLIPVisionConfig', ], 'processing_chinese_clip': ['ChineseCLIPProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Any = ['ChineseCLIPFeatureExtractor'] __a :Optional[int] = ['ChineseCLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Any = [ 'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ChineseCLIPModel', 'ChineseCLIPPreTrainedModel', 'ChineseCLIPTextModel', 'ChineseCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __a :Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
312
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE__ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } SCREAMING_SNAKE_CASE__ = { "allenai/led-base-16384": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase__ ( ) -> int: """simple docstring""" snake_case = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) snake_case = bs[:] snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 snake_case = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase , _UpperCamelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Union[str, Any]: """simple docstring""" snake_case = set() snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case = char return pairs class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : List[str] = VOCAB_FILES_NAMES _lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="replace" , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<mask>" , lowerCAmelCase=False , **lowerCAmelCase , ): """simple docstring""" snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else bos_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else eos_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else sep_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else cls_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else unk_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token super().__init__( errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , ) with open(lowerCAmelCase , encoding='utf-8' ) as vocab_handle: snake_case = json.load(lowerCAmelCase ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = errors # how to handle errors in decoding snake_case = bytes_to_unicode() snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase , encoding='utf-8' ) as merges_handle: snake_case = merges_handle.read().split('\n' )[1:-1] snake_case = [tuple(merge.split() ) for merge in bpe_merges] snake_case = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) snake_case = {} snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def snake_case ( self ): """simple docstring""" return len(self.encoder ) def snake_case ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" if token in self.cache: return self.cache[token] snake_case = tuple(lowerCAmelCase ) snake_case = get_pairs(lowerCAmelCase ) if not pairs: return token while True: snake_case = min(lowerCAmelCase , key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break snake_case ,snake_case = bigram snake_case = [] snake_case = 0 while i < len(lowerCAmelCase ): try: snake_case = word.index(lowerCAmelCase , lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case = j if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case = tuple(lowerCAmelCase ) snake_case = new_word if len(lowerCAmelCase ) == 1: break else: snake_case = get_pairs(lowerCAmelCase ) snake_case = ' '.join(lowerCAmelCase ) snake_case = word return word def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = [] for token in re.findall(self.pat , lowerCAmelCase ): snake_case = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase ).split(' ' ) ) return bpe_tokens def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.decoder.get(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = ''.join(lowerCAmelCase ) snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) snake_case = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase ) + '\n' ) snake_case = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) snake_case = token_index writer.write(' '.join(lowerCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case = [self.cls_token_id] snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase )) + [1] return [1] + ([0] * len(lowerCAmelCase )) + [1, 1] + ([0] * len(lowerCAmelCase )) + [1] def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self , lowerCAmelCase , lowerCAmelCase=False , **lowerCAmelCase ): """simple docstring""" snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase ) > 0 and not text[0].isspace()): snake_case = ' ' + text return (text, kwargs) def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase = None , lowerCAmelCase = None , ): """simple docstring""" snake_case = super()._pad( encoded_inputs=lowerCAmelCase , max_length=lowerCAmelCase , padding_strategy=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowerCAmelCase ) if needs_to_be_padded: snake_case = len(lowerCAmelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
150
0
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
189
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: int=False ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: List[str]=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase : Optional[Any] = "" else: _UpperCAmelCase : Dict = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : List[str] = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _UpperCAmelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : Dict = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : int = in_proj_bias[-config.hidden_size :] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Optional[int]: _UpperCAmelCase : Dict = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: Optional[int] , lowerCAmelCase: Dict ) -> Tuple: _UpperCAmelCase : str = dct.pop(lowerCAmelCase ) _UpperCAmelCase : Any = val def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: _UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Tuple = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple , lowerCAmelCase: int , lowerCAmelCase: List[Any]=False ) -> Any: _UpperCAmelCase : List[Any] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=lowerCAmelCase , ) _UpperCAmelCase : Optional[Any] = ViTHybridConfig(backbone_config=lowerCAmelCase , image_size=384 , num_labels=1000 ) _UpperCAmelCase : str = False # load original model from timm _UpperCAmelCase : Optional[Any] = timm.create_model(lowerCAmelCase , pretrained=lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase : str = timm_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase ) _UpperCAmelCase : str = create_rename_keys(lowerCAmelCase , lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : str = "huggingface/label-files" _UpperCAmelCase : Tuple = "imagenet-1k-id2label.json" _UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : Any = {int(lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : Dict = idalabel _UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase : Union[str, Any] = ViTHybridModel(lowerCAmelCase ).eval() else: _UpperCAmelCase : Optional[Any] = ViTHybridForImageClassification(lowerCAmelCase ).eval() model.load_state_dict(lowerCAmelCase ) # create image processor _UpperCAmelCase : Any = create_transform(**resolve_data_config({} , model=lowerCAmelCase ) ) _UpperCAmelCase : Tuple = transform.transforms _UpperCAmelCase : Tuple = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } _UpperCAmelCase : Any = ViTHybridImageProcessor( do_resize=lowerCAmelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _UpperCAmelCase : List[str] = prepare_img() _UpperCAmelCase : List[Any] = transform(lowerCAmelCase ).unsqueeze(0 ) _UpperCAmelCase : Optional[Any] = processor(lowerCAmelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase , lowerCAmelCase ) # verify logits with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: _UpperCAmelCase : List[Any] = timm_model.forward_features(lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _UpperCAmelCase : Any = timm_model(lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase , outputs.logits , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase ) if push_to_hub: print(F'Pushing model and processor to the hub {vit_name}' ) model.push_to_hub(F'ybelkada/{vit_name}' ) processor.push_to_hub(F'ybelkada/{vit_name}' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
189
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets SCREAMING_SNAKE_CASE_ : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' SCREAMING_SNAKE_CASE_ : str = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' SCREAMING_SNAKE_CASE_ : List[str] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self: List[str] ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def UpperCamelCase ( self: List[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: int = CHRF.CHAR_ORDER , UpperCamelCase: int = CHRF.WORD_ORDER , UpperCamelCase: int = CHRF.BETA , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , ): """simple docstring""" A__ = len(references[0] ) if any(len(UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) A__ = [[refs[i] for refs in references] for i in range(UpperCamelCase )] A__ = CHRF(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) A__ = sb_chrf.corpus_score(UpperCamelCase , UpperCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
335
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = "dandelin/vilt-b32-finetuned-vqa" UpperCAmelCase = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) UpperCAmelCase = "image_qa" UpperCAmelCase = AutoProcessor UpperCAmelCase = AutoModelForVisualQuestionAnswering UpperCAmelCase = ["image", "text"] UpperCAmelCase = ["text"] def __init__( self: List[str] , *UpperCamelCase: Dict , **UpperCamelCase: List[str] ): """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: str , UpperCamelCase: "Image" , UpperCamelCase: str ): """simple docstring""" return self.pre_processor(UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) def UpperCamelCase ( self: str , UpperCamelCase: str ): """simple docstring""" with torch.no_grad(): return self.model(**UpperCamelCase ).logits def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: int ): """simple docstring""" A__ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
335
1
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' __A : Tuple = tempfile.mkdtemp() __A : Tuple = 8 # DPR tok __A : Any = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __A : List[Any] = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __A : Tuple = os.path.join(__lowerCamelCase , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok __A : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __A : Union[str, Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __A : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __A : Optional[int] = {'''unk_token''': '''<unk>'''} __A : Optional[Any] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __A : str = os.path.join(__lowerCamelCase , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) __A : int = os.path.join(__lowerCamelCase , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCamelCase ) ) def UpperCamelCase__( self ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def UpperCamelCase__( self ): '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def UpperCamelCase__( self ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def UpperCamelCase__( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = self.get_dummy_dataset() __A : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: __A : Optional[int] = dataset __A : Tuple = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : str = self.get_dummy_dataset() __A : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: __A : Dict = os.path.join(self.tmpdirname , '''dataset''' ) __A : Dict = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset __A : Optional[Any] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: __A : Union[str, Any] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __lowerCamelCase ) , ) return retriever def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) __A : Any = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) __A : Tuple = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) __A : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__lowerCamelCase , open(__lowerCamelCase , '''wb''' ) ) __A : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) __A : Optional[int] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = 1 __A : str = self.get_dummy_canonical_hf_index_retriever() __A : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __A , __A , __A : Any = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase__( self ): '''simple docstring''' __A : Any = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: __A : str = self.get_dummy_dataset() retriever.save_pretrained(__lowerCamelCase ) __A : List[Any] = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __A : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __A : int = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = 1 __A : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) __A : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __A , __A , __A : str = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase__( self ): '''simple docstring''' __A : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCamelCase ) __A : str = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __A : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __A : List[Any] = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase__( self ): '''simple docstring''' __A : Any = 1 __A : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) __A : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __A , __A , __A : Optional[Any] = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCamelCase ) __A : Optional[int] = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __A : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __A : List[str] = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase__( self ): '''simple docstring''' __A : Tuple = 1 __A : Optional[Any] = self.get_dummy_legacy_index_retriever() __A : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __A , __A , __A : Any = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase__( self ): '''simple docstring''' __A : int = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCamelCase ) __A : Union[str, Any] = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __A : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __A : Dict = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCamelCase__( self ): '''simple docstring''' import torch __A : str = 1 __A : Tuple = self.get_dummy_canonical_hf_index_retriever() __A : Dict = [[5, 7], [10, 11]] __A : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __A : int = retriever(__lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase ) __A , __A , __A : int = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , np.ndarray ) __A : str = retriever( __lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase , return_tensors='''pt''' , ) __A , __A , __A , __A : Dict = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowerCamelCase , torch.Tensor ) self.assertIsInstance(__lowerCamelCase , torch.Tensor ) self.assertIsInstance(__lowerCamelCase , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCamelCase__( self ): '''simple docstring''' __A : int = self.get_dpr_ctx_encoder_tokenizer() __A : str = 1 __A : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) retriever.set_ctx_encoder_tokenizer(__lowerCamelCase ) __A : Union[str, Any] = [[5, 7], [10, 11]] __A : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __A : int = retriever(__lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase ) self.assertEqual( len(__lowerCamelCase ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __lowerCamelCase ) # check for doc token related keys in dictionary.
291
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , **__lowerCamelCase ): '''simple docstring''' super().__init__(**__lowerCamelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' return super().__call__(__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase__( self , **__lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = {} if "candidate_labels" in kwargs: __A : Tuple = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __A : List[str] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase="This is a photo of {}." ): '''simple docstring''' __A : Optional[int] = load_image(__lowerCamelCase ) __A : Optional[int] = self.image_processor(images=[image] , return_tensors=self.framework ) __A : int = candidate_labels __A : int = [hypothesis_template.format(__lowerCamelCase ) for x in candidate_labels] __A : Dict = self.tokenizer(__lowerCamelCase , return_tensors=self.framework , padding=__lowerCamelCase ) __A : int = [text_inputs] return inputs def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = model_inputs.pop('''candidate_labels''' ) __A : str = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __lowerCamelCase ): __A : Union[str, Any] = text_inputs[0] else: # Batching case. __A : str = text_inputs[0][0] __A : List[str] = self.model(**__lowerCamelCase , **__lowerCamelCase ) __A : Dict = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[int] = model_outputs.pop('''candidate_labels''' ) __A : int = model_outputs['''logits'''][0] if self.framework == "pt": __A : Union[str, Any] = logits.softmax(dim=-1 ).squeeze(-1 ) __A : Dict = probs.tolist() if not isinstance(__lowerCamelCase , __lowerCamelCase ): __A : List[Any] = [scores] elif self.framework == "tf": __A : List[Any] = stable_softmax(__lowerCamelCase , axis=-1 ) __A : str = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) __A : str = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowerCamelCase , __lowerCamelCase ) , key=lambda __lowerCamelCase : -x[0] ) ] return result
291
1
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = len(lowerCAmelCase ) for i in range(length - 1 ): _lowerCAmelCase = i for k in range(i + 1 , lowerCAmelCase ): if collection[k] < collection[least]: _lowerCAmelCase = k if least != i: _lowerCAmelCase , _lowerCAmelCase = (collection[i], collection[least]) return collection if __name__ == "__main__": A__ : str =input('''Enter numbers separated by a comma:\n''').strip() A__ : Optional[int] =[int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
70
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __a ( datasets.BeamBasedBuilder ): def __lowercase ( self : List[str] ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=SCREAMING_SNAKE_CASE , ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE ) class __a ( datasets.BeamBasedBuilder ): def __lowercase ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=SCREAMING_SNAKE_CASE , ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class __a ( A__ ): @require_beam def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : List[Any] = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCamelCase__ : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __lowercase ( self : Any ): '''simple docstring''' import apache_beam as beam UpperCamelCase__ : Any = beam.io.parquetio.WriteToParquet UpperCamelCase__ : Tuple = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : str = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCamelCase__ : Optional[Any] = partial(SCREAMING_SNAKE_CASE , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCamelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __lowercase ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : int = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : List[Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : Any = NestedBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCamelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
189
0
"""simple docstring""" def lowerCamelCase__ ( __snake_case = 2_00_00_00 ) -> int: """simple docstring""" _UpperCamelCase = [0 for i in range(n + 1 )] _UpperCamelCase = 1 _UpperCamelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, __snake_case ): _UpperCamelCase = 1 _UpperCamelCase = 0 for i in range(__snake_case ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
100
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> Any: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
100
1
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
157
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : Union[str, Any] = abs(snake_case__ ) __UpperCAmelCase : Dict = 0 while n > 0: res += n % 10 n //= 10 return res def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : Tuple = abs(snake_case__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _UpperCamelCase ( snake_case__ ) -> int: return sum(int(snake_case__ ) for c in str(abs(snake_case__ ) ) ) def _UpperCamelCase ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case__, snake_case__ ) -> None: __UpperCAmelCase : Union[str, Any] = f'''{func.__name__}({value})''' __UpperCAmelCase : List[str] = timeit(f'''__main__.{call}''', setup="import __main__" ) print(f'''{call:56} = {func(snake_case__ )} -- {timing:.4f} seconds''' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(snake_case__, snake_case__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
157
1
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : int =logging.get_logger(__name__) @add_end_docstrings(A__ ) class snake_case__ (A__ ): """simple docstring""" def __init__( self , *__lowercase , **__lowercase ) -> str: """simple docstring""" super().__init__(*__lowercase , **__lowercase ) requires_backends(self , """decord""" ) self.check_model_type(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase=None , __lowercase=None , __lowercase=None ) -> str: """simple docstring""" a__ : str = {} if frame_sampling_rate is not None: a__ : str = frame_sampling_rate if num_frames is not None: a__ : Optional[int] = num_frames a__ : Tuple = {} if top_k is not None: a__ : Union[str, Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self , __lowercase , **__lowercase ) -> Dict: """simple docstring""" return super().__call__(__lowercase , **__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=None , __lowercase=1 ) -> Optional[Any]: """simple docstring""" if num_frames is None: a__ : str = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): a__ : Tuple = BytesIO(requests.get(__lowercase ).content ) a__ : Any = VideoReader(__lowercase ) videoreader.seek(0 ) a__ : int = 0 a__ : int = num_frames * frame_sampling_rate - 1 a__ : Optional[Any] = np.linspace(__lowercase , __lowercase , num=__lowercase , dtype=np.intaa ) a__ : Any = videoreader.get_batch(__lowercase ).asnumpy() a__ : Optional[Any] = list(__lowercase ) a__ : Optional[Any] = self.image_processor(__lowercase , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Any: """simple docstring""" a__ : Any = self.model(**__lowercase ) return model_outputs def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=5 ) -> Tuple: """simple docstring""" if top_k > self.model.config.num_labels: a__ : str = self.model.config.num_labels if self.framework == "pt": a__ : List[Any] = model_outputs.logits.softmax(-1 )[0] a__ , a__ : int = probs.topk(__lowercase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) a__ : Tuple = scores.tolist() a__ : Optional[int] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowercase , __lowercase )]
266
