code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' if radian_mode: return [magnitude * cos(SCREAMING_SNAKE_CASE ), magnitude * sin(SCREAMING_SNAKE_CASE )] return [magnitude * cos(radians(SCREAMING_SNAKE_CASE ) ), magnitude * sin(radians(SCREAMING_SNAKE_CASE ) )] def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : NDArray[floataa] , SCREAMING_SNAKE_CASE : NDArray[floataa] , SCREAMING_SNAKE_CASE : float = 10**-1 ): '''simple docstring''' lowerCAmelCase = cross(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = sum(SCREAMING_SNAKE_CASE ) return abs(SCREAMING_SNAKE_CASE ) < eps if __name__ == "__main__": # Test to check if it works SCREAMING_SNAKE_CASE__ = array( [ polar_force(7_18.4, 180 - 30), polar_force(8_79.54, 45), polar_force(100, -90), ] ) SCREAMING_SNAKE_CASE__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg SCREAMING_SNAKE_CASE__ = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) SCREAMING_SNAKE_CASE__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg SCREAMING_SNAKE_CASE__ = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) SCREAMING_SNAKE_CASE__ = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
46
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_=False, lowercase_=False, lowercase_=2, lowercase_=99, lowercase_=0, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=12, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_="last", lowercase_=None, lowercase_=None, ) -> List[Any]: """simple docstring""" a__ =parent a__ =batch_size a__ =seq_length a__ =is_training a__ =use_input_lengths a__ =use_token_type_ids a__ =use_labels a__ =gelu_activation a__ =sinusoidal_embeddings a__ =causal a__ =asm a__ =n_langs a__ =vocab_size a__ =n_special a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =num_labels a__ =num_choices a__ =summary_type a__ =use_proj a__ =scope def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) a__ =random_attention_mask([self.batch_size, self.seq_length] ) a__ =None if self.use_input_lengths: a__ =( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.seq_length], self.n_langs ) a__ =None a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) a__ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) a__ =ids_tensor([self.batch_size], 2 ).float() a__ =ids_tensor([self.batch_size], self.num_choices ) a__ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =FlaubertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, lengths=lowercase_, langs=lowercase_ ) a__ =model(lowercase_, langs=lowercase_ ) a__ =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> str: """simple docstring""" a__ =FlaubertWithLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =FlaubertForQuestionAnsweringSimple(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model(lowercase_, start_positions=lowercase_, end_positions=lowercase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[Any]: """simple docstring""" a__ =FlaubertForQuestionAnswering(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model( lowercase_, start_positions=lowercase_, end_positions=lowercase_, cls_index=lowercase_, is_impossible=lowercase_, p_mask=lowercase_, ) a__ =model( lowercase_, start_positions=lowercase_, end_positions=lowercase_, cls_index=lowercase_, is_impossible=lowercase_, ) ((a__), ) =result_with_labels.to_tuple() a__ =model(lowercase_, start_positions=lowercase_, end_positions=lowercase_ ) ((a__), ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[Any]: """simple docstring""" a__ =FlaubertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model(lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[int]: """simple docstring""" a__ =self.num_labels a__ =FlaubertForTokenClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =self.num_choices a__ =FlaubertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =model( lowercase_, attention_mask=lowercase_, token_type_ids=lowercase_, labels=lowercase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ) =config_and_inputs a__ ={ '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase__ : Dict = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_=False ) -> str: """simple docstring""" a__ =super()._prepare_for_class(lowercase_, lowercase_, return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowercase_ ) a__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowercase_ ) return inputs_dict def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =FlaubertModelTester(self ) a__ =ConfigTester(self, config_class=lowercase_, emb_dim=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase_ ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase_ ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase_ ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase_ ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase_ ) def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase_ ) @slow def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ =FlaubertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> int: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a__ =True a__ =model_class(config=lowercase_ ) a__ =self._prepare_for_class(lowercase_, lowercase_ ) a__ =torch.jit.trace( lowercase_, (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase_, os.path.join(lowercase_, '''traced_model.pt''' ) ) a__ =torch.jit.load(os.path.join(lowercase_, '''traced_model.pt''' ), map_location=lowercase_ ) loaded(inputs_dict['''input_ids'''].to(lowercase_ ), inputs_dict['''attention_mask'''].to(lowercase_ ) ) @require_torch class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" a__ =FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) a__ =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): a__ =model(lowercase_ )[0] a__ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape, lowercase_ ) a__ =torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowercase_, atol=1E-4 ) )
188
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = position UpperCAmelCase : List[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase : List[Any] = [] for position in positions: UpperCAmelCase : Optional[Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(UpperCAmelCase_ ) return permissible_positions def UpperCamelCase( UpperCAmelCase_ ): return not any(elem == 0 for row in board for elem in row ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if is_complete(UpperCAmelCase_ ): return True for position in get_valid_pos(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): UpperCAmelCase : Dict = position if board[y][x] == 0: UpperCAmelCase : Optional[Any] = curr + 1 if open_knight_tour_helper(UpperCAmelCase_ , UpperCAmelCase_ , curr + 1 ): return True UpperCAmelCase : Tuple = 0 return False def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : str = [[0 for i in range(UpperCAmelCase_ )] for j in range(UpperCAmelCase_ )] for i in range(UpperCAmelCase_ ): for j in range(UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = 1 if open_knight_tour_helper(UpperCAmelCase_ , (i, j) , 1 ): return board UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
364
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : VQModel , lowercase_ : UNetaDModel , lowercase_ : DDIMScheduler ) -> int: super().__init__() self.register_modules(vqvae=lowercase_ , unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : str , lowercase_ : int = 1 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : float = 0.0 , lowercase_ : int = 50 , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , **lowercase_ : Optional[Any] , ) -> Union[Tuple, ImagePipelineOutput]: UpperCAmelCase : str = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowercase_ , ) UpperCAmelCase : Any = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase : Optional[Any] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowercase_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCAmelCase : Optional[int] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase : Tuple = {} if accepts_eta: UpperCAmelCase : List[str] = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCAmelCase : Dict = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) # predict the noise residual UpperCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Dict = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample # decode the image latents with the VAE UpperCAmelCase : Any = self.vqvae.decode(lowercase_ ).sample UpperCAmelCase : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Tuple = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
280
0
"""simple docstring""" import os import sys _a : List[Any] = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _a : Optional[Any] = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[str] ,**_lowerCamelCase : Optional[Any] ) -> Any: return AutoConfig.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[str] ,**_lowerCamelCase : int ) -> List[str]: return AutoTokenizer.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : Any ,**_lowerCamelCase : str ) -> Any: return AutoModel.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[str] ,**_lowerCamelCase : List[Any] ) -> Dict: return AutoModelForCausalLM.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[Any] ,**_lowerCamelCase : Optional[int] ) -> Union[str, Any]: return AutoModelForMaskedLM.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : List[Any] ,**_lowerCamelCase : Dict ) -> Dict: return AutoModelForSequenceClassification.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *_lowerCamelCase : Union[str, Any] ,**_lowerCamelCase : List[Any] ) -> Optional[Any]: return AutoModelForQuestionAnswering.from_pretrained(*_lowerCamelCase ,**_lowerCamelCase )
44
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Dict: _lowerCAmelCase : List[Any] = torch.exp(_lowerCamelCase ) _lowerCAmelCase : List[Any] = torch.sum(_lowerCamelCase ,dim=1 ) # sum of exp(x_i) _lowerCAmelCase : Dict = torch.sum(x * exp_x ,dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowerCamelCase ) - B / A class __A ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : int = config.output_attentions _lowerCAmelCase : Any = config.output_hidden_states _lowerCAmelCase : List[Any] = nn.ModuleList([BertLayer(a__ ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase : Any = nn.ModuleList([BertHighway(a__ ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase : str = [-1 for _ in range(config.num_hidden_layers )] def __A ( self , a__ ): if (type(a__ ) is float) or (type(a__ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowerCAmelCase : Tuple = x else: _lowerCAmelCase : Optional[int] = x def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __A ( self , a__ , a__=None , a__=None , a__=None , a__=None , ): _lowerCAmelCase : Any = () _lowerCAmelCase : Optional[int] = () _lowerCAmelCase : List[Any] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowerCAmelCase : str = all_hidden_states + (hidden_states,) _lowerCAmelCase : List[str] = layer_module( a__ , a__ , head_mask[i] , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = layer_outputs[0] if self.output_attentions: _lowerCAmelCase : Dict = all_attentions + (layer_outputs[1],) _lowerCAmelCase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowerCAmelCase : Union[str, Any] = current_outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase : Optional[int] = current_outputs + (all_attentions,) _lowerCAmelCase : Optional[Any] = self.highway[i](a__ ) # logits, pooled_output if not self.training: _lowerCAmelCase : Tuple = highway_exit[0] _lowerCAmelCase : Any = entropy(a__ ) _lowerCAmelCase : Optional[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowerCAmelCase : Union[str, Any] = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowerCAmelCase : List[str] = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(a__ , i + 1 ) else: _lowerCAmelCase : Dict = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowerCAmelCase : List[Any] = all_hidden_states + (hidden_states,) _lowerCAmelCase : List[Any] = (hidden_states,) if self.output_hidden_states: _lowerCAmelCase : List[str] = outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase : Any = outputs + (all_attentions,) _lowerCAmelCase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , SCREAMING_SNAKE_CASE_ , ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCAmelCase : Any = config _lowerCAmelCase : Tuple = BertEmbeddings(a__ ) _lowerCAmelCase : Tuple = DeeBertEncoder(a__ ) _lowerCAmelCase : List[str] = BertPooler(a__ ) self.init_weights() def __A ( self ): self.encoder.init_highway_pooler(self.pooler ) def __A ( self ): return self.embeddings.word_embeddings def __A ( self , a__ ): _lowerCAmelCase : Dict = value def __A ( self , a__ ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(a__ ) @add_start_docstrings_to_model_forward(a__ ) def __A ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: _lowerCAmelCase : Any = input_ids.size() elif inputs_embeds is not None: _lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) _lowerCAmelCase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowerCAmelCase : List[Any] = torch.ones(a__ , device=a__ ) if encoder_attention_mask is None: _lowerCAmelCase : Optional[Any] = torch.ones(a__ , device=a__ ) if token_type_ids is None: _lowerCAmelCase : Dict = torch.zeros(a__ , dtype=torch.long , device=a__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(a__ , a__ , a__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowerCAmelCase : Dict = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowerCAmelCase : Tuple = encoder_attention_mask[:, None, None, :] _lowerCAmelCase : Union[str, Any] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowerCAmelCase : Optional[Any] = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowerCAmelCase : Optional[int] = self.get_head_mask(a__ , self.config.num_hidden_layers ) _lowerCAmelCase : Dict = self.embeddings( input_ids=a__ , position_ids=a__ , token_type_ids=a__ , inputs_embeds=a__ ) _lowerCAmelCase : Union[str, Any] = self.encoder( a__ , attention_mask=a__ , head_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) _lowerCAmelCase : Dict = encoder_outputs[0] _lowerCAmelCase : Union[str, Any] = self.pooler(a__ ) _lowerCAmelCase : Dict = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ ): _lowerCAmelCase : str = message _lowerCAmelCase : str = exit_layer # start from 1! class __A ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : Any = BertPooler(a__ ) _lowerCAmelCase : str = nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.num_labels ) def __A ( self , a__ ): # Pooler _lowerCAmelCase : Tuple = encoder_outputs[0] _lowerCAmelCase : int = self.pooler(a__ ) # "return" pooler_output # BertModel _lowerCAmelCase : Union[str, Any] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowerCAmelCase : Optional[int] = bmodel_output[1] _lowerCAmelCase : Tuple = self.dropout(a__ ) _lowerCAmelCase : Dict = self.classifier(a__ ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , SCREAMING_SNAKE_CASE_ , ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCAmelCase : List[str] = config.num_labels _lowerCAmelCase : Optional[Any] = config.num_hidden_layers _lowerCAmelCase : str = DeeBertModel(a__ ) _lowerCAmelCase : Tuple = nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase : List[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(a__ ) def __A ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=-1 , a__=False , ): _lowerCAmelCase : Dict = self.num_layers try: _lowerCAmelCase : str = self.bert( a__ , attention_mask=a__ , token_type_ids=a__ , position_ids=a__ , head_mask=a__ , inputs_embeds=a__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowerCAmelCase : Any = outputs[1] _lowerCAmelCase : Optional[int] = self.dropout(a__ ) _lowerCAmelCase : List[str] = self.classifier(a__ ) _lowerCAmelCase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCAmelCase : Tuple = e.message _lowerCAmelCase : int = e.exit_layer _lowerCAmelCase : Union[str, Any] = outputs[0] if not self.training: _lowerCAmelCase : Tuple = entropy(a__ ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Optional[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCAmelCase : Tuple = MSELoss() _lowerCAmelCase : int = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase : Any = CrossEntropyLoss() _lowerCAmelCase : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowerCAmelCase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowerCAmelCase : Dict = highway_exit[0] if not self.training: highway_logits_all.append(a__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowerCAmelCase : List[Any] = MSELoss() _lowerCAmelCase : int = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase : Optional[int] = CrossEntropyLoss() _lowerCAmelCase : List[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(a__ ) if train_highway: _lowerCAmelCase : List[Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowerCAmelCase : Any = (loss,) + outputs if not self.training: _lowerCAmelCase : Dict = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCAmelCase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
44
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class A_ ( a__ ): _UpperCAmelCase : Union[str, Any] = '''efficientnet''' def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : int = 3 ,SCREAMING_SNAKE_CASE__ : int = 6_0_0 ,SCREAMING_SNAKE_CASE__ : float = 2.0 ,SCREAMING_SNAKE_CASE__ : float = 3.1 ,SCREAMING_SNAKE_CASE__ : int = 8 ,SCREAMING_SNAKE_CASE__ : List[int] = [3, 3, 5, 3, 5, 5, 3] ,SCREAMING_SNAKE_CASE__ : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] ,SCREAMING_SNAKE_CASE__ : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] ,SCREAMING_SNAKE_CASE__ : List[int] = [] ,SCREAMING_SNAKE_CASE__ : List[int] = [1, 2, 2, 2, 1, 2, 1] ,SCREAMING_SNAKE_CASE__ : List[int] = [1, 2, 2, 3, 3, 4, 1] ,SCREAMING_SNAKE_CASE__ : List[int] = [1, 6, 6, 6, 6, 6, 6] ,SCREAMING_SNAKE_CASE__ : float = 0.25 ,SCREAMING_SNAKE_CASE__ : str = "swish" ,SCREAMING_SNAKE_CASE__ : int = 2_5_6_0 ,SCREAMING_SNAKE_CASE__ : str = "mean" ,SCREAMING_SNAKE_CASE__ : float = 0.02 ,SCREAMING_SNAKE_CASE__ : float = 0.001 ,SCREAMING_SNAKE_CASE__ : float = 0.99 ,SCREAMING_SNAKE_CASE__ : float = 0.5 ,SCREAMING_SNAKE_CASE__ : float = 0.2 ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = num_channels __lowerCamelCase : str = image_size __lowerCamelCase : Any = width_coefficient __lowerCamelCase : Any = depth_coefficient __lowerCamelCase : Any = depth_divisor __lowerCamelCase : Optional[Any] = kernel_sizes __lowerCamelCase : Union[str, Any] = in_channels __lowerCamelCase : List[Any] = out_channels __lowerCamelCase : Optional[Any] = depthwise_padding __lowerCamelCase : int = strides __lowerCamelCase : int = num_block_repeats __lowerCamelCase : Optional[Any] = expand_ratios __lowerCamelCase : int = squeeze_expansion_ratio __lowerCamelCase : Any = hidden_act __lowerCamelCase : Optional[Any] = hidden_dim __lowerCamelCase : Union[str, Any] = pooling_type __lowerCamelCase : Optional[Any] = initializer_range __lowerCamelCase : Tuple = batch_norm_eps __lowerCamelCase : Optional[int] = batch_norm_momentum __lowerCamelCase : Any = dropout_rate __lowerCamelCase : List[Any] = drop_connect_rate __lowerCamelCase : int = sum(SCREAMING_SNAKE_CASE__) * 4 class A_ ( a__ ): _UpperCAmelCase : Tuple = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Union[str, Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def lowerCAmelCase ( self : List[Any]): return 1E-5
370
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class A_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : List[str]): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = TFAutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Optional[int]): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : str = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = AutoModelForPreTraining.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Optional[int]): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Any = AutoModelForCausalLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : List[Any]): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : List[str] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Tuple): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Dict = TFAutoModelForMaskedLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = AutoModelForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Optional[Any] = AutoModelForMaskedLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : str): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Dict = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained( SCREAMING_SNAKE_CASE__ ,output_loading_info=SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Optional[Any]): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : List[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = TFAutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Any): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCamelCase : List[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = TFAutoModelForQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = AutoModelForQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0) __lowerCamelCase : Union[str, Any] = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : str = TFAutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_pt=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0) __lowerCamelCase : Optional[int] = AutoModelWithLMHead.from_pretrained(SCREAMING_SNAKE_CASE__ ,from_tf=SCREAMING_SNAKE_CASE__) self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.assertEqual(model.num_parameters() ,1_4_4_1_0) self.assertEqual(model.num_parameters(only_trainable=SCREAMING_SNAKE_CASE__) ,1_4_4_1_0)
113
0
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __a = "hf-internal-testing/tiny-random-bert" __a = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __a = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: Optional[int] ) -> Tuple: snake_case_ :Tuple = cached_file(snake_case , snake_case ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(snake_case ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(snake_case , snake_case ) ) ) with open(os.path.join(snake_case , """refs""" , """main""" ) ) as f: snake_case_ :List[str] = f.read() self.assertEqual(snake_case , os.path.join(snake_case , """snapshots""" , snake_case , snake_case ) ) self.assertTrue(os.path.isfile(snake_case ) ) # File is cached at the same place the second time. snake_case_ :Tuple = cached_file(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) # Using a specific revision to test the full commit hash. snake_case_ :List[str] = cached_file(snake_case , snake_case , revision="""9b8c223""" ) self.assertEqual(snake_case , os.path.join(snake_case , """snapshots""" , snake_case , snake_case ) ) def lowerCAmelCase_ ( self: List[str] ) -> List[Any]: with self.assertRaisesRegex(snake_case , """is not a valid model identifier""" ): snake_case_ :int = cached_file("""tiny-random-bert""" , snake_case ) with self.assertRaisesRegex(snake_case , """is not a valid git identifier""" ): snake_case_ :str = cached_file(snake_case , snake_case , revision="""aaaa""" ) with self.assertRaisesRegex(snake_case , """does not appear to have a file named""" ): snake_case_ :Tuple = cached_file(snake_case , """conf""" ) def lowerCAmelCase_ ( self: int ) -> List[str]: with self.assertRaisesRegex(snake_case , """does not appear to have a file named""" ): snake_case_ :Any = cached_file(snake_case , """conf""" ) with open(os.path.join(snake_case , """refs""" , """main""" ) ) as f: snake_case_ :Optional[Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(snake_case , """.no_exist""" , snake_case , """conf""" ) ) ) snake_case_ :List[str] = cached_file(snake_case , """conf""" , _raise_exceptions_for_missing_entries=snake_case ) self.assertIsNone(snake_case ) snake_case_ :int = cached_file(snake_case , """conf""" , local_files_only=snake_case , _raise_exceptions_for_missing_entries=snake_case ) self.assertIsNone(snake_case ) snake_case_ :Optional[int] = mock.Mock() snake_case_ :List[Any] = 500 snake_case_ :List[str] = {} snake_case_ :Dict = HTTPError snake_case_ :Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=snake_case ) as mock_head: snake_case_ :Tuple = cached_file(snake_case , """conf""" , _raise_exceptions_for_connection_errors=snake_case ) self.assertIsNone(snake_case ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self: str ) -> Tuple: self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , snake_case ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , snake_case ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , snake_case ) ) def lowerCAmelCase_ ( self: List[Any] ) -> List[str]: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(snake_case , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , snake_case ) # The function raises if the revision does not exist. with self.assertRaisesRegex(snake_case , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , snake_case , revision="""ahaha""" ) snake_case_ :Optional[Any] = get_file_from_repo("""bert-base-cased""" , snake_case ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case_ :int = json.loads(open(snake_case , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 768 ) def lowerCAmelCase_ ( self: List[Any] ) -> str: with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ :Union[str, Any] = Path(snake_case ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(snake_case , """a.txt""" ) , str(snake_case ) ) self.assertIsNone(get_file_from_repo(snake_case , """b.txt""" ) )
66