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCAmelCase_ ( _lowercase : List[str]) -> Union[str, Any]: """simple docstring""" a__ : List[str] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase) def lowerCAmelCase_ ( _lowercase : List[Any]) -> Optional[Any]: """simple docstring""" a__ , a__ : Union[str, Any] = emb.weight.shape a__ : str = nn.Linear(_lowercase , _lowercase , bias=_lowercase) a__ : Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( _lowercase : int , _lowercase : int=None) -> List[Any]: """simple docstring""" a__ : List[str] = {} for old_key in state_dict.keys(): a__ : Any = old_key if "moe_layer.experts." in key: if expert_idx is not None: a__ : Dict = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''') else: a__ : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""") if "gate" in key: a__ : Tuple = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""") if "fc2" and "experts" not in key: a__ : Optional[int] = key.replace(""".fc2.""" , """.ffn.fc2.""") if "fc1" and "experts" not in key: a__ : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""") if ".encoder_attn." in key: a__ : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""") if "encoder_attn_layer_norm" in key: a__ : Optional[Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""") if "final_layer_norm" in key: a__ : List[str] = key.replace("""final_layer_norm""" , """ff_layer_norm""") a__ : str = state_dict[old_key] return new_dict def lowerCAmelCase_ ( _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Dict , _lowercase : str = WEIGHTS_NAME) -> Tuple: """simple docstring""" a__ : Tuple = [] a__ : Optional[Any] = 0 os.makedirs(_lowercase , exist_ok=_lowercase) for expert in range(_lowercase): a__ : str = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowercase): a__ : List[str] = torch.load(_lowercase)["""model"""] remove_ignore_keys_(_lowercase) a__ : Tuple = rename_fairseq_keys(_lowercase , _lowercase) a__ : str = os.path.join( _lowercase , weights_name.replace(""".bin""" , F'''-{len(_lowercase)+1:05d}-of-???.bin''')) torch.save(_lowercase , _lowercase) sharded_state_dicts.append(expert_state.keys()) total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size( expert_state[list(_lowercase)[0]].dtype) # Add the last block a__ : int = os.path.join(_lowercase , weights_name.replace(""".bin""" , F'''-{len(_lowercase)+1:05d}-of-???.bin''')) a__ : Union[str, Any] = torch.load(switch_checkpoint_path + """-shared.pt""")["""model"""] remove_ignore_keys_(_lowercase) a__ : List[str] = rename_fairseq_keys(_lowercase , _lowercase) a__ : int = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys()) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowercase) == 1: a__ : Optional[int] = os.path.join(_lowercase , _lowercase) torch.save(_lowercase , _lowercase) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowercase , _lowercase) # Otherwise, let's build the index a__ : List[str] = {} for idx, shard in enumerate(_lowercase): a__ : Union[str, Any] = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowercase):05d}.bin''') a__ : List[str] = os.path.join(_lowercase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''')) os.rename(_lowercase , os.path.join(_lowercase , _lowercase)) for key in shard: a__ : Tuple = shard_file # Add the metadata a__ : Tuple = {"""total_size""": total_size} a__ : Optional[Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowercase , _lowercase) , """w""" , encoding="""utf-8""") as f: a__ : Dict = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase) + """\n""" f.write(_lowercase) return metadata, index if __name__ == "__main__": _lowercase : Any =argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) _lowercase : Tuple =parser.parse_args() _lowercase , _lowercase : List[Any] =shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowercase : int =NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowercase : List[str] =NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
266
1
"""simple docstring""" # Function to print upper half of diamond (pyramid) def _snake_case ( snake_case__ : Dict ): for i in range(0 , snake_case__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def _snake_case ( snake_case__ : Tuple ): for i in range(snake_case__ , 0 , -1 ): for _ in range(snake_case__ , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def _snake_case ( snake_case__ : Dict ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(snake_case__ ) # upper half reverse_floyd(snake_case__ ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') _lowercase = 1 while K: _lowercase = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) _lowercase = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
74
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = '''openai-gpt''' A : str = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self, A=40_478, A=512, A=768, A=12, A=12, A="gelu", A=0.1, A=0.1, A=0.1, A=1E-5, A=0.02, A="cls_index", A=True, A=None, A=True, A=0.1, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = n_positions SCREAMING_SNAKE_CASE : List[str] = n_embd SCREAMING_SNAKE_CASE : Optional[Any] = n_layer SCREAMING_SNAKE_CASE : Optional[Any] = n_head SCREAMING_SNAKE_CASE : str = afn SCREAMING_SNAKE_CASE : List[str] = resid_pdrop SCREAMING_SNAKE_CASE : int = embd_pdrop SCREAMING_SNAKE_CASE : Optional[Any] = attn_pdrop SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = summary_type SCREAMING_SNAKE_CASE : Tuple = summary_use_proj SCREAMING_SNAKE_CASE : Dict = summary_activation SCREAMING_SNAKE_CASE : Tuple = summary_first_dropout SCREAMING_SNAKE_CASE : List[str] = summary_proj_to_labels super().__init__(**A )
251
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowerCAmelCase_ : '''simple docstring''' __snake_case = PegasusConfig __snake_case = {} __snake_case = '''gelu''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=40 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = bos_token_id def UpperCamelCase__ ( self ): snake_case_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case_ = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = TFPegasusModel(config=lowerCAmelCase__ ).get_decoder() snake_case_ = inputs_dict["input_ids"] snake_case_ = input_ids[:1, :] snake_case_ = inputs_dict["attention_mask"][:1, :] snake_case_ = inputs_dict["head_mask"] snake_case_ = 1 # first forward pass snake_case_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) snake_case_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] snake_case_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ = output_from_no_past[:, -3:, random_slice_idx] snake_case_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , )-> List[str]: """simple docstring""" if attention_mask is None: snake_case_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __snake_case = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def UpperCamelCase__ ( self ): snake_case_ = TFPegasusModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) @require_sentencepiece @require_tokenizers @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __snake_case = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __snake_case = '''google/pegasus-xsum''' @cached_property def UpperCamelCase__ ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase__ ( self ): snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCamelCase__ ( self , **_UpperCAmelCase ): snake_case_ = self.translate_src_text(**lowerCAmelCase__ ) assert self.expected_text == generated_words def UpperCamelCase__ ( self , **_UpperCAmelCase ): snake_case_ = self.tokenizer(self.src_text , **lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''tf''' ) snake_case_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase__ , ) snake_case_ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase__ ) return generated_words @slow def UpperCamelCase__ ( self ): self._assert_generated_batch_equal_expected()
367
def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> list[int]: """simple docstring""" snake_case_ = int(SCREAMING_SNAKE_CASE ) # Initialize Result snake_case_ = [] # Traverse through all denomination for denomination in reversed(SCREAMING_SNAKE_CASE ): # Find denominations while int(SCREAMING_SNAKE_CASE ) >= int(SCREAMING_SNAKE_CASE ): total_value -= int(SCREAMING_SNAKE_CASE ) answer.append(SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase = [] UpperCAmelCase = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCAmelCase = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) UpperCAmelCase = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase = [1, 2, 5, 10, 20, 50, 100, 500, 2000] UpperCAmelCase = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(f'''Following is minimal change for {value}: ''') UpperCAmelCase = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
267
0
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _lowercase : '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : List[str]=32 , SCREAMING_SNAKE_CASE__ : Optional[int]=3 , SCREAMING_SNAKE_CASE__ : Any=10 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[8, 16, 32, 64] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Optional[Any]="relu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[str]=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE__ : Tuple=[2, 3, 4] , SCREAMING_SNAKE_CASE__ : Tuple=1 , ) -> List[str]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = out_features __lowerCAmelCase = out_indices __lowerCAmelCase = num_groups def a ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def a ( self : Optional[Any] ) -> Optional[Any]: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: __lowerCAmelCase = BitModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = BitForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: __lowerCAmelCase = BitBackbone(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowerCAmelCase = None __lowerCAmelCase = BitBackbone(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a ( self : List[str] ) -> Dict: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Optional[int] = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : str = False def a ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = BitModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : Optional[int] ) -> Dict: return @unittest.skip(reason="""Bit does not output attentions""" ) def a ( self : List[Any] ) -> Optional[Any]: pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def a ( self : Optional[Any] ) -> List[str]: pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def a ( self : List[Any] ) -> List[Any]: pass def a ( self : Any ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def a ( self : str ) -> List[str]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def a ( self : int ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE__ ) def a ( self : int ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=SCREAMING_SNAKE_CASE__ ) for name, module in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def a ( self : Tuple ) -> Optional[int]: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ): __lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCAmelCase = layer_type __lowerCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def a ( self : str ) -> Any: pass def a ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : List[Any] ) -> str: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = BitModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def UpperCamelCase_ ( ) -> List[Any]: '''simple docstring''' __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def a ( self : List[Any] ) -> List[Any]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a ( self : List[str] ) -> List[Any]: __lowerCAmelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) @require_torch class _lowercase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = (BitBackbone,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Optional[Any] = BitConfig _SCREAMING_SNAKE_CASE : Any = False def a ( self : Any ) -> Tuple: __lowerCAmelCase = BitModelTester(self )
229
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : int = logging.get_logger(__name__) _A : Any = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = """ctrl""" _SCREAMING_SNAKE_CASE : Optional[Any] = ["""past_key_values"""] _SCREAMING_SNAKE_CASE : Union[str, Any] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any]=24_65_34 , SCREAMING_SNAKE_CASE__ : Optional[int]=2_56 , SCREAMING_SNAKE_CASE__ : Optional[Any]=12_80 , SCREAMING_SNAKE_CASE__ : str=81_92 , SCREAMING_SNAKE_CASE__ : List[str]=48 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Dict=1e-6 , SCREAMING_SNAKE_CASE__ : Any=0.0_2 , SCREAMING_SNAKE_CASE__ : Tuple=True , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Tuple: __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = dff __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache super().__init__(**SCREAMING_SNAKE_CASE__ )
229
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = '▁' __UpperCamelCase : str = {'vocab_file': 'sentencepiece.bpe.model'} __UpperCamelCase : Tuple = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } __UpperCamelCase : List[str] = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off __UpperCamelCase : Dict = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = ["""input_ids""", """attention_mask"""] UpperCamelCase_ = [] UpperCamelCase_ = [] def __init__( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : Union[str, Any]="</s>" , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : List[Any]="<s>" , UpperCamelCase__ : List[str]="<unk>" , UpperCamelCase__ : Tuple="<pad>" , UpperCamelCase__ : str="<mask>" , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[Dict[str, Any]] = None , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , src_lang=UpperCamelCase__ , tgt_lang=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE : str = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Dict = len(self.sp_model ) SCREAMING_SNAKE_CASE : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase__ ) } SCREAMING_SNAKE_CASE : Any = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE : Optional[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE : int = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : Any = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.__dict__.copy() SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __A ( self : int ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __A ( self : Union[str, Any] ): '''simple docstring''' return self._src_lang @src_lang.setter def __A ( self : Tuple , UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __A ( self : Union[str, Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase__ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase__ )) + ([0] * len(UpperCamelCase__ )) + suffix_ones def __A ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : Tuple ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Dict = src_lang SCREAMING_SNAKE_CASE : Union[str, Any] = self(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = self.convert_tokens_to_ids(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = tgt_lang_id return inputs def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self : Any , UpperCamelCase__ : str ): '''simple docstring''' return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def __A ( self : str , UpperCamelCase__ : int ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.PieceToId(UpperCamelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __A ( self : Dict , UpperCamelCase__ : str ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __A ( self : int , UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ''''''.join(UpperCamelCase__ ).replace(UpperCamelCase__ , ''' ''' ).strip() return out_string def __A ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,) def __A ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : str = "en_XX" , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : str = "ro_RO" , **UpperCamelCase__ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : List[Any] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __A ( self : List[str] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self : str , UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.lang_code_to_id[src_lang] SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] def __A ( self : List[Any] , UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.lang_code_to_id[lang] SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id, self.cur_lang_code]
258
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """encodec""" def __init__( self : int , UpperCamelCase__ : Optional[Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCamelCase__ : List[str]=2_4000 , UpperCamelCase__ : str=1 , UpperCamelCase__ : str=False , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=128 , UpperCamelCase__ : int=32 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Any=[8, 5, 4, 2] , UpperCamelCase__ : Optional[Any]="weight_norm" , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : int=7 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]="reflect" , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Tuple=1.0 , UpperCamelCase__ : Dict=1024 , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[Any]=True , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = target_bandwidths SCREAMING_SNAKE_CASE : int = sampling_rate SCREAMING_SNAKE_CASE : List[Any] = audio_channels SCREAMING_SNAKE_CASE : List[str] = normalize SCREAMING_SNAKE_CASE : Any = chunk_length_s SCREAMING_SNAKE_CASE : Optional[int] = overlap SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = num_filters SCREAMING_SNAKE_CASE : int = num_residual_layers SCREAMING_SNAKE_CASE : List[Any] = upsampling_ratios SCREAMING_SNAKE_CASE : Dict = norm_type SCREAMING_SNAKE_CASE : List[Any] = kernel_size SCREAMING_SNAKE_CASE : int = last_kernel_size SCREAMING_SNAKE_CASE : str = residual_kernel_size SCREAMING_SNAKE_CASE : int = dilation_growth_rate SCREAMING_SNAKE_CASE : List[Any] = use_causal_conv SCREAMING_SNAKE_CASE : List[Any] = pad_mode SCREAMING_SNAKE_CASE : str = compress SCREAMING_SNAKE_CASE : Dict = num_lstm_layers SCREAMING_SNAKE_CASE : List[str] = trim_right_ratio SCREAMING_SNAKE_CASE : Optional[int] = codebook_size SCREAMING_SNAKE_CASE : Optional[Any] = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE : List[str] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**UpperCamelCase__ ) @property def __A ( self : List[str] ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __A ( self : Optional[Any] ): '''simple docstring''' return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
258
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs UpperCAmelCase_ = imread(r'digital_image_processing/image_data/lena_small.jpg') UpperCAmelCase_ = cvtColor(img, COLOR_BGR2GRAY) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = cn.convert_to_negative(A__ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCamelCase__ ( ): '''simple docstring''' with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(A__ , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCamelCase = canny.canny(A__ ) # assert canny array for at least one True assert canny_array.any() def lowerCamelCase__ ( ): '''simple docstring''' assert gg.gaussian_filter(A__ , 5 , sigma=0.9 ).all() def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCamelCase = conv.img_convolve(A__ , A__ ).astype(A__ ) assert res.any() def lowerCamelCase__ ( ): '''simple docstring''' assert med.median_filter(A__ , 3 ).any() def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = sob.sobel_filter(A__ ) assert grad.any() and theta.any() def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = sp.make_sepia(A__ , 20 ) assert sepia.all() def lowerCamelCase__ ( A__ : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' __lowerCamelCase = bs.Burkes(imread(A__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCamelCase__ ( A__ : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' __lowerCamelCase = rs.NearestNeighbour(imread(A__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. __lowerCamelCase = imread(A__ , 0 ) # Test for get_neighbors_pixel function() return not None __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = image[x_coordinate][y_coordinate] __lowerCamelCase = lbp.get_neighbors_pixel( A__ , A__ , A__ , A__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCamelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __lowerCamelCase = lbp.local_binary_value(A__ , A__ , A__ ) assert lbp_image.any()
12
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : str , snake_case__ : str ): A = RobertaPreLayerNormConfig.from_pretrained( snake_case__ , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict A = torch.load(hf_hub_download(repo_id=snake_case__ , filename='pytorch_model.bin' ) ) A = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): A = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue A = tensor_value A = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=snake_case__ , config=snake_case__ , state_dict=snake_case__ ) model.save_pretrained(snake_case__ ) # convert tokenizer A = AutoTokenizer.from_pretrained(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
74
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : int = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowerCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : Any = logging.get_logger(__name__) lowerCAmelCase_ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ : List[str] = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ : Tuple = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } lowerCAmelCase_ : str = '''▁''' class __lowerCAmelCase ( __a ): snake_case : List[str] = VOCAB_FILES_NAMES snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case : str = ["""input_ids""", """attention_mask"""] snake_case : List[Any] = BarthezTokenizer def __init__(self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , **lowerCAmelCase__ , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : List[str] = vocab_file _UpperCAmelCase : Tuple = False if not self.vocab_file else True def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : int = [self.cls_token_id] _UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): _UpperCAmelCase : str = [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCAmelCase : Union[str, Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
170
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
308
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class a ( lowercase__ ): """simple docstring""" a : List[str] = 'MCTCTFeatureExtractor' a : str = 'AutoTokenizer' def __init__( self : Tuple , __lowercase : int , __lowercase : Dict ) -> Any: super().__init__(__lowercase , __lowercase ) __UpperCAmelCase : Optional[Any] = self.feature_extractor __UpperCAmelCase : Optional[int] = False def __call__( self : int , *__lowercase : Tuple , **__lowercase : Optional[int] ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowercase , **__lowercase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) __UpperCAmelCase : Dict = kwargs.pop("""raw_speech""" ) else: __UpperCAmelCase : Dict = kwargs.pop("""audio""" , __lowercase ) __UpperCAmelCase : List[str] = kwargs.pop("""sampling_rate""" , __lowercase ) __UpperCAmelCase : Tuple = kwargs.pop("""text""" , __lowercase ) if len(__lowercase ) > 0: __UpperCAmelCase : Tuple = args[0] __UpperCAmelCase : str = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: __UpperCAmelCase : Tuple = self.feature_extractor(__lowercase , *__lowercase , sampling_rate=__lowercase , **__lowercase ) if text is not None: __UpperCAmelCase : str = self.tokenizer(__lowercase , **__lowercase ) if text is None: return inputs elif audio is None: return encodings else: __UpperCAmelCase : Dict = encodings["""input_ids"""] return inputs def UpperCAmelCase ( self : Optional[Any] , *__lowercase : List[Any] , **__lowercase : int ) -> List[Any]: return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def UpperCAmelCase ( self : Optional[int] , *__lowercase : Optional[Any] , **__lowercase : List[str] ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__lowercase , **__lowercase ) __UpperCAmelCase : Optional[int] = kwargs.pop("""input_features""" , __lowercase ) __UpperCAmelCase : Optional[Any] = kwargs.pop("""labels""" , __lowercase ) if len(__lowercase ) > 0: __UpperCAmelCase : Union[str, Any] = args[0] __UpperCAmelCase : str = args[1:] if input_features is not None: __UpperCAmelCase : Any = self.feature_extractor.pad(__lowercase , *__lowercase , **__lowercase ) if labels is not None: __UpperCAmelCase : Union[str, Any] = self.tokenizer.pad(__lowercase , **__lowercase ) if labels is None: return input_features elif input_features is None: return labels else: __UpperCAmelCase : Any = labels["""input_ids"""] return input_features def UpperCAmelCase ( self : Any , *__lowercase : Union[str, Any] , **__lowercase : Dict ) -> List[Any]: return self.tokenizer.decode(*__lowercase , **__lowercase ) @contextmanager def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = self.tokenizer yield __UpperCAmelCase : List[Any] = self.feature_extractor __UpperCAmelCase : int = False
114
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class snake_case_ ( __A ): __A : str = "imagegpt" __A : Union[str, Any] = ["past_key_values"] __A : Optional[Any] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , lowercase_ : Union[str, Any]=5_12 + 1 , lowercase_ : Optional[int]=32 * 32 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=24 , lowercase_ : Any=8 , lowercase_ : List[str]=None , lowercase_ : Optional[Any]="quick_gelu" , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Optional[int]=1E-5 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Union[str, Any]=True , lowercase_ : Any=True , lowercase_ : List[str]=False , lowercase_ : Tuple=False , lowercase_ : Any=False , **lowercase_ : Dict , ) -> Any: lowercase__ : Optional[Any] = vocab_size lowercase__ : Optional[Any] = n_positions lowercase__ : Tuple = n_embd lowercase__ : List[str] = n_layer lowercase__ : str = n_head lowercase__ : Optional[int] = n_inner lowercase__ : Any = activation_function lowercase__ : Optional[Any] = resid_pdrop lowercase__ : int = embd_pdrop lowercase__ : Tuple = attn_pdrop lowercase__ : Any = layer_norm_epsilon lowercase__ : List[Any] = initializer_range lowercase__ : Any = scale_attn_weights lowercase__ : Any = use_cache lowercase__ : Tuple = scale_attn_by_inverse_layer_idx lowercase__ : Union[str, Any] = reorder_and_upcast_attn lowercase__ : int = tie_word_embeddings super().__init__(tie_word_embeddings=lowercase_ , **lowercase_ ) class snake_case_ ( __A ): @property def __UpperCamelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : "FeatureExtractionMixin" , lowercase_ : int = 1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 3 , lowercase_ : int = 32 , lowercase_ : int = 32 , ) -> Mapping[str, Any]: lowercase__ : Tuple = self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Tuple = dict(preprocessor(images=lowercase_ , return_tensors=lowercase_ ) ) return inputs