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> int: if attention_mask is None: __lowercase : int = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __lowerCAmelCase : """simple docstring""" A__ : Union[str, Any] = OPTConfig A__ : Optional[int] = {} A__ : Optional[int] = '''gelu''' def __init__( self : Tuple , _snake_case : Dict , _snake_case : List[str]=13 , _snake_case : Optional[Any]=7 , _snake_case : List[str]=True , _snake_case : Union[str, Any]=False , _snake_case : Union[str, Any]=99 , _snake_case : Dict=16 , _snake_case : Any=2 , _snake_case : Dict=4 , _snake_case : List[Any]=4 , _snake_case : Optional[int]="gelu" , _snake_case : List[str]=0.1 , _snake_case : List[str]=0.1 , _snake_case : List[Any]=20 , _snake_case : Any=2 , _snake_case : List[str]=1 , _snake_case : Tuple=0 , _snake_case : Dict=16 , _snake_case : Tuple=16 , ): __lowercase : Dict = parent __lowercase : str = batch_size __lowercase : List[str] = seq_length __lowercase : Optional[int] = is_training __lowercase : Optional[int] = use_labels __lowercase : Optional[int] = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : Dict = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Any = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Union[str, Any] = max_position_embeddings __lowercase : Any = eos_token_id __lowercase : List[Any] = pad_token_id __lowercase : Optional[int] = bos_token_id __lowercase : List[str] = embed_dim __lowercase : Any = word_embed_proj_dim __lowercase : Optional[int] = False def snake_case_ ( self : Optional[Any] ): __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase : Any = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_snake_case , **self.config_updates , ) __lowercase : Optional[int] = prepare_opt_inputs_dict(_snake_case , _snake_case ) return config, inputs_dict def snake_case_ ( self : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] ): __lowercase : int = TFOPTModel(config=_snake_case ) __lowercase : Union[str, Any] = inputs_dict['''input_ids'''] __lowercase : Tuple = input_ids[:1, :] __lowercase : Optional[Any] = inputs_dict['''attention_mask'''][:1, :] __lowercase : Dict = 1 # first forward pass __lowercase : Dict = model(_snake_case , attention_mask=_snake_case , use_cache=_snake_case ) __lowercase , __lowercase : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase : List[str] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase : str = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase : Any = model(_snake_case , attention_mask=_snake_case )[0] __lowercase : List[Any] = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase : Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase : List[str] = output_from_no_past[:, -3:, random_slice_idx] __lowercase : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_snake_case , _snake_case , rtol=1E-3 ) @require_tf class __lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : List[Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () A__ : int = (TFOPTForCausalLM,) if is_tf_available() else () A__ : List[str] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) A__ : Union[str, Any] = False A__ : Optional[int] = False A__ : int = False A__ : List[str] = 1_0 def snake_case_ ( self : Any ): __lowercase : Optional[Any] = TFOPTModelTester(self ) __lowercase : List[Any] = ConfigTester(self , config_class=_snake_case ) def snake_case_ ( self : Tuple ): self.config_tester.run_common_tests() def snake_case_ ( self : int ): __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) def snake_case_ ( self : List[Any] ): __lowercase , __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_snake_case : Optional[int] , _snake_case : Dict ): if hasattr(_snake_case , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_snake_case , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __lowercase : Union[str, Any] = model_class(config=_snake_case ) __lowercase : int = _get_word_embedding_weight(_snake_case , model.get_input_embeddings() ) __lowercase : str = _get_word_embedding_weight(_snake_case , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_snake_case ) __lowercase : Dict = _get_word_embedding_weight(_snake_case , model.get_input_embeddings() ) __lowercase : Tuple = _get_word_embedding_weight(_snake_case , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowercase : List[str] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _snake_case ) # check that weights remain the same after resizing __lowercase : str = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase : str = False self.assertTrue(_snake_case ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _snake_case ) __lowercase : Optional[Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase : Optional[Any] = False self.assertTrue(_snake_case ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> Dict: return tf.constant(__lowerCAmelCase , dtype=tf.intaa ) @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : Optional[Any] = 9_9 def snake_case_ ( self : List[Any] ): __lowercase : List[Any] = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __lowercase : Tuple = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __lowercase : List[str] = input_ids.shape[0] __lowercase : int = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self : Tuple ): __lowercase : int = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) __lowercase : Optional[int] = _long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __lowercase : int = tf.not_equal(_snake_case , model.config.pad_token_id ) with tf.GradientTape(): __lowercase : Optional[int] = model(input_ids=_snake_case , attention_mask=_snake_case ).last_hidden_state __lowercase : Optional[Any] = (1, 11, 512) self.assertEqual(output.shape , _snake_case ) __lowercase : Tuple = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _snake_case , atol=4E-3 ) ) __lowercase : Union[str, Any] = tf.function(_snake_case , jit_compile=_snake_case ) __lowercase : Dict = xla_generate(_snake_case , _snake_case )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _snake_case , atol=4E-2 ) ) @require_tf @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Optional[Any] ): super().setUp() __lowercase : Tuple = '''facebook/opt-350m''' def snake_case_ ( self : int ): __lowercase : Any = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowercase : Dict = GPTaTokenizer.from_pretrained(self.path_model ) __lowercase : Union[str, Any] = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowercase : int = tokenizer(_snake_case , return_tensors='''tf''' , padding=_snake_case , add_special_tokens=_snake_case ) __lowercase : str = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __lowercase : str = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-4 ) ) __lowercase : Any = tf.function(_snake_case , jit_compile=_snake_case ) __lowercase : List[str] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-4 ) ) @require_tf @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def snake_case_ ( self : str ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def snake_case_ ( self : List[Any] ): __lowercase : Optional[Any] = '''facebook/opt-125m''' __lowercase : int = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase : Dict = [] __lowercase : Optional[int] = GPTaTokenizer.from_pretrained(_snake_case ) __lowercase : List[str] = TFOPTForCausalLM.from_pretrained(_snake_case ) for prompt in self.prompts: __lowercase : List[Any] = tokenizer(_snake_case , return_tensors='''tf''' ).input_ids __lowercase : int = model.generate(_snake_case , max_length=10 ) __lowercase : Union[str, Any] = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) predicted_outputs += generated_string self.assertListEqual(_snake_case , _snake_case ) def snake_case_ ( self : Union[str, Any] ): __lowercase : List[str] = '''facebook/opt-350m''' __lowercase : List[Any] = GPTaTokenizer.from_pretrained(_snake_case ) __lowercase : Tuple = TFOPTForCausalLM.from_pretrained(_snake_case ) __lowercase : List[str] = '''left''' # use different length sentences to test batching __lowercase : str = [ '''Hello, my dog is a little''', '''Today, I''', ] __lowercase : List[str] = tokenizer(_snake_case , return_tensors='''tf''' , padding=_snake_case ) __lowercase : Optional[Any] = inputs['''input_ids'''] __lowercase : List[str] = model.generate(input_ids=_snake_case , attention_mask=inputs['''attention_mask'''] ) __lowercase : List[str] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __lowercase : int = model.generate(input_ids=_snake_case ) __lowercase : Optional[Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) __lowercase : Optional[int] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __lowercase : Optional[Any] = model.generate(input_ids=_snake_case , max_length=model.config.max_length - num_paddings ) __lowercase : str = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __lowercase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_snake_case ) __lowercase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=_snake_case ) __lowercase : List[Any] = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(_snake_case , _snake_case ) self.assertListEqual(_snake_case , [non_padded_sentence, padded_sentence] ) def snake_case_ ( self : Union[str, Any] ): __lowercase : List[Any] = '''facebook/opt-350m''' __lowercase : str = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase : Union[str, Any] = [] __lowercase : List[str] = GPTaTokenizer.from_pretrained(_snake_case ) __lowercase : List[str] = TFOPTForCausalLM.from_pretrained(_snake_case ) for prompt in self.prompts: __lowercase : Union[str, Any] = tokenizer(_snake_case , return_tensors='''tf''' ).input_ids __lowercase : List[str] = model.generate(_snake_case , max_length=10 ) __lowercase : Tuple = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) predicted_outputs += generated_string self.assertListEqual(_snake_case , _snake_case )
156
0
def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ): if exponent == 1: return base if exponent % 2 == 0: SCREAMING_SNAKE_CASE = _modexpt(UpperCAmelCase__ , exponent // 2 , UpperCAmelCase__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(UpperCAmelCase__ , exponent - 1 , UpperCAmelCase__ )) % modulo_value def __lowerCamelCase (UpperCAmelCase__ : int = 1_7_7_7 , UpperCAmelCase__ : int = 1_8_5_5 , UpperCAmelCase__ : int = 8 ): SCREAMING_SNAKE_CASE = base for _ in range(1 , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = _modexpt(UpperCAmelCase__ , UpperCAmelCase__ , 1_0**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
206
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class lowercase ( a ): lowercase__ : Optional[Any] = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) lowercase__ : Optional[int] = """CIDAS/clipseg-rd64-refined""" lowercase__ : Tuple = """image_segmenter""" lowercase__ : Optional[Any] = CLIPSegForImageSegmentation lowercase__ : int = ["""image""", """text"""] lowercase__ : List[str] = ["""image"""] def __init__( self : str , *_UpperCamelCase : str , **_UpperCamelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["vision"] ) super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : int , _UpperCamelCase : "Image" , _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=_UpperCamelCase , return_tensors="pt" ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE = self.model(**_UpperCamelCase ).logits return logits def __snake_case( self : Any , _UpperCamelCase : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = outputs.cpu().detach().numpy() SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
206
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : Optional[int] = logging.get_logger(__name__) snake_case__ : Union[str, Any] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class A_ ( _lowerCamelCase ): lowerCAmelCase__ = """table-transformer""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__(self :int , _UpperCamelCase :Tuple=True , _UpperCamelCase :int=None , _UpperCamelCase :Tuple=3 , _UpperCamelCase :int=100 , _UpperCamelCase :int=6 , _UpperCamelCase :List[str]=2048 , _UpperCamelCase :Tuple=8 , _UpperCamelCase :int=6 , _UpperCamelCase :Dict=2048 , _UpperCamelCase :List[str]=8 , _UpperCamelCase :str=0.0 , _UpperCamelCase :Optional[int]=0.0 , _UpperCamelCase :Union[str, Any]=True , _UpperCamelCase :Dict="relu" , _UpperCamelCase :Dict=256 , _UpperCamelCase :Optional[Any]=0.1 , _UpperCamelCase :Union[str, Any]=0.0 , _UpperCamelCase :int=0.0 , _UpperCamelCase :List[Any]=0.0_2 , _UpperCamelCase :Optional[Any]=1.0 , _UpperCamelCase :Any=False , _UpperCamelCase :Tuple="sine" , _UpperCamelCase :Optional[int]="resnet50" , _UpperCamelCase :Optional[Any]=True , _UpperCamelCase :Optional[int]=False , _UpperCamelCase :Dict=1 , _UpperCamelCase :Any=5 , _UpperCamelCase :Optional[Any]=2 , _UpperCamelCase :Dict=1 , _UpperCamelCase :Tuple=1 , _UpperCamelCase :int=5 , _UpperCamelCase :Optional[int]=2 , _UpperCamelCase :List[str]=0.1 , **_UpperCamelCase :Union[str, Any] , )-> Any: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __A = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): __A = backbone_config.get('''model_type''' ) __A = CONFIG_MAPPING[backbone_model_type] __A = config_class.from_dict(_UpperCamelCase ) # set timm attributes to None __A , __A , __A = None, None, None __A = use_timm_backbone __A = backbone_config __A = num_channels __A = num_queries __A = d_model __A = encoder_ffn_dim __A = encoder_layers __A = encoder_attention_heads __A = decoder_ffn_dim __A = decoder_layers __A = decoder_attention_heads __A = dropout __A = attention_dropout __A = activation_dropout __A = activation_function __A = init_std __A = init_xavier_std __A = encoder_layerdrop __A = decoder_layerdrop __A = encoder_layers __A = auxiliary_loss __A = position_embedding_type __A = backbone __A = use_pretrained_backbone __A = dilation # Hungarian matcher __A = class_cost __A = bbox_cost __A = giou_cost # Loss coefficients __A = mask_loss_coefficient __A = dice_loss_coefficient __A = bbox_loss_coefficient __A = giou_loss_coefficient __A = eos_coefficient super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def _lowerCAmelCase (self :str )-> int: return self.encoder_attention_heads @property def _lowerCAmelCase (self :Dict )-> int: return self.d_model class A_ ( _lowerCamelCase ): lowerCAmelCase__ = version.parse("""1.11""" ) @property def _lowerCAmelCase (self :List[Any] )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _lowerCAmelCase (self :int )-> float: return 1e-5 @property def _lowerCAmelCase (self :Union[str, Any] )-> int: return 12
117
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[Any] = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
117
1
import numpy # List of input, output pairs lowerCAmelCase__ = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) lowerCAmelCase__ = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) lowerCAmelCase__ = [2, 4, 1, 5] lowerCAmelCase__ = len(train_data) lowerCAmelCase__ = 0.009 def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__="train" ): """simple docstring""" return calculate_hypothesis_value(lowerCamelCase__ , lowerCamelCase__ ) - output( lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[Any] = 0 for i in range(len(lowerCamelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__=m ): """simple docstring""" lowercase__ : int = 0 for i in range(lowerCamelCase__ ): if index == -1: summation_value += _error(lowerCamelCase__ ) else: summation_value += _error(lowerCamelCase__ ) * train_data[i][0][index] return summation_value def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = summation_of_cost_derivative(lowerCamelCase__ , lowerCamelCase__ ) / m return cost_derivative_value def __lowerCamelCase ( ): """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output lowercase__ : Optional[int] = 0.000002 lowercase__ : List[Any] = 0 lowercase__ : Optional[Any] = 0 while True: j += 1 lowercase__ : Any = [0, 0, 0, 0] for i in range(0 , len(lowerCamelCase__ ) ): lowercase__ : str = get_cost_derivative(i - 1 ) lowercase__ : List[Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase__ , lowerCamelCase__ , atol=lowerCamelCase__ , rtol=lowerCamelCase__ , ): break lowercase__ : Union[str, Any] = temp_parameter_vector print(("Number of iterations:", j) ) def __lowerCamelCase ( ): """simple docstring""" for i in range(len(lowerCamelCase__ ) ): print(("Actual output value:", output(lowerCamelCase__ , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(lowerCamelCase__ , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
121
def __lowerCamelCase ( lowerCamelCase__ = 1_000 ): """simple docstring""" lowercase__ , lowercase__ : int = 1, 1 lowercase__ : List[Any] = [] for i in range(1 , n + 1 ): lowercase__ : Dict = prev_numerator + 2 * prev_denominator lowercase__ : Tuple = prev_numerator + prev_denominator if len(str(lowerCamelCase__ ) ) > len(str(lowerCamelCase__ ) ): result.append(lowerCamelCase__ ) lowercase__ : int = numerator lowercase__ : int = denominator return len(lowerCamelCase__ ) if __name__ == "__main__": print(f'''{solution() = }''')
121
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __snake_case ( a ): UpperCAmelCase__ : torch.FloatTensor class __snake_case ( a , a ): @register_to_config def __init__( self : List[str] , _snake_case : int = 65536 , _snake_case : Optional[int] = None , _snake_case : int = 2 , _snake_case : int = 2 , _snake_case : int = 0 , _snake_case : str = "fourier" , _snake_case : bool = True , _snake_case : bool = False , _snake_case : float = 0.0 , _snake_case : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _snake_case : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _snake_case : Tuple[str] = "UNetMidBlock1D" , _snake_case : str = None , _snake_case : Tuple[int] = (32, 32, 64) , _snake_case : str = None , _snake_case : int = 8 , _snake_case : int = 1 , _snake_case : bool = False , ): """simple docstring""" super().__init__() UpperCAmelCase_ = sample_size # time if time_embedding_type == "fourier": UpperCAmelCase_ = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_snake_case , log=_snake_case , flip_sin_to_cos=_snake_case) UpperCAmelCase_ = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCAmelCase_ = Timesteps( block_out_channels[0] , flip_sin_to_cos=_snake_case , downscale_freq_shift=_snake_case) UpperCAmelCase_ = block_out_channels[0] if use_timestep_embedding: UpperCAmelCase_ = block_out_channels[0] * 4 UpperCAmelCase_ = TimestepEmbedding( in_channels=_snake_case , time_embed_dim=_snake_case , act_fn=_snake_case , out_dim=block_out_channels[0] , ) UpperCAmelCase_ = nn.ModuleList([]) UpperCAmelCase_ = None UpperCAmelCase_ = nn.ModuleList([]) UpperCAmelCase_ = None # down UpperCAmelCase_ = in_channels for i, down_block_type in enumerate(_snake_case): UpperCAmelCase_ = output_channel UpperCAmelCase_ = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCAmelCase_ = i == len(_snake_case) - 1 UpperCAmelCase_ = get_down_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_snake_case) # mid UpperCAmelCase_ = get_mid_block( _snake_case , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_snake_case , add_downsample=_snake_case , ) # up UpperCAmelCase_ = list(reversed(_snake_case)) UpperCAmelCase_ = reversed_block_out_channels[0] if out_block_type is None: UpperCAmelCase_ = out_channels else: UpperCAmelCase_ = block_out_channels[0] for i, up_block_type in enumerate(_snake_case): UpperCAmelCase_ = output_channel UpperCAmelCase_ = ( reversed_block_out_channels[i + 1] if i < len(_snake_case) - 1 else final_upsample_channels ) UpperCAmelCase_ = i == len(_snake_case) - 1 UpperCAmelCase_ = get_up_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_snake_case) UpperCAmelCase_ = output_channel # out UpperCAmelCase_ = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) UpperCAmelCase_ = get_out_block( out_block_type=_snake_case , num_groups_out=_snake_case , embed_dim=block_out_channels[0] , out_channels=_snake_case , act_fn=_snake_case , fc_dim=block_out_channels[-1] // 4 , ) def lowerCamelCase ( self : str , _snake_case : torch.FloatTensor , _snake_case : Union[torch.Tensor, float, int] , _snake_case : bool = True , ): """simple docstring""" UpperCAmelCase_ = timestep if not torch.is_tensor(_snake_case): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_snake_case) and len(timesteps.shape) == 0: UpperCAmelCase_ = timesteps[None].to(sample.device) UpperCAmelCase_ = self.time_proj(_snake_case) if self.config.use_timestep_embedding: UpperCAmelCase_ = self.time_mlp(_snake_case) else: UpperCAmelCase_ = timestep_embed[..., None] UpperCAmelCase_ = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) UpperCAmelCase_ = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down UpperCAmelCase_ = () for downsample_block in self.down_blocks: UpperCAmelCase_ , UpperCAmelCase_ = downsample_block(hidden_states=_snake_case , temb=_snake_case) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCAmelCase_ = self.mid_block(_snake_case , _snake_case) # 4. up for i, upsample_block in enumerate(self.up_blocks): UpperCAmelCase_ = down_block_res_samples[-1:] UpperCAmelCase_ = down_block_res_samples[:-1] UpperCAmelCase_ = upsample_block(_snake_case , res_hidden_states_tuple=_snake_case , temb=_snake_case) # 5. post-process if self.out_block: UpperCAmelCase_ = self.out_block(_snake_case , _snake_case) if not return_dict: return (sample,) return UNetaDOutput(sample=_snake_case)
51
from __future__ import annotations from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self : Tuple , A : int = 6 ) ->None: lowerCamelCase__ : Node | None = None lowerCamelCase__ : Node | None = None self.create_linked_list(A ) def __lowerCamelCase ( self : Optional[int] , A : int ) ->None: lowerCamelCase__ : Optional[int] = Node() lowerCamelCase__ : List[str] = current_node lowerCamelCase__ : Union[str, Any] = current_node lowerCamelCase__ : List[str] = current_node for _ in range(1 , A ): lowerCamelCase__ : List[str] = Node() lowerCamelCase__ : List[Any] = current_node lowerCamelCase__ : Optional[Any] = previous_node lowerCamelCase__ : Dict = current_node lowerCamelCase__ : Union[str, Any] = self.front lowerCamelCase__ : int = previous_node def __lowerCamelCase ( self : Optional[int] ) ->bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __lowerCamelCase ( self : Optional[int] ) ->Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __lowerCamelCase ( self : Optional[int] , A : Any ) ->None: if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCamelCase__ : List[str] = self.rear.next if self.rear: lowerCamelCase__ : Optional[Any] = data def __lowerCamelCase ( self : str ) ->Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCamelCase__ : List[Any] = self.front.data lowerCamelCase__ : Optional[Any] = None return data lowerCamelCase__ : Optional[int] = self.front lowerCamelCase__ : Optional[int] = old_front.next lowerCamelCase__ : Any = old_front.data lowerCamelCase__ : List[str] = None return data def __lowerCamelCase ( self : Dict ) ->None: if self.is_empty(): raise Exception('''Empty Queue''' ) def __lowerCamelCase ( self : int ) ->None: if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ) ->None: lowerCamelCase__ : Any | None = None lowerCamelCase__ : Node | None = None lowerCamelCase__ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
142
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:str = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class snake_case__ ( snake_case_ ): _snake_case : str = """sew-d""" def __init__( self , lowerCamelCase=32 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase=2 , lowerCamelCase=512 , lowerCamelCase=256 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=("p2c", "c2p") , lowerCamelCase="layer_norm" , lowerCamelCase="gelu_python" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=1E-7 , lowerCamelCase=1E-5 , lowerCamelCase="group" , lowerCamelCase="gelu" , lowerCamelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase=False , lowerCamelCase=128 , lowerCamelCase=16 , lowerCamelCase=True , lowerCamelCase=0.05 , lowerCamelCase=10 , lowerCamelCase=2 , lowerCamelCase=0.0 , lowerCamelCase=10 , lowerCamelCase=0 , lowerCamelCase="mean" , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=256 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , **lowerCamelCase , ): super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase ) __a = hidden_size __a = feat_extract_norm __a = feat_extract_activation __a = list(lowerCamelCase ) __a = list(lowerCamelCase ) __a = list(lowerCamelCase ) __a = conv_bias __a = num_conv_pos_embeddings __a = num_conv_pos_embedding_groups __a = len(self.conv_dim ) __a = num_hidden_layers __a = intermediate_size __a = squeeze_factor __a = max_position_embeddings __a = position_buckets __a = share_att_key __a = relative_attention __a = norm_rel_ebd __a = list(lowerCamelCase ) __a = hidden_act __a = num_attention_heads __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = feat_proj_dropout __a = final_dropout __a = layer_norm_eps __a = feature_layer_norm_eps __a = initializer_range __a = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a = apply_spec_augment __a = mask_time_prob __a = mask_time_length __a = mask_time_min_masks __a = mask_feature_prob __a = mask_feature_length __a = mask_feature_min_masks # ctc loss __a = ctc_loss_reduction __a = ctc_zero_infinity # sequence classification __a = use_weighted_layer_sum __a = classifier_proj_size @property def a__ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
268
"""simple docstring""" def _lowerCamelCase( a , a , a , a ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __a = mf_knapsack(i - 1 , a , a , a ) else: __a = max( mf_knapsack(i - 1 , a , a , a ) , mf_knapsack(i - 1 , a , a , j - wt[i - 1] ) + val[i - 1] , ) __a = val return f[i][j] def _lowerCamelCase( a , a , a , a ): __a = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __a = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __a = dp[i - 1][w_] return dp[n][w_], dp def _lowerCamelCase( a , a , a ): if not (isinstance(a , (list, tuple) ) and isinstance(a , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) __a = len(a ) if num_items != len(a ): __a = ( "The number of weights must be the same as the number of values.\n" F"But got {num_items} weights and {len(a )} values" ) raise ValueError(a ) for i in range(a ): if not isinstance(wt[i] , a ): __a = ( "All weights must be integers but got weight of " F"type {type(wt[i] )} at index {i}" ) raise TypeError(a ) __a , __a = knapsack(a , a , a , a ) __a = set() _construct_solution(a , a , a , a , a ) return optimal_val, example_optional_set def _lowerCamelCase( a , a , a , a , a ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(a , a , i - 1 , a , a ) else: optimal_set.add(a ) _construct_solution(a , a , i - 1 , j - wt[i - 1] , a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Tuple = [3, 2, 4, 4] SCREAMING_SNAKE_CASE__:List[str] = [4, 3, 2, 3] SCREAMING_SNAKE_CASE__:List[str] = 4 SCREAMING_SNAKE_CASE__:List[str] = 6 SCREAMING_SNAKE_CASE__:Optional[Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__:Optional[int] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__:Optional[Any] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
268
1