333
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase : Tuple = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
236
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCAmelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase : Dict = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase=8 ): lowercase :List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase :List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: Tuple , _lowerCAmelCase: UNetaDConditionModel , _lowerCAmelCase: DDPMScheduler , _lowerCAmelCase: VQModel , ): super().__init__() self.register_modules( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , movq=_lowerCAmelCase , ) lowercase :List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: Dict , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Any , _lowerCAmelCase: Tuple , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[int] ): if latents is None: lowercase :int = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) lowercase :Optional[Any] = latents.to(_lowerCAmelCase ) lowercase :int = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase :List[Any] = torch.device(F"cuda:{gpu_id}" ) lowercase :List[str] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: Dict=0 ): if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase :List[Any] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=_lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase :List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase , lowercase :Dict = cpu_offload_with_hook(_lowerCAmelCase , _lowerCAmelCase , prev_module_hook=_lowerCAmelCase ) # We'll offload the last model manually. lowercase :Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self: int ): if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCAmelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCAmelCase ) def __call__( self: str , _lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCAmelCase: int = 5_12 , _lowerCAmelCase: int = 5_12 , _lowerCAmelCase: int = 1_00 , _lowerCAmelCase: float = 4.0 , _lowerCAmelCase: int = 1 , _lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: Optional[str] = "pil" , _lowerCAmelCase: bool = True , ): lowercase :str = self._execution_device lowercase :List[str] = guidance_scale > 1.0 if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Any = torch.cat(_lowerCAmelCase , dim=0 ) lowercase :Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :List[Any] = torch.cat(_lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: lowercase :int = image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) lowercase :Any = negative_image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) lowercase :Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCAmelCase ) self.scheduler.set_timesteps(_lowerCAmelCase , device=_lowerCAmelCase ) lowercase :Optional[Any] = self.scheduler.timesteps lowercase :Tuple = self.unet.config.in_channels lowercase , lowercase :Optional[int] = downscale_height_and_width(_lowerCAmelCase , _lowerCAmelCase , self.movq_scale_factor ) # create initial latent lowercase :List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowercase :Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase :List[str] = {"image_embeds": image_embeds} lowercase :List[Any] = self.unet( sample=_lowerCAmelCase , timestep=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , added_cond_kwargs=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] if do_classifier_free_guidance: lowercase , lowercase :List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase , lowercase :Any = noise_pred.chunk(2 ) lowercase , lowercase :Dict = variance_pred.chunk(2 ) lowercase :str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase :Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase , lowercase :str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase :Tuple = self.scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase , )[0] # post-processing lowercase :Dict = self.movq.decode(_lowerCAmelCase , force_not_quantize=_lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase :Any = image * 0.5 + 0.5 lowercase :Tuple = image.clamp(0 , 1 ) lowercase :List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase :List[Any] = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCAmelCase )
236
1
"""simple docstring""" import os from collections.abc import Iterator def UpperCAmelCase_ ( a_ = "." ): '''simple docstring''' for dir_path, dir_names, filenames in os.walk(a_ ): lowerCamelCase : Any = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(a_ )[1] in (".py", ".ipynb"): yield os.path.join(a_, a_ ).lstrip('./' ) def UpperCAmelCase_ ( a_ ): '''simple docstring''' return F"""{i * ' '}*""" if i else "\n##" def UpperCAmelCase_ ( a_, a_ ): '''simple docstring''' lowerCamelCase : List[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(a_ ) or old_parts[i] != new_part) and new_part: print(F"""{md_prefix(a_ )} {new_part.replace('_', ' ' ).title()}""" ) return new_path def UpperCAmelCase_ ( a_ = "." ): '''simple docstring''' lowerCamelCase : str = '' for filepath in sorted(good_file_paths(a_ ) ): lowerCamelCase , lowerCamelCase : str = os.path.split(a_ ) if filepath != old_path: lowerCamelCase : Tuple = print_path(a_, a_ ) lowerCamelCase : str = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCamelCase : int = F"""{filepath}/{filename}""".replace(' ', '%20' ) lowerCamelCase : int = os.path.splitext(filename.replace('_', ' ' ).title() )[0] print(F"""{md_prefix(a_ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
354
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _lowercase ( __UpperCAmelCase ): lowercase_ = 'sew-d' def __init__( self , UpperCAmelCase_=32 , UpperCAmelCase_=768 , UpperCAmelCase_=12 , UpperCAmelCase_=12 , UpperCAmelCase_=3072 , UpperCAmelCase_=2 , UpperCAmelCase_=512 , UpperCAmelCase_=256 , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_=("p2c", "c2p") , UpperCAmelCase_="layer_norm" , UpperCAmelCase_="gelu_python" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.02 , UpperCAmelCase_=1E-7 , UpperCAmelCase_=1E-5 , UpperCAmelCase_="group" , UpperCAmelCase_="gelu" , UpperCAmelCase_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCAmelCase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase_=False , UpperCAmelCase_=128 , UpperCAmelCase_=16 , UpperCAmelCase_=True , UpperCAmelCase_=0.05 , UpperCAmelCase_=10 , UpperCAmelCase_=2 , UpperCAmelCase_=0.0 , UpperCAmelCase_=10 , UpperCAmelCase_=0 , UpperCAmelCase_="mean" , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=256 , UpperCAmelCase_=0 , UpperCAmelCase_=1 , UpperCAmelCase_=2 , **UpperCAmelCase_ , ) -> Optional[Any]: super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) lowerCamelCase : Any = hidden_size lowerCamelCase : Any = feat_extract_norm lowerCamelCase : List[str] = feat_extract_activation lowerCamelCase : str = list(UpperCAmelCase_ ) lowerCamelCase : Any = list(UpperCAmelCase_ ) lowerCamelCase : str = list(UpperCAmelCase_ ) lowerCamelCase : List[Any] = conv_bias lowerCamelCase : Optional[int] = num_conv_pos_embeddings lowerCamelCase : str = num_conv_pos_embedding_groups lowerCamelCase : Optional[int] = len(self.conv_dim ) lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : str = squeeze_factor lowerCamelCase : Any = max_position_embeddings lowerCamelCase : List[Any] = position_buckets lowerCamelCase : Union[str, Any] = share_att_key lowerCamelCase : Optional[int] = relative_attention lowerCamelCase : Tuple = norm_rel_ebd lowerCamelCase : Union[str, Any] = list(UpperCAmelCase_ ) lowerCamelCase : List[Any] = hidden_act lowerCamelCase : Optional[Any] = num_attention_heads lowerCamelCase : Tuple = hidden_dropout lowerCamelCase : List[Any] = attention_dropout lowerCamelCase : Optional[Any] = activation_dropout lowerCamelCase : List[str] = feat_proj_dropout lowerCamelCase : List[str] = final_dropout lowerCamelCase : str = layer_norm_eps lowerCamelCase : int = feature_layer_norm_eps lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : int = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase : Any = apply_spec_augment lowerCamelCase : Optional[int] = mask_time_prob lowerCamelCase : Optional[Any] = mask_time_length lowerCamelCase : str = mask_time_min_masks lowerCamelCase : List[Any] = mask_feature_prob lowerCamelCase : int = mask_feature_length lowerCamelCase : List[Any] = mask_feature_min_masks # ctc loss lowerCamelCase : Optional[Any] = ctc_loss_reduction lowerCamelCase : Union[str, Any] = ctc_zero_infinity # sequence classification lowerCamelCase : Optional[Any] = use_weighted_layer_sum lowerCamelCase : Dict = classifier_proj_size @property def _UpperCamelCase ( self ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
205
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=3_0 , __UpperCamelCase=4_0_0 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , __UpperCamelCase=1 / 2_5_5 , __UpperCamelCase=True , ): """simple docstring""" UpperCamelCase_ = size if size is not None else {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_pad def lowerCamelCase_ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" if not batched: UpperCamelCase_ = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): UpperCamelCase_ , UpperCamelCase_ = image.size else: UpperCamelCase_ , UpperCamelCase_ = image.shape[1], image.shape[2] if w < h: UpperCamelCase_ = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase_ = self.size["""shortest_edge"""] elif w > h: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase_ = self.size["""shortest_edge"""] UpperCamelCase_ = self.size["""shortest_edge"""] else: UpperCamelCase_ = [] for image in image_inputs: UpperCamelCase_ , UpperCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] UpperCamelCase_ = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : str = YolosImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = YolosImageProcessingTester(self ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) UpperCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2, """longest_edge""": 8_4} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase_ = self.image_processing_class(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase , do_rescale=__UpperCamelCase ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCamelCase_ = image_processing_a.pad(__UpperCamelCase , return_tensors="""pt""" ) UpperCamelCase_ = image_processing_a(__UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""image_id""": 3_9_7_6_9, """annotations""": target} # encode them UpperCamelCase_ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"""file_name""": """000000039769.png""", """image_id""": 3_9_7_6_9, """segments_info""": target} UpperCamelCase_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase_ = YolosImageProcessor(format="""coco_panoptic""" ) UpperCamelCase_ = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) ) # verify class_labels UpperCamelCase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) ) # verify masks UpperCamelCase_ = 8_2_2_8_7_3 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase ) # verify orig_size UpperCamelCase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) ) # verify size UpperCamelCase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
122
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=3 , __UpperCamelCase=3_2 , __UpperCamelCase=3 , __UpperCamelCase=1_0 , __UpperCamelCase=[1_0, 2_0, 3_0, 4_0] , __UpperCamelCase=[1, 1, 2, 1] , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=3 , __UpperCamelCase=None , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = num_channels UpperCamelCase_ = embeddings_size UpperCamelCase_ = hidden_sizes UpperCamelCase_ = depths UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = hidden_act UpperCamelCase_ = num_labels UpperCamelCase_ = scope UpperCamelCase_ = len(__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = self.get_config() return config, pixel_values def lowerCamelCase_ ( self ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = FlaxRegNetModel(config=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = FlaxRegNetForImageClassification(config=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () A__ : Any = False A__ : List[Any] = False A__ : Dict = False def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxRegNetModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ): """simple docstring""" return def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(__UpperCamelCase ) UpperCamelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ = model_class(__UpperCamelCase ) UpperCamelCase_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase_ = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = model_class(__UpperCamelCase ) @jax.jit def model_jitted(__UpperCamelCase , **__UpperCamelCase ): return model(pixel_values=__UpperCamelCase , **__UpperCamelCase ) with self.subTest("""JIT Enabled""" ): UpperCamelCase_ = model_jitted(**__UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCamelCase_ = model_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ) -> Tuple: UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class lowercase_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=__UpperCamelCase , return_tensors="""np""" ) UpperCamelCase_ = model(**__UpperCamelCase ) # verify the logits UpperCamelCase_ = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCamelCase_ = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
122
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''dandelin/vilt-b32-finetuned-vqa''' UpperCamelCase__ = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) UpperCamelCase__ = '''image_qa''' UpperCamelCase__ = AutoProcessor UpperCamelCase__ = AutoModelForVisualQuestionAnswering UpperCamelCase__ = ['''image''', '''text'''] UpperCamelCase__ = ['''text'''] def __init__( self :Optional[Any] , *__magic_name__ :Any , **__magic_name__ :Tuple ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*__magic_name__ , **__magic_name__ ) def lowerCamelCase__ ( self :List[str] , __magic_name__ :"Image" , __magic_name__ :str ): '''simple docstring''' return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors="""pt""" ) def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Optional[int] ): '''simple docstring''' with torch.no_grad(): return self.model(**__magic_name__ ).logits def lowerCamelCase__ ( self :Dict , __magic_name__ :List[Any] ): '''simple docstring''' a = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
358
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __UpperCamelCase : Union[str, Any] = (720, 1_280) # Height, Width __UpperCamelCase : Any = (0.4, 0.6) # if height or width lower than this scale, drop it. __UpperCamelCase : str = 1 / 100 __UpperCamelCase : Optional[int] = "" __UpperCamelCase : List[Any] = "" __UpperCamelCase : Union[str, Any] = "" __UpperCamelCase : Tuple = 250 def __A ( ) -> None: a , a = get_dataset(__lowerCamelCase , __lowerCamelCase ) for index in range(__lowerCamelCase ): a = random.sample(range(len(__lowerCamelCase ) ) , 4 ) a , a , a = update_image_and_anno( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , filter_scale=__lowerCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' a = random_chars(32 ) a = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] a = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(f'{file_root}.jpg' , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) a = [] for anno in new_annos: a = anno[3] - anno[1] a = anno[4] - anno[2] a = anno[1] + width / 2 a = anno[2] + height / 2 a = f'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(__lowerCamelCase ) with open(f'{file_root}.txt' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]: a = [] a = [] for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ): a = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__lowerCamelCase ) as in_file: a = in_file.readlines() a = os.path.join(__lowerCamelCase , f'{label_name}.jpg' ) a = [] for obj_list in obj_lists: a = obj_list.rstrip("""\n""" ).split(""" """ ) a = float(obj[1] ) - float(obj[3] ) / 2 a = float(obj[2] ) - float(obj[4] ) / 2 a = float(obj[1] ) + float(obj[3] ) / 2 a = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__lowerCamelCase ) labels.append(__lowerCamelCase ) return img_paths, labels def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.0 , ) -> tuple[list, list, str]: a = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) a = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) a = int(scale_x * output_size[1] ) a = int(scale_y * output_size[0] ) a = [] a = [] for i, index in enumerate(__lowerCamelCase ): a = all_img_list[index] path_list.append(__lowerCamelCase ) a = all_annos[index] a = cva.imread(__lowerCamelCase ) if i == 0: # top-left a = cva.resize(__lowerCamelCase , (divid_point_x, divid_point_y) ) a = img for bbox in img_annos: a = bbox[1] * scale_x a = bbox[2] * scale_y a = bbox[3] * scale_x a = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right a = cva.resize(__lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) a = img for bbox in img_annos: a = scale_x + bbox[1] * (1 - scale_x) a = bbox[2] * scale_y a = scale_x + bbox[3] * (1 - scale_x) a = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left a = cva.resize(__lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) a = img for bbox in img_annos: a = bbox[1] * scale_x a = scale_y + bbox[2] * (1 - scale_y) a = bbox[3] * scale_x a = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right a = cva.resize( __lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) a = img for bbox in img_annos: a = scale_x + bbox[1] * (1 - scale_x) a = scale_y + bbox[2] * (1 - scale_y) a = scale_x + bbox[3] * (1 - scale_x) a = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: a = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __A ( __lowerCamelCase ) -> str: assert number_char > 1, "The number of character should greater than 1" a = ascii_lowercase + digits return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
347
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger() @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __lowercase : nn.Module __lowercase : List[nn.Module] = field(default_factory=__a ) __lowercase : list = field(default_factory=__a ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = len(list(m.modules())) == 1 or isinstance(lowerCAmelCase__ , nn.Convad) or isinstance(lowerCAmelCase__ , nn.BatchNormad) if has_not_submodules: self.traced.append(lowerCAmelCase__) def __call__( self , lowerCAmelCase__): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(lowerCAmelCase__) [x.remove() for x in self.handles] return self @property def snake_case_ ( self): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda lowerCAmelCase__: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __lowercase : nn.Module __lowercase : nn.Module __lowercase : int = 0 __lowercase : List = field(default_factory=__a ) __lowercase : List = field(default_factory=__a ) def __call__( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = Tracker(self.dest)(lowerCAmelCase__).parametrized __SCREAMING_SNAKE_CASE = Tracker(self.src)(lowerCAmelCase__).parametrized __SCREAMING_SNAKE_CASE = list(filter(lambda lowerCAmelCase__: type(lowerCAmelCase__) not in self.src_skip , lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = list(filter(lambda lowerCAmelCase__: type(lowerCAmelCase__) not in self.dest_skip , lowerCAmelCase__)) if len(lowerCAmelCase__) != len(lowerCAmelCase__): raise Exception( f"Numbers of operations are different. Source module has {len(lowerCAmelCase__)} operations while" f" destination module has {len(lowerCAmelCase__)}.") for dest_m, src_m in zip(lowerCAmelCase__ , lowerCAmelCase__): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}") def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True ): print(f"Converting {name}..." ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = timm.create_model(UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval() __SCREAMING_SNAKE_CASE = ResNetForImageClassification(UpperCamelCase_ ).eval() __SCREAMING_SNAKE_CASE = ModuleTransfer(src=UpperCamelCase_ , dest=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = torch.randn((1, 3, 224, 224) ) module_transfer(UpperCamelCase_ ) assert torch.allclose(from_model(UpperCamelCase_ ) , our_model(UpperCamelCase_ ).logits ), "The model logits don't match the original one." __SCREAMING_SNAKE_CASE = f"resnet{'-'.join(name.split('resnet' ) )}" print(UpperCamelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=UpperCamelCase_ , ) # we can use the convnext one __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase_ , ) print(f"Pushed {checkpoint_name}" ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = True ): __SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE = 1000 __SCREAMING_SNAKE_CASE = (1, num_labels) __SCREAMING_SNAKE_CASE = """huggingface/label-files""" __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = partial(UpperCamelCase_ , num_labels=UpperCamelCase_ , idalabel=UpperCamelCase_ , labelaid=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(UpperCamelCase_ , names_to_config[model_name] , UpperCamelCase_ , UpperCamelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, expected_shape if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) __magic_name__ = parser.parse_args() __magic_name__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
100
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Tuple = '''dandelin/vilt-b32-finetuned-vqa''' __lowercase : str = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) __lowercase : Optional[int] = '''image_qa''' __lowercase : Union[str, Any] = AutoProcessor __lowercase : Optional[Any] = AutoModelForVisualQuestionAnswering __lowercase : List[str] = ['''image''', '''text'''] __lowercase : Optional[Any] = ['''text'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): requires_backends(self , ["""vision"""]) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): return self.pre_processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors="""pt""") def snake_case_ ( self , lowerCAmelCase__): with torch.no_grad(): return self.model(**lowerCAmelCase__).logits def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = outputs.argmax(-1).item() return self.model.config.idalabel[idx]
100
1
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _lowerCamelCase : Any = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _UpperCAmelCase (UpperCamelCase_ : str ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _lowerCAmelCase : int = k.replace(UpperCamelCase_ , UpperCamelCase_ ) return k def _UpperCAmelCase (UpperCamelCase_ : dict , UpperCamelCase_ : dict ): '''simple docstring''' _lowerCAmelCase : Any = DEFAULTS.copy() cfg_kwargs.update(UpperCamelCase_ ) _lowerCAmelCase : List[str] = PegasusConfig(**UpperCamelCase_ ) _lowerCAmelCase : Tuple = PegasusForConditionalGeneration(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = torch_model.model.state_dict() _lowerCAmelCase : List[str] = {} for k, v in tf_weights.items(): _lowerCAmelCase : Union[str, Any] = rename_state_dict_key(UpperCamelCase_ ) if new_k not in sd: raise ValueError(F"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: _lowerCAmelCase : Dict = v.T _lowerCAmelCase : int = torch.tensor(UpperCamelCase_ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected _lowerCAmelCase : Optional[Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _lowerCAmelCase : int = mapping["""shared.weight"""] _lowerCAmelCase : List[Any] = mapping["""shared.weight"""] _lowerCAmelCase : Optional[int] = {k: torch.zeros_like(UpperCamelCase_ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : str = torch_model.model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) _lowerCAmelCase : List[Any] = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"no matches found for the following torch keys {unexpected_missing}" assert extra == [], F"no matches found for the following tf keys {extra}" return torch_model def _UpperCAmelCase (UpperCamelCase_ : Any="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _lowerCAmelCase : List[str] = tf.train.list_variables(UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = {} _lowerCAmelCase : List[str] = ["""Adafactor""", """global_step"""] for name, shape in tqdm(UpperCamelCase_ , desc="""converting tf checkpoint to dict""" ): _lowerCAmelCase : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _lowerCAmelCase : Optional[Any] = tf.train.load_variable(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : str = array return tf_weights def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : str ): '''simple docstring''' # save tokenizer first _lowerCAmelCase : str = Path(UpperCamelCase_ ).parent.name _lowerCAmelCase : Dict = task_specific_params[F"summarization_{dataset}"]["""max_position_embeddings"""] _lowerCAmelCase : List[str] = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=UpperCamelCase_ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCamelCase_ ) # convert model _lowerCAmelCase : Optional[Any] = get_tf_weights_as_numpy(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = task_specific_params[F"summarization_{dataset}"] if dataset == "large": _lowerCAmelCase : int = task_specific_params _lowerCAmelCase : Any = convert_pegasus(UpperCamelCase_ , UpperCamelCase_ ) torch_model.save_pretrained(UpperCamelCase_ ) _lowerCAmelCase : Any = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(UpperCamelCase_ , Path(UpperCamelCase_ ) / """pytorch_model.bin""" ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") _lowerCamelCase : Any = parser.parse_args() if args.save_dir is None: _lowerCamelCase : int = Path(args.tf_ckpt_path).parent.name _lowerCamelCase : Dict = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
159
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _lowerCamelCase : List[str] = logging.get_logger(__name__) class __snake_case (_a ): def __init__( self : Optional[Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : Any ) -> None: '''simple docstring''' warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
159
1
from __future__ import annotations import collections import pprint from pathlib import Path def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return "".join(sorted(UpperCamelCase__ ) ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return word_by_signature[signature(UpperCamelCase__ )] _UpperCAmelCase : str = Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""") _UpperCAmelCase : Dict = sorted({word.strip().lower() for word in data.splitlines()}) _UpperCAmelCase : List[str] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _UpperCAmelCase : Dict = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("""anagrams.txt""", """w""") as file: file.write("""all_anagrams = \n """) file.write(pprint.pformat(all_anagrams))
285
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : Any = BloomTokenizerFast __SCREAMING_SNAKE_CASE : int = BloomTokenizerFast __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Union[str, Any] = '''tokenizer_file''' __SCREAMING_SNAKE_CASE : Optional[int] = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def a ( self ): super().setUp() snake_case_ = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self , **snake_case ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def a ( self ): snake_case_ = self.get_rust_tokenizer() snake_case_ = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] snake_case_ = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] snake_case_ = tokenizer.batch_encode_plus(snake_case )['input_ids'] self.assertListEqual(snake_case , snake_case ) snake_case_ = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def a ( self , snake_case=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input snake_case_ = 'This is a simple input' snake_case_ = ['This is a simple input 1', 'This is a simple input 2'] snake_case_ = ('This is a simple input', 'This is a pair') snake_case_ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(snake_case , max_length=snake_case ) tokenizer_r.encode_plus(snake_case , max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case , max_length=snake_case ) tokenizer_r.encode(snake_case , max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case , max_length=snake_case ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) snake_case_ = None # Hotfixing padding = None self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length' ) # Simple input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length' ) # Simple input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) # Pair input self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length' ) # Pair input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length' ) # Pair input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) def a ( self ): snake_case_ = self.get_rust_tokenizer() snake_case_ = load_dataset('xnli' , 'all_languages' , split='test' , streaming=snake_case ) snake_case_ = next(iter(snake_case ) )['premise'] # pick up one data snake_case_ = list(sample_data.values() ) snake_case_ = list(map(tokenizer.encode , snake_case ) ) snake_case_ = [tokenizer.decode(snake_case , clean_up_tokenization_spaces=snake_case ) for x in output_tokens] self.assertListEqual(snake_case , snake_case ) def a ( self ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
285
1
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self ) -> Union[str, Any]: __UpperCamelCase = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: if not self.initialized: __UpperCamelCase = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = True def __lowerCamelCase ( self ) -> List[Any]: self.retriever.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> Optional[Any]: if index is not None and index.is_initialized() and len(lowercase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ) -> Optional[int]: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Tuple: return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> Dict: __UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = """custom""" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase ) else: __UpperCamelCase = cls._build_index(lowercase ) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
243
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = filter(lambda __A : p.requires_grad ,model.parameters() ) __UpperCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Optional[Any] = logging.getLogger(__name__) def _lowercase ( __A ,__A ): '''simple docstring''' if metric == "rouge2": __UpperCamelCase = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": __UpperCamelCase = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": __UpperCamelCase = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" """ function.""" ) __UpperCamelCase = ModelCheckpoint( dirpath=__A ,filename=__A ,monitor=f"val_{metric}" ,mode="""max""" ,save_top_k=3 ,every_n_epochs=1 ,) return checkpoint_callback def _lowercase ( __A ,__A ): '''simple docstring''' return EarlyStopping( monitor=f"val_{metric}" ,mode="""min""" if """loss""" in metric else """max""" ,patience=__A ,verbose=__A ,) class UpperCAmelCase__ ( pl.Callback): def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict: __UpperCamelCase = {f"lr_group_{i}": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowercase ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase=True ) -> None: logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****" ) __UpperCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results __UpperCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase = od / """test_results.txt""" __UpperCamelCase = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase = od / f"{type_path}_results/{trainer.global_step:05d}.txt" __UpperCamelCase = od / f"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=lowercase ) generations_file.parent.mkdir(exist_ok=lowercase ) with open(lowercase , """a+""" ) as writer: for key in sorted(lowercase ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase = metrics[key] if isinstance(lowercase , torch.Tensor ): __UpperCamelCase = val.item() __UpperCamelCase = f"{key}: {val:.6f}\n" writer.write(lowercase ) if not save_generations: return if "preds" in metrics: __UpperCamelCase = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(lowercase ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> str: try: __UpperCamelCase = pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase = pl_module.model.num_parameters() __UpperCamelCase = count_trainable_parameters(lowercase ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowercase , lowercase , """test""" ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
243
1
import numpy as np class _SCREAMING_SNAKE_CASE : def __init__( self : int ): UpperCamelCase :int = (0, 0) UpperCamelCase :List[str] = None UpperCamelCase :Union[str, Any] = 0 UpperCamelCase :Optional[Any] = 0 UpperCamelCase :Optional[Any] = 0 def __eq__( self : Union[str, Any] , __lowerCamelCase : int ): return self.position == cell.position def _A ( self : Optional[Any] ): print(self.position ) class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowerCamelCase : Any=(5, 5) ): UpperCamelCase :Tuple = np.zeros(__lowerCamelCase ) UpperCamelCase :str = world_size[0] UpperCamelCase :List[str] = world_size[1] def _A ( self : List[Any] ): print(self.w ) def _A ( self : Optional[Any] , __lowerCamelCase : str ): UpperCamelCase :str = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCamelCase :Optional[int] = cell.position[0] UpperCamelCase :Tuple = cell.position[1] UpperCamelCase :Optional[Any] = [] for n in neughbour_cord: UpperCamelCase :int = current_x + n[0] UpperCamelCase :Optional[Any] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCamelCase :List[str] = Cell() UpperCamelCase :str = (x, y) UpperCamelCase :int = cell neighbours.append(__lowerCamelCase ) return neighbours def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Optional[int] ) -> List[Any]: """simple docstring""" UpperCamelCase :List[str] = [] UpperCamelCase :List[str] = [] _open.append(__magic_name__ ) while _open: UpperCamelCase :Optional[Any] = np.argmin([n.f for n in _open] ) UpperCamelCase :Optional[Any] = _open[min_f] _closed.append(_open.pop(__magic_name__ ) ) if current == goal: break for n in world.get_neigbours(__magic_name__ ): for c in _closed: if c == n: continue UpperCamelCase :List[Any] = current.g + 1 UpperCamelCase , UpperCamelCase :Dict = n.position UpperCamelCase , UpperCamelCase :List[str] = goal.position UpperCamelCase :Any = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCamelCase :Optional[int] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(__magic_name__ ) UpperCamelCase :int = [] while current.parent is not None: path.append(current.position ) UpperCamelCase :Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCAmelCase_ : List[Any] = Gridworld() # Start position and goal UpperCAmelCase_ : List[str] = Cell() UpperCAmelCase_ : str = (0, 0) UpperCAmelCase_ : Tuple = Cell() UpperCAmelCase_ : int = (4, 4) print(F'''path from {start.position} to {goal.position}''') UpperCAmelCase_ : Tuple = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCAmelCase_ : Union[str, Any] = 1 print(world.w)
38
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ConvNextFeatureExtractor'] a_ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
249
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A ) -> int: if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(__A , __A ): raise TypeError('Input value must be a \'int\' type' ) return bin(__A ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
160
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowercase : int = NewType("DataClass", Any) lowercase : Dict = NewType("DataClassType", Any) def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[Any]: if isinstance(__A , __A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def SCREAMING_SNAKE_CASE__ ( __A ) -> Callable[[str], Any]: _snake_case = {str(__A ): choice for choice in choices} return lambda __A : str_to_choice.get(__A , __A ) def SCREAMING_SNAKE_CASE__ ( *, __A = None , __A = None , __A = dataclasses.MISSING , __A = dataclasses.MISSING , __A = None , **__A , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _snake_case = {} if aliases is not None: _snake_case = aliases if help is not None: _snake_case = help return dataclasses.field(metadata=__A , default=__A , default_factory=__A , **__A ) class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 def __init__( self , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" if "formatter_class" not in kwargs: _snake_case = ArgumentDefaultsHelpFormatter super().__init__(**lowerCAmelCase_ ) if dataclasses.is_dataclass(lowerCAmelCase_ ): _snake_case = [dataclass_types] _snake_case = list(lowerCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCAmelCase_ ) @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = F'--{field.name}' _snake_case = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCAmelCase_ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) _snake_case = kwargs.pop('aliases' , [] ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = [aliases] _snake_case = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(lowerCAmelCase_ , 'UnionType' ) and isinstance(lowerCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCAmelCase_ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F' Problem encountered in field \'{field.name}\'.' ) if type(lowerCAmelCase_ ) not in field.type.__args__: # filter `str` in Union _snake_case = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _snake_case = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _snake_case = ( field.type.__args__[0] if isinstance(lowerCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) _snake_case = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _snake_case = {} if origin_type is Literal or (isinstance(field.type , lowerCAmelCase_ ) and issubclass(field.type , lowerCAmelCase_ )): if origin_type is Literal: _snake_case = field.type.__args__ else: _snake_case = [x.value for x in field.type] _snake_case = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: _snake_case = field.default else: _snake_case = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _snake_case = copy(lowerCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. _snake_case = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _snake_case = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _snake_case = default # This tells argparse we accept 0 or 1 value after --field_name _snake_case = '?' # This is the value that will get picked if we do --field_name (without value) _snake_case = True elif isclass(lowerCAmelCase_ ) and issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = field.type.__args__[0] _snake_case = '+' if field.default_factory is not dataclasses.MISSING: _snake_case = field.default_factory() elif field.default is dataclasses.MISSING: _snake_case = True else: _snake_case = field.type if field.default is not dataclasses.MISSING: _snake_case = field.default elif field.default_factory is not dataclasses.MISSING: _snake_case = field.default_factory() else: _snake_case = True parser.add_argument(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _snake_case = False parser.add_argument(F'--no_{field.name}' , action='store_false' , dest=field.name , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if hasattr(lowerCAmelCase_ , '_argument_group_name' ): _snake_case = self.add_argument_group(dtype._argument_group_name ) else: _snake_case = self try: _snake_case = get_type_hints(lowerCAmelCase_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowerCAmelCase_ ): _snake_case = '.'.join(map(lowerCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(lowerCAmelCase_ ): if not field.init: continue _snake_case = type_hints[field.name] self._parse_dataclass_field(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _snake_case = [] if args_filename: args_files.append(Path(lowerCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _snake_case = ArgumentParser() args_file_parser.add_argument(lowerCAmelCase_ , type=lowerCAmelCase_ , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) _snake_case , _snake_case = args_file_parser.parse_known_args(args=lowerCAmelCase_ ) _snake_case = vars(lowerCAmelCase_ ).get(args_file_flag.lstrip('-' ) , lowerCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(lowerCAmelCase_ ) for p in cmd_args_file_paths] ) _snake_case = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _snake_case = file_args + args if args is not None else file_args + sys.argv[1:] _snake_case , _snake_case = self.parse_known_args(args=lowerCAmelCase_ ) _snake_case = [] for dtype in self.dataclass_types: _snake_case = {f.name for f in dataclasses.fields(lowerCAmelCase_ ) if f.init} _snake_case = {k: v for k, v in vars(lowerCAmelCase_ ).items() if k in keys} for k in keys: delattr(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = dtype(**lowerCAmelCase_ ) outputs.append(lowerCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" _snake_case = set(args.keys() ) _snake_case = [] for dtype in self.dataclass_types: _snake_case = {f.name for f in dataclasses.fields(lowerCAmelCase_ ) if f.init} _snake_case = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _snake_case = dtype(**lowerCAmelCase_ ) outputs.append(lowerCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(lowerCAmelCase_ )}' ) return tuple(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" with open(Path(lowerCAmelCase_ ) , encoding='utf-8' ) as open_json_file: _snake_case = json.loads(open_json_file.read() ) _snake_case = self.parse_dict(lowerCAmelCase_ , allow_extra_keys=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" _snake_case = self.parse_dict(yaml.safe_load(Path(lowerCAmelCase_ ).read_text() ) , allow_extra_keys=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
160
1
"""simple docstring""" import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowerCAmelCase__ ( __snake_case ): '''simple docstring''' def __init__( self : Dict , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = data def __iter__( self : Dict): '''simple docstring''' for element in self.data: yield element def _A (__a=True ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = Accelerator(even_batches=__SCREAMING_SNAKE_CASE ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _A (__a , __a , __a , __a = False ) -> Dict: """simple docstring""" if iterable: SCREAMING_SNAKE_CASE_ : Any = DummyIterableDataset(torch.as_tensor(range(__SCREAMING_SNAKE_CASE ) ) ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = TensorDataset(torch.as_tensor(range(__SCREAMING_SNAKE_CASE ) ) ) SCREAMING_SNAKE_CASE_ : Any = DataLoader(__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = accelerator.prepare(__SCREAMING_SNAKE_CASE ) return dl def _A (__a , __a , __a , __a , __a , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = create_dataloader(accelerator=__SCREAMING_SNAKE_CASE , dataset_size=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _A () -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _A () -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = create_accelerator(even_batches=__SCREAMING_SNAKE_CASE ) verify_dataloader_batch_sizes( __SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _A () -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = create_accelerator(even_batches=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE_ : Dict = accelerator.prepare(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ddp_model(batch[0].float() ) SCREAMING_SNAKE_CASE_ : int = output.sum() loss.backward() batch_idxs.append(__SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _A (__a ) -> List[str]: """simple docstring""" with warnings.catch_warnings(record=__SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __SCREAMING_SNAKE_CASE ) assert "only supported for multi-GPU" in str(w[-1].message ) def _A () -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : List[str] = create_accelerator(even_batches=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE_ : List[str] = accelerator.prepare(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) SCREAMING_SNAKE_CASE_ : int = create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = train_dl.batch_sampler.even_batches SCREAMING_SNAKE_CASE_ : str = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _A () -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = create_accelerator(even_batches=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.prepare(__SCREAMING_SNAKE_CASE ) create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _A () -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = create_accelerator() SCREAMING_SNAKE_CASE_ : str = torch.nn.Linear(1 , 1 ) SCREAMING_SNAKE_CASE_ : Tuple = accelerator.prepare(__SCREAMING_SNAKE_CASE ) create_dataloader(__SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=__SCREAMING_SNAKE_CASE ) with warnings.catch_warnings(record=__SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__SCREAMING_SNAKE_CASE ): pass assert issubclass(w[-1].category , __SCREAMING_SNAKE_CASE ) assert "only supported for map-style datasets" in str(w[-1].message ) def _A () -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) SCREAMING_SNAKE_CASE_ : Tuple = accelerator.state.distributed_type SCREAMING_SNAKE_CASE_ : Dict = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = original_state if __name__ == "__main__": main()
91
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # Construct model if gpta_config_file == "": __lowerCAmelCase: Optional[int] = GPTaConfig() else: __lowerCAmelCase: List[str] = GPTaConfig.from_json_file(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = GPTaModel(__SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model __lowerCAmelCase: str = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __lowerCAmelCase: List[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __A = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
217
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowercase__ ( _UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = argparse.ArgumentParser(add_help=_UpperCAmelCase , allow_abbrev=_UpperCAmelCase ) # The main config parser lowercase : Optional[Any] = config_command_parser(_UpperCAmelCase ) # The subparser to add commands to lowercase : int = config_parser.add_subparsers(title='subcommands' , dest='subcommand' ) # Then add other parsers with the parent parser default_command_parser(_UpperCAmelCase , parents=[parent_parser] ) update_command_parser(_UpperCAmelCase , parents=[parent_parser] ) return config_parser def lowercase__ ( ) -> List[str]: '''simple docstring''' lowercase : int = get_config_parser() lowercase : int = config_parser.parse_args() if not hasattr(_UpperCAmelCase , 'func' ): config_parser.print_help() exit(1 ) # Run args.func(_UpperCAmelCase ) if __name__ == "__main__": main()
53
"""simple docstring""" import unittest from transformers import DonutProcessor _UpperCamelCase: Any = 'naver-clova-ix/donut-base' class a__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ) -> Tuple: lowercase : Any = DonutProcessor.from_pretrained(lowerCAmelCase ) def lowercase ( self : Dict ) -> Union[str, Any]: lowercase : Tuple = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } lowercase : Tuple = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) lowercase : Any = self.processor.tokenajson(lowerCAmelCase ) self.assertDictEqual(lowerCAmelCase, lowerCAmelCase )
53
1
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str , **_lowerCamelCase : Optional[Any] ): A__ = AutoConfig.from_pretrained(_lowercase , **_lowercase ) A__ = AutoModelForSeqaSeqLM.from_config(_lowercase ) model.save_pretrained(_lowercase ) AutoTokenizer.from_pretrained(_lowercase ).save_pretrained(_lowercase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
237
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase : int ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] =["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowercase : Optional[int] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
170
0
'''simple docstring''' UpperCAmelCase = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
187