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCAmelCase_ : List[Any] = True except (ImportError, AttributeError): UpperCAmelCase_ : Tuple = object def SCREAMING_SNAKE_CASE_ ( *__magic_name__ : Tuple , **__magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" pass UpperCAmelCase_ : str = False UpperCAmelCase_ : Dict = logging.get_logger('''transformers-cli/serving''') def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Namespace ) -> Optional[int]: """simple docstring""" UpperCamelCase :int = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__magic_name__ , args.host , args.port , args.workers ) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : dict class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : List[str] snake_case__ : Optional[List[int]] class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : str class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Any class _SCREAMING_SNAKE_CASE ( _a ): @staticmethod def _A ( __lowerCamelCase : ArgumentParser ): UpperCamelCase :int = parser.add_parser( """serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" ) serve_parser.add_argument( """--task""" , type=__lowerCamelCase , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , ) serve_parser.add_argument("""--host""" , type=__lowerCamelCase , default="""localhost""" , help="""Interface the server will listen on.""" ) serve_parser.add_argument("""--port""" , type=__lowerCamelCase , default=8_888 , help="""Port the serving will listen to.""" ) serve_parser.add_argument("""--workers""" , type=__lowerCamelCase , default=1 , help="""Number of http workers""" ) serve_parser.add_argument("""--model""" , type=__lowerCamelCase , help="""Model's name or path to stored model.""" ) serve_parser.add_argument("""--config""" , type=__lowerCamelCase , help="""Model's config name or path to stored model.""" ) serve_parser.add_argument("""--tokenizer""" , type=__lowerCamelCase , help="""Tokenizer name to use.""" ) serve_parser.add_argument( """--device""" , type=__lowerCamelCase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) serve_parser.set_defaults(func=__lowerCamelCase ) def __init__( self : Optional[int] , __lowerCamelCase : Pipeline , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : int ): UpperCamelCase :Optional[Any] = pipeline UpperCamelCase :List[str] = host UpperCamelCase :Dict = port UpperCamelCase :List[Any] = workers if not _serve_dependencies_installed: raise RuntimeError( """Using serve command requires FastAPI and uvicorn. """ """Please install transformers with [serving]: pip install \"transformers[serving]\".""" """Or install FastAPI and uvicorn separately.""" ) else: logger.info(F"""Serving model over {host}:{port}""" ) UpperCamelCase :Any = FastAPI( routes=[ APIRoute( """/""" , self.model_info , response_model=__lowerCamelCase , response_class=__lowerCamelCase , methods=["""GET"""] , ), APIRoute( """/tokenize""" , self.tokenize , response_model=__lowerCamelCase , response_class=__lowerCamelCase , methods=["""POST"""] , ), APIRoute( """/detokenize""" , self.detokenize , response_model=__lowerCamelCase , response_class=__lowerCamelCase , methods=["""POST"""] , ), APIRoute( """/forward""" , self.forward , response_model=__lowerCamelCase , response_class=__lowerCamelCase , methods=["""POST"""] , ), ] , timeout=600 , ) def _A ( self : str ): run(self._app , host=self.host , port=self.port , workers=self.workers ) def _A ( self : Optional[Any] ): return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _A ( self : Optional[Any] , __lowerCamelCase : str = Body(__lowerCamelCase , embed=__lowerCamelCase ) , __lowerCamelCase : bool = Body(__lowerCamelCase , embed=__lowerCamelCase ) ): try: UpperCamelCase :Tuple = self._pipeline.tokenizer.tokenize(__lowerCamelCase ) if return_ids: UpperCamelCase :int = self._pipeline.tokenizer.convert_tokens_to_ids(__lowerCamelCase ) return ServeTokenizeResult(tokens=__lowerCamelCase , tokens_ids=__lowerCamelCase ) else: return ServeTokenizeResult(tokens=__lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(__lowerCamelCase )} ) def _A ( self : Optional[int] , __lowerCamelCase : List[int] = Body(__lowerCamelCase , embed=__lowerCamelCase ) , __lowerCamelCase : bool = Body(__lowerCamelCase , embed=__lowerCamelCase ) , __lowerCamelCase : bool = Body(__lowerCamelCase , embed=__lowerCamelCase ) , ): try: UpperCamelCase :Any = self._pipeline.tokenizer.decode(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return ServeDeTokenizeResult(model="""""" , text=__lowerCamelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={"""model""": """""", """error""": str(__lowerCamelCase )} ) async def _A ( self : Tuple , __lowerCamelCase : Dict=Body(__lowerCamelCase , embed=__lowerCamelCase ) ): # Check we don't have empty string if len(__lowerCamelCase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model UpperCamelCase :Optional[int] = self._pipeline(__lowerCamelCase ) return ServeForwardResult(output=__lowerCamelCase ) except Exception as e: raise HTTPException(500 , {"""error""": str(__lowerCamelCase )} )
38
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } UpperCAmelCase_ : int = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" for attribute in key.split(""".""" ): UpperCamelCase :Dict = getattr(__magic_name__ , __magic_name__ ) if weight_type is not None: UpperCamelCase :Optional[int] = getattr(__magic_name__ , __magic_name__ ).shape else: UpperCamelCase :Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase :str = value elif weight_type == "weight_g": UpperCamelCase :int = value elif weight_type == "weight_v": UpperCamelCase :int = value elif weight_type == "bias": UpperCamelCase :List[Any] = value else: UpperCamelCase :Any = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" UpperCamelCase :Union[str, Any] = [] UpperCamelCase :Dict = fairseq_model.state_dict() UpperCamelCase :int = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase :str = False if "conv_layers" in name: load_conv_layer( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCamelCase :Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCamelCase :Optional[int] = True if "*" in mapped_key: UpperCamelCase :List[Any] = name.split(__magic_name__ )[0].split(""".""" )[-2] UpperCamelCase :int = mapped_key.replace("""*""" , __magic_name__ ) if "weight_g" in name: UpperCamelCase :List[Any] = """weight_g""" elif "weight_v" in name: UpperCamelCase :List[Any] = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: UpperCamelCase :Any = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase :List[str] = """weight""" else: UpperCamelCase :Optional[int] = None set_recursively(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) continue if not is_used: unused_weights.append(__magic_name__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : List[str] ) -> Dict: """simple docstring""" UpperCamelCase :Dict = full_name.split("""conv_layers.""" )[-1] UpperCamelCase :int = name.split(""".""" ) UpperCamelCase :str = int(items[0] ) UpperCamelCase :str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCamelCase :Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCamelCase :Dict = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCamelCase :Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCamelCase :Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__magic_name__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : str=None ) -> int: """simple docstring""" UpperCamelCase :List[Any] = torch.load(__magic_name__ ) UpperCamelCase :List[Any] = WavLMConfigOrig(checkpoint["""cfg"""] ) UpperCamelCase :int = WavLMOrig(__magic_name__ ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: UpperCamelCase :List[Any] = WavLMConfig.from_pretrained(__magic_name__ ) else: UpperCamelCase :Any = WavLMConfig() UpperCamelCase :Dict = WavLMModel(__magic_name__ ) recursively_load_weights(__magic_name__ , __magic_name__ ) hf_wavlm.save_pretrained(__magic_name__ ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
38
1
"""simple docstring""" import sys from pathlib import Path lowercase__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} lowercase__ = """zero2""" lowercase__ = """zero3""" lowercase__ = [ZEROa, ZEROa] def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" _lowerCamelCase : List[str] = parameterized.to_safe_name('_'.join(str(lowercase__ ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowercase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) @require_torch_multi_gpu @parameterized.expand(lowercase , name_func=lowercase ) def A_ ( self , lowercase , lowercase ): self.run_and_check( stage=lowercase , model=lowercase , distributed=lowercase , fpaa=lowercase , ) def A_ ( self , lowercase ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = True , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = models[model] _lowerCamelCase : Optional[int] = self.run_trainer( stage=lowercase , model_name=lowercase , eval_steps=lowercase , num_train_epochs=1 , distributed=lowercase , fpaa=lowercase , ) self.do_checks(lowercase ) return output_dir def A_ ( self , lowercase , lowercase , lowercase = 10 , lowercase = 1 , lowercase = True , lowercase = True , ): _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir('./xxx' , after=lowercase ) _lowerCamelCase : Any = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowercase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _lowerCamelCase : Optional[int] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _lowerCamelCase : Optional[Any] = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _lowerCamelCase : Dict = self.get_launcher(lowercase ) _lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase , env=self.get_env() ) return output_dir def A_ ( self , lowercase=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _lowerCamelCase : Any = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
353
"""simple docstring""" from typing import Any def _snake_case ( lowercase__ ): if not input_list: return [] _lowerCamelCase : Any = [input_list.count(lowercase__ ) for value in input_list] _lowerCamelCase : Dict = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } a__ : int = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' for attribute in key.split(""".""" ): __UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if weight_type is not None: __UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).shape else: __UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,hf_model.config.feat_extract_norm == """group""" ,) __UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): __UpperCamelCase = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(_SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] __UpperCamelCase = mapped_key.replace("""*""" ,_SCREAMING_SNAKE_CASE ) if "weight_g" in name: __UpperCamelCase = 'weight_g' elif "weight_v" in name: __UpperCamelCase = 'weight_v' elif "bias" in name: __UpperCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase = 'weight' else: __UpperCamelCase = None set_recursively(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = full_name.split("""conv_layers.""" )[-1] __UpperCamelCase = name.split(""".""" ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def _lowercase ( __A ,__A ,__A=None ,__A=None ,__A=True ): '''simple docstring''' if config_path is not None: __UpperCamelCase = UniSpeechSatConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: __UpperCamelCase = UniSpeechSatConfig() __UpperCamelCase = '' if is_finetuned: __UpperCamelCase = UniSpeechSatForCTC(_SCREAMING_SNAKE_CASE ) else: __UpperCamelCase = UniSpeechSatForPreTraining(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __UpperCamelCase = model[0].eval() recursively_load_weights(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": a__ : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) a__ : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
349
"""simple docstring""" from math import pi, sqrt, tan def __a ( _SCREAMING_SNAKE_CASE ) ->float: if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __a ( _SCREAMING_SNAKE_CASE ) ->float: if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __a ( _SCREAMING_SNAKE_CASE ) ->float: if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) a__: List[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __a ( _SCREAMING_SNAKE_CASE ) ->float: if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) a__: int = (sidea + sidea + sidea) / 2 a__: Tuple = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __a ( _SCREAMING_SNAKE_CASE ) ->float: if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print('\nSurface Areas of various geometric shapes: \n') print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
290
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _snake_case : str = logging.get_logger(__name__) @add_end_docstrings( _UpperCamelCase , R""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : List[str] , lowerCAmelCase_ : GenericTensor ) -> np.ndarray: if self.framework == "tf": __lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase_ ) else: raise ValueError('Unsupported framework' ) return masked_index def lowercase ( self : Optional[Any] , lowerCAmelCase_ : GenericTensor ) -> np.ndarray: __lowerCAmelCase = self.get_masked_index(lowerCAmelCase_ ) __lowerCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def lowercase ( self : Any , lowerCAmelCase_ : GenericTensor ) -> Optional[Any]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Dict ) -> Dict[str, GenericTensor]: if return_tensors is None: __lowerCAmelCase = self.framework __lowerCAmelCase = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.ensure_exactly_one_mask_token(lowerCAmelCase_ ) return model_inputs def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Any ) -> List[str]: __lowerCAmelCase = self.model(**lowerCAmelCase_ ) __lowerCAmelCase = model_inputs['input_ids'] return model_outputs def lowercase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : Tuple=None ) -> List[Any]: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __lowerCAmelCase = target_ids.shape[0] __lowerCAmelCase = model_outputs['input_ids'][0] __lowerCAmelCase = model_outputs['logits'] if self.framework == "tf": __lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __lowerCAmelCase = outputs.numpy() __lowerCAmelCase = outputs[0, masked_index, :] __lowerCAmelCase = stable_softmax(lowerCAmelCase_ , axis=-1 ) if target_ids is not None: __lowerCAmelCase = tf.gather_nd(tf.squeeze(lowerCAmelCase_ , 0 ) , target_ids.reshape(-1 , 1 ) ) __lowerCAmelCase = tf.expand_dims(lowerCAmelCase_ , 0 ) __lowerCAmelCase = tf.math.top_k(lowerCAmelCase_ , k=lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = topk.values.numpy(), topk.indices.numpy() else: __lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __lowerCAmelCase = outputs[0, masked_index, :] __lowerCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: __lowerCAmelCase = probs[..., target_ids] __lowerCAmelCase , __lowerCAmelCase = probs.topk(lowerCAmelCase_ ) __lowerCAmelCase = [] __lowerCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __lowerCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __lowerCAmelCase = input_ids.numpy().copy() if target_ids is not None: __lowerCAmelCase = target_ids[p].tolist() __lowerCAmelCase = p # Filter padding out: __lowerCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __lowerCAmelCase = self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) if single_mask: return result[0] return result def lowercase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple=None ) -> List[str]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = [targets] try: __lowerCAmelCase = self.tokenizer.get_vocab() except Exception: __lowerCAmelCase = {} __lowerCAmelCase = [] for target in targets: __lowerCAmelCase = vocab.get(lowerCAmelCase_ , lowerCAmelCase_ ) if id_ is None: __lowerCAmelCase = self.tokenizer( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , max_length=1 , truncation=lowerCAmelCase_ , )['input_ids'] if len(lowerCAmelCase_ ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ 'We cannot replace it with anything meaningful, ignoring it' ) continue __lowerCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) == 0: raise ValueError('At least one target must be provided when passed.' ) __lowerCAmelCase = np.array(lowerCAmelCase_ ) return target_ids def lowercase ( self : int , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=None ) -> Dict: __lowerCAmelCase = {} if targets is not None: __lowerCAmelCase = self.get_target_ids(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = target_ids if top_k is not None: __lowerCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self : str , lowerCAmelCase_ : int , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : str ) -> Any: __lowerCAmelCase = super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) == 1: return outputs[0] return outputs
366
import mpmath # for roots of unity import numpy as np class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None ) -> List[Any]: # Input as list __lowerCAmelCase = list(poly_a or [0] )[:] __lowerCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __lowerCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __lowerCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __lowerCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __lowerCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __lowerCAmelCase = self.__multiply() def lowercase ( self : Optional[int] , lowerCAmelCase_ : str ) -> Optional[int]: __lowerCAmelCase = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(lowerCAmelCase_ ) <= 1: return dft[0] # __lowerCAmelCase = self.c_max_length // 2 while next_ncol > 0: __lowerCAmelCase = [[] for i in range(lowerCAmelCase_ )] __lowerCAmelCase = self.root**next_ncol # First half of next step __lowerCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCAmelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __lowerCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCAmelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __lowerCAmelCase = new_dft __lowerCAmelCase = next_ncol // 2 return dft[0] def lowercase ( self : Optional[int] ) -> Any: __lowerCAmelCase = self.__dft('A' ) __lowerCAmelCase = self.__dft('B' ) __lowerCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __lowerCAmelCase = 2 while next_ncol <= self.c_max_length: __lowerCAmelCase = [[] for i in range(lowerCAmelCase_ )] __lowerCAmelCase = self.root ** (next_ncol // 2) __lowerCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __lowerCAmelCase = new_inverse_c next_ncol *= 2 # Unpack __lowerCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> int: __lowerCAmelCase = 'A = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) __lowerCAmelCase = 'B = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) __lowerCAmelCase = 'A*B = ' + ' + '.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return f"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
207
0
a ={ """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
73
import qiskit def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> qiskit.result.counts.Counts: __lowerCamelCase : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __lowerCamelCase : List[str] = qiskit.QuantumCircuit(lowerCamelCase__ , lowerCamelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowerCamelCase : List[Any] = qiskit.execute(lowerCamelCase__ , lowerCamelCase__ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCamelCase__ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
73
1
def snake_case_(_UpperCamelCase ) -> bool: """simple docstring""" _snake_case = [int(_UpperCamelCase ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(_UpperCamelCase ) == 4 and all(0 <= int(_UpperCamelCase ) <= 254 for octet in octets ) if __name__ == "__main__": __A = input().strip() __A = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
353
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowercase_ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase_ : List[Any] = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def snake_case_() -> int: """simple docstring""" if os.name == "nt": _snake_case = CursorInfo() _snake_case = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) _snake_case = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def snake_case_() -> Optional[Any]: """simple docstring""" if os.name == "nt": _snake_case = CursorInfo() _snake_case = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) _snake_case = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def snake_case_() -> int: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
278
0
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger(__name__) def _A (lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _a = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ] ) return rename_keys def _A (lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] ) -> Any: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _a = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) _a = in_proj_weight[ : encoder_config.hidden_size, : ] _a = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _a = in_proj_weight[ -encoder_config.hidden_size :, : ] def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> int: '''simple docstring''' _a = dct.pop(lowerCAmelCase__ ) _a = val def _A (lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' if "handwritten" in checkpoint_url: _a = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _a = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg' _a = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert('RGB' ) return im @torch.no_grad() def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] ) -> Tuple: '''simple docstring''' _a = ViTConfig(image_size=3_84 , qkv_bias=lowerCAmelCase__ ) _a = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _a = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder _a = 10_24 _a = 40_96 _a = 24 _a = 16 _a = 10_24 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _a = False _a = 'relu' _a = 10_24 _a = True _a = False _a = False # load HuggingFace model _a = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) _a = TrOCRForCausalLM(lowerCAmelCase__ ) _a = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys _a = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='cpu' , check_hash=lowerCAmelCase__ )['model'] _a = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _a = state_dict.pop(lowerCAmelCase__ ) if key.startswith('decoder' ) and "output_projection" not in key: _a = val else: _a = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image _a = ViTImageProcessor(size=encoder_config.image_size ) _a = RobertaTokenizer.from_pretrained('roberta-large' ) _a = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) _a = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors='pt' ).pixel_values # verify logits _a = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _a = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) _a = outputs.logits _a = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: _a = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: _a = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: _a = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: _a = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowerCAmelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) a_ : List[Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
168
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ : Optional[int] = logging.get_logger(__name__) a_ : Dict = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """marian""" _lowerCAmelCase = ["""past_key_values"""] _lowerCAmelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __magic_name__=5_81_01 , __magic_name__=None , __magic_name__=10_24 , __magic_name__=12 , __magic_name__=40_96 , __magic_name__=16 , __magic_name__=12 , __magic_name__=40_96 , __magic_name__=16 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=True , __magic_name__=True , __magic_name__="gelu" , __magic_name__=10_24 , __magic_name__=0.1 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.0_2 , __magic_name__=5_81_00 , __magic_name__=False , __magic_name__=5_81_00 , __magic_name__=0 , __magic_name__=0 , __magic_name__=True , **__magic_name__ , ) -> str: _a = vocab_size _a = decoder_vocab_size or vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True _a = share_encoder_decoder_embeddings super().__init__( pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , ) class a ( _SCREAMING_SNAKE_CASE ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _a = {0: 'batch'} _a = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _a = {0: 'batch', 1: 'decoder_sequence'} _a = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__magic_name__ ): _a = {0: 'batch', 2: 'past_sequence + sequence'} _a = {0: 'batch', 2: 'past_sequence + sequence'} else: _a = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__magic_name__ , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__magic_name__ ): _a = {0: 'batch', 2: 'past_sequence + sequence'} _a = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_encoder_and_decoder( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_encoder_and_decoder( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__magic_name__ , **__magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _a , _a = common_inputs['input_ids'].shape _a = common_inputs['decoder_input_ids'].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(__magic_name__ , __magic_name__ )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__magic_name__ , __magic_name__ ) _a = max(__magic_name__ , __magic_name__ ) - min_num_layers _a = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(__magic_name__ ): common_inputs["past_key_values"].append( ( torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(__magic_name__ , __magic_name__ ): common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) ) return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_encoder_and_decoder( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _a , _a = common_inputs['input_ids'].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['attention_mask'].dtype _a = torch.cat( [common_inputs['attention_mask'], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) _a = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ ) ] return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__magic_name__ ) _a = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence _a = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__magic_name__ , return_tensors=__magic_name__ ) ) return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) else: _a = self._generate_dummy_inputs_for_causal_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: _a = super(__magic_name__ , self )._flatten_past_key_values_( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @property def __UpperCAmelCase ( self ) -> float: return 1e-4