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins UpperCAmelCase = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> Optional[int]: """simple docstring""" # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] ) -> Any: """simple docstring""" config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE ) def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict ) -> str: """simple docstring""" # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? lowerCAmelCase = tmp_path_factory.getbasetemp() / """cache""" lowerCAmelCase = test_hf_cache_home / """datasets""" lowerCAmelCase = test_hf_cache_home / """metrics""" lowerCAmelCase = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(_SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(_SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) ) @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE , scope="""session""" ) def _snake_case ( ) -> Optional[Any]: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE ) def _snake_case ( _SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" # don't take tests into account when counting downloads monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , _SCREAMING_SNAKE_CASE ) @pytest.fixture def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , _SCREAMING_SNAKE_CASE )
187
1
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __lowercase = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' __lowercase = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' __lowercase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__( datasets.Metric ): '''simple docstring''' def a_ ( self): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32"""), """references""": datasets.Value("""int32"""), }) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None): """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__lowerCAmelCase , __lowerCAmelCase , sample_weight=__lowerCAmelCase)), }
272
'''simple docstring''' from math import sqrt def snake_case__ ( _A: int = 1000000 ) -> int: '''simple docstring''' lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_A , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'{solution() = }')
272
1
'''simple docstring''' def UpperCAmelCase_ (__a : float , __a : int ): """simple docstring""" if digit_amount > 0: return round(number - int(__a ) , __a ) return number - int(__a ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
5
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _a : Optional[int] = '' _a : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _a, _a : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _a : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string _a : Dict = 0 for j in range(len(__a ) ): _a : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _a : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _a : str = j - k + 1 # noqa: E741 _a : Any = j + k - 1 # update max_length and start position if max_length < length[j]: _a : Union[str, Any] = length[j] _a : List[str] = j # create that string _a : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
def snake_case_ ( snake_case ) -> str: return "".join([hex(snake_case )[2:].zfill(2 ).upper() for byte in list(snake_case )] ) def snake_case_ ( snake_case ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(snake_case ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(snake_case ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
196
import unittest from knapsack import knapsack as k class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: List[Any] = 0 lowercase__: List[Any] = [0] lowercase__: str = [0] lowercase__: Tuple = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) lowercase__: Optional[Any] = [60] lowercase__: Dict = [10] lowercase__: str = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = 3 lowercase__: List[str] = [1, 2, 3] lowercase__: Union[str, Any] = [3, 2, 1] lowercase__: Union[str, Any] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 5 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Optional[Any] = 50 lowercase__: str = [60, 100, 120] lowercase__: Any = [10, 20, 30] lowercase__: List[Any] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 220 ) if __name__ == "__main__": unittest.main()
196
1
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class __snake_case : def __init__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=0.2 , _UpperCAmelCase : str=0.2 ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Tuple = bp_numa _lowerCAmelCase : Tuple = bp_numa _lowerCAmelCase : Any = bp_numa _lowerCAmelCase : List[str] = conva_get[:2] _lowerCAmelCase : Tuple = conva_get[2] _lowerCAmelCase : List[Any] = size_pa _lowerCAmelCase : Union[str, Any] = rate_w _lowerCAmelCase : Tuple = rate_t _lowerCAmelCase : List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] _lowerCAmelCase : Any = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _lowerCAmelCase : Any = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _lowerCAmelCase : List[str] = -2 * np.random.rand(self.conva[1] ) + 1 _lowerCAmelCase : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 _lowerCAmelCase : str = -2 * np.random.rand(self.num_bpa ) + 1 def SCREAMING_SNAKE_CASE ( self : str , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowercase__ , """wb""" ) as f: pickle.dump(lowercase__ , lowercase__ ) print(f"Model saved: {save_path}" ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' with open(lowercase__ , """rb""" ) as f: _lowerCAmelCase : Optional[Any] = pickle.load(lowercase__ ) # noqa: S301 _lowerCAmelCase : List[str] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) _lowerCAmelCase : Optional[int] = model_dic.get("""size_pooling1""" ) _lowerCAmelCase : Optional[int] = model_dic.get("""num_bp1""" ) _lowerCAmelCase : Tuple = model_dic.get("""num_bp2""" ) _lowerCAmelCase : str = model_dic.get("""num_bp3""" ) _lowerCAmelCase : List[str] = model_dic.get("""rate_weight""" ) _lowerCAmelCase : Any = model_dic.get("""rate_thre""" ) # create model instance _lowerCAmelCase : Dict = CNN(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # modify model parameter _lowerCAmelCase : int = model_dic.get("""w_conv1""" ) _lowerCAmelCase : Optional[int] = model_dic.get("""wkj""" ) _lowerCAmelCase : int = model_dic.get("""vji""" ) _lowerCAmelCase : Any = model_dic.get("""thre_conv1""" ) _lowerCAmelCase : Any = model_dic.get("""thre_bp2""" ) _lowerCAmelCase : str = model_dic.get("""thre_bp3""" ) return conv_ins def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : str ) -> Tuple: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' return round(lowercase__ , 3 ) def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = convs[0] _lowerCAmelCase : int = convs[1] _lowerCAmelCase : Union[str, Any] = np.shape(lowercase__ )[0] # get the data slice of original image data, data_focus _lowerCAmelCase : Any = [] for i_focus in range(0 , size_data - size_conv + 1 , lowercase__ ): for j_focus in range(0 , size_data - size_conv + 1 , lowercase__ ): _lowerCAmelCase : Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowercase__ ) # calculate the feature map of every single kernel, and saved as list of matrix _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowercase__ ): _lowerCAmelCase : List[Any] = [] for i_focus in range(len(lowercase__ ) ): _lowerCAmelCase : Optional[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowercase__ ) ) _lowerCAmelCase : int = np.asmatrix(lowercase__ ).reshape( lowercase__ , lowercase__ ) data_featuremap.append(lowercase__ ) # expanding the data slice to One dimenssion _lowerCAmelCase : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowercase__ ) ) _lowerCAmelCase : Optional[int] = np.asarray(lowercase__ ) return focus_list, data_featuremap def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int]="average_pool" ) -> Dict: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = len(featuremaps[0] ) _lowerCAmelCase : int = int(size_map / size_pooling ) _lowerCAmelCase : List[Any] = [] for i_map in range(len(lowercase__ ) ): _lowerCAmelCase : List[Any] = featuremaps[i_map] _lowerCAmelCase : List[str] = [] for i_focus in range(0 , lowercase__ , lowercase__ ): for j_focus in range(0 , lowercase__ , lowercase__ ): _lowerCAmelCase : Dict = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowercase__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowercase__ ) ) _lowerCAmelCase : Any = np.asmatrix(lowercase__ ).reshape(lowercase__ , lowercase__ ) featuremap_pooled.append(lowercase__ ) return featuremap_pooled def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : Dict ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : List[Any] = [] for i in range(len(lowercase__ ) ): _lowerCAmelCase : Any = np.shape(data[i] ) _lowerCAmelCase : str = data[i].reshape(1 , shapes[0] * shapes[1] ) _lowerCAmelCase : str = data_listed.getA().tolist()[0] data_expanded.extend(lowercase__ ) _lowerCAmelCase : Any = np.asarray(lowercase__ ) return data_expanded def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = np.asarray(lowercase__ ) _lowerCAmelCase : Tuple = np.shape(lowercase__ ) _lowerCAmelCase : int = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : int = [] _lowerCAmelCase : Optional[int] = 0 for i_map in range(lowercase__ ): _lowerCAmelCase : Dict = np.ones((size_map, size_map) ) for i in range(0 , lowercase__ , lowercase__ ): for j in range(0 , lowercase__ , lowercase__ ): _lowerCAmelCase : Any = pd_pool[ i_pool ] _lowerCAmelCase : Dict = i_pool + 1 _lowerCAmelCase : List[Any] = np.multiply( lowercase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowercase__ ) return pd_all def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : str=bool ) -> Union[str, Any]: '''simple docstring''' print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(lowercase__ )) ) print((""" - - Shape: Teach_Data """, np.shape(lowercase__ )) ) _lowerCAmelCase : int = 0 _lowerCAmelCase : str = [] _lowerCAmelCase : List[str] = 1_0000 while rp < n_repeat and mse >= error_accuracy: _lowerCAmelCase : int = 0 print(f"-------------Learning Time {rp}--------------" ) for p in range(len(lowercase__ ) ): # print('------------Learning Image: %d--------------'%p) _lowerCAmelCase : Optional[int] = np.asmatrix(datas_train[p] ) _lowerCAmelCase : Any = np.asarray(datas_teach[p] ) _lowerCAmelCase , _lowerCAmelCase : Tuple = self.convolute( lowercase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _lowerCAmelCase : Optional[Any] = self.pooling(lowercase__ , self.size_poolinga ) _lowerCAmelCase : List[Any] = np.shape(lowercase__ ) _lowerCAmelCase : Optional[Any] = self._expand(lowercase__ ) _lowerCAmelCase : Any = data_bp_input _lowerCAmelCase : Optional[int] = np.dot(lowercase__ , self.vji.T ) - self.thre_bpa _lowerCAmelCase : Optional[Any] = self.sig(lowercase__ ) _lowerCAmelCase : Tuple = np.dot(lowercase__ , self.wkj.T ) - self.thre_bpa _lowerCAmelCase : int = self.sig(lowercase__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _lowerCAmelCase : List[str] = np.multiply( (data_teach - bp_outa) , np.multiply(lowercase__ , (1 - bp_outa) ) ) _lowerCAmelCase : Union[str, Any] = np.multiply( np.dot(lowercase__ , self.wkj ) , np.multiply(lowercase__ , (1 - bp_outa) ) ) _lowerCAmelCase : List[Any] = np.dot(lowercase__ , self.vji ) _lowerCAmelCase : Optional[Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) _lowerCAmelCase : int = pd_conva_pooled.T.getA().tolist() _lowerCAmelCase : Optional[Any] = self._calculate_gradient_from_pool( lowercase__ , lowercase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): _lowerCAmelCase : Optional[int] = self._expand_mat(pd_conva_all[k_conv] ) _lowerCAmelCase : int = self.rate_weight * np.dot(lowercase__ , lowercase__ ) _lowerCAmelCase : Tuple = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) _lowerCAmelCase : Union[str, Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer _lowerCAmelCase : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _lowerCAmelCase : Dict = self.vji + pd_j_all.T * bp_outa * self.rate_weight _lowerCAmelCase : Tuple = self.thre_bpa - pd_k_all * self.rate_thre _lowerCAmelCase : Tuple = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _lowerCAmelCase : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _lowerCAmelCase : Optional[int] = rp + 1 _lowerCAmelCase : Any = error_count / patterns all_mse.append(lowercase__ ) def draw_error(): _lowerCAmelCase : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowercase__ , """+-""" ) plt.plot(lowercase__ , """r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(lowercase__ , alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, f" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def SCREAMING_SNAKE_CASE ( self : str , _UpperCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : List[Any] = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(lowercase__ )) ) for p in range(len(lowercase__ ) ): _lowerCAmelCase : Optional[int] = np.asmatrix(datas_test[p] ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.convolute( lowercase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _lowerCAmelCase : Dict = self.pooling(lowercase__ , self.size_poolinga ) _lowerCAmelCase : Union[str, Any] = self._expand(lowercase__ ) _lowerCAmelCase : Optional[Any] = data_bp_input _lowerCAmelCase : Optional[int] = bp_outa * self.vji.T - self.thre_bpa _lowerCAmelCase : Union[str, Any] = self.sig(lowercase__ ) _lowerCAmelCase : str = bp_outa * self.wkj.T - self.thre_bpa _lowerCAmelCase : Dict = self.sig(lowercase__ ) produce_out.extend(bp_outa.getA().tolist() ) _lowerCAmelCase : Optional[int] = [list(map(self.do_round , lowercase__ ) ) for each in produce_out] return np.asarray(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' _lowerCAmelCase : Any = np.asmatrix(lowercase__ ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.convolute( lowercase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _lowerCAmelCase : int = self.pooling(lowercase__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
358
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _lowerCamelCase : Dict = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int ): '''simple docstring''' for attribute in key.split(""".""" ): _lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: _lowerCAmelCase : Optional[Any] = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: _lowerCAmelCase : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Tuple = value elif weight_type == "weight_g": _lowerCAmelCase : Optional[int] = value elif weight_type == "weight_v": _lowerCAmelCase : str = value elif weight_type == "bias": _lowerCAmelCase : str = value else: _lowerCAmelCase : Tuple = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Tuple = fairseq_model.state_dict() _lowerCAmelCase : str = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _lowerCAmelCase : Any = None for name, value in fairseq_dict.items(): _lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == """group""" , ) _lowerCAmelCase : Any = True elif name.split(""".""" )[0] == "proj": _lowerCAmelCase : Union[str, Any] = fairseq_model.proj _lowerCAmelCase : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase : Union[str, Any] = True if "*" in mapped_key: _lowerCAmelCase : Union[str, Any] = name.split(UpperCamelCase_ )[0].split(""".""" )[-2] _lowerCAmelCase : Optional[Any] = mapped_key.replace("""*""" , UpperCamelCase_ ) if "weight_g" in name: _lowerCAmelCase : List[str] = """weight_g""" elif "weight_v" in name: _lowerCAmelCase : Tuple = """weight_v""" elif "bias" in name: _lowerCAmelCase : Dict = """bias""" elif "weight" in name: _lowerCAmelCase : Optional[int] = """weight""" else: _lowerCAmelCase : Optional[Any] = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) return proj_weight def _UpperCAmelCase (UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : List[str] = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase : Optional[int] = name.split(""".""" ) _lowerCAmelCase : List[str] = int(items[0] ) _lowerCAmelCase : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _lowerCAmelCase : Tuple = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCamelCase_ ) def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = emb.weight.shape _lowerCAmelCase : Union[str, Any] = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) _lowerCAmelCase : List[Any] = emb.weight.data return lin_layer def _UpperCAmelCase (UpperCamelCase_ : Any ): '''simple docstring''' with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as f: _lowerCAmelCase : Optional[int] = f.readlines() _lowerCAmelCase : Dict = [line.split(""" """ )[0] for line in lines] _lowerCAmelCase : Dict = len(UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(UpperCamelCase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , ): '''simple docstring''' _lowerCAmelCase : Any = WavaVecaConfig.from_pretrained(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = SpeechaTextaConfig.from_pretrained( UpperCamelCase_ , vocab_size=UpperCamelCase_ , decoder_layers=UpperCamelCase_ , do_stable_layer_norm=UpperCamelCase_ ) _lowerCAmelCase : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) _lowerCAmelCase : Tuple = model[0].eval() # set weights for wav2vec2 encoder _lowerCAmelCase : Union[str, Any] = WavaVecaModel(UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = recursively_load_weights_wavaveca(model.encoder , UpperCamelCase_ ) _lowerCAmelCase : List[str] = SpeechaTextaForCausalLM(UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase_ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) _lowerCAmelCase : Dict = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) _lowerCAmelCase : List[Any] = SpeechEncoderDecoderModel(encoder=UpperCamelCase_ , decoder=UpperCamelCase_ ) _lowerCAmelCase : Any = False # add projection layer _lowerCAmelCase : List[Any] = nn.Parameter(projection_layer.weight ) _lowerCAmelCase : Union[str, Any] = nn.Parameter(projection_layer.bias ) _lowerCAmelCase : Any = create_vocab_dict(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , """vocab.json""" ) , """w""" ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Any = SpeechaTextaTokenizer(os.path.join(UpperCamelCase_ , """vocab.json""" ) ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowerCAmelCase : str = hf_wavavec.config.to_dict() _lowerCAmelCase : Any = tokenizer.pad_token_id _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : Any = tokenizer.eos_token_id _lowerCAmelCase : Union[str, Any] = """speech_to_text_2""" _lowerCAmelCase : Any = """wav2vec2""" _lowerCAmelCase : str = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase_ ) hf_wavavec.save_pretrained(UpperCamelCase_ ) feature_extractor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0_2_2_4, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _lowerCamelCase : Optional[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
159
0
'''simple docstring''' import argparse from collections import defaultdict def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Dict ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = f"{file}_{class_name}_{test_name}" done_test[_id] += 1 with open(_lowercase ,'r' ) as f: SCREAMING_SNAKE_CASE : Optional[Any] = f.readlines() SCREAMING_SNAKE_CASE : Optional[Any] = f"class {class_name}(" SCREAMING_SNAKE_CASE : Tuple = f"{4 * ' '}def {test_name}(" SCREAMING_SNAKE_CASE : Union[str, Any] = f"{8 * ' '}{correct_line.split()[0]}" SCREAMING_SNAKE_CASE : Any = f"{16 * ' '}{correct_line.split()[0]}" SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Optional[Any] = [] for line in lines: if line.startswith(_lowercase ): SCREAMING_SNAKE_CASE : List[str] = True elif in_class and line.startswith(_lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = True elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )): SCREAMING_SNAKE_CASE : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: SCREAMING_SNAKE_CASE : Optional[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: SCREAMING_SNAKE_CASE : Dict = True if in_class and in_func and in_line and insert_line: new_lines.append(f"{spaces * ' '}{correct_line}" ) SCREAMING_SNAKE_CASE : Optional[Any] = False else: new_lines.append(_lowercase ) with open(_lowercase ,'w' ) as f: for line in new_lines: f.write(_lowercase ) def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: List[str]=None ): """simple docstring""" if fail is not None: with open(_lowercase ,'r' ) as f: SCREAMING_SNAKE_CASE : Union[str, Any] = {l.strip() for l in f.readlines()} else: SCREAMING_SNAKE_CASE : List[str] = None with open(_lowercase ,'r' ) as f: SCREAMING_SNAKE_CASE : List[Any] = f.readlines() SCREAMING_SNAKE_CASE : int = defaultdict(_lowercase ) for line in correct_lines: SCREAMING_SNAKE_CASE : str = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) UpperCamelCase_ = parser.parse_args() main(args.correct_filename, args.fail_filename)
251
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class snake_case__ (datasets.BuilderConfig ): """simple docstring""" __lowerCAmelCase :Optional[datasets.Features] = None class snake_case__ (datasets.ArrowBasedBuilder ): """simple docstring""" __lowerCAmelCase :Dict = PandasConfig def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) a__ : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowercase , (str, list, tuple) ): a__ : Optional[int] = data_files if isinstance(__lowercase , __lowercase ): a__ : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a__ : str = [dl_manager.iter_files(__lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] a__ : List[str] = [] for split_name, files in data_files.items(): if isinstance(__lowercase , __lowercase ): a__ : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive a__ : Dict = [dl_manager.iter_files(__lowercase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowercase , gen_kwargs={"""files""": files} ) ) return splits def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> pa.Table: """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example a__ : Tuple = table_cast(__lowercase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[Any]: """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(__lowercase ) ): with open(__lowercase , """rb""" ) as f: a__ : str = pa.Table.from_pandas(pd.read_pickle(__lowercase ) ) yield i, self._cast_table(__lowercase )
170
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Dict: _a : int = tempfile.mkdtemp() _a : List[Any] = BlipImageProcessor() _a : Optional[Any] = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) _a : Tuple = BlipProcessor(_a , _a ) processor.save_pretrained(self.tmpdirname ) def __lowercase ( self , **_a ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).tokenizer def __lowercase ( self , **_a ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def __lowercase ( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self ) -> List[Any]: _a : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _a : List[str] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ) -> Tuple: _a : List[Any] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a : Union[str, Any] = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _a : Optional[Any] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __lowercase ( self ) -> Union[str, Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_tokenizer() _a : Dict = BlipProcessor(tokenizer=_a , image_processor=_a ) _a : Union[str, Any] = self.prepare_image_inputs() _a : str = image_processor(_a , return_tensors='''np''' ) _a : Tuple = processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self ) -> Tuple: _a : List[Any] = self.get_image_processor() _a : Optional[int] = self.get_tokenizer() _a : Tuple = BlipProcessor(tokenizer=_a , image_processor=_a ) _a : List[str] = '''lower newer''' _a : Dict = processor(text=_a ) _a : str = tokenizer(_a , return_token_type_ids=_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Optional[int] = BlipProcessor(tokenizer=_a , image_processor=_a ) _a : List[Any] = '''lower newer''' _a : Tuple = self.prepare_image_inputs() _a : Tuple = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self ) -> str: _a : List[str] = self.get_image_processor() _a : Tuple = self.get_tokenizer() _a : List[Any] = BlipProcessor(tokenizer=_a , image_processor=_a ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : str = processor.batch_decode(_a ) _a : Optional[Any] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __lowercase ( self ) -> List[Any]: _a : str = self.get_image_processor() _a : Union[str, Any] = self.get_tokenizer() _a : str = BlipProcessor(tokenizer=_a , image_processor=_a ) _a : str = '''lower newer''' _a : Tuple = self.prepare_image_inputs() _a : str = processor(text=_a , images=_a ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
15