168
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = True ): print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": SCREAMING_SNAKE_CASE_ = timm.create_model('''levit_128s''', pretrained=__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = timm.create_model('''levit_128''', pretrained=__lowerCamelCase ) if hidden_sizes == 1_92: SCREAMING_SNAKE_CASE_ = timm.create_model('''levit_192''', pretrained=__lowerCamelCase ) if hidden_sizes == 2_56: SCREAMING_SNAKE_CASE_ = timm.create_model('''levit_256''', pretrained=__lowerCamelCase ) if hidden_sizes == 3_84: SCREAMING_SNAKE_CASE_ = timm.create_model('''levit_384''', pretrained=__lowerCamelCase ) from_model.eval() SCREAMING_SNAKE_CASE_ = LevitForImageClassificationWithTeacher(__lowerCamelCase ).eval() SCREAMING_SNAKE_CASE_ = OrderedDict() SCREAMING_SNAKE_CASE_ = from_model.state_dict() SCREAMING_SNAKE_CASE_ = list(from_model.state_dict().keys() ) SCREAMING_SNAKE_CASE_ = list(our_model.state_dict().keys() ) print(len(__lowerCamelCase ), len(__lowerCamelCase ) ) for i in range(len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE_ = weights[og_keys[i]] our_model.load_state_dict(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = torch.randn((2, 3, 2_24, 2_24) ) SCREAMING_SNAKE_CASE_ = from_model(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = our_model(__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase, __lowerCamelCase ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE_ = name print(__lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) SCREAMING_SNAKE_CASE_ = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def A__ ( __lowerCamelCase, __lowerCamelCase = None, __lowerCamelCase = True ): SCREAMING_SNAKE_CASE_ = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE_ = 10_00 SCREAMING_SNAKE_CASE_ = (1, num_labels) SCREAMING_SNAKE_CASE_ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type='''dataset''' ), '''r''' ) ) SCREAMING_SNAKE_CASE_ = {int(__lowerCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = partial(__lowerCamelCase, num_labels=__lowerCamelCase, idalabel=__lowerCamelCase, labelaid=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } SCREAMING_SNAKE_CASE_ = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84], num_attention_heads=[4, 6, 8], depths=[2, 3, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84], num_attention_heads=[4, 8, 12], depths=[4, 4, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84], num_attention_heads=[3, 5, 6], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12], num_attention_heads=[4, 6, 8], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68], num_attention_heads=[6, 9, 12], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0.1, ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name], __lowerCamelCase, names_to_config[model_name], __lowerCamelCase, __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name], __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
367
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
257
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowerCAmelCase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __lowerCAmelCase : Tuple = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __lowerCAmelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __magic_name__ ( A : str ): '''simple docstring''' with open(A, "rb" ) as f: a = Image.open(A ) return im.convert("RGB" ) @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field(default=_UpperCamelCase , metadata={"""help""": """A folder containing the training data."""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field(default=_UpperCamelCase , metadata={"""help""": """A folder containing the validation data."""} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) SCREAMING_SNAKE_CASE_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) SCREAMING_SNAKE_CASE_ : str = field(default=_UpperCamelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) SCREAMING_SNAKE_CASE_ : bool = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) SCREAMING_SNAKE_CASE_ : bool = field( default=_UpperCamelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def __magic_name__ ( A : Dict ): '''simple docstring''' a = torch.stack([example["pixel_values"] for example in examples] ) a = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __magic_name__ ( ): '''simple docstring''' a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification", A, A ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a = training_args.get_process_log_level() logger.setLevel(A ) transformers.utils.logging.set_verbosity(A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: a = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task="image-classification", use_auth_token=True if model_args.use_auth_token else None, ) else: a = {} if data_args.train_dir is not None: a = os.path.join(data_args.train_dir, "**" ) if data_args.validation_dir is not None: a = os.path.join(data_args.validation_dir, "**" ) a = load_dataset( "imagefolder", data_files=A, cache_dir=model_args.cache_dir, task="image-classification", ) # If we don't have a validation split, split off a percentage of train as validation. a = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, A ) and data_args.train_val_split > 0.0: a = dataset["train"].train_test_split(data_args.train_val_split ) a = split["train"] a = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. a = dataset["train"].features["labels"].names a , a = {}, {} for i, label in enumerate(A ): a = str(A ) a = label # Load the accuracy metric from the datasets package a = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(A : int ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) a = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(A ), labelaid=A, idalabel=A, finetuning_task="image-classification", cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) a = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=A, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) a = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: a = image_processor.size["shortest_edge"] else: a = (image_processor.size["height"], image_processor.size["width"]) a = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) a = Compose( [ RandomResizedCrop(A ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) a = Compose( [ Resize(A ), CenterCrop(A ), ToTensor(), normalize, ] ) def train_transforms(A : Dict ): a = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(A : List[str] ): a = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: a = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(A ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: a = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(A ) # Initalize our trainer a = Trainer( model=A, args=A, train_dataset=dataset["train"] if training_args.do_train else None, eval_dataset=dataset["validation"] if training_args.do_eval else None, compute_metrics=A, tokenizer=A, data_collator=A, ) # Training if training_args.do_train: a = None if training_args.resume_from_checkpoint is not None: a = training_args.resume_from_checkpoint elif last_checkpoint is not None: a = last_checkpoint a = trainer.train(resume_from_checkpoint=A ) trainer.save_model() trainer.log_metrics("train", train_result.metrics ) trainer.save_metrics("train", train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: a = trainer.evaluate() trainer.log_metrics("eval", A ) trainer.save_metrics("eval", A ) # Write model card and (optionally) push to hub a = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**A ) else: trainer.create_model_card(**A ) if __name__ == "__main__": main()
107
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __lowerCAmelCase : List[Any] = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def __magic_name__ ( A : Dict, A : Union[str, Any], A : Optional[int]=None ): '''simple docstring''' if rng is None: a = random.Random() a = 1 for dim in shape: total_dims *= dim a = [] for _ in range(A ): values.append(rng.randint(0, vocab_size - 1 ) ) a = np.array(A, dtype=jnp.intaa ).reshape(A ) return output def __magic_name__ ( A : Dict, A : Union[str, Any]=None ): '''simple docstring''' a = ids_tensor(A, vocab_size=2, rng=A ) # make sure that at least one token is attended to for each batch a = 1 return attn_mask @require_flax class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Any = () def __UpperCAmelCase ( self : int ) -> List[str]: a , a = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 a = 2 a = inputs["input_ids"].shape[-1] // 2 a = inputs["input_ids"][:max_batch_size, :sequence_length] a = jnp.ones_like(__lowerCamelCase ) a = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens a = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` a = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __UpperCAmelCase ( self : Optional[Any] ) -> int: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length a = 0 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model_class.__name__[4:] # Skip the "Flax" at the beginning a = getattr(__lowerCamelCase , __lowerCamelCase ) a = pt_model_class(__lowerCamelCase ).eval() a = load_flax_weights_in_pytorch_model(__lowerCamelCase , flax_model.params ) a = flax_model.generate(__lowerCamelCase ).sequences a = pt_model.generate(torch.tensor(__lowerCamelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: a = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[int] ) -> Any: a , a , a , a = self._get_input_ids_and_config() a = True a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : int ) -> Dict: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length a = 2 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: a , a , a , a = self._get_input_ids_and_config() a = False a = max_length a = 2 a = 2 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: a , a , a , a = self._get_input_ids_and_config() a = True a = max_length a = 0.8 a = 10 a = 0.3 a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: a , a , a , a = self._get_input_ids_and_config() a = max_length a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: a , a , a , a = self._get_input_ids_and_config() a = max_length a = 2 a = 1 a = 8 a = 9 for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: a , a , a , a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = False a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Tuple ) -> Tuple: a , a , a , a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = True a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: a , a , a , a = self._get_input_ids_and_config() # pad attention mask on the left a = attention_mask.at[(0, 0)].set(0 ) a = 2 a = max_length for model_class in self.all_generative_model_classes: a = model_class(__lowerCamelCase ) a = model.generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , __lowerCamelCase ) a = jit(model.generate ) a = jit_generate(__lowerCamelCase , attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) a = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) a = "Hello world" a = tokenizer(__lowerCamelCase , return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCamelCase , "do_samples" ): model.generate(__lowerCamelCase , do_samples=__lowerCamelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCamelCase , "foo" ): a = {"foo": "bar"} model.generate(__lowerCamelCase , **__lowerCamelCase )
107
1
from __future__ import annotations def lowerCamelCase__ (_UpperCAmelCase): if not nums: raise ValueError('List is empty') return sum(_UpperCAmelCase) / len(_UpperCAmelCase) if __name__ == "__main__": import doctest doctest.testmod()
359
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput a_ : Dict = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _snake_case ( A__ ): def __init__( self , *a , a=None , a=None , a=None , **a) -> List[Any]: super().__init__(*a , **a) SCREAMING_SNAKE_CASE = eval_examples SCREAMING_SNAKE_CASE = post_process_function SCREAMING_SNAKE_CASE = quant_trainer_args SCREAMING_SNAKE_CASE = 128 # default number of calibration samples def SCREAMING_SNAKE_CASE__ ( self , a=None) -> Union[str, Any]: if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.') SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset SCREAMING_SNAKE_CASE = self._remove_unused_columns(a , description='Calibration') return DataLoader( a , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=a , ) def SCREAMING_SNAKE_CASE__ ( self , a=None) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset SCREAMING_SNAKE_CASE = self.get_calib_dataloader(a) SCREAMING_SNAKE_CASE = self.model quant_trainer.configure_model(a , self.quant_trainer_args , calib=a) model.eval() quant_trainer.enable_calibration(a) logger.info('***** Running calibration *****') logger.info(f''' Num examples = {self.calib_num}''') logger.info(f''' Batch size = {calib_dataloader.batch_size}''') for step, inputs in enumerate(a): # Prediction step SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prediction_step(a , a , prediction_loss_only=a) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(a , self.quant_trainer_args) SCREAMING_SNAKE_CASE = model def SCREAMING_SNAKE_CASE__ ( self , a=None , a=None , a=None , a = "eval") -> str: SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE = self.get_eval_dataloader(a) SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE = self.compute_metrics SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE = eval_loop( a , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , ) finally: SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: SCREAMING_SNAKE_CASE = self.post_process_function(a , a , output.predictions) SCREAMING_SNAKE_CASE = self.compute_metrics(a) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'''{metric_key_prefix}_'''): SCREAMING_SNAKE_CASE = metrics.pop(a) self.log(a) else: SCREAMING_SNAKE_CASE = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , a) return metrics def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a = "test") -> Optional[Any]: SCREAMING_SNAKE_CASE = self.get_test_dataloader(a) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE = self.compute_metrics SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE = eval_loop( a , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , ) finally: SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE = self.post_process_function(a , a , output.predictions , 'predict') SCREAMING_SNAKE_CASE = self.compute_metrics(a) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'''{metric_key_prefix}_'''): SCREAMING_SNAKE_CASE = metrics.pop(a) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a) def SCREAMING_SNAKE_CASE__ ( self , a="./") -> List[Any]: SCREAMING_SNAKE_CASE = self.eval_dataset SCREAMING_SNAKE_CASE = self.get_eval_dataloader(a) SCREAMING_SNAKE_CASE = next(iter(a)) # saving device - to make it consistent SCREAMING_SNAKE_CASE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # convert to tuple SCREAMING_SNAKE_CASE = tuple(v.to(a) for k, v in batch.items()) logger.info('Converting model to be onnx compatible') from pytorch_quantization.nn import TensorQuantizer SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.model.to(a) model.eval() model.float() SCREAMING_SNAKE_CASE = model.module if hasattr(a , 'module') else model quant_trainer.configure_model(a , self.quant_trainer_args) SCREAMING_SNAKE_CASE = os.path.join(a , 'model.onnx') logger.info(f'''exporting model to {output_model_file}''') SCREAMING_SNAKE_CASE = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( a , a , a , export_params=a , opset_version=13 , do_constant_folding=a , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, } , verbose=a , ) logger.info('onnx export finished')
327
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __snake_case = False class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> int: _a = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) _a = torch.manual_seed(0 ) _a = pipe( image=_A , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images _a = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
320
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : List[str] = '''Speech2TextFeatureExtractor''' UpperCamelCase__ : List[str] = '''Speech2TextTokenizer''' def __init__( self , _A , _A ): '''simple docstring''' super().__init__(_A , _A ) __SCREAMING_SNAKE_CASE = self.feature_extractor __SCREAMING_SNAKE_CASE = False def __call__( self , *_A , **_A ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) __SCREAMING_SNAKE_CASE = kwargs.pop('raw_speech' ) else: __SCREAMING_SNAKE_CASE = kwargs.pop('audio' , _A ) __SCREAMING_SNAKE_CASE = kwargs.pop('sampling_rate' , _A ) __SCREAMING_SNAKE_CASE = kwargs.pop('text' , _A ) if len(_A ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __SCREAMING_SNAKE_CASE = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: __SCREAMING_SNAKE_CASE = encodings['input_ids'] return inputs def _A ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.batch_decode(*_A , **_A ) def _A ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.decode(*_A , **_A ) @contextmanager def _A ( self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer yield __SCREAMING_SNAKE_CASE = self.feature_extractor __SCREAMING_SNAKE_CASE = False
257
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar A__ = TypeVar('''T''') class a ( Generic[T] ): def __init__( self :str ,__lowercase :T ): snake_case__ : Tuple = data snake_case__ : Node[T] | None = None def __str__( self :Dict ): return F"""{self.data}""" class a ( Generic[T] ): def __init__( self :List[str] ): snake_case__ : Node[T] | None = None def __iter__( self :str ): snake_case__ : List[Any] = self.top while node: yield node.data snake_case__ : str = node.next def __str__( self :List[Any] ): return "->".join([str(__lowercase ) for item in self] ) def __len__( self :Optional[Any] ): return len(tuple(iter(self ) ) ) def __lowerCamelCase ( self :Optional[int] ): return self.top is None def __lowerCamelCase ( self :List[Any] ,__lowercase :T ): snake_case__ : Dict = Node(__lowercase ) if not self.is_empty(): snake_case__ : Tuple = self.top snake_case__ : Optional[int] = node def __lowerCamelCase ( self :List[Any] ): if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top ,__lowercase ) snake_case__ : Tuple = self.top snake_case__ : str = self.top.next return pop_node.data def __lowerCamelCase ( self :Tuple ): if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : int = None if __name__ == "__main__": from doctest import testmod testmod()
44
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): A__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A__ = 12_8022 A__ = 12_8028 @require_sentencepiece class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Optional[int] = MaMaaaTokenizer __lowerCAmelCase : Tuple = False __lowerCAmelCase : Any = False __lowerCAmelCase : Union[str, Any] = True def __lowerCamelCase ( self :int ): super().setUp() snake_case__ : Tuple = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] snake_case__ : Optional[Any] = dict(zip(__lowercase ,range(len(__lowercase ) ) ) ) snake_case__ : List[Any] = Path(self.tmpdirname ) save_json(__lowercase ,save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__lowercase ,save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) snake_case__ : str = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self :Optional[int] ,**__lowercase :Optional[int] ): return MaMaaaTokenizer.from_pretrained(self.tmpdirname ,**__lowercase ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Tuple ): return ( "This is a test", "This is a test", ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Tuple = '''</s>''' snake_case__ : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) ,__lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) ,__lowercase ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Dict = self.get_tokenizer() snake_case__ : Union[str, Any] = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''</s>''' ) self.assertEqual(vocab_keys[1] ,'''<unk>''' ) self.assertEqual(vocab_keys[-1] ,'''<s>''' ) self.assertEqual(len(__lowercase ) ,tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def __lowerCamelCase ( self :List[Any] ): pass def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) ,[2, 3, 4, 5, 6] ,) snake_case__ : str = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(__lowercase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) snake_case__ : Optional[int] = tokenizer.convert_tokens_to_string(__lowercase ) self.assertEqual(__lowercase ,'''This is a test''' ) @slow def __lowerCamelCase ( self :Union[str, Any] ): # fmt: off snake_case__ : Tuple = {'''input_ids''': [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase ,model_name='''facebook/m2m100_418M''' ,revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' ,) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = """facebook/m2m100_418M""" __lowerCAmelCase : Union[str, Any] = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __lowerCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __lowerCAmelCase : Dict = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def __lowerCamelCase ( cls :Union[str, Any] ): snake_case__ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='''en''' ,tgt_lang='''fr''' ) snake_case__ : Union[str, Any] = 1 return cls def __lowerCamelCase ( self :Tuple ): self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) ,1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) ,1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) ,1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) ,1_2_8_0_6_3 ) def __lowerCamelCase ( self :Any ): snake_case__ : Optional[int] = self.tokenizer.get_vocab() self.assertEqual(len(__lowercase ) ,self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] ,3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Optional[int] = '''en''' snake_case__ : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,__lowercase ) def __lowerCamelCase ( self :List[Any] ): self.assertIn(__lowercase ,self.tokenizer.all_special_ids ) # fmt: off snake_case__ : int = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on snake_case__ : Tuple = self.tokenizer.decode(__lowercase ,skip_special_tokens=__lowercase ) snake_case__ : Optional[int] = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=__lowercase ) self.assertEqual(__lowercase ,__lowercase ) self.assertNotIn(self.tokenizer.eos_token ,__lowercase ) def __lowerCamelCase ( self :Any ): snake_case__ : List[Any] = tempfile.mkdtemp() snake_case__ : List[Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(__lowercase ) snake_case__ : Any = MaMaaaTokenizer.from_pretrained(__lowercase ) self.assertDictEqual(new_tok.lang_token_to_id ,__lowercase ) @require_torch def __lowerCamelCase ( self :str ): snake_case__ : Dict = '''en''' snake_case__ : List[Any] = '''fr''' snake_case__ : Union[str, Any] = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=__lowercase ,return_tensors='''pt''' ) snake_case__ : Optional[int] = shift_tokens_right( batch['''labels'''] ,self.tokenizer.pad_token_id ,self.tokenizer.eos_token_id ) for k in batch: snake_case__ : Optional[int] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[Any] = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) snake_case__ : Any = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) @require_torch def __lowerCamelCase ( self :Tuple ): snake_case__ : Union[str, Any] = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case__ : List[str] = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCamelCase ( self :Tuple ): snake_case__ : str = self.tokenizer._build_translation_inputs('''A test''' ,return_tensors='''pt''' ,src_lang='''en''' ,tgt_lang='''ar''' ) self.assertEqual( nested_simplify(__lowercase ) ,{ # en_XX, A, test, EOS '''input_ids''': [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 1_2_8_0_0_6, } ,)
44
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : int = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowercase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
'''simple docstring''' import math def __lowerCAmelCase (__lowerCAmelCase ): return math.sqrt(__lowerCAmelCase ) * math.sqrt(__lowerCAmelCase ) == num def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = 0 _UpperCAmelCase : Tuple = n while left <= right: _UpperCAmelCase : int = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _UpperCAmelCase : str = mid - 1 else: _UpperCAmelCase : List[str] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
234
0
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : int ) -> "list[int]": if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) A_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A_ = 1 if upper_limit > 0: A_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2, upper_limit + 1 ): for j in range(_UpperCamelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: __snake_case : int = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
363
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : List[str] ) -> int: A_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ = F'''{src_lang}-{tgt_lang}''' A_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __snake_case : Any = Path(__file__).resolve().parent.parent.parent __snake_case : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case , __snake_case , __snake_case : Any = model_name.split('-') __snake_case : int = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
0
'''simple docstring''' import os from distutils.util import strtobool def _lowerCamelCase ( lowercase : str , lowercase : int ) -> str: for e in env_keys: _a = int(os.environ.get(lowercase , -1 ) ) if val >= 0: return val return default def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict=False ) -> Tuple: _a = os.environ.get(lowercase , str(lowercase ) ) return strtobool(lowercase ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Optional[Any]="no" ) -> Tuple: _a = os.environ.get(lowercase , str(lowercase ) ) return value
63
import os snake_case__ : Any = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} def _a ( lowerCamelCase: str ) -> int: '''simple docstring''' __A = 0 __A = 0 while index < len(lowerCamelCase ) - 1: __A = SYMBOLS[numerals[index]] __A = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _a ( lowerCamelCase: int ) -> str: '''simple docstring''' __A = '''''' __A = num // 10_00 numerals += m_count * "M" num %= 10_00 __A = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 __A = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _a ( lowerCamelCase: str = "/p089_roman.txt" ) -> int: '''simple docstring''' __A = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: __A = filea.readlines() for line in lines: __A = line.strip() __A = parse_roman_numerals(lowerCamelCase ) __A = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(f'{solution() = }')
117
0
'''simple docstring''' from math import pi def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int ): '''simple docstring''' return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
8
'''simple docstring''' import functools def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[str] = len(lowerCamelCase_ ) snake_case_ : Dict = len(lowerCamelCase_ ) @functools.cache def min_distance(lowerCamelCase_ :int , lowerCamelCase_ :int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa snake_case_ : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_INIT_CONFIGURATION a = RoFormerTokenizer def __init__( self : Tuple , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=True , __lowerCamelCase : Tuple="[UNK]" , __lowerCamelCase : int="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : Optional[int]="[CLS]" , __lowerCamelCase : int="[MASK]" , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Dict , ) -> Dict: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents ): SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = strip_accents SCREAMING_SNAKE_CASE__ = pre_tok_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = do_lower_case def __getstate__( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return state def __setstate__( self : int , __lowerCamelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = d SCREAMING_SNAKE_CASE__ = self.__dict__['''_tokenizer'''].get_vocab() SCREAMING_SNAKE_CASE__ = PreTokenizer.custom(JiebaPreTokenizer(__lowerCamelCase ) ) def lowercase_ ( self : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : int , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=False , **__lowerCamelCase : Tuple , ) -> int: SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return super().save_pretrained(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
314
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = IFImgaImgSuperResolutionPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} def a ( self : Optional[Any] ) -> Union[str, Any]: return self._get_superresolution_dummy_components() def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict=0 ) -> List[Any]: if str(SCREAMING_SNAKE_CASE__ ).startswith("mps" ): lowerCAmelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def a ( self : Tuple ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def a ( self : int ) -> int: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def a ( self : int ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def a ( self : Any ) -> Any: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def a ( self : Tuple ) -> int: self._test_save_load_local() def a ( self : Tuple ) -> Optional[int]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
221
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] UpperCamelCase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks UpperCamelCase = F"""down_blocks.{i}.resnets.{j}.""" UpperCamelCase = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 UpperCamelCase = F"""down_blocks.{i}.attentions.{j}.""" UpperCamelCase = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks UpperCamelCase = F"""up_blocks.{i}.resnets.{j}.""" UpperCamelCase = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 UpperCamelCase = F"""up_blocks.{i}.attentions.{j}.""" UpperCamelCase = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 UpperCamelCase = F"""down_blocks.{i}.downsamplers.0.conv.""" UpperCamelCase = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 UpperCamelCase = F"""up_blocks.{i}.upsamplers.0.""" UpperCamelCase = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) UpperCamelCase = 'mid_block.attentions.0.' UpperCamelCase = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): UpperCamelCase = F"""mid_block.resnets.{j}.""" UpperCamelCase = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _A ( lowerCAmelCase_ : Any ): """simple docstring""" lowerCAmelCase__ = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowerCAmelCase__ = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowerCAmelCase__ = v.replace(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowerCAmelCase__ = v.replace(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = v lowerCAmelCase__ = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): UpperCamelCase = F"""encoder.down_blocks.{i}.resnets.{j}.""" UpperCamelCase = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: UpperCamelCase = F"""down_blocks.{i}.downsamplers.0.""" UpperCamelCase = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) UpperCamelCase = F"""up_blocks.{i}.upsamplers.0.""" UpperCamelCase = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): UpperCamelCase = F"""decoder.up_blocks.{i}.resnets.{j}.""" UpperCamelCase = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): UpperCamelCase = F"""mid_block.resnets.{i}.""" UpperCamelCase = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def _A ( lowerCAmelCase_ : List[str] ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _A ( lowerCAmelCase_ : Dict ): """simple docstring""" lowerCAmelCase__ = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowerCAmelCase__ = v.replace(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowerCAmelCase__ = v.replace(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = v lowerCAmelCase__ = {v: vae_state_dict[k] for k, v in mapping.items()} lowerCAmelCase__ = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'mid.attn_1.{weight_name}.weight' in k: print(F'Reshaping {k} for SD format' ) lowerCAmelCase__ = reshape_weight_for_sd(lowerCAmelCase_ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] UpperCamelCase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} UpperCamelCase = re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp UpperCamelCase = {'q': 0, 'k': 1, 'v': 2} def _A ( lowerCAmelCase_ : Dict ): """simple docstring""" lowerCAmelCase__ = {} lowerCAmelCase__ = {} lowerCAmelCase__ = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): lowerCAmelCase__ = k[: -len(".q_proj.weight" )] lowerCAmelCase__ = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: lowerCAmelCase__ = [None, None, None] lowerCAmelCase__ = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): lowerCAmelCase__ = k[: -len(".q_proj.bias" )] lowerCAmelCase__ = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: lowerCAmelCase__ = [None, None, None] lowerCAmelCase__ = v continue lowerCAmelCase__ = textenc_pattern.sub(lambda lowerCAmelCase_ : protected[re.escape(m.group(0 ) )] , lowerCAmelCase_ ) lowerCAmelCase__ = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowerCAmelCase__ = textenc_pattern.sub(lambda lowerCAmelCase_ : protected[re.escape(m.group(0 ) )] , lowerCAmelCase_ ) lowerCAmelCase__ = torch.cat(lowerCAmelCase_ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowerCAmelCase__ = textenc_pattern.sub(lambda lowerCAmelCase_ : protected[re.escape(m.group(0 ) )] , lowerCAmelCase_ ) lowerCAmelCase__ = torch.cat(lowerCAmelCase_ ) return new_state_dict def _A ( lowerCAmelCase_ : Any ): """simple docstring""" return text_enc_dict if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) UpperCamelCase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors UpperCamelCase = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') UpperCamelCase = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') UpperCamelCase = osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): UpperCamelCase = load_file(unet_path, device='cpu') else: UpperCamelCase = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') UpperCamelCase = torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): UpperCamelCase = load_file(vae_path, device='cpu') else: UpperCamelCase = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') UpperCamelCase = torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): UpperCamelCase = load_file(text_enc_path, device='cpu') else: UpperCamelCase = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') UpperCamelCase = torch.load(text_enc_path, map_location='cpu') # Convert the UNet model UpperCamelCase = convert_unet_state_dict(unet_state_dict) UpperCamelCase = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model UpperCamelCase = convert_vae_state_dict(vae_state_dict) UpperCamelCase = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper UpperCamelCase = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm UpperCamelCase = {'transformer.' + k: v for k, v in text_enc_dict.items()} UpperCamelCase = convert_text_enc_state_dict_vaa(text_enc_dict) UpperCamelCase = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: UpperCamelCase = convert_text_enc_state_dict(text_enc_dict) UpperCamelCase = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint UpperCamelCase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: UpperCamelCase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: UpperCamelCase = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
221
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase_ = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''albert''' def __init__( self : List[Any] , __UpperCAmelCase : Union[str, Any]=30000 , __UpperCAmelCase : List[str]=128 , __UpperCAmelCase : List[Any]=4096 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : List[str]=64 , __UpperCAmelCase : str=16384 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : int="gelu_new" , __UpperCAmelCase : Dict=0 , __UpperCAmelCase : Tuple=0 , __UpperCAmelCase : Tuple=512 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : Any=0.02 , __UpperCAmelCase : Optional[Any]=1E-12 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Optional[Any]="absolute" , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Dict=3 , **__UpperCAmelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _A = vocab_size _A = embedding_size _A = hidden_size _A = num_hidden_layers _A = num_hidden_groups _A = num_attention_heads _A = inner_group_num _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout_prob _A = position_embedding_type class _UpperCAmelCase ( snake_case_ ): """simple docstring""" @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self.task == "multiple-choice": _A = {0: "batch", 1: "choice", 2: "sequence"} else: _A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
79
'''simple docstring''' def _UpperCAmelCase ( _lowerCamelCase : int = 1_00 ) -> int: _lowerCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 _lowerCAmelCase : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
309
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a_ : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( A__ ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self , a = True , a = 1 / 255 , a = True , a = 8 , **a , ) -> None: super().__init__(**a) SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_pad SCREAMING_SNAKE_CASE = pad_size def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a) -> np.ndarray: return rescale(a , scale=a , data_format=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None) -> List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_image_size(a) SCREAMING_SNAKE_CASE = (old_height // size + 1) * size - old_height SCREAMING_SNAKE_CASE = (old_width // size + 1) * size - old_width return pad(a , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=a) def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> List[str]: SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE = do_pad if do_pad is not None else self.do_pad SCREAMING_SNAKE_CASE = pad_size if pad_size is not None else self.pad_size SCREAMING_SNAKE_CASE = make_list_of_images(a) if not valid_images(a): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images] if do_rescale: SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images] if do_pad: SCREAMING_SNAKE_CASE = [self.pad(a , size=a) for image in images] SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images] SCREAMING_SNAKE_CASE = {'pixel_values': images} return BatchFeature(data=a , tensor_type=a)
327
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : List[Any] = logging.get_logger(__name__) a_ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} a_ : str = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } a_ : List[Any] = {'allegro/herbert-base-cased': 5_14} a_ : Dict = {} class _snake_case ( A__ ): _lowercase : Dict = VOCAB_FILES_NAMES _lowercase : int = PRETRAINED_VOCAB_FILES_MAP _lowercase : Any = PRETRAINED_INIT_CONFIGURATION _lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = HerbertTokenizer def __init__( self , a=None , a=None , a=None , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a="</s>" , **a , ) -> Dict: super().__init__( a , a , tokenizer_file=a , cls_token=a , unk_token=a , pad_token=a , mask_token=a , sep_token=a , **a , ) def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a) if token_ids_a is None: return [1] + ([0] * len(a)) + [1] return [1] + ([0] * len(a)) + [1] + ([0] * len(a)) + [1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]: SCREAMING_SNAKE_CASE = self._tokenizer.model.save(a , name=a) return tuple(a)
327
1
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class a_ : lowercase = 42 # [batch_size x 3] lowercase = 42 # [batch_size x 3] lowercase = 42 # [batch_size x 3] lowercase = 42 # [batch_size x 3] lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 def A__ ( self ) -> Union[str, Any]: """simple docstring""" assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A__ ( self ) -> Optional[Any]: """simple docstring""" return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A__ ( self ) -> List[Any]: """simple docstring""" return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A__ ( self ) -> torch.Tensor: """simple docstring""" UpperCamelCase = torch.arange(self.height * self.width ) UpperCamelCase = torch.stack( [ pixel_indices % self.width, torch.div(_SCREAMING_SNAKE_CASE , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase ,*UpperCamelCase = self.shape UpperCamelCase = int(np.prod(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = self.get_image_coords() UpperCamelCase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCamelCase = self.get_camera_rays(_SCREAMING_SNAKE_CASE ) UpperCamelCase = rays.view(_SCREAMING_SNAKE_CASE , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A__ ( self , _SCREAMING_SNAKE_CASE ) -> torch.Tensor: """simple docstring""" UpperCamelCase ,*UpperCamelCase ,UpperCamelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCamelCase = coords.view(_SCREAMING_SNAKE_CASE , -1 , 2 ) UpperCamelCase = self.resolution() UpperCamelCase = self.fov() UpperCamelCase = (flat.float() / (res - 1)) * 2 - 1 UpperCamelCase = fracs * torch.tan(fov / 2 ) UpperCamelCase = fracs.view(_SCREAMING_SNAKE_CASE , -1 , 2 ) UpperCamelCase = ( self.z.view(_SCREAMING_SNAKE_CASE , 1 , 3 ) + self.x.view(_SCREAMING_SNAKE_CASE , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_SCREAMING_SNAKE_CASE , 1 , 3 ) * fracs[:, :, 1:] ) UpperCamelCase = directions / directions.norm(dim=-1 , keepdim=_SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.stack( [ torch.broadcast_to(self.origin.view(_SCREAMING_SNAKE_CASE , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , 2 , 3 ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> "DifferentiableProjectiveCamera": """simple docstring""" assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowercase__ ( __UpperCamelCase )-> DifferentiableProjectiveCamera: UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): UpperCamelCase = np.array([np.sin(__UpperCamelCase ), np.cos(__UpperCamelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCamelCase = -z * 4 UpperCamelCase = np.array([np.cos(__UpperCamelCase ), -np.sin(__UpperCamelCase ), 0.0] ) UpperCamelCase = np.cross(__UpperCamelCase , __UpperCamelCase ) origins.append(__UpperCamelCase ) xs.append(__UpperCamelCase ) ys.append(__UpperCamelCase ) zs.append(__UpperCamelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__UpperCamelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__UpperCamelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__UpperCamelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__UpperCamelCase , axis=0 ) ).float() , width=__UpperCamelCase , height=__UpperCamelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__UpperCamelCase )) , )
321
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class a_ : lowercase = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """The column name of the images in the files."""} ) lowercase = field(default=lowerCamelCase , metadata={"""help""": """A folder containing the training data."""} ) lowercase = field(default=lowerCamelCase , metadata={"""help""": """A folder containing the validation data."""} ) lowercase = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = {} if self.train_dir is not None: UpperCamelCase = self.train_dir if self.validation_dir is not None: UpperCamelCase = self.validation_dir UpperCamelCase = data_files if data_files else None @dataclass class a_ : lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowercase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase = field(default=lowerCamelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) lowercase = field( default=lowerCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowercase = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) lowercase = field( default=lowerCamelCase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class a_ ( lowerCamelCase ): lowercase = field( default=1E-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def lowercase__ ( __UpperCamelCase )-> int: UpperCamelCase = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def lowercase__ ( )-> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase ,UpperCamelCase ,UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase ,UpperCamelCase ,UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , __UpperCamelCase , __UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __UpperCamelCase ) and data_args.train_val_split > 0.0: UpperCamelCase = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase = split["""train"""] UpperCamelCase = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **__UpperCamelCase ) elif model_args.model_name_or_path: UpperCamelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: UpperCamelCase = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__UpperCamelCase ) elif model_args.model_name_or_path: UpperCamelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: UpperCamelCase = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase = ViTMAEForPreTraining(__UpperCamelCase ) if training_args.do_train: UpperCamelCase = ds["""train"""].column_names else: UpperCamelCase = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase = data_args.image_column_name elif "image" in column_names: UpperCamelCase = """image""" elif "img" in column_names: UpperCamelCase = """img""" else: UpperCamelCase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase = image_processor.size["""shortest_edge"""] else: UpperCamelCase = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase = Compose( [ Lambda(lambda __UpperCamelCase : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(__UpperCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__UpperCamelCase ): UpperCamelCase = [transforms(__UpperCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__UpperCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__UpperCamelCase ) # Compute absolute learning rate UpperCamelCase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase = None if training_args.resume_from_checkpoint is not None: UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase = last_checkpoint UpperCamelCase = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase = trainer.evaluate() trainer.log_metrics("""eval""" , __UpperCamelCase ) trainer.save_metrics("""eval""" , __UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) def lowercase__ ( __UpperCamelCase )-> List[str]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
321
1
def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) __lowerCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" __lowerCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] __lowerCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
363
from sklearn.metrics import mean_squared_error import datasets UpperCamelCase__ = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ UpperCamelCase__ = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ UpperCamelCase__ = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=None , _A="uniform_average" , _A=True ): """simple docstring""" __lowerCAmelCase = mean_squared_error( _A , _A , sample_weight=_A , multioutput=_A , squared=_A ) return {"mse": mse}
102
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __lowerCamelCase ( lowerCamelCase__="" ): """simple docstring""" lowercase__ : Dict = tempfile.mkdtemp() return os.path.join(lowerCamelCase__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Tuple ): lowercase__ : Optional[Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowercase__ : List[str] = AgentAudio(SCREAMING_SNAKE_CASE ) lowercase__ : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE ) ) # Ensure that the file contains the same value as the original tensor lowercase__ , lowercase__ : Optional[int] = sf.read(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , torch.tensor(SCREAMING_SNAKE_CASE ) , atol=1E-4 ) ) def snake_case ( self : int ): lowercase__ : int = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowercase__ : Dict = get_new_path(suffix=".wav" ) sf.write(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 16_000 ) lowercase__ : Optional[int] = AgentAudio(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , SCREAMING_SNAKE_CASE ) @require_vision @require_torch class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : str ): lowercase__ : Optional[Any] = torch.randint(0 , 256 , (64, 64, 3) ) lowercase__ : List[Any] = AgentImage(SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : int ): lowercase__ : Dict = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" lowercase__ : Union[str, Any] = Image.open(SCREAMING_SNAKE_CASE ) lowercase__ : str = AgentImage(SCREAMING_SNAKE_CASE ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Union[str, Any] ): lowercase__ : int = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" lowercase__ : List[str] = Image.open(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = AgentImage(SCREAMING_SNAKE_CASE ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE ) ) class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : str ): lowercase__ : Dict = "Hey!" lowercase__ : Any = AgentText(SCREAMING_SNAKE_CASE ) self.assertEqual(SCREAMING_SNAKE_CASE , agent_type.to_string() ) self.assertEqual(SCREAMING_SNAKE_CASE , agent_type.to_raw() ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
130
# flake8: noqa # Lint as: python3 lowerCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
130
1
"""simple docstring""" class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> str: _a = arr.split(''',''' ) def _UpperCAmelCase ( self ) -> List[str]: _a = [int(self.array[0] )] * len(self.array ) _a = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _a = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _a = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __snake_case = input('''please input some numbers:''') __snake_case = SubArray(whole_array) __snake_case = array.solve_sub_array() print(('''the results is:''', re))
362
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 10_00 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3, n + 1 ) ) if __name__ == "__main__": print(solution())
153
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Optional[Any] = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
47
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class A__ ( A__ , A__ ): @register_to_config def __init__( self : Dict , _a : int = 768 , ) -> Union[str, Any]: '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE =nn.Parameter(torch.zeros(1 , _a ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(torch.ones(1 , _a ) ) def A ( self : Tuple , _a : Optional[Union[str, torch.device]] = None , _a : Optional[torch.dtype] = None , ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =nn.Parameter(self.mean.to(_a ).to(_a ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(self.std.to(_a ).to(_a ) ) return self def A ( self : Tuple , _a : str ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =(embeds - self.mean) * 1.0 / self.std return embeds def A ( self : List[str] , _a : Optional[Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =(embeds * self.std) + self.mean return embeds
47
1
"""simple docstring""" class UpperCamelCase__ : """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCAmelCase_ : Tuple = arr.split(',' ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[int] = [int(self.array[0] )] * len(self.array ) lowerCAmelCase_ : Any = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): lowerCAmelCase_ : Optional[int] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) lowerCAmelCase_ : Tuple = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowercase__ : Optional[Any] = input("""please input some numbers:""") lowercase__ : Optional[int] = SubArray(whole_array) lowercase__ : int = array.solve_sub_array() print(("""the results is:""", re))