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a__ = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' a__ = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' a__ = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def __UpperCAmelCase ( __a : int ,__a : List[str] ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ,__a : List[str]="binary" ) -> Optional[int]: """simple docstring""" _a : List[str] = simple_accuracy(__a ,__a ) _a : Any = float(fa_score(y_true=__a ,y_pred=__a ,average=__a ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( __a : Optional[Any] ,__a : str ) -> List[Any]: """simple docstring""" _a : Union[str, Any] = {} for id_pred, label in zip(__a ,__a ): _a : Optional[int] = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _a : Optional[Any] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _a : str = [(pred, label)] _a , _a : Any = [], [] for question, preds_labels in question_map.items(): _a , _a : Any = zip(*__a ) _a : List[Any] = fa_score(y_true=__a ,y_pred=__a ,average='''macro''' ) fas.append(__a ) _a : List[str] = int(sum(pred == label for pred, label in preds_labels ) == len(__a ) ) ems.append(__a ) _a : List[str] = float(sum(__a ) / len(__a ) ) _a : str = sum(__a ) / len(__a ) _a : Optional[int] = float(fa_score(y_true=__a ,y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __lowercase ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __lowercase ( self , _a , _a ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "cb": return acc_and_fa(_a , _a , fa_avg='''macro''' ) elif self.config_name == "record": _a : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _a : Any = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_a , _a )[0] elif self.config_name == "multirc": return evaluate_multirc(_a , _a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
15
1
import random def UpperCamelCase_( _snake_case : int , _snake_case : float , _snake_case : bool = False ): """simple docstring""" __a ={i: [] for i in range(_snake_case )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_snake_case ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_snake_case ): for j in range(i + 1 , _snake_case ): if random.random() < probability: graph[i].append(_snake_case ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_snake_case ) return graph def UpperCamelCase_( _snake_case : int ): """simple docstring""" return { i: [j for j in range(_snake_case ) if i != j] for i in range(_snake_case ) } if __name__ == "__main__": import doctest doctest.testmod()
218
from ... import PretrainedConfig _lowerCAmelCase : Any = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP SCREAMING_SNAKE_CASE = 'nezha' def __init__( self , __snake_case=2_1128 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=64 , __snake_case=2 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=0.1 , __snake_case=0 , __snake_case=2 , __snake_case=3 , __snake_case=True , **__snake_case , ) -> str: '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_act __a =intermediate_size __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =max_relative_position __a =type_vocab_size __a =initializer_range __a =layer_norm_eps __a =classifier_dropout __a =use_cache
218
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __A : Any = logging.get_logger(__name__) __A : int = '''▁''' __A : str = {'''vocab_file''': '''sentencepiece.bpe.model'''} __A : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } __A : Dict = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off __A : Optional[int] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class lowerCamelCase ( _UpperCAmelCase ): lowercase : List[Any] = VOCAB_FILES_NAMES lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowercase : Any = ['input_ids', 'attention_mask'] lowercase : List[int] = [] lowercase : List[int] = [] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , src_lang=SCREAMING_SNAKE_CASE_ , tgt_lang=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase : int = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase : str = 1 UpperCamelCase : List[str] = len(self.sp_model ) UpperCamelCase : List[str] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(SCREAMING_SNAKE_CASE_ ) } UpperCamelCase : Dict = {v: k for k, v in self.lang_code_to_id.items()} UpperCamelCase : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCamelCase : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCamelCase : Tuple = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCamelCase : List[Any] = src_lang if src_lang is not None else """en_XX""" UpperCamelCase : str = self.lang_code_to_id[self._src_lang] UpperCamelCase : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): UpperCamelCase : str = self.__dict__.copy() UpperCamelCase : List[Any] = None UpperCamelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase : Any = {} UpperCamelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def a_ ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a_ ( self ): return self._src_lang @src_lang.setter def a_ ( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = [1] * len(self.prefix_tokens ) UpperCamelCase : Union[str, Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE_ )) + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : Optional[int] = [self.sep_token_id] UpperCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCamelCase : Any = src_lang UpperCamelCase : Union[str, Any] = self(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = tgt_lang_id return inputs def a_ ( self ): UpperCamelCase : Union[str, Any] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a_ ( self , SCREAMING_SNAKE_CASE_ ): return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase : List[str] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a_ ( self , SCREAMING_SNAKE_CASE_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a_ ( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = """""".join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_ , """ """ ).strip() return out_string def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase : List[str] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , """wb""" ) as fi: UpperCamelCase : Dict = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "en_XX" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "ro_RO" , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : str = src_lang UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def a_ ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a_ ( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = self.lang_code_to_id[src_lang] UpperCamelCase : Dict = [] UpperCamelCase : List[Any] = [self.eos_token_id, self.cur_lang_code] def a_ ( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = self.lang_code_to_id[lang] UpperCamelCase : Union[str, Any] = [] UpperCamelCase : List[str] = [self.eos_token_id, self.cur_lang_code]
27
"""simple docstring""" import torch from transformers import AutoModel class lowerCamelCase ( torch.nn.Module ): def __init__( self , SCREAMING_SNAKE_CASE_="sayef/fsner-bert-base-uncased" ): super(SCREAMING_SNAKE_CASE_ , self ).__init__() UpperCamelCase : int = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : Any = torch.nn.Softmax(dim=1 ) def a_ ( self , **SCREAMING_SNAKE_CASE_ ): return self.bert(**SCREAMING_SNAKE_CASE_ ).last_hidden_state def a_ ( self , SCREAMING_SNAKE_CASE_ ): return token_embeddings.sum(2 , keepdim=SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 ): return self.softmax(T * self.cos(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = W_supports["""sizes"""].tolist() UpperCamelCase : List[str] = W_supports["""start_token_id"""].item() UpperCamelCase : List[Any] = W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : List[Any] = self.BERT(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.BERT(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = None UpperCamelCase : Optional[Any] = None UpperCamelCase : Tuple = W_supports["""input_ids"""] == start_token_id UpperCamelCase : Optional[Any] = W_supports["""input_ids"""] == end_token_id for i, size in enumerate(SCREAMING_SNAKE_CASE_ ): if i == 0: UpperCamelCase : int = 0 else: UpperCamelCase : Optional[int] = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : int = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Optional[Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : Optional[int] = p_start UpperCamelCase : Tuple = p_end return p_starts, p_ends
27
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _snake_case ( _a ): _A : Tuple = (UniPCMultistepScheduler,) _A : List[Any] = (('''num_inference_steps''', 2_5),) def __UpperCamelCase ( self : Dict ,**SCREAMING_SNAKE_CASE__ : str ): SCREAMING_SNAKE_CASE:Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**SCREAMING_SNAKE_CASE__ ) return config def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : List[str]=0 ,**SCREAMING_SNAKE_CASE__ : str ): SCREAMING_SNAKE_CASE:Any = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE:Tuple = kwargs.pop("num_inference_steps" ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = self.dummy_sample SCREAMING_SNAKE_CASE:Any = 0.1 * sample SCREAMING_SNAKE_CASE:Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE:Optional[int] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE:int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE:Any = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Dict = sample, sample for t in range(SCREAMING_SNAKE_CASE__ ,time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE:Union[str, Any] = scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ).prev_sample SCREAMING_SNAKE_CASE:List[str] = new_scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : str=0 ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ): SCREAMING_SNAKE_CASE:Dict = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE:List[str] = kwargs.pop("num_inference_steps" ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[Any] = self.dummy_sample SCREAMING_SNAKE_CASE:int = 0.1 * sample SCREAMING_SNAKE_CASE:Any = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE:List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE:str = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE:Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE:Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE:str = scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ).prev_sample SCREAMING_SNAKE_CASE:List[str] = new_scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,**SCREAMING_SNAKE_CASE__ : Tuple ): if scheduler is None: SCREAMING_SNAKE_CASE:Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE:Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = scheduler_class(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE:str = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = 10 SCREAMING_SNAKE_CASE:Any = self.dummy_model() SCREAMING_SNAKE_CASE:str = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE:List[str] = model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).prev_sample return sample def __UpperCamelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE:Optional[int] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE:List[str] = kwargs.pop("num_inference_steps" ,SCREAMING_SNAKE_CASE__ ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE:Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE:Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = self.dummy_sample SCREAMING_SNAKE_CASE:Union[str, Any] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE__ ,"set_timesteps" ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE__ ,"set_timesteps" ): SCREAMING_SNAKE_CASE:Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE:Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] SCREAMING_SNAKE_CASE:Dict = dummy_past_residuals[: scheduler.config.solver_order] SCREAMING_SNAKE_CASE:List[str] = scheduler.timesteps[5] SCREAMING_SNAKE_CASE:List[Any] = scheduler.timesteps[6] SCREAMING_SNAKE_CASE:Dict = scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ).prev_sample SCREAMING_SNAKE_CASE:Dict = scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __UpperCamelCase ( self : str ): # make sure that iterating over schedulers with same config names gives same results # for defaults SCREAMING_SNAKE_CASE:Optional[int] = UniPCMultistepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE:str = self.full_loop(scheduler=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 SCREAMING_SNAKE_CASE:Union[str, Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE:str = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE:int = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE:Tuple = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE:Optional[int] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __UpperCamelCase ( self : Optional[int] ): for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[str] ): self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ ,prediction_type=SCREAMING_SNAKE_CASE__ ,sample_max_value=SCREAMING_SNAKE_CASE__ ,solver_order=SCREAMING_SNAKE_CASE__ ,solver_type=SCREAMING_SNAKE_CASE__ ,) def __UpperCamelCase ( self : Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE__ ,solver_type=SCREAMING_SNAKE_CASE__ ,prediction_type=SCREAMING_SNAKE_CASE__ ,) SCREAMING_SNAKE_CASE:Union[str, Any] = self.full_loop( solver_order=SCREAMING_SNAKE_CASE__ ,solver_type=SCREAMING_SNAKE_CASE__ ,prediction_type=SCREAMING_SNAKE_CASE__ ,) assert not torch.isnan(SCREAMING_SNAKE_CASE__ ).any(), "Samples have nan numbers" def __UpperCamelCase ( self : Optional[int] ): self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE__ ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Dict ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE__ ,time_step=0 ) def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:Tuple = self.full_loop() SCREAMING_SNAKE_CASE:Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __UpperCamelCase ( self : int ): SCREAMING_SNAKE_CASE:int = self.full_loop(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE:str = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE:List[str] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE__ ,dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE:List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = 10 SCREAMING_SNAKE_CASE:Dict = self.dummy_model() SCREAMING_SNAKE_CASE:Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE:Tuple = model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).prev_sample assert sample.dtype == torch.floataa def __UpperCamelCase ( self : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ): for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE:Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
139
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel A_ = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_80_00, "sample_size": 6_55_36, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_80_00, "sample_size": 6_55_36, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_80_00, "sample_size": 13_10_72, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, } def A_ ( snake_case , snake_case ): return torch.atana(snake_case , snake_case ) / math.pi * 2 def A_ ( snake_case ): SCREAMING_SNAKE_CASE:List[Any] = torch.sin(t * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE:Any = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(snake_case , snake_case ) class _snake_case ( _a ): pass class _snake_case ( nn.Module ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : str ): super().__init__() SCREAMING_SNAKE_CASE:List[Any] = DiffusionAttnUnetaD(SCREAMING_SNAKE_CASE__ ,n_attn_layers=4 ) SCREAMING_SNAKE_CASE:List[str] = deepcopy(self.diffusion ) SCREAMING_SNAKE_CASE:Dict = torch.quasirandom.SobolEngine(1 ,scramble=SCREAMING_SNAKE_CASE__ ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:List[Any] = MODELS_MAP[model_name]["url"] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' A_ = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } A_ = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } A_ = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } A_ = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } A_ = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } A_ = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def A_ ( snake_case ): if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def A_ ( snake_case ): for key, value in ATTN_MAP.items(): if name.startswith(snake_case ) and not isinstance(snake_case , snake_case ): return name.replace(snake_case , snake_case ) elif name.startswith(snake_case ): return [name.replace(snake_case , snake_case ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def A_ ( snake_case , snake_case=13 ): SCREAMING_SNAKE_CASE:Optional[Any] = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) SCREAMING_SNAKE_CASE:List[str] = 0 if string.startswith("net.3." ): depth += 1 SCREAMING_SNAKE_CASE:Union[str, Any] = string[6:] elif string.startswith("net." ): SCREAMING_SNAKE_CASE:int = string[4:] while string.startswith("main.7." ): depth += 1 SCREAMING_SNAKE_CASE:Union[str, Any] = string[7:] if string.startswith("main." ): SCREAMING_SNAKE_CASE:str = string[5:] # mid block if string[:2].isdigit(): SCREAMING_SNAKE_CASE:Tuple = string[:2] SCREAMING_SNAKE_CASE:Optional[Any] = string[2:] else: SCREAMING_SNAKE_CASE:Optional[Any] = string[0] SCREAMING_SNAKE_CASE:Optional[Any] = string[1:] if depth == max_depth: SCREAMING_SNAKE_CASE:Any = MID_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:List[str] = "mid_block" elif depth > 0 and int(snake_case ) < 7: SCREAMING_SNAKE_CASE:Union[str, Any] = DOWN_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:Dict = F'''down_blocks.{depth}''' elif depth > 0 and int(snake_case ) > 7: SCREAMING_SNAKE_CASE:Any = UP_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:Union[str, Any] = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: SCREAMING_SNAKE_CASE:Optional[int] = DEPTH_0_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:Any = F'''up_blocks.{max_depth - 1}''' if int(snake_case ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) SCREAMING_SNAKE_CASE:List[Any] = string_left[1:] if "resnets" in new_layer: SCREAMING_SNAKE_CASE:List[str] = convert_resconv_naming(snake_case ) elif "attentions" in new_layer: SCREAMING_SNAKE_CASE:List[Any] = convert_attn_naming(snake_case ) SCREAMING_SNAKE_CASE:List[Any] = new_string_left if not isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:Tuple = prefix + "." + new_layer + "." + string_left else: SCREAMING_SNAKE_CASE:int = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def A_ ( snake_case ): SCREAMING_SNAKE_CASE:int = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue SCREAMING_SNAKE_CASE:str = rename(snake_case ) # check if we need to transform from Conv => Linear for attention if isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = transform_conv_attns(snake_case , snake_case , snake_case ) else: SCREAMING_SNAKE_CASE:Optional[int] = v return new_state_dict def A_ ( snake_case , snake_case , snake_case ): if len(snake_case ) == 1: if len(v.shape ) == 3: # weight SCREAMING_SNAKE_CASE:List[str] = v[:, :, 0] else: # bias SCREAMING_SNAKE_CASE:Optional[Any] = v else: # qkv matrices SCREAMING_SNAKE_CASE:Optional[int] = v.shape[0] SCREAMING_SNAKE_CASE:Optional[Any] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: SCREAMING_SNAKE_CASE:Union[str, Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: SCREAMING_SNAKE_CASE:List[Any] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) SCREAMING_SNAKE_CASE:List[str] = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' SCREAMING_SNAKE_CASE:List[str] = download(snake_case ) SCREAMING_SNAKE_CASE:List[str] = MODELS_MAP[model_name]["sample_rate"] SCREAMING_SNAKE_CASE:Tuple = MODELS_MAP[model_name]["sample_size"] SCREAMING_SNAKE_CASE:Union[str, Any] = Object() SCREAMING_SNAKE_CASE:int = sample_size SCREAMING_SNAKE_CASE:Any = sample_rate SCREAMING_SNAKE_CASE:List[str] = 0 SCREAMING_SNAKE_CASE:Optional[Any] = UNetaDModel(sample_size=snake_case , sample_rate=snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = diffusers_model.state_dict() SCREAMING_SNAKE_CASE:Optional[Any] = DiffusionUncond(snake_case ) orig_model.load_state_dict(torch.load(args.model_path , map_location=snake_case )["state_dict"] ) SCREAMING_SNAKE_CASE:Union[str, Any] = orig_model.diffusion_ema.eval() SCREAMING_SNAKE_CASE:Dict = orig_model.state_dict() SCREAMING_SNAKE_CASE:Union[str, Any] = rename_orig_weights(snake_case ) SCREAMING_SNAKE_CASE:Dict = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) SCREAMING_SNAKE_CASE:Dict = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(snake_case ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("kernel" ) for k in list(snake_case ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": SCREAMING_SNAKE_CASE:Dict = value.squeeze() SCREAMING_SNAKE_CASE:Union[str, Any] = value diffusers_model.load_state_dict(snake_case ) SCREAMING_SNAKE_CASE:int = 100 SCREAMING_SNAKE_CASE:int = 33 SCREAMING_SNAKE_CASE:Any = IPNDMScheduler(num_train_timesteps=snake_case ) SCREAMING_SNAKE_CASE:str = torch.manual_seed(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = torch.randn([1, 2, config.sample_size] , generator=snake_case ).to(snake_case ) SCREAMING_SNAKE_CASE:int = torch.linspace(1 , 0 , steps + 1 , device=snake_case )[:-1] SCREAMING_SNAKE_CASE:List[Any] = get_crash_schedule(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = DanceDiffusionPipeline(unet=snake_case , scheduler=snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE:Union[str, Any] = pipe(num_inference_steps=snake_case , generator=snake_case ).audios SCREAMING_SNAKE_CASE:Tuple = sampling.iplms_sample(snake_case , snake_case , snake_case , {} ) SCREAMING_SNAKE_CASE:Union[str, Any] = generated.clamp(-1 , 1 ) SCREAMING_SNAKE_CASE:Union[str, Any] = (generated - audio).abs().sum() SCREAMING_SNAKE_CASE:str = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , snake_case ) print("Diff max" , snake_case ) assert diff_max < 1e-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") A_ = parser.parse_args() main(args)
139
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __A = get_logger(__name__) __A = Path(__file__).parent / "model_card_template.md" __A = uuida().hex __A = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES __A = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES __A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def lowerCAmelCase_ ( __a = None ) -> str: """simple docstring""" lowerCamelCase__: List[str] =F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def lowerCAmelCase_ ( __a , __a = None , __a = None ) -> Optional[int]: """simple docstring""" if token is None: lowerCamelCase__: str =HfFolder.get_token() if organization is None: lowerCamelCase__: Tuple =whoami(__a )["name"] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__a , "local_rank" ) and args.local_rank not in [-1, 0]: return lowerCamelCase__: Optional[Any] =args.hub_token if hasattr(__a , "hub_token" ) else None lowerCamelCase__: List[Any] =get_full_repo_name(__a , token=__a ) lowerCamelCase__: List[str] =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(__a , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(__a , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) lowerCamelCase__: str =os.path.join(args.output_dir , "README.md" ) model_card.save(__a ) def lowerCAmelCase_ ( __a , __a = None ) -> Optional[int]: """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash lowerCamelCase__: Any =str(Path(__a ).as_posix() ) lowerCamelCase__: Optional[Any] =re.search(R"snapshots/([^/]+)/" , __a ) if search is None: return None lowerCamelCase__: Optional[int] =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __A = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) __A = os.path.join(hf_cache_home, "diffusers") def lowerCAmelCase_ ( __a = None , __a = None ) -> None: """simple docstring""" if new_cache_dir is None: lowerCamelCase__: Dict =DIFFUSERS_CACHE if old_cache_dir is None: lowerCamelCase__: Optional[Any] =old_diffusers_cache lowerCamelCase__: str =Path(__a ).expanduser() lowerCamelCase__: Optional[int] =Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowerCamelCase__: Union[str, Any] =new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __A = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): __A = 0 else: with open(cache_version_file) as f: try: __A = int(f.read()) except ValueError: __A = 0 if cache_version < 1: __A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: __A = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' "the directory exists and can be written to." ) def lowerCAmelCase_ ( __a , __a = None ) -> str: """simple docstring""" if variant is not None: lowerCamelCase__: Optional[int] =weights_name.split("." ) lowerCamelCase__: Union[str, Any] =splits[:-1] + [variant] + splits[-1:] lowerCamelCase__: str =".".join(__a ) return weights_name def lowerCAmelCase_ ( __a , *, __a , __a , __a , __a , __a , __a , __a , __a , __a , __a , __a=None , ) -> Tuple: """simple docstring""" lowerCamelCase__: str =str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint lowerCamelCase__: Any =os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): lowerCamelCase__: Dict =os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse("0.20.0" ) ): try: lowerCamelCase__: Union[str, Any] =hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual lowerCamelCase__: Tuple =hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ "this model name. Check the model page at " F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