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : List[str] = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """open-llama""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple=1_0_0_0_0_0 , SCREAMING_SNAKE_CASE_ : Optional[int]=4_0_9_6 , SCREAMING_SNAKE_CASE_ : List[Any]=1_1_0_0_8 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE_ : str="silu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_0_4_8 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-6 , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : Dict=1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ): lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : List[Any] = hidden_act lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : List[str] = rms_norm_eps lowerCAmelCase_ : List[Any] = use_cache lowerCAmelCase_ : Optional[int] = kwargs.pop( 'use_memorry_efficient_attention' , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_dropout_prob lowerCAmelCase_ : Tuple = use_stable_embedding lowerCAmelCase_ : Optional[Any] = shared_input_output_embedding lowerCAmelCase_ : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"got {self.rope_scaling}" ) lowerCAmelCase_ : int = self.rope_scaling.get('type' , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = self.rope_scaling.get('factor' , SCREAMING_SNAKE_CASE_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
289
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int=10_24 ) -> List[str]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Dict = [], [] __lowerCAmelCase: Dict = list(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase , __lowerCAmelCase: Tuple = sorted_examples[0] def is_too_big(SCREAMING_SNAKE_CASE : Tuple ): return tok(SCREAMING_SNAKE_CASE , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __lowerCAmelCase: Optional[int] = new_src + ' ' + src __lowerCAmelCase: Optional[int] = new_tgt + ' ' + tgt if is_too_big(SCREAMING_SNAKE_CASE ) or is_too_big(SCREAMING_SNAKE_CASE ): # cant fit, finalize example finished_src.append(SCREAMING_SNAKE_CASE ) finished_tgt.append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: List[str] = src, tgt else: # can fit, keep adding __lowerCAmelCase , __lowerCAmelCase: List[str] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(SCREAMING_SNAKE_CASE ) finished_tgt.append(SCREAMING_SNAKE_CASE ) return finished_src, finished_tgt def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = Path(SCREAMING_SNAKE_CASE ) save_path.mkdir(exist_ok=SCREAMING_SNAKE_CASE ) for split in ["train"]: __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' __lowerCAmelCase: int = [x.rstrip() for x in Path(SCREAMING_SNAKE_CASE ).open().readlines()] __lowerCAmelCase: Union[str, Any] = [x.rstrip() for x in Path(SCREAMING_SNAKE_CASE ).open().readlines()] __lowerCAmelCase , __lowerCAmelCase: int = pack_examples(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f'''packed {split} split from {len(SCREAMING_SNAKE_CASE )} examples -> {len(SCREAMING_SNAKE_CASE )}.''' ) Path(save_path / f'''{split}.source''' ).open('w' ).write('\n'.join(SCREAMING_SNAKE_CASE ) ) Path(save_path / f'''{split}.target''' ).open('w' ).write('\n'.join(SCREAMING_SNAKE_CASE ) ) for split in ["val", "test"]: __lowerCAmelCase , __lowerCAmelCase: int = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(SCREAMING_SNAKE_CASE , save_path / f'''{split}.source''' ) shutil.copyfile(SCREAMING_SNAKE_CASE , save_path / f'''{split}.target''' ) def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=SCREAMING_SNAKE_CASE , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=SCREAMING_SNAKE_CASE , default=1_28 ) parser.add_argument('--data_dir' , type=SCREAMING_SNAKE_CASE ) parser.add_argument('--save_path' , type=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = parser.parse_args() __lowerCAmelCase: Dict = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(SCREAMING_SNAKE_CASE , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
322
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _a = '''scheduler_config.json''' class A_ ( snake_case__ ): _lowercase : Optional[Any] = 1 _lowercase : Tuple = 2 _lowercase : Dict = 3 _lowercase : int = 4 _lowercase : Optional[Any] = 5 @dataclass class A_ ( snake_case__ ): _lowercase : jnp.ndarray class A_ : _lowercase : Optional[int] = SCHEDULER_CONFIG_NAME _lowercase : Dict = ['dtype'] _lowercase : int = [] _lowercase : Union[str, Any] = True @classmethod def UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase , subfolder=UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase , ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.from_config(UpperCAmelCase , return_unused_kwargs=UpperCAmelCase , **UpperCAmelCase ) if hasattr(UpperCAmelCase , 'create_state' ) and getattr(UpperCAmelCase , 'has_state' , UpperCAmelCase ): __lowerCAmelCase: Dict = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = False , **UpperCAmelCase : Any ) -> List[str]: self.save_config(save_directory=UpperCAmelCase , push_to_hub=UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : str ) -> Dict: return self._get_compatibles() @classmethod def UpperCAmelCase ( cls : Optional[int] ) -> Any: __lowerCAmelCase: Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) __lowerCAmelCase: Dict = importlib.import_module(__name__.split('.' )[0] ) __lowerCAmelCase: Dict = [ getattr(UpperCAmelCase , UpperCAmelCase ) for c in compatible_classes_str if hasattr(UpperCAmelCase , UpperCAmelCase ) ] return compatible_classes def _a ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=0.9_9_9 , SCREAMING_SNAKE_CASE : List[Any]=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(SCREAMING_SNAKE_CASE : str ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowerCAmelCase: str = [] for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Union[str, Any] = i / num_diffusion_timesteps __lowerCAmelCase: List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class A_ : _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : jnp.ndarray @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Optional[int] ) -> Any: __lowerCAmelCase: str = scheduler.config if config.trained_betas is not None: __lowerCAmelCase: Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowerCAmelCase: Any = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase: List[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase: str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) __lowerCAmelCase: Optional[Any] = 1.0 - betas __lowerCAmelCase: Optional[Any] = jnp.cumprod(UpperCAmelCase , axis=0 ) return cls( alphas=UpperCAmelCase , betas=UpperCAmelCase , alphas_cumprod=UpperCAmelCase , ) def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> int: """simple docstring""" __lowerCAmelCase: Optional[int] = state.alphas_cumprod __lowerCAmelCase: str = alphas_cumprod[timesteps] ** 0.5 __lowerCAmelCase: Any = sqrt_alpha_prod.flatten() __lowerCAmelCase: Any = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) __lowerCAmelCase: Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCAmelCase: str = sqrt_one_minus_alpha_prod.flatten() __lowerCAmelCase: str = broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _a ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ) -> Any: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase: Tuple = get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
322
1
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]: if index == r: for j in range(lowerCamelCase_ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase_ : List[str] = arr[i] combination_util(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , index + 1 , lowerCamelCase_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict ) -> Any: lowercase_ : List[str] = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , 0 , lowerCamelCase_ , 0 ) if __name__ == "__main__": # Driver code to check the function above _lowercase : List[Any] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
358
'''simple docstring''' class __magic_name__ : def __init__( self : int , lowercase_ : list ): lowercase_ : Dict = set_counts lowercase_ : List[Any] = max(lowercase_ ) lowercase_ : str = len(lowercase_ ) lowercase_ : str = [1] * num_sets lowercase_ : Dict = list(range(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ): lowercase_ : List[Any] = self.get_parent(lowercase_ ) lowercase_ : Union[str, Any] = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : List[str] = 0 lowercase_ : Optional[int] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : int = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : int = 0 lowercase_ : List[Any] = src_parent lowercase_ : List[Any] = self.set_counts[src_parent] lowercase_ : Tuple = max(self.max_set , lowercase_ ) return True def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ): if self.parents[disj_set] == disj_set: return disj_set lowercase_ : int = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
21
0
'''simple docstring''' import math class __SCREAMING_SNAKE_CASE : """simple docstring""" def UpperCamelCase__ ( self : List[str] , __a : list[list[float]] , __a : list[int] ): _a = 0.0 _a = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def UpperCamelCase__ ( self : List[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ): for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _lowerCamelCase ( ) -> None: # Training Examples ( m, n ) _a = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _a = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _a = SelfOrganizingMap() _a = 3 _a = 0.5 for _ in range(lowercase ): for j in range(len(lowercase ) ): # training sample _a = training_samples[j] # Compute the winning vector _a = self_organizing_map.get_winner(lowercase , lowercase ) # Update the winning vector _a = self_organizing_map.update(lowercase , lowercase , lowercase , lowercase ) # classify test sample _a = [0, 0, 0, 1] _a = self_organizing_map.get_winner(lowercase , lowercase ) # results print(F'Clusters that the test sample belongs to : {winner}' ) print(F'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
63
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A : Tuple = get_tests_dir("fixtures") class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : Union[str, Any] ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE_ = mock.Mock() SCREAMING_SNAKE_CASE_ = 500 SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = HTTPError SCREAMING_SNAKE_CASE_ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__magic_name__ ) as mock_head: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def __A ( self : Optional[int] ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class lowerCamelCase (unittest.TestCase ): """simple docstring""" @classmethod def __A ( cls : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __A ( cls : int ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(__magic_name__ ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __magic_name__ , repo_id="test-feature-extractor" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def __A ( self : Dict ) -> str: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(__magic_name__ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __magic_name__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def __A ( self : List[Any] ) -> Dict: CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE_ = CustomFeatureExtractor.from_pretrained(__magic_name__ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=__magic_name__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
118
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _lowerCamelCase = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _lowerCamelCase = 'UperNetConfig' class a ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : Union[int, Tuple[int, int]] , __snake_case : Union[int, Tuple[int, int], str] = 0 , __snake_case : bool = False , __snake_case : Union[int, Tuple[int, int]] = 1 , ): super().__init__() UpperCAmelCase_ = nn.Convad( in_channels=__snake_case , out_channels=__snake_case , kernel_size=__snake_case , padding=__snake_case , bias=__snake_case , dilation=__snake_case , ) UpperCAmelCase_ = nn.BatchNormad(__snake_case ) UpperCAmelCase_ = nn.ReLU() def lowerCamelCase_ ( self : int , __snake_case : torch.Tensor ): UpperCAmelCase_ = self.conv(__snake_case ) UpperCAmelCase_ = self.batch_norm(__snake_case ) UpperCAmelCase_ = self.activation(__snake_case ) return output class a ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : int ): super().__init__() UpperCAmelCase_ = [ nn.AdaptiveAvgPoolad(__snake_case ), UperNetConvModule(__snake_case , __snake_case , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__snake_case ) , __snake_case ) def lowerCamelCase_ ( self : List[Any] , __snake_case : torch.Tensor ): UpperCAmelCase_ = input for layer in self.layers: UpperCAmelCase_ = layer(__snake_case ) return hidden_state class a ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : Tuple[int, ...] , __snake_case : int , __snake_case : int , __snake_case : bool ): super().__init__() UpperCAmelCase_ = pool_scales UpperCAmelCase_ = align_corners UpperCAmelCase_ = in_channels UpperCAmelCase_ = channels UpperCAmelCase_ = [] for i, pool_scale in enumerate(__snake_case ): UpperCAmelCase_ = UperNetPyramidPoolingBlock(pool_scale=__snake_case , in_channels=__snake_case , channels=__snake_case ) self.blocks.append(__snake_case ) self.add_module(str(__snake_case ) , __snake_case ) def lowerCamelCase_ ( self : List[str] , __snake_case : torch.Tensor ): UpperCAmelCase_ = [] for ppm in self.blocks: UpperCAmelCase_ = ppm(__snake_case ) UpperCAmelCase_ = nn.functional.interpolate( __snake_case , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__snake_case ) return ppm_outs class a ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : Dict , __snake_case : List[str] ): super().__init__() UpperCAmelCase_ = config UpperCAmelCase_ = config.pool_scales # e.g. (1, 2, 3, 6) UpperCAmelCase_ = in_channels UpperCAmelCase_ = config.hidden_size UpperCAmelCase_ = False UpperCAmelCase_ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCAmelCase_ = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCAmelCase_ = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCAmelCase_ = nn.ModuleList() UpperCAmelCase_ = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCAmelCase_ = UperNetConvModule(__snake_case , self.channels , kernel_size=1 ) UpperCAmelCase_ = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__snake_case ) self.fpn_convs.append(__snake_case ) UpperCAmelCase_ = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowerCamelCase_ ( self : Tuple ): self.apply(self._init_weights ) def lowerCamelCase_ ( self : List[Any] , __snake_case : List[Any] ): if isinstance(__snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCamelCase_ ( self : List[Any] , __snake_case : int ): UpperCAmelCase_ = inputs[-1] UpperCAmelCase_ = [x] psp_outs.extend(self.psp_modules(__snake_case ) ) UpperCAmelCase_ = torch.cat(__snake_case , dim=1 ) UpperCAmelCase_ = self.bottleneck(__snake_case ) return output def lowerCamelCase_ ( self : str , __snake_case : torch.Tensor ): # build laterals UpperCAmelCase_ = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__snake_case ) ) # build top-down path UpperCAmelCase_ = len(__snake_case ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCAmelCase_ = laterals[i - 1].shape[2:] UpperCAmelCase_ = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__snake_case , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCAmelCase_ = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCAmelCase_ = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCAmelCase_ = torch.cat(__snake_case , dim=1 ) UpperCAmelCase_ = self.fpn_bottleneck(__snake_case ) UpperCAmelCase_ = self.classifier(__snake_case ) return output class a ( nn.Module ): '''simple docstring''' def __init__( self : Any , __snake_case : int , __snake_case : int = 2 , __snake_case : int = 3 , __snake_case : Union[int, Tuple[int, int]] = 1 ): super().__init__() UpperCAmelCase_ = config UpperCAmelCase_ = config.auxiliary_in_channels UpperCAmelCase_ = config.auxiliary_channels UpperCAmelCase_ = config.auxiliary_num_convs UpperCAmelCase_ = config.auxiliary_concat_input UpperCAmelCase_ = in_index UpperCAmelCase_ = (kernel_size // 2) * dilation UpperCAmelCase_ = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__snake_case , padding=__snake_case , dilation=__snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__snake_case , padding=__snake_case , dilation=__snake_case ) ) if self.num_convs == 0: UpperCAmelCase_ = nn.Identity() else: UpperCAmelCase_ = nn.Sequential(*__snake_case ) if self.concat_input: UpperCAmelCase_ = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__snake_case , padding=kernel_size // 2 ) UpperCAmelCase_ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowerCamelCase_ ( self : Tuple ): self.apply(self._init_weights ) def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : Tuple ): if isinstance(__snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCamelCase_ ( self : List[str] , __snake_case : torch.Tensor ): # just take the relevant feature maps UpperCAmelCase_ = encoder_hidden_states[self.in_index] UpperCAmelCase_ = self.convs(__snake_case ) if self.concat_input: UpperCAmelCase_ = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCAmelCase_ = self.classifier(__snake_case ) return output class a ( _A ): '''simple docstring''' lowerCAmelCase : Tuple = UperNetConfig lowerCAmelCase : Tuple = 'pixel_values' lowerCAmelCase : Tuple = True def lowerCamelCase_ ( self : List[str] , __snake_case : int ): if isinstance(__snake_case , __snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowerCamelCase_ ( self : List[str] ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : Dict , __snake_case : int=False ): if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ = value _lowerCamelCase = r'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' , _A , ) class a ( _A ): '''simple docstring''' def __init__( self : Dict , __snake_case : Any ): super().__init__(__snake_case ) UpperCAmelCase_ = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCAmelCase_ = UperNetHead(__snake_case , in_channels=self.backbone.channels ) UpperCAmelCase_ = UperNetFCNHead(__snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__snake_case , config_class=_CONFIG_FOR_DOC ) def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[bool] = None , ): UpperCAmelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ = output_attentions if output_attentions is not None else self.config.output_attentions UpperCAmelCase_ = self.backbone.forward_with_filtered_kwargs( __snake_case , output_hidden_states=__snake_case , output_attentions=__snake_case ) UpperCAmelCase_ = outputs.feature_maps UpperCAmelCase_ = self.decode_head(__snake_case ) UpperCAmelCase_ = nn.functional.interpolate(__snake_case , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__snake_case ) UpperCAmelCase_ = None if self.auxiliary_head is not None: UpperCAmelCase_ = self.auxiliary_head(__snake_case ) UpperCAmelCase_ = nn.functional.interpolate( __snake_case , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__snake_case ) UpperCAmelCase_ = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCAmelCase_ = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCAmelCase_ = loss_fct(__snake_case , __snake_case ) UpperCAmelCase_ = loss_fct(__snake_case , __snake_case ) UpperCAmelCase_ = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCAmelCase_ = (logits,) + outputs[1:] else: UpperCAmelCase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
177
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _lowerCamelCase = False class a ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase_ ( self : Any ): return 12 @property def lowerCamelCase_ ( self : Union[str, Any] ): return 12 @property def lowerCamelCase_ ( self : Optional[Any] ): return 32 @property def lowerCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowerCamelCase_ ( self : Tuple ): UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def lowerCamelCase_ ( self : int ): torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__snake_case ) @property def lowerCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = 12 UpperCAmelCase_ = 12 UpperCAmelCase_ = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } UpperCAmelCase_ = TransformeraDModel(**__snake_case ) return model def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.dummy_vqvae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = self.dummy_tokenizer UpperCAmelCase_ = self.dummy_transformer UpperCAmelCase_ = VQDiffusionScheduler(self.num_embed ) UpperCAmelCase_ = LearnedClassifierFreeSamplingEmbeddings(learnable=__snake_case ) UpperCAmelCase_ = VQDiffusionPipeline( vqvae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , transformer=__snake_case , scheduler=__snake_case , learned_classifier_free_sampling_embeddings=__snake_case , ) UpperCAmelCase_ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ = '''teddy bear playing in the pool''' UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(0 ) UpperCAmelCase_ = pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase_ = output.images UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(0 ) UpperCAmelCase_ = pipe( [prompt] , generator=__snake_case , output_type='''np''' , return_dict=__snake_case , num_inference_steps=2 )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCAmelCase_ = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : str ): UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.dummy_vqvae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = self.dummy_tokenizer UpperCAmelCase_ = self.dummy_transformer UpperCAmelCase_ = VQDiffusionScheduler(self.num_embed ) UpperCAmelCase_ = LearnedClassifierFreeSamplingEmbeddings( learnable=__snake_case , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) UpperCAmelCase_ = VQDiffusionPipeline( vqvae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , transformer=__snake_case , scheduler=__snake_case , learned_classifier_free_sampling_embeddings=__snake_case , ) UpperCAmelCase_ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ = '''teddy bear playing in the pool''' UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(0 ) UpperCAmelCase_ = pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase_ = output.images UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(0 ) UpperCAmelCase_ = pipe( [prompt] , generator=__snake_case , output_type='''np''' , return_dict=__snake_case , num_inference_steps=2 )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCAmelCase_ = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class a ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) UpperCAmelCase_ = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) UpperCAmelCase_ = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(0 ) UpperCAmelCase_ = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=__snake_case , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image ).max() < 2.0
177
1
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase ( a_ ): '''simple docstring''' def __init__( self: int , *snake_case: List[Any] , snake_case: List[str]=None , snake_case: Union[str, Any]=None , **snake_case: Union[str, Any] ) -> Optional[Any]: super().__init__(*_lowercase , **_lowercase ) snake_case_ :Optional[int] = eval_examples snake_case_ :Tuple = post_process_function def lowerCAmelCase_ ( self: str , snake_case: List[Any]=None , snake_case: int=None , snake_case: Optional[Any]=None , snake_case: List[Any] = "eval" ) -> Union[str, Any]: snake_case_ :List[str] = self.eval_dataset if eval_dataset is None else eval_dataset snake_case_ :List[str] = self.get_eval_dataloader(_lowercase ) snake_case_ :List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case_ :Optional[int] = self.compute_metrics snake_case_ :List[str] = None snake_case_ :Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop snake_case_ :Any = time.time() try: snake_case_ :Union[str, Any] = eval_loop( _lowercase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: snake_case_ :Dict = compute_metrics snake_case_ :Union[str, Any] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default snake_case_ :List[Any] = self.post_process_function(_lowercase , _lowercase , output.predictions ) snake_case_ :Optional[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): snake_case_ :List[str] = metrics.pop(_lowercase ) metrics.update(output.metrics ) else: snake_case_ :List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case_ :List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowercase ) return metrics def lowerCAmelCase_ ( self: Dict , snake_case: Optional[Any] , snake_case: Optional[int] , snake_case: str=None , snake_case: Any = "test" ) -> str: snake_case_ :Tuple = self.get_test_dataloader(_lowercase ) # Temporarily disable metric computation, we will do it in the loop here. snake_case_ :List[Any] = self.compute_metrics snake_case_ :int = None snake_case_ :Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop snake_case_ :Union[str, Any] = time.time() try: snake_case_ :List[str] = eval_loop( _lowercase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: snake_case_ :Optional[Any] = compute_metrics snake_case_ :Union[str, Any] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output snake_case_ :Optional[int] = self.post_process_function(_lowercase , _lowercase , output.predictions , """predict""" ) snake_case_ :List[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): snake_case_ :int = metrics.pop(_lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowercase )
66
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __snake_case : Dict = logging.get_logger(__name__) class A__(a_ ): """simple docstring""" _A : Dict = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = 8 , **_lowercase , ) -> None: super().__init__(**_lowercase ) a_ : Tuple = do_rescale a_ : Dict = rescale_factor a_ : int = do_pad a_ : Optional[int] = pad_size def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase ) -> np.ndarray: return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None ) -> int: a_ , a_ : str = get_image_size(_lowercase ) a_ : Tuple = (old_height // size + 1) * size - old_height a_ : List[Any] = (old_width // size + 1) * size - old_width return pad(_lowercase , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> List[str]: a_ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale a_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : Tuple = do_pad if do_pad is not None else self.do_pad a_ : Tuple = pad_size if pad_size is not None else self.pad_size a_ : Tuple = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. a_ : Tuple = [to_numpy_array(_lowercase ) for image in images] if do_rescale: a_ : Dict = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_pad: a_ : str = [self.pad(_lowercase , size=_lowercase ) for image in images] a_ : Optional[int] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] a_ : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
248
0
from __future__ import annotations class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = order # a_{0} ... a_{k} UpperCamelCase_: int = [1.0] + [0.0] * order # b_{0} ... b_{k} UpperCamelCase_: str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCamelCase_: Dict = [0.0] * self.order # y[n-1] ... y[n-k] UpperCamelCase_: List[Any] = [0.0] * self.order def _a ( self , _lowerCamelCase , _lowerCamelCase ): if len(_lowerCamelCase ) < self.order: UpperCamelCase_: List[Any] = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: UpperCamelCase_: str = ( f'''Expected a_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(_lowerCamelCase )}''' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: UpperCamelCase_: int = ( f'''Expected b_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(_lowerCamelCase )}''' ) raise ValueError(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = a_coeffs UpperCamelCase_: Optional[int] = b_coeffs def _a ( self , _lowerCamelCase ): UpperCamelCase_: List[Any] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCamelCase_: int = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCamelCase_: Union[str, Any] = self.input_history[:-1] UpperCamelCase_: Tuple = self.output_history[:-1] UpperCamelCase_: int = sample UpperCamelCase_: Optional[Any] = result return result
292
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() A_ : str = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] A_ : Optional[int] = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: Dict = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks UpperCamelCase_: Tuple = int(re.match(R'.*layer_(\d*).*' , UpperCAmelCase__ )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def snake_case (UpperCAmelCase__ ) -> List[str]: if dtype == torch.bool: return 1 / 8 UpperCamelCase_: Optional[Any] = re.search(R'[^\d](\d+)$' , str(UpperCAmelCase__ ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) UpperCamelCase_: List[Any] = int(bit_search.groups()[0] ) return bit_size // 8 def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: # Construct model if bloom_config_file == "": UpperCamelCase_: List[str] = BloomConfig() else: UpperCamelCase_: List[str] = BloomConfig.from_json_file(UpperCAmelCase__ ) if shard_model: UpperCamelCase_: str = os.listdir(UpperCAmelCase__ ) UpperCamelCase_: List[str] = sorted(filter(lambda UpperCAmelCase__ : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase__ ) ) UpperCamelCase_: Optional[int] = {'weight_map': {}, 'metadata': {}} UpperCamelCase_: str = 0 UpperCamelCase_: Optional[Any] = None UpperCamelCase_: int = BloomConfig() for j, file in enumerate(UpperCAmelCase__ ): print('Processing file: {}'.format(UpperCAmelCase__ ) ) UpperCamelCase_: Tuple = None for i in range(UpperCAmelCase__ ): # load all TP files UpperCamelCase_: List[Any] = file.replace('model_00' , F'''model_0{i}''' ) UpperCamelCase_: List[str] = torch.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , map_location='cpu' ) # Rename keys in the transformers names UpperCamelCase_: Optional[int] = list(temp.keys() ) for key in keys: UpperCamelCase_: List[Any] = temp.pop(UpperCAmelCase__ ) if tensors is None: UpperCamelCase_: Dict = temp else: for key in tensors.keys(): if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCamelCase_: List[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCamelCase_: Dict = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCamelCase_: Optional[int] = tensors[key] / pretraining_tp torch.save( UpperCAmelCase__ , os.path.join( UpperCAmelCase__ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): UpperCamelCase_: int = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: UpperCamelCase_: Dict = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase__ ) ).zfill(5 ) ) UpperCamelCase_: Union[str, Any] = BloomConfig() UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + CONFIG_NAME UpperCamelCase_: Optional[int] = total_size with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCAmelCase__ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: UpperCamelCase_: Tuple = json.dumps(UpperCAmelCase__ , indent=2 , sort_keys=UpperCAmelCase__ ) + '\n' f.write(UpperCAmelCase__ ) else: UpperCamelCase_: Optional[Any] = BloomModel(UpperCAmelCase__ ) UpperCamelCase_: Tuple = os.listdir(UpperCAmelCase__ ) UpperCamelCase_: Tuple = sorted(filter(lambda UpperCAmelCase__ : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase__ ) ) UpperCamelCase_: Tuple = None for i, file in enumerate(UpperCAmelCase__ ): UpperCamelCase_: Union[str, Any] = None for i in range(UpperCAmelCase__ ): # load all TP files UpperCamelCase_: Any = file.replace('model_00' , F'''model_0{i}''' ) UpperCamelCase_: Union[str, Any] = torch.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , map_location='cpu' ) # Rename keys in the transformers names UpperCamelCase_: Dict = list(temp.keys() ) for key in keys: UpperCamelCase_: Any = temp.pop(UpperCAmelCase__ ) if tensors is None: UpperCamelCase_: Any = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCamelCase_: int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCamelCase_: Optional[int] = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCamelCase_: Tuple = tensors[key] / pretraining_tp UpperCamelCase_: Any = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: UpperCamelCase_: Any = set(other_keys.missing_keys ) else: UpperCamelCase_: int = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: UpperCamelCase_: Tuple = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCAmelCase__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) A_ : Any = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
292
1
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" return EnvironmentCommand() class __lowerCAmelCase ( UpperCamelCase__ ): """simple docstring""" @staticmethod def lowercase_ ( lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = parser.add_parser('env' ) download_parser.set_defaults(func=UpperCamelCase_ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = huggingface_hub.__version__ __lowerCamelCase = 'not installed' __lowerCamelCase = 'NA' if is_torch_available(): import torch __lowerCamelCase = torch.__version__ __lowerCamelCase = torch.cuda.is_available() __lowerCamelCase = 'not installed' if is_transformers_available(): import transformers __lowerCamelCase = transformers.__version__ __lowerCamelCase = 'not installed' if is_accelerate_available(): import accelerate __lowerCamelCase = accelerate.__version__ __lowerCamelCase = 'not installed' if is_xformers_available(): import xformers __lowerCamelCase = xformers.__version__ __lowerCamelCase = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(UpperCamelCase_ ) ) return info @staticmethod def lowercase_ ( lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
90
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _a ( UpperCamelCase__ ): _lowercase : torch.FloatTensor class _a ( nn.Module ): def __init__( self: int , UpperCamelCase_: int=3 , UpperCamelCase_: Optional[Any]=3 , UpperCamelCase_: Union[str, Any]=("DownEncoderBlock2D",) , UpperCamelCase_: Optional[int]=(64,) , UpperCamelCase_: Tuple=2 , UpperCamelCase_: Dict=32 , UpperCamelCase_: Any="silu" , UpperCamelCase_: Optional[int]=True , ) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ = layers_per_block lowercase__ = torch.nn.Convad( UpperCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowercase__ = None lowercase__ = nn.ModuleList([] ) # down lowercase__ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase_ ): lowercase__ = output_channel lowercase__ = block_out_channels[i] lowercase__ = i == len(UpperCamelCase_ ) - 1 lowercase__ = get_down_block( UpperCamelCase_ , num_layers=self.layers_per_block , in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase_ , resnet_groups=UpperCamelCase_ , attention_head_dim=UpperCamelCase_ , temb_channels=UpperCamelCase_ , ) self.down_blocks.append(UpperCamelCase_ ) # mid lowercase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase_ , temb_channels=UpperCamelCase_ , ) # out lowercase__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase_ , eps=1E-6 ) lowercase__ = nn.SiLU() lowercase__ = 2 * out_channels if double_z else out_channels lowercase__ = nn.Convad(block_out_channels[-1] , UpperCamelCase_ , 3 , padding=1 ) lowercase__ = False def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: str ) -> str: """simple docstring""" lowercase__ = x lowercase__ = self.conv_in(UpperCamelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase_: Dict ): def custom_forward(*UpperCamelCase_: List[str] ): return module(*UpperCamelCase_ ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: lowercase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase_ ) , UpperCamelCase_ , use_reentrant=UpperCamelCase_ ) # middle lowercase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase_ , use_reentrant=UpperCamelCase_ ) else: for down_block in self.down_blocks: lowercase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase_ ) , UpperCamelCase_ ) # middle lowercase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase_ ) else: # down for down_block in self.down_blocks: lowercase__ = down_block(UpperCamelCase_ ) # middle lowercase__ = self.mid_block(UpperCamelCase_ ) # post-process lowercase__ = self.conv_norm_out(UpperCamelCase_ ) lowercase__ = self.conv_act(UpperCamelCase_ ) lowercase__ = self.conv_out(UpperCamelCase_ ) return sample class _a ( nn.Module ): def __init__( self: Dict , UpperCamelCase_: int=3 , UpperCamelCase_: Optional[Any]=3 , UpperCamelCase_: int=("UpDecoderBlock2D",) , UpperCamelCase_: Any=(64,) , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: Optional[Any]="silu" , UpperCamelCase_: Dict="group" , ) -> Any: """simple docstring""" super().__init__() lowercase__ = layers_per_block lowercase__ = nn.Convad( UpperCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowercase__ = None lowercase__ = nn.ModuleList([] ) lowercase__ = in_channels if norm_type == '''spatial''' else None # mid lowercase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase_ , temb_channels=UpperCamelCase_ , ) # up lowercase__ = list(reversed(UpperCamelCase_ ) ) lowercase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase_ ): lowercase__ = output_channel lowercase__ = reversed_block_out_channels[i] lowercase__ = i == len(UpperCamelCase_ ) - 1 lowercase__ = get_up_block( UpperCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , prev_output_channel=UpperCamelCase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase_ , resnet_groups=UpperCamelCase_ , attention_head_dim=UpperCamelCase_ , temb_channels=UpperCamelCase_ , resnet_time_scale_shift=UpperCamelCase_ , ) self.up_blocks.append(UpperCamelCase_ ) lowercase__ = output_channel # out if norm_type == "spatial": lowercase__ = SpatialNorm(block_out_channels[0] , UpperCamelCase_ ) else: lowercase__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase_ , eps=1E-6 ) lowercase__ = nn.SiLU() lowercase__ = nn.Convad(block_out_channels[0] , UpperCamelCase_ , 3 , padding=1 ) lowercase__ = False def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]=None ) -> int: """simple docstring""" lowercase__ = z lowercase__ = self.conv_in(UpperCamelCase_ ) lowercase__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase_: List[str] ): def custom_forward(*UpperCamelCase_: int ): return module(*UpperCamelCase_ ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle lowercase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase_ , UpperCamelCase_ , use_reentrant=UpperCamelCase_ ) lowercase__ = sample.to(UpperCamelCase_ ) # up for up_block in self.up_blocks: lowercase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ , use_reentrant=UpperCamelCase_ ) else: # middle lowercase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = sample.to(UpperCamelCase_ ) # up for up_block in self.up_blocks: lowercase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ ) else: # middle lowercase__ = self.mid_block(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = sample.to(UpperCamelCase_ ) # up for up_block in self.up_blocks: lowercase__ = up_block(UpperCamelCase_ , UpperCamelCase_ ) # post-process if latent_embeds is None: lowercase__ = self.conv_norm_out(UpperCamelCase_ ) else: lowercase__ = self.conv_norm_out(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.conv_act(UpperCamelCase_ ) lowercase__ = self.conv_out(UpperCamelCase_ ) return sample class _a ( nn.Module ): def __init__( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: List[str]="random" , UpperCamelCase_: Union[str, Any]=False , UpperCamelCase_: Dict=True ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ = n_e lowercase__ = vq_embed_dim lowercase__ = beta lowercase__ = legacy lowercase__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowercase__ = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) lowercase__ = self.used.shape[0] lowercase__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowercase__ = self.re_embed lowercase__ = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: lowercase__ = n_e lowercase__ = sane_index_shape def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" lowercase__ = inds.shape assert len(UpperCamelCase_ ) > 1 lowercase__ = inds.reshape(ishape[0] , -1 ) lowercase__ = self.used.to(UpperCamelCase_ ) lowercase__ = (inds[:, :, None] == used[None, None, ...]).long() lowercase__ = match.argmax(-1 ) lowercase__ = match.sum(2 ) < 1 if self.unknown_index == "random": lowercase__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowercase__ = self.unknown_index return new.reshape(UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" lowercase__ = inds.shape assert len(UpperCamelCase_ ) > 1 lowercase__ = inds.reshape(ishape[0] , -1 ) lowercase__ = self.used.to(UpperCamelCase_ ) if self.re_embed > self.used.shape[0]: # extra token lowercase__ = 0 # simply set to zero lowercase__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase_ ) return back.reshape(UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Any ) -> Tuple: """simple docstring""" lowercase__ = z.permute(0 , 2 , 3 , 1 ).contiguous() lowercase__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowercase__ = torch.argmin(torch.cdist(UpperCamelCase_ , self.embedding.weight ) , dim=1 ) lowercase__ = self.embedding(UpperCamelCase_ ).view(z.shape ) lowercase__ = None lowercase__ = None # compute loss for embedding if not self.legacy: lowercase__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowercase__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowercase__ = z + (z_q - z).detach() # reshape back to match original input shape lowercase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowercase__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowercase__ = self.remap_to_used(UpperCamelCase_ ) lowercase__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowercase__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] ) -> List[str]: """simple docstring""" if self.remap is not None: lowercase__ = indices.reshape(shape[0] , -1 ) # add batch axis lowercase__ = self.unmap_to_all(UpperCamelCase_ ) lowercase__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowercase__ = self.embedding(UpperCamelCase_ ) if shape is not None: lowercase__ = z_q.view(UpperCamelCase_ ) # reshape back to match original input shape lowercase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _a ( UpperCamelCase__ ): def __init__( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=False ) -> str: """simple docstring""" lowercase__ = parameters lowercase__ , lowercase__ = torch.chunk(UpperCamelCase_ , 2 , dim=1 ) lowercase__ = torch.clamp(self.logvar , -30.0 , 20.0 ) lowercase__ = deterministic lowercase__ = torch.exp(0.5 * self.logvar ) lowercase__ = torch.exp(self.logvar ) if self.deterministic: lowercase__ = lowercase__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" lowercase__ = randn_tensor( self.mean.shape , generator=UpperCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) lowercase__ = self.mean + self.std * sample return x def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: str=None ) -> Tuple: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Any=[1, 2, 3] ) -> Tuple: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) lowercase__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" return self.mean
110
0
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __snake_case =0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __snake_case =[int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class SCREAMING_SNAKE_CASE_ : def __init__( self : Union[str, Any] ) -> Dict: lowerCAmelCase = WATERMARK_BITS lowerCAmelCase = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : str ) -> str: if images.shape[-1] < 2_5_6: return images lowerCAmelCase = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase = [self.encoder.encode(_A , 'dwtDct' ) for image in images] lowerCAmelCase = torch.from_numpy(np.array(_A ) ).permute(0 , 3 , 1 , 2 ) lowerCAmelCase = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0 ) return images
363
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class UpperCAmelCase_ ( __lowercase ): def __init__( self : Tuple ) -> Tuple: # test for the above condition self.test() def __UpperCAmelCase ( self : Any ) -> Tuple: lowerCAmelCase = 0 lowerCAmelCase = False while not completed: if counter == 1: self.reset() lowerCAmelCase = self.advance() if not self.does_advance(UpperCAmelCase__ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.update(UpperCAmelCase__ ) counter += 1 if counter > 1_0_0_0_0: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def __UpperCAmelCase ( self : Dict ) -> Dict: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : int ) -> Dict: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : int ) -> Tuple: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCAmelCase ( self : List[str] ) -> Tuple: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCAmelCase ( self : Any ) -> Tuple: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=False ) -> Union[str, Any]: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class UpperCAmelCase_ ( __lowercase ): def __init__( self : str , UpperCAmelCase__ : List[int] ) -> Union[str, Any]: super(UpperCAmelCase__ , self ).__init__() if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or len(UpperCAmelCase__ ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) lowerCAmelCase = token_ids lowerCAmelCase = len(self.token_ids ) lowerCAmelCase = -1 # the index of the currently fulfilled step lowerCAmelCase = False def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : int ) -> int: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase__ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int ) -> List[str]: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase__ )}''' ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False if self.does_advance(UpperCAmelCase__ ): self.fulfilled_idx += 1 lowerCAmelCase = True if self.fulfilled_idx == (self.seqlen - 1): lowerCAmelCase = True lowerCAmelCase = completed else: # failed to make progress. lowerCAmelCase = True self.reset() return stepped, completed, reset def __UpperCAmelCase ( self : int ) -> List[str]: lowerCAmelCase = False lowerCAmelCase = 0 def __UpperCAmelCase ( self : Dict ) -> List[str]: return self.seqlen - (self.fulfilled_idx + 1) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : List[str]=False ) -> Optional[int]: lowerCAmelCase = PhrasalConstraint(self.token_ids ) if stateful: lowerCAmelCase = self.seqlen lowerCAmelCase = self.fulfilled_idx lowerCAmelCase = self.completed return new_constraint class UpperCAmelCase_ : def __init__( self : str , UpperCAmelCase__ : List[List[int]] , UpperCAmelCase__ : str=True ) -> str: lowerCAmelCase = max([len(UpperCAmelCase__ ) for one in nested_token_ids] ) lowerCAmelCase = {} for token_ids in nested_token_ids: lowerCAmelCase = root for tidx, token_id in enumerate(UpperCAmelCase__ ): if token_id not in level: lowerCAmelCase = {} lowerCAmelCase = level[token_id] if no_subsets and self.has_subsets(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F''' {nested_token_ids}.''' ) lowerCAmelCase = root def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase = self.trie for current_token in current_seq: lowerCAmelCase = start[current_token] lowerCAmelCase = list(start.keys() ) return next_tokens def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : List[Any] ) -> Dict: lowerCAmelCase = self.next_tokens(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) == 0 def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase = list(root.values() ) if len(UpperCAmelCase__ ) == 0: return 1 else: return sum([self.count_leaves(UpperCAmelCase__ ) for nn in next_nodes] ) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ) -> List[Any]: lowerCAmelCase = self.count_leaves(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) != leaf_count class UpperCAmelCase_ ( __lowercase ): def __init__( self : Tuple , UpperCAmelCase__ : List[List[int]] ) -> List[Any]: super(UpperCAmelCase__ , self ).__init__() if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or len(UpperCAmelCase__ ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) lowerCAmelCase = DisjunctiveTrie(UpperCAmelCase__ ) lowerCAmelCase = nested_token_ids lowerCAmelCase = self.trie.max_height lowerCAmelCase = [] lowerCAmelCase = False def __UpperCAmelCase ( self : Dict ) -> Optional[int]: lowerCAmelCase = self.trie.next_tokens(self.current_seq ) if len(UpperCAmelCase__ ) == 0: return None else: return token_list def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : int ) -> Any: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase__ )}''' ) lowerCAmelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : int ) -> Tuple: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase__ )}''' ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False if self.does_advance(UpperCAmelCase__ ): self.current_seq.append(UpperCAmelCase__ ) lowerCAmelCase = True else: lowerCAmelCase = True self.reset() lowerCAmelCase = self.trie.reached_leaf(self.current_seq ) lowerCAmelCase = completed return stepped, completed, reset def __UpperCAmelCase ( self : Optional[int] ) -> int: lowerCAmelCase = False lowerCAmelCase = [] def __UpperCAmelCase ( self : Any ) -> Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any]=False ) -> List[Any]: lowerCAmelCase = DisjunctiveConstraint(self.token_ids ) if stateful: lowerCAmelCase = self.seqlen lowerCAmelCase = self.current_seq lowerCAmelCase = self.completed return new_constraint class UpperCAmelCase_ : def __init__( self : Tuple , UpperCAmelCase__ : List[Constraint] ) -> str: lowerCAmelCase = constraints # max # of steps required to fulfill a given constraint lowerCAmelCase = max([c.seqlen for c in constraints] ) lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = False self.init_state() def __UpperCAmelCase ( self : List[str] ) -> List[str]: lowerCAmelCase = [] lowerCAmelCase = None lowerCAmelCase = [constraint.copy(stateful=UpperCAmelCase__ ) for constraint in self.constraints] def __UpperCAmelCase ( self : List[str] ) -> Any: lowerCAmelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __UpperCAmelCase ( self : Optional[Any] ) -> int: lowerCAmelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowerCAmelCase = constraint.advance() if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.append(UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.extend(UpperCAmelCase__ ) else: lowerCAmelCase = self.inprogress_constraint.advance() if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.append(UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.extend(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) == 0: return None else: return token_list def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[List[int]] ) -> Dict: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowerCAmelCase , lowerCAmelCase = self.add(UpperCAmelCase__ ) # the entire list of constraints are fulfilled if self.completed: break def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : int ) -> Optional[Any]: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) lowerCAmelCase , lowerCAmelCase = False, False if self.completed: lowerCAmelCase = True lowerCAmelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.inprogress_constraint.update(UpperCAmelCase__ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCAmelCase__ ) ) lowerCAmelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowerCAmelCase = None if len(self.pending_constraints ) == 0: # we're done! lowerCAmelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCAmelCase__ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = pending_constraint.update(UpperCAmelCase__ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(UpperCAmelCase__ ) lowerCAmelCase = None if not complete and stepped: lowerCAmelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowerCAmelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowerCAmelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any]=True ) -> Optional[int]: lowerCAmelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowerCAmelCase = [ constraint.copy(stateful=UpperCAmelCase__ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowerCAmelCase = self.inprogress_constraint.copy(stateful=UpperCAmelCase__ ) lowerCAmelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
55
0
'''simple docstring''' from datetime import datetime import requests def _A ( A__ ): """simple docstring""" __lowercase = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __lowercase = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(A__ ).content if __name__ == "__main__": lowerCAmelCase__ = input('''Enter Video/IGTV url: ''').strip() lowerCAmelCase__ = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(f'Done. Video saved to disk as {file_name}.')