354
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : int , UpperCAmelCase_ : Distribution , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=0) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =1.0 if scale is None else scale lowerCamelCase__: List[Any] =0.0 if loc is None else loc super().__init__(UpperCAmelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase_)]) @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' return self.variance.sqrt() class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Callable[..., Tuple[torch.Tensor]] , **UpperCAmelCase_ : Dict) ->None: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Tuple =args_dim lowerCamelCase__: Any =nn.ModuleList([nn.Linear(UpperCAmelCase_ , UpperCAmelCase_) for dim in args_dim.values()]) lowerCamelCase__: Any =domain_map def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : torch.Tensor) ->Tuple[torch.Tensor]: '''simple docstring''' lowerCamelCase__: Any =[proj(UpperCAmelCase_) for proj in self.proj] return self.domain_map(*UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' super().__init__() lowerCamelCase__: Any =function def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[Any] , *UpperCAmelCase_ : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase_ , *UpperCAmelCase_) class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 def __init__(self : str , UpperCAmelCase_ : int = 1) ->None: '''simple docstring''' lowerCamelCase__: List[str] =dim lowerCamelCase__: int ={k: dim * self.args_dim[k] for k in self.args_dim} def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : str) ->Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase_) else: return Independent(self.distribution_class(*UpperCAmelCase_) , 1) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , ) ->Distribution: '''simple docstring''' lowerCamelCase__: Optional[Any] =self._base_distribution(UpperCAmelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase_ , loc=UpperCAmelCase_ , scale=UpperCAmelCase_ , event_dim=self.event_dim) @property def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->int: '''simple docstring''' return len(self.event_shape) @property def SCREAMING_SNAKE_CASE_ (self : Tuple) ->float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : int) ->nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def SCREAMING_SNAKE_CASE_ (self : Any , *UpperCAmelCase_ : torch.Tensor) ->Any: '''simple docstring''' raise NotImplementedError() @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : torch.Tensor) ->torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase_) + 4.0)) / 2.0 class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = {"df": 1, "loc": 1, "scale": 1} lowercase_ = StudentT @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[int] , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor) ->Dict: '''simple docstring''' lowerCamelCase__: str =cls.squareplus(UpperCAmelCase_).clamp_min(torch.finfo(scale.dtype).eps) lowerCamelCase__: Any =2.0 + cls.squareplus(UpperCAmelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = {"loc": 1, "scale": 1} lowercase_ = Normal @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any] , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =cls.squareplus(UpperCAmelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = {"total_count": 1, "logits": 1} lowercase_ = NegativeBinomial @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[int] , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor) ->List[str]: '''simple docstring''' lowerCamelCase__: Tuple =cls.squareplus(UpperCAmelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tuple) ->Distribution: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Any =distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase_ , logits=UpperCAmelCase_) else: return Independent(self.distribution_class(total_count=UpperCAmelCase_ , logits=UpperCAmelCase_) , 1) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None) ->Distribution: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
273
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Union[str, Any] = '▁' _lowercase : Tuple = {'vocab_file': 'spiece.model'} _lowercase : Optional[Any] = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } _lowercase : List[Any] = { 'google/reformer-crime-and-punishment': 524288, } class __magic_name__ ( a__): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowercase_ : int , lowercase_ : List[Any]="</s>" , lowercase_ : Dict="<unk>" , lowercase_ : str=[] , lowercase_ : List[Any] = None , **lowercase_ : Optional[Any] , ): lowercase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) lowercase_ : int = vocab_file lowercase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : List[Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): lowercase_ : List[str] = self.__dict__.copy() lowercase_ : Optional[Any] = None return state def __setstate__( self : str , lowercase_ : Tuple ): lowercase_ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase_ : List[Any] = {} lowercase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str ): return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Dict ): return self.sp_model.piece_to_id(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Any ): if index < self.sp_model.get_piece_size(): lowercase_ : List[Any] = self.sp_model.IdToPiece(lowercase_ ) return token def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : str ): lowercase_ : int = [] lowercase_ : List[str] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token lowercase_ : Tuple = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str] = None ): if not os.path.isdir(lowercase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Any = os.path.join( lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , """wb""" ) as fi: lowercase_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
239
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __A ) -> float: '''simple docstring''' UpperCamelCase__ = 0.00 UpperCamelCase__ = 0 for resistor in resistors: if resistor <= 0: UpperCamelCase__ = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(__A ) first_sum += 1 / float(__A ) index += 1 return 1 / first_sum def _UpperCamelCase ( __A ) -> float: '''simple docstring''' UpperCamelCase__ = 0.00 UpperCamelCase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCamelCase__ = F'''Resistor at index {index} has a negative value!''' raise ValueError(__A ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
80
0
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED _UpperCamelCase = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _UpperCamelCase = { """allenai/led-base-16384""": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _a ( ): """simple docstring""" UpperCAmelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase = bs[:] UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_snake_case ) cs.append(2**8 + n ) n += 1 UpperCAmelCase = [chr(_snake_case ) for n in cs] return dict(zip(_snake_case , _snake_case ) ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = set() UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase = char return pairs class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self ,A ,A ,A="replace" ,A="<s>" ,A="</s>" ,A="</s>" ,A="<s>" ,A="<unk>" ,A="<pad>" ,A="<mask>" ,A=False ,**A ,): UpperCAmelCase = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token UpperCAmelCase = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token UpperCAmelCase = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token UpperCAmelCase = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token UpperCAmelCase = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token UpperCAmelCase = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token super().__init__( errors=A ,bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,**A ,) with open(A ,encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase = json.load(A ) UpperCAmelCase = {v: k for k, v in self.encoder.items()} UpperCAmelCase = errors # how to handle errors in decoding UpperCAmelCase = bytes_to_unicode() UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(A ,encoding="""utf-8""" ) as merges_handle: UpperCAmelCase = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase = {} UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _UpperCamelCase ( self ): return len(self.encoder ) def _UpperCamelCase ( self ): return dict(self.encoder ,**self.added_tokens_encoder ) def _UpperCamelCase ( self ,A ): if token in self.cache: return self.cache[token] UpperCAmelCase = tuple(A ) UpperCAmelCase = get_pairs(A ) if not pairs: return token while True: UpperCAmelCase = min(A ,key=lambda A : self.bpe_ranks.get(A ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase = bigram UpperCAmelCase = [] UpperCAmelCase = 0 while i < len(A ): try: UpperCAmelCase = word.index(A ,A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase = tuple(A ) UpperCAmelCase = new_word if len(A ) == 1: break else: UpperCAmelCase = get_pairs(A ) UpperCAmelCase = """ """.join(A ) UpperCAmelCase = word return word def _UpperCamelCase ( self ,A ): UpperCAmelCase = [] for token in re.findall(self.pat ,A ): UpperCAmelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(""" """ ) ) return bpe_tokens def _UpperCamelCase ( self ,A ): return self.encoder.get(A ,self.encoder.get(self.unk_token ) ) def _UpperCamelCase ( self ,A ): return self.decoder.get(A ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = """""".join(A ) UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def _UpperCamelCase ( self ,A ,A = None ): if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=A ,ensure_ascii=A ) + """\n""" ) UpperCAmelCase = 0 with open(A ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda A : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return vocab_file, merge_file def _UpperCamelCase ( self ,A ,A = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self ,A ,A = None ,A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _UpperCamelCase ( self ,A ,A = None ): UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self ,A ,A=False ,**A ): UpperCAmelCase = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): UpperCAmelCase = """ """ + text return (text, kwargs) def _UpperCamelCase ( self ,A ,A = None ,A = PaddingStrategy.DO_NOT_PAD ,A = None ,A = None ,): UpperCAmelCase = super()._pad( encoded_inputs=A ,max_length=A ,padding_strategy=A ,pad_to_multiple_of=A ,return_attention_mask=A ,) # Load from model defaults if return_attention_mask is None: UpperCAmelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(A ) if needs_to_be_padded: UpperCAmelCase = len(A ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
234
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = """▁""" _UpperCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCamelCase = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } _UpperCamelCase = { """google/pegasus-xsum""": 512, } class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = PegasusTokenizer SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self ,A=None ,A=None ,A="<pad>" ,A="</s>" ,A="<unk>" ,A="<mask_2>" ,A="<mask_1>" ,A=None ,A=103 ,**A ,): UpperCAmelCase = offset if additional_special_tokens is not None: if not isinstance(A ,A ): raise TypeError( F'''additional_special_tokens should be of type {type(A )}, but is''' F''' {type(A )}''' ) UpperCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(A ) ,self.offset - 1 ) ] if len(set(A ) ) != len(A ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCAmelCase = additional_special_tokens_extended else: UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 ,self.offset )] super().__init__( A ,tokenizer_file=A ,pad_token=A ,eos_token=A ,unk_token=A ,mask_token=A ,mask_token_sent=A ,offset=A ,additional_special_tokens=A ,**A ,) UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True def _UpperCamelCase ( self ,A ): UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _UpperCamelCase ( self ,A ,A = None ,A = False ): if already_has_special_tokens: return self._special_token_mask(A ) elif token_ids_a is None: return self._special_token_mask(A ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _UpperCamelCase ( self ,A ,A=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _UpperCamelCase ( self ,A ,A = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file ,A ) return (out_vocab_file,)
234
1
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase__ ( __lowercase : Any , __lowercase : str , __lowercase : Dict ) -> List[Any]: """simple docstring""" if gpta_config_file == "": __UpperCamelCase = GPTaConfig() else: __UpperCamelCase = GPTaConfig.from_json_file(__lowercase ) __UpperCamelCase = GPTaModel(__lowercase ) # Load weights from numpy load_tf_weights_in_gpta(__lowercase , __lowercase , __lowercase ) # Save pytorch-model __UpperCamelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCamelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a__ : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) a__ : Optional[Any] =parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
53
'''simple docstring''' from __future__ import annotations class snake_case : """simple docstring""" def __init__( self : Optional[int] , __A : list[list[int]] ): __UpperCamelCase = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(__A ) != 0: __UpperCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__A ) != cols: raise error for value in row: if not isinstance(__A , (int, float) ): raise error __UpperCamelCase = rows else: __UpperCamelCase = [] def _lowerCamelCase ( self : int ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowerCamelCase ( self : str ): return len(self.rows ) @property def _lowerCamelCase ( self : Any ): return len(self.rows[0] ) @property def _lowerCamelCase ( self : Optional[Any] ): return (self.num_rows, self.num_columns) @property def _lowerCamelCase ( self : Dict ): return self.order[0] == self.order[1] def _lowerCamelCase ( self : Any ): __UpperCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Any ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowerCamelCase ( self : List[str] ): return bool(self.determinant() ) def _lowerCamelCase ( self : Dict , __A : int , __A : int ): __UpperCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__A ).determinant() def _lowerCamelCase ( self : Dict , __A : int , __A : int ): if (row + column) % 2 == 0: return self.get_minor(__A , __A ) return -1 * self.get_minor(__A , __A ) def _lowerCamelCase ( self : List[str] ): return Matrix( [ [self.get_minor(__A , __A ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowerCamelCase ( self : Union[str, Any] ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[Any] ): return str(self.rows ) def __str__( self : Union[str, Any] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(__A ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def _lowerCamelCase ( self : List[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in row: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(__A ) else: __UpperCamelCase = self.rows[0:position] + [row] + self.rows[position:] def _lowerCamelCase ( self : Optional[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in column: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: __UpperCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __UpperCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , __A : object ): if not isinstance(__A , __A ): return NotImplemented return self.rows == other.rows def __ne__( self : Any , __A : object ): return not self == other def __neg__( self : List[Any] ): return self * -1 def __add__( self : List[str] , __A : Matrix ): if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : str , __A : Matrix ): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : str , __A : Matrix | int | float ): if isinstance(__A , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__A , __A ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(__A , __A ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Union[str, Any] , __A : int ): if not isinstance(__A , __A ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) __UpperCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def _lowerCamelCase ( cls : Tuple , __A : list[int] , __A : list[int] ): return sum(row[i] * column[i] for i in range(len(__A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=4_00 , A=True , A=None , A=True , A=None , ) -> Tuple: '''simple docstring''' lowerCamelCase = size if size is not None else {"""shortest_edge""": 20} lowerCamelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = num_channels lowerCamelCase = image_size lowerCamelCase = min_resolution lowerCamelCase = max_resolution lowerCamelCase = do_resize lowerCamelCase = size lowerCamelCase = do_center_crop lowerCamelCase = crop_size def __A ( self ) -> int: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : str = MobileNetVaImageProcessor if is_vision_available() else None def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = MobileNetVaImageProcessingTester(self ) @property def __A ( self ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , """do_resize""" ) ) self.assertTrue(hasattr(A , """size""" ) ) self.assertTrue(hasattr(A , """do_center_crop""" ) ) self.assertTrue(hasattr(A , """crop_size""" ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
66
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __lowercase ( a_ , a_ , a_ ): """simple docstring""" UpperCamelCase : int = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self , A , A , A = None , A = 5_02_57 , A = 10_24 , A = 7_68 , A = 12 , A = 12 , A = None , A = "gelu_new" , A = 0.1 , A = 0.1 , A = 0.1 , A = 1e-5 , A = 0.02 , A = True , A = True , A = False , A = False , ) -> int: '''simple docstring''' super().__init__() lowerCamelCase = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' F' `n_embd`: {n_embd} are not equal.' ) lowerCamelCase = prefix_inner_dim lowerCamelCase = prefix_hidden_dim lowerCamelCase = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCamelCase = ( nn.Linear(self.prefix_hidden_dim , A ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCamelCase = GPTaConfig( vocab_size=A , n_positions=A , n_embd=A , n_layer=A , n_head=A , n_inner=A , activation_function=A , resid_pdrop=A , embd_pdrop=A , attn_pdrop=A , layer_norm_epsilon=A , initializer_range=A , scale_attn_weights=A , use_cache=A , scale_attn_by_inverse_layer_idx=A , reorder_and_upcast_attn=A , ) lowerCamelCase = GPTaLMHeadModel(A ) def __A ( self , A , A , A = None , A = None , ) -> Any: '''simple docstring''' lowerCamelCase = self.transformer.transformer.wte(A ) lowerCamelCase = self.encode_prefix(A ) lowerCamelCase = self.decode_prefix(A ) lowerCamelCase = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowerCamelCase = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowerCamelCase = torch.cat((dummy_token, input_ids) , dim=1 ) lowerCamelCase = self.transformer(inputs_embeds=A , labels=A , attention_mask=A ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __A ( self , A , A ) -> torch.Tensor: '''simple docstring''' return torch.zeros(A , self.prefix_length , dtype=torch.intaa , device=A ) def __A ( self , A ) -> int: '''simple docstring''' return self.encode_prefix(A ) @torch.no_grad() def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = torch.split(A , 1 , dim=0 ) lowerCamelCase = [] lowerCamelCase = [] for feature in features: lowerCamelCase = self.decode_prefix(feature.to(A ) ) # back to the clip feature # Only support beam search for now lowerCamelCase , lowerCamelCase = self.generate_beam( input_embeds=A , device=A , eos_token_id=A ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowerCamelCase = torch.stack(A ) lowerCamelCase = torch.stack(A ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __A ( self , A=None , A=None , A=None , A = 5 , A = 67 , A = 1.0 , A = None , ) -> Any: '''simple docstring''' lowerCamelCase = eos_token_id lowerCamelCase = None lowerCamelCase = None lowerCamelCase = torch.ones(A , device=A , dtype=torch.int ) lowerCamelCase = torch.zeros(A , device=A , dtype=torch.bool ) if input_embeds is not None: lowerCamelCase = input_embeds else: lowerCamelCase = self.transformer.transformer.wte(A ) for i in range(A ): lowerCamelCase = self.transformer(inputs_embeds=A ) lowerCamelCase = outputs.logits lowerCamelCase = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCamelCase = logits.softmax(-1 ).log() if scores is None: lowerCamelCase , lowerCamelCase = logits.topk(A , -1 ) lowerCamelCase = generated.expand(A , *generated.shape[1:] ) lowerCamelCase , lowerCamelCase = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowerCamelCase = next_tokens else: lowerCamelCase = tokens.expand(A , *tokens.shape[1:] ) lowerCamelCase = torch.cat((tokens, next_tokens) , dim=1 ) else: lowerCamelCase = -float(np.inf ) lowerCamelCase = 0 lowerCamelCase = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCamelCase = scores_sum / seq_lengths[:, None] lowerCamelCase , lowerCamelCase = scores_sum_average.view(-1 ).topk(A , -1 ) lowerCamelCase = next_tokens // scores_sum.shape[1] lowerCamelCase = seq_lengths[next_tokens_source] lowerCamelCase = next_tokens % scores_sum.shape[1] lowerCamelCase = next_tokens.unsqueeze(1 ) lowerCamelCase = tokens[next_tokens_source] lowerCamelCase = torch.cat((tokens, next_tokens) , dim=1 ) lowerCamelCase = generated[next_tokens_source] lowerCamelCase = scores_sum_average * seq_lengths lowerCamelCase = is_stopped[next_tokens_source] lowerCamelCase = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowerCamelCase = torch.cat((generated, next_token_embed) , dim=1 ) lowerCamelCase = is_stopped + next_tokens.eq(A ).squeeze() if is_stopped.all(): break lowerCamelCase = scores / seq_lengths lowerCamelCase = scores.argsort(descending=A ) # tokens tensors are already padded to max_seq_length lowerCamelCase = [tokens[i] for i in order] lowerCamelCase = torch.stack(A , dim=0 ) lowerCamelCase = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
66
1
def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = len(_A ) for i in range(_A ): for j in range(i + 1 , _A ): if numbers[j] < numbers[i]: snake_case_ , snake_case_ = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowercase__ : int = input("Enter numbers separated by a comma:\n").strip() lowercase__ : Any = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
187
def lowerCamelCase__ ( _A ): '''simple docstring''' if num <= 0: raise ValueError("Input must be a positive integer" ) snake_case_ = [True] * (num + 1) snake_case_ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , _A ): snake_case_ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : Tuple = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
187
1
def UpperCamelCase ( __lowercase : float ,__lowercase : float ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(100, 0.25) = }""") print(F"""{price_plus_tax(125.50, 0.05) = }""")
192
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _UpperCAmelCase = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def UpperCamelCase ( __lowercase : str ,__lowercase : Dict=None ): '''simple docstring''' require_version(deps[pkg] ,__lowercase )
192
1
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__snake_case ) , __snake_case ) return number - int(__snake_case ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
5
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
1
'''simple docstring''' import math def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Any ): '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __A : Optional[Any] = 'Enter the base and the power separated by a comma: ' __A : int = map(int, input(prompt).split(',')) __A : str = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. __A : int = res(xa, ya) __A : str = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
350
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def a__ ( self :Dict ): snake_case_ : Optional[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) snake_case_ : Optional[int] = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : Tuple = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Dict = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : Tuple = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) ) @slow def a__ ( self :Union[str, Any] ): snake_case_ : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) snake_case_ : Dict = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ : List[Any] = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Any = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : str = model(_UpperCamelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,_UpperCamelCase ,atol=1E-3 ) )
8
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": A__ : Dict = pd.read_csv("""sample_data.csv""", header=None) A__ : Dict = df.shape[:1][0] # If you're using some other dataset input the target column A__ : Optional[int] = df.iloc[:, 1:2] A__ : Union[str, Any] = actual_data.values.reshape(len_data, 1) A__ : Optional[Any] = MinMaxScaler().fit_transform(actual_data) A__ : Optional[int] = 10 A__ : List[str] = 5 A__ : List[Any] = 20 A__ : List[Any] = len_data - periods * look_back A__ : List[str] = actual_data[:division] A__ : List[Any] = actual_data[division - look_back :] A__ : Union[str, Any] = [], [] A__ : Optional[Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) A__ : Dict = np.array(train_x) A__ : Any = np.array(test_x) A__ : List[Any] = np.array([list(i.ravel()) for i in train_y]) A__ : List[str] = np.array([list(i.ravel()) for i in test_y]) A__ : List[Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") A__ : str = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) A__ : int = model.predict(x_test)
185
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def UpperCamelCase( __UpperCamelCase : List[str] ): lowerCAmelCase_ : List[str] = SwinvaConfig() lowerCAmelCase_ : List[str] = swinva_name.split('''_''' ) lowerCAmelCase_ : str = name_split[1] if "to" in name_split[3]: lowerCAmelCase_ : List[Any] = int(name_split[3][-3:] ) else: lowerCAmelCase_ : List[Any] = int(name_split[3] ) if "to" in name_split[2]: lowerCAmelCase_ : List[str] = int(name_split[2][-2:] ) else: lowerCAmelCase_ : int = int(name_split[2][6:] ) if model_size == "tiny": lowerCAmelCase_ : Any = 96 lowerCAmelCase_ : List[str] = (2, 2, 6, 2) lowerCAmelCase_ : Union[str, Any] = (3, 6, 12, 24) elif model_size == "small": lowerCAmelCase_ : List[str] = 96 lowerCAmelCase_ : Any = (2, 2, 18, 2) lowerCAmelCase_ : Dict = (3, 6, 12, 24) elif model_size == "base": lowerCAmelCase_ : Union[str, Any] = 128 lowerCAmelCase_ : List[Any] = (2, 2, 18, 2) lowerCAmelCase_ : Tuple = (4, 8, 16, 32) else: lowerCAmelCase_ : Optional[Any] = 192 lowerCAmelCase_ : List[Any] = (2, 2, 18, 2) lowerCAmelCase_ : List[Any] = (6, 12, 24, 48) if "to" in swinva_name: lowerCAmelCase_ : Union[str, Any] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): lowerCAmelCase_ : Optional[int] = 21841 lowerCAmelCase_ : Any = '''huggingface/label-files''' lowerCAmelCase_ : Tuple = '''imagenet-22k-id2label.json''' lowerCAmelCase_ : Any = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCAmelCase_ : Optional[Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase_ : str = idalabel lowerCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} else: lowerCAmelCase_ : Optional[int] = 1000 lowerCAmelCase_ : Tuple = '''huggingface/label-files''' lowerCAmelCase_ : Union[str, Any] = '''imagenet-1k-id2label.json''' lowerCAmelCase_ : Dict = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCAmelCase_ : int = {int(__UpperCamelCase ): v for k, v in idalabel.items()} lowerCAmelCase_ : List[str] = idalabel lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = img_size lowerCAmelCase_ : Dict = num_classes lowerCAmelCase_ : Dict = embed_dim lowerCAmelCase_ : Optional[Any] = depths lowerCAmelCase_ : Optional[int] = num_heads lowerCAmelCase_ : Dict = window_size return config def UpperCamelCase( __UpperCamelCase : List[str] ): if "patch_embed.proj" in name: lowerCAmelCase_ : Dict = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCAmelCase_ : List[Any] = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCAmelCase_ : int = '''encoder.''' + name if "attn.proj" in name: lowerCAmelCase_ : Union[str, Any] = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: lowerCAmelCase_ : Union[str, Any] = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: lowerCAmelCase_ : Tuple = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase_ : Optional[Any] = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase_ : Tuple = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "q_bias" in name: lowerCAmelCase_ : Tuple = name.replace('''q_bias''' ,'''query.bias''' ) if "k_bias" in name: lowerCAmelCase_ : Tuple = name.replace('''k_bias''' ,'''key.bias''' ) if "v_bias" in name: lowerCAmelCase_ : int = name.replace('''v_bias''' ,'''value.bias''' ) if "cpb_mlp" in name: lowerCAmelCase_ : Any = name.replace('''cpb_mlp''' ,'''continuous_position_bias_mlp''' ) if name == "norm.weight": lowerCAmelCase_ : Dict = '''layernorm.weight''' if name == "norm.bias": lowerCAmelCase_ : Any = '''layernorm.bias''' if "head" in name: lowerCAmelCase_ : int = name.replace('''head''' ,'''classifier''' ) else: lowerCAmelCase_ : Union[str, Any] = '''swinv2.''' + name return name def UpperCamelCase( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase_ : Optional[int] = orig_state_dict.pop(__UpperCamelCase ) if "mask" in key: continue elif "qkv" in key: lowerCAmelCase_ : Dict = key.split('''.''' ) lowerCAmelCase_ : Any = int(key_split[1] ) lowerCAmelCase_ : Optional[int] = int(key_split[3] ) lowerCAmelCase_ : Dict = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase_ : Optional[Any] = val[:dim, :] lowerCAmelCase_ : Any = val[dim : dim * 2, :] lowerCAmelCase_ : List[Any] = val[-dim:, :] else: lowerCAmelCase_ : Dict = val[:dim] lowerCAmelCase_ : Union[str, Any] = val[ dim : dim * 2 ] lowerCAmelCase_ : Dict = val[-dim:] else: lowerCAmelCase_ : Optional[Any] = val return orig_state_dict def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : Dict ): lowerCAmelCase_ : Optional[Any] = timm.create_model(__UpperCamelCase ,pretrained=__UpperCamelCase ) timm_model.eval() lowerCAmelCase_ : List[str] = get_swinva_config(__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = SwinvaForImageClassification(__UpperCamelCase ) model.eval() lowerCAmelCase_ : str = convert_state_dict(timm_model.state_dict() ,__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) lowerCAmelCase_ : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' ,'''-''' ) ) ) lowerCAmelCase_ : Union[str, Any] = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) lowerCAmelCase_ : Optional[Any] = image_processor(images=__UpperCamelCase ,return_tensors='''pt''' ) lowerCAmelCase_ : List[str] = timm_model(inputs['''pixel_values'''] ) lowerCAmelCase_ : Union[str, Any] = model(**__UpperCamelCase ).logits assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) print(f"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase ,__UpperCamelCase ) ,organization='''nandwalritik''' ,commit_message='''Add model''' ,) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A__ : Optional[Any] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
103
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return " ".join( "".join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
195
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Dict = "ctrl" snake_case__ : int = ["past_key_values"] snake_case__ : Tuple = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , UpperCAmelCase__ : Any=2_4_6_5_3_4 , UpperCAmelCase__ : List[Any]=2_5_6 , UpperCAmelCase__ : Optional[int]=1_2_8_0 , UpperCAmelCase__ : Optional[Any]=8_1_9_2 , UpperCAmelCase__ : int=4_8 , UpperCAmelCase__ : Optional[int]=1_6 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=1E-6 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Tuple , ) -> str: __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = n_positions __SCREAMING_SNAKE_CASE = n_embd __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = dff __SCREAMING_SNAKE_CASE = resid_pdrop __SCREAMING_SNAKE_CASE = embd_pdrop __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = use_cache super().__init__(**UpperCAmelCase__ )
195
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) __A = BlipProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Union[str, Any] ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : List[str] ,**A : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : int ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : List[Any] ): __A = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
15
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE :List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[str] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
1
"""simple docstring""" from __future__ import annotations UpperCAmelCase__ = 1.6021E-19 # units = C def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,): """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
'''simple docstring''' import warnings from functools import wraps from typing import Callable def lowerCamelCase (_SCREAMING_SNAKE_CASE : Callable ): @wraps(_SCREAMING_SNAKE_CASE ) def _inner_fn(*_SCREAMING_SNAKE_CASE : List[str] , **_SCREAMING_SNAKE_CASE : List[str] ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , _SCREAMING_SNAKE_CASE , ) return fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return _inner_fn
27
'''simple docstring''' import os import sys __lowercase : List[Any] = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __lowercase : int = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : List[str] , **_SCREAMING_SNAKE_CASE : List[Any] ): return AutoConfig.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : Any ): return AutoTokenizer.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : int , **_SCREAMING_SNAKE_CASE : Union[str, Any] ): return AutoModel.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : List[Any] , **_SCREAMING_SNAKE_CASE : Optional[int] ): return AutoModelForCausalLM.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : Union[str, Any] , **_SCREAMING_SNAKE_CASE : List[Any] ): return AutoModelForMaskedLM.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : Optional[Any] , **_SCREAMING_SNAKE_CASE : Any ): return AutoModelForSequenceClassification.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCamelCase (*_SCREAMING_SNAKE_CASE : Any , **_SCREAMING_SNAKE_CASE : List[str] ): return AutoModelForQuestionAnswering.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
27
1
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : int ): debug_launcher(test_script.main ) def lowerCAmelCase_ ( self : List[str] ): debug_launcher(test_ops.main )
30
"""simple docstring""" def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
30
1
from string import ascii_lowercase, ascii_uppercase def _a ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" if not sentence: return "" UpperCamelCase__ : Optional[Any] = dict(zip(snake_case_ , snake_case_ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
146
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _lowercase ( datasets.BuilderConfig ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None class _lowercase ( datasets.ArrowBasedBuilder ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = PandasConfig def a ( self : Union[str, Any] ) -> int: return datasets.DatasetInfo(features=self.config.features ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE__ , (str, list, tuple) ): __lowerCAmelCase = data_files if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowerCAmelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowerCAmelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE__ , gen_kwargs={"""files""": files} ) ) return splits def a ( self : Any , SCREAMING_SNAKE_CASE__ : pa.Table ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __lowerCAmelCase = table_cast(SCREAMING_SNAKE_CASE__ , self.config.features.arrow_schema ) return pa_table def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: for i, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE__ ) ): with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as f: __lowerCAmelCase = pa.Table.from_pandas(pd.read_pickle(SCREAMING_SNAKE_CASE__ ) ) yield i, self._cast_table(SCREAMING_SNAKE_CASE__ )
229
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase :List[str] = logging.get_logger(__name__) __UpperCAmelCase :int = { "google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json", "google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json", "google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json", "google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = "mobilenet_v2" def __init__( self : Optional[int] , snake_case : Tuple=3 , snake_case : List[str]=224 , snake_case : Dict=1.0 , snake_case : Tuple=8 , snake_case : Optional[Any]=8 , snake_case : Optional[Any]=6 , snake_case : List[str]=32 , snake_case : Optional[int]=True , snake_case : Dict=True , snake_case : Union[str, Any]="relu6" , snake_case : Tuple=True , snake_case : Tuple=0.8 , snake_case : Optional[int]=0.02 , snake_case : Any=0.001 , snake_case : int=255 , **snake_case : Any , ) -> int: super().__init__(**snake_case ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : int = image_size __UpperCAmelCase : Dict = depth_multiplier __UpperCAmelCase : Tuple = depth_divisible_by __UpperCAmelCase : Optional[int] = min_depth __UpperCAmelCase : str = expand_ratio __UpperCAmelCase : Union[str, Any] = output_stride __UpperCAmelCase : Optional[int] = first_layer_is_expansion __UpperCAmelCase : Union[str, Any] = finegrained_output __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Optional[Any] = tf_padding __UpperCAmelCase : int = classifier_dropout_prob __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : Union[str, Any] = semantic_loss_ignore_index class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = version.parse("1.11" ) @property def lowerCamelCase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def lowerCamelCase__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def lowerCamelCase__ ( self : Any ) -> float: return 1E-4
240
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( _a ): """simple docstring""" def __init__( self : Optional[Any] , snake_case : Dict , snake_case : Dict=13 , snake_case : str=7 , snake_case : Dict=True , snake_case : Any=True , snake_case : Optional[Any]=True , snake_case : Optional[Any]=True , snake_case : List[str]=99 , snake_case : str=32 , snake_case : Any=5 , snake_case : List[str]=4 , snake_case : List[str]=37 , snake_case : int="gelu" , snake_case : int=0.1 , snake_case : int=0.1 , snake_case : Union[str, Any]=512 , snake_case : int=16 , snake_case : Optional[Any]=2 , snake_case : List[Any]=0.02 , snake_case : Any=False , snake_case : int=True , snake_case : Union[str, Any]="None" , snake_case : str=3 , snake_case : Union[str, Any]=4 , snake_case : Any=None , ) -> List[Any]: __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : Any = seq_length __UpperCAmelCase : List[Any] = is_training __UpperCAmelCase : List[str] = use_input_mask __UpperCAmelCase : Union[str, Any] = use_token_type_ids __UpperCAmelCase : Any = use_labels __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Any = type_vocab_size __UpperCAmelCase : Tuple = type_sequence_label_size __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : Any = num_choices __UpperCAmelCase : Any = relative_attention __UpperCAmelCase : Dict = position_biased_input __UpperCAmelCase : Optional[int] = pos_att_type __UpperCAmelCase : Dict = scope def lowerCamelCase__ ( self : Dict ) -> Optional[int]: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[Any] = None if self.use_input_mask: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : List[str] = None __UpperCAmelCase : int = None __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Tuple ) -> List[str]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCamelCase__ ( self : Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = self.get_config() __UpperCAmelCase : Dict = 300 return config def lowerCamelCase__ ( self : Any , snake_case : int ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCamelCase__ ( self : List[Any] , snake_case : Optional[int] , snake_case : Any , snake_case : List[Any] , snake_case : Any , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase : List[str] = DebertaModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )[0] __UpperCAmelCase : Tuple = model(snake_case , token_type_ids=snake_case )[0] __UpperCAmelCase : Optional[int] = model(snake_case )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCamelCase__ ( self : Optional[int] , snake_case : int , snake_case : Tuple , snake_case : Any , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = DebertaForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : int = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Tuple , snake_case : List[Any] , snake_case : str , snake_case : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : List[Any] = DebertaForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Any = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case ) def lowerCamelCase__ ( self : str , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] , snake_case : Dict , snake_case : Optional[int] ) -> int: __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Union[str, Any] = DebertaForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Any = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : str , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : Optional[int] , snake_case : int , snake_case : int , snake_case : str ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = DebertaForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Optional[int] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : str ) -> int: __UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Dict = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Any = False def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Dict = DebertaModelTester(self ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : Optional[int] ) -> Dict: self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> List[str]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> str: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case ) @slow def lowerCamelCase__ ( self : Dict ) -> Tuple: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : str = DebertaModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def lowerCamelCase__ ( self : Dict ) -> Tuple: pass @slow def lowerCamelCase__ ( self : int ) -> Optional[Any]: __UpperCAmelCase : Any = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) __UpperCAmelCase : Any = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __UpperCAmelCase : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase : int = model(snake_case , attention_mask=snake_case )[0] # compare the actual values for a slice. __UpperCAmelCase : Optional[Any] = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
240
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : List[Any] = SpeechTaTokenizer lowerCAmelCase : Optional[int] = False lowerCAmelCase : str = True def lowerCAmelCase__ ( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : Any = SpeechTaTokenizer(lowerCamelCase__ ) _UpperCAmelCase : Any = AddedToken("<mask>" , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) _UpperCAmelCase : str = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Optional[int] ) ->str: '''simple docstring''' _UpperCAmelCase : str = "this is a test" _UpperCAmelCase : Any = "this is a test" return input_text, output_text def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : List[Any]=20 , lowerCamelCase__ : Union[str, Any]=5 ) ->int: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : str = self.get_input_output_texts(lowerCamelCase__ ) _UpperCAmelCase : Any = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = tokenizer.decode(lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) return text, ids def lowerCAmelCase__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = "<pad>" _UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(lowerCamelCase__ ) , 81 ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCAmelCase__ ( self : List[str] ) ->Dict: '''simple docstring''' _UpperCAmelCase : int = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _UpperCAmelCase : List[str] = tokenizer.vocab_size _UpperCAmelCase : Optional[Any] = len(lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _UpperCAmelCase : str = ["aaaaa bbbbbb", "cccccccccdddddddd"] _UpperCAmelCase : Optional[int] = tokenizer.add_tokens(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = tokenizer.vocab_size _UpperCAmelCase : Dict = len(lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ , 0 ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , len(lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , all_size + len(lowerCamelCase__ ) ) _UpperCAmelCase : Union[str, Any] = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=lowerCamelCase__ ) self.assertGreaterEqual(len(lowerCamelCase__ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _UpperCAmelCase : List[str] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _UpperCAmelCase : str = tokenizer.add_special_tokens(lowerCamelCase__ ) _UpperCAmelCase : Dict = tokenizer.vocab_size _UpperCAmelCase : Optional[Any] = len(lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ , 0 ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , len(lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , all_size_a + len(lowerCamelCase__ ) ) _UpperCAmelCase : str = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=lowerCamelCase__ ) self.assertGreaterEqual(len(lowerCamelCase__ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCAmelCase__ ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.get_tokenizer() _UpperCAmelCase : List[Any] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(lowerCamelCase__ , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _UpperCAmelCase : Tuple = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase__ , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _UpperCAmelCase : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) # fmt: off self.assertListEqual(lowerCamelCase__ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def lowerCAmelCase__ ( self : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _UpperCAmelCase : List[Any] = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=lowerCamelCase__ , )
234
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
234
1
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") _lowercase: Dict = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) _lowercase: Dict = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase: List[str] = BeautifulSoup(res.text, "html.parser") _lowercase: Optional[int] = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(F"""https://google.com{link.get("href")}""")
71
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase: Optional[Any] = logging.get_logger(__name__) _lowercase: Any = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = "git_vision_model" def __init__(self , lowerCamelCase_=768 , lowerCamelCase_=3072 , lowerCamelCase_=12 , lowerCamelCase_=12 , lowerCamelCase_=3 , lowerCamelCase_=224 , lowerCamelCase_=16 , lowerCamelCase_="quick_gelu" , lowerCamelCase_=1E-5 , lowerCamelCase_=0.0 , lowerCamelCase_=0.02 , **lowerCamelCase_ , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) a = hidden_size a = intermediate_size a = num_hidden_layers a = num_attention_heads a = num_channels a = patch_size a = image_size a = initializer_range a = attention_dropout a = layer_norm_eps a = hidden_act @classmethod def UpperCamelCase_ (cls , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase_ ) a , a = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": a = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = "git" def __init__(self , lowerCamelCase_=None , lowerCamelCase_=30522 , lowerCamelCase_=768 , lowerCamelCase_=6 , lowerCamelCase_=12 , lowerCamelCase_=3072 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=1024 , lowerCamelCase_=0.02 , lowerCamelCase_=1E-1_2 , lowerCamelCase_=0 , lowerCamelCase_="absolute" , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=101 , lowerCamelCase_=102 , lowerCamelCase_=None , **lowerCamelCase_ , ): """simple docstring""" super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: a = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) a = GitVisionConfig(**lowerCamelCase_ ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = initializer_range a = layer_norm_eps a = position_embedding_type a = use_cache a = tie_word_embeddings a = num_image_with_embedding a = bos_token_id a = eos_token_id def UpperCamelCase_ (self ): """simple docstring""" a = copy.deepcopy(self.__dict__ ) a = self.vision_config.to_dict() a = self.__class__.model_type return output
71
1