104
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE : Union[str, Any] = 'CLIPImageProcessor' SCREAMING_SNAKE_CASE : Union[str, Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[Any] ,lowercase__ : Dict=None ,lowercase__ : Union[str, Any]=None ,**lowercase__ : Tuple ): __lowercase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,lowercase__ ,) __lowercase = kwargs.pop('''feature_extractor''' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ ,lowercase__ ) def __call__( self : List[Any] ,lowercase__ : str=None ,lowercase__ : List[Any]=None ,lowercase__ : Optional[Any]=None ,**lowercase__ : int ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowercase = self.tokenizer(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if images is not None: __lowercase = self.image_processor(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) ,tensor_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,*lowercase__ : List[str] ,**lowercase__ : int ): return self.tokenizer.batch_decode(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,*lowercase__ : Optional[int] ,**lowercase__ : Union[str, Any] ): return self.tokenizer.decode(*lowercase__ ,**lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,lowercase__ ,) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,lowercase__ ,) return self.image_processor
104
1
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _lowerCamelCase ( _UpperCamelCase=32 , _UpperCamelCase=10 , _UpperCamelCase=100 , _UpperCamelCase=1026 , _UpperCamelCase=True , _UpperCamelCase="data/tokenized_stories_train_wikitext103.jbl" , _UpperCamelCase="igf_context_pairs.jbl" , ): '''simple docstring''' set_seed(3 ) # generate train_data and objective_set __lowerCAmelCase , __lowerCAmelCase = generate_datasets( _UpperCamelCase , _UpperCamelCase , number=_UpperCamelCase , min_len=1026 , trim=_UpperCamelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __lowerCAmelCase = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model __lowerCAmelCase = load_gpta("gpt2" ).to(_UpperCamelCase ) print("computing perplexity on objective set" ) __lowerCAmelCase = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).item() print("perplexity on objective set:" , _UpperCamelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=15 , _UpperCamelCase=128 , _UpperCamelCase=100 , _UpperCamelCase="igf_model.pt" , ): '''simple docstring''' set_seed(42 ) # Load pre-trained model __lowerCAmelCase = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model __lowerCAmelCase = SecondaryLearner(_UpperCamelCase ) # Train secondary learner __lowerCAmelCase = train_secondary_learner( _UpperCamelCase , _UpperCamelCase , max_epochs=_UpperCamelCase , batch_size=_UpperCamelCase , eval_freq=100 , igf_model_path=_UpperCamelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=32 , _UpperCamelCase=1000 , _UpperCamelCase=16 , _UpperCamelCase=1.0 , _UpperCamelCase=recopy_gpta , _UpperCamelCase=None , _UpperCamelCase=10 , _UpperCamelCase="gpt2_finetuned.pt" , ): '''simple docstring''' __lowerCAmelCase = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) __lowerCAmelCase = RandomSampler(_UpperCamelCase ) __lowerCAmelCase = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase ) __lowerCAmelCase = max_steps // (len(_UpperCamelCase )) + 1 __lowerCAmelCase = 0 __lowerCAmelCase = torch.zeros((1, context_len) , dtype=torch.long , device=_UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = recopy_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) model.train() if secondary_learner is not None: secondary_learner.to(_UpperCamelCase ) secondary_learner.eval() __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = [] __lowerCAmelCase = [] # Compute the performance of the transformer model at the beginning __lowerCAmelCase = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) test_perps.append(_UpperCamelCase ) print("Test perplexity, step" , _UpperCamelCase , ":" , _UpperCamelCase ) for epoch in range(int(_UpperCamelCase ) ): for step, example in enumerate(_UpperCamelCase ): torch.cuda.empty_cache() __lowerCAmelCase = random.randint(0 , example.size(2 ) - context_len - 1 ) __lowerCAmelCase = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __lowerCAmelCase = model(_UpperCamelCase , labels=_UpperCamelCase ) __lowerCAmelCase = True if secondary_learner is not None: __lowerCAmelCase = secondary_learner.forward( torch.tensor(_UpperCamelCase , dtype=torch.long , device=_UpperCamelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_UpperCamelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __lowerCAmelCase = -1 if predicted_q < threshold: __lowerCAmelCase = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __lowerCAmelCase = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __lowerCAmelCase = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __lowerCAmelCase = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) test_perps.append(_UpperCamelCase ) print("Test perplexity, step" , _UpperCamelCase , ":" , _UpperCamelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _UpperCamelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=_UpperCamelCase , default=_UpperCamelCase , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=_UpperCamelCase , default=_UpperCamelCase , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=_UpperCamelCase , type=_UpperCamelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=_UpperCamelCase , default=_UpperCamelCase , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=_UpperCamelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=100 , type=_UpperCamelCase , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=100 , type=_UpperCamelCase , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=1000 , type=_UpperCamelCase , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=128 , type=_UpperCamelCase , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=_UpperCamelCase , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=_UpperCamelCase , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=100 , type=_UpperCamelCase , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=1026 , type=_UpperCamelCase , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=_UpperCamelCase , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=_UpperCamelCase , type=_UpperCamelCase , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=_UpperCamelCase , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=_UpperCamelCase , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=_UpperCamelCase , type=_UpperCamelCase , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_UpperCamelCase , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner __lowerCAmelCase = joblib.load("data/IGF_values.jbl" ) # Train secondary learner __lowerCAmelCase = training_secondary_learner( _UpperCamelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model __lowerCAmelCase = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __lowerCAmelCase , __lowerCAmelCase = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1026 , trim=_UpperCamelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_UpperCamelCase , secondary_learner=_UpperCamelCase , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
259
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset A : Any = "bert-base-cased" A : Any = "google/pegasus-xsum" A : Union[str, Any] = [" Sam ate lunch today.", "Sams lunch ingredients."] A : Union[str, Any] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] A : Optional[int] = "patrickvonplaten/t5-tiny-random" A : int = "sshleifer/bart-tiny-random" A : Optional[int] = "sshleifer/tiny-mbart" A : Any = "sshleifer/tiny-marian-en-de" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "\n".join(_UpperCamelCase ) Path(_UpperCamelCase ).open("w" ).writelines(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(_UpperCamelCase , f"{split}.source" ) , _UpperCamelCase ) _dump_articles(os.path.join(_UpperCamelCase , f"{split}.target" ) , _UpperCamelCase ) return tmp_dir class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __lowerCAmelCase = 4 __lowerCAmelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __lowerCAmelCase , __lowerCAmelCase = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=__a , max_target_length=__a , src_lang=__a , tgt_lang=__a , ) __lowerCAmelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__a , __a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __lowerCAmelCase = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __lowerCAmelCase = 4 __lowerCAmelCase = LegacySeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=20 , max_target_length=__a , ) __lowerCAmelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def snake_case ( self ): __lowerCAmelCase = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) __lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __lowerCAmelCase = tmp_dir.joinpath("train.source" ).open().readlines() __lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__a , __a , 1_28 , __a ) __lowerCAmelCase = {x.name for x in tmp_dir.iterdir()} __lowerCAmelCase = {x.name for x in save_dir.iterdir()} __lowerCAmelCase = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__a ) < len(__a ) assert len(__a ) == 1 assert len(packed_examples[0] ) == sum(len(__a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def snake_case ( self ): if not FAIRSEQ_AVAILABLE: return __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset(max_len=64 ) __lowerCAmelCase = 64 __lowerCAmelCase = ds.make_dynamic_sampler(__a , required_batch_size_multiple=__a ) __lowerCAmelCase = [len(__a ) for x in batch_sampler] assert len(set(__a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__a ) == len(__a ) # no dropped or added examples __lowerCAmelCase = DataLoader(__a , batch_sampler=__a , collate_fn=ds.collate_fn , num_workers=2 ) __lowerCAmelCase = [] __lowerCAmelCase = [] for batch in data_loader: __lowerCAmelCase = batch["input_ids"].shape __lowerCAmelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __lowerCAmelCase = np.product(batch["input_ids"].shape ) num_src_per_batch.append(__a ) if num_src_tokens > (max_tokens * 1.1): failures.append(__a ) assert num_src_per_batch[0] == max(__a ) if failures: raise AssertionError(f"too many tokens in {len(__a )} batches" ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset(max_len=5_12 ) __lowerCAmelCase = 2 __lowerCAmelCase = ds.make_sortish_sampler(__a , shuffle=__a ) __lowerCAmelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 ) __lowerCAmelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 , sampler=__a ) __lowerCAmelCase = tokenizer.pad_token_id def count_pad_tokens(__a , __a="input_ids" ): return [batch[k].eq(__a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__a , k="labels" ) ) < sum(count_pad_tokens(__a , k="labels" ) ) assert sum(count_pad_tokens(__a ) ) < sum(count_pad_tokens(__a ) ) assert len(__a ) == len(__a ) def snake_case ( self , __a=10_00 , __a=1_28 ): if os.getenv("USE_REAL_DATA" , __a ): __lowerCAmelCase = "examples/seq2seq/wmt_en_ro" __lowerCAmelCase = max_len * 2 * 64 if not Path(__a ).joinpath("train.len" ).exists(): save_len_file(__a , __a ) else: __lowerCAmelCase = "examples/seq2seq/test_data/wmt_en_ro" __lowerCAmelCase = max_len * 4 save_len_file(__a , __a ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=__a , max_target_length=__a , n_obs=__a , ) return ds, max_tokens, tokenizer def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset() __lowerCAmelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=__a ) ) __lowerCAmelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=__a ) ) assert idsa.intersection(__a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a , use_fast=__a ) if tok_name == MBART_TINY: __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) __lowerCAmelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) __lowerCAmelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__a ) == 1 if tok_name == BART_TINY else len(__a ) == 0
259
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowercase_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowercase_ = 'UperNetConfig' class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : List[str], _lowerCamelCase : int, _lowerCamelCase : int, _lowerCamelCase : Union[int, Tuple[int, int]], _lowerCamelCase : Union[int, Tuple[int, int], str] = 0, _lowerCamelCase : bool = False, _lowerCamelCase : Union[int, Tuple[int, int]] = 1, ): '''simple docstring''' super().__init__() __A = nn.Convad( in_channels=_lowerCamelCase, out_channels=_lowerCamelCase, kernel_size=_lowerCamelCase, padding=_lowerCamelCase, bias=_lowerCamelCase, dilation=_lowerCamelCase, ) __A = nn.BatchNormad(_lowerCamelCase ) __A = nn.ReLU() def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : torch.Tensor ): '''simple docstring''' __A = self.conv(_lowerCamelCase ) __A = self.batch_norm(_lowerCamelCase ) __A = self.activation(_lowerCamelCase ) return output class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : List[str], _lowerCamelCase : int, _lowerCamelCase : int, _lowerCamelCase : int ): '''simple docstring''' super().__init__() __A = [ nn.AdaptiveAvgPoolad(_lowerCamelCase ), UperNetConvModule(_lowerCamelCase, _lowerCamelCase, kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_lowerCamelCase ), _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], _lowerCamelCase : torch.Tensor ): '''simple docstring''' __A = input for layer in self.layers: __A = layer(_lowerCamelCase ) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : List[str], _lowerCamelCase : Tuple[int, ...], _lowerCamelCase : int, _lowerCamelCase : int, _lowerCamelCase : bool ): '''simple docstring''' super().__init__() __A = pool_scales __A = align_corners __A = in_channels __A = channels __A = [] for i, pool_scale in enumerate(_lowerCamelCase ): __A = UperNetPyramidPoolingBlock(pool_scale=_lowerCamelCase, in_channels=_lowerCamelCase, channels=_lowerCamelCase ) self.blocks.append(_lowerCamelCase ) self.add_module(str(_lowerCamelCase ), _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : torch.Tensor ): '''simple docstring''' __A = [] for ppm in self.blocks: __A = ppm(_lowerCamelCase ) __A = nn.functional.interpolate( _lowerCamelCase, size=x.size()[2:], mode='''bilinear''', align_corners=self.align_corners ) ppm_outs.append(_lowerCamelCase ) return ppm_outs class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Any, _lowerCamelCase : List[str], _lowerCamelCase : Tuple ): '''simple docstring''' super().__init__() __A = config __A = config.pool_scales # e.g. (1, 2, 3, 6) __A = in_channels __A = config.hidden_size __A = False __A = nn.Convad(self.channels, config.num_labels, kernel_size=1 ) # PSP Module __A = UperNetPyramidPoolingModule( self.pool_scales, self.in_channels[-1], self.channels, align_corners=self.align_corners, ) __A = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels, self.channels, kernel_size=3, padding=1, ) # FPN Module __A = nn.ModuleList() __A = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __A = UperNetConvModule(_lowerCamelCase, self.channels, kernel_size=1 ) __A = UperNetConvModule(self.channels, self.channels, kernel_size=3, padding=1 ) self.lateral_convs.append(_lowerCamelCase ) self.fpn_convs.append(_lowerCamelCase ) __A = UperNetConvModule( len(self.in_channels ) * self.channels, self.channels, kernel_size=3, padding=1, ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' self.apply(self._init_weights ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : str ): '''simple docstring''' if isinstance(_lowerCamelCase, nn.Convad ): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : Union[str, Any] ): '''simple docstring''' __A = inputs[-1] __A = [x] psp_outs.extend(self.psp_modules(_lowerCamelCase ) ) __A = torch.cat(_lowerCamelCase, dim=1 ) __A = self.bottleneck(_lowerCamelCase ) return output def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : torch.Tensor ): '''simple docstring''' # build laterals __A = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_lowerCamelCase ) ) # build top-down path __A = len(_lowerCamelCase ) for i in range(used_backbone_levels - 1, 0, -1 ): __A = laterals[i - 1].shape[2:] __A = laterals[i - 1] + nn.functional.interpolate( laterals[i], size=_lowerCamelCase, mode='''bilinear''', align_corners=self.align_corners ) # build outputs __A = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1, 0, -1 ): __A = nn.functional.interpolate( fpn_outs[i], size=fpn_outs[0].shape[2:], mode='''bilinear''', align_corners=self.align_corners ) __A = torch.cat(_lowerCamelCase, dim=1 ) __A = self.fpn_bottleneck(_lowerCamelCase ) __A = self.classifier(_lowerCamelCase ) return output class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any], _lowerCamelCase : Tuple, _lowerCamelCase : int = 2, _lowerCamelCase : int = 3, _lowerCamelCase : Union[int, Tuple[int, int]] = 1 ): '''simple docstring''' super().__init__() __A = config __A = config.auxiliary_in_channels __A = config.auxiliary_channels __A = config.auxiliary_num_convs __A = config.auxiliary_concat_input __A = in_index __A = (kernel_size // 2) * dilation __A = [] convs.append( UperNetConvModule( self.in_channels, self.channels, kernel_size=_lowerCamelCase, padding=_lowerCamelCase, dilation=_lowerCamelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels, self.channels, kernel_size=_lowerCamelCase, padding=_lowerCamelCase, dilation=_lowerCamelCase ) ) if self.num_convs == 0: __A = nn.Identity() else: __A = nn.Sequential(*_lowerCamelCase ) if self.concat_input: __A = UperNetConvModule( self.in_channels + self.channels, self.channels, kernel_size=_lowerCamelCase, padding=kernel_size // 2 ) __A = nn.Convad(self.channels, config.num_labels, kernel_size=1 ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' self.apply(self._init_weights ) def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : List[Any] ): '''simple docstring''' if isinstance(_lowerCamelCase, nn.Convad ): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : torch.Tensor ): '''simple docstring''' # just take the relevant feature maps __A = encoder_hidden_states[self.in_index] __A = self.convs(_lowerCamelCase ) if self.concat_input: __A = self.conv_cat(torch.cat([hidden_states, output], dim=1 ) ) __A = self.classifier(_lowerCamelCase ) return output class snake_case ( _lowerCAmelCase ): '''simple docstring''' A_ : List[str] = UperNetConfig A_ : Optional[Any] = "pixel_values" A_ : str = True def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : int ): '''simple docstring''' if isinstance(_lowerCamelCase, _lowerCamelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : Optional[int], _lowerCamelCase : Tuple=False ): '''simple docstring''' if isinstance(_lowerCamelCase, _lowerCamelCase ): __A = value lowercase_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , _lowerCAmelCase , ) class snake_case ( _lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any], _lowerCamelCase : str ): '''simple docstring''' super().__init__(_lowerCamelCase ) __A = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) __A = UperNetHead(_lowerCamelCase, in_channels=self.backbone.channels ) __A = UperNetFCNHead(_lowerCamelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_lowerCamelCase, config_class=_CONFIG_FOR_DOC ) def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : Optional[torch.Tensor] = None, _lowerCamelCase : Optional[bool] = None, _lowerCamelCase : Optional[bool] = None, _lowerCamelCase : Optional[torch.Tensor] = None, _lowerCamelCase : Optional[bool] = None, ): '''simple docstring''' __A = return_dict if return_dict is not None else self.config.use_return_dict __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = output_attentions if output_attentions is not None else self.config.output_attentions __A = self.backbone.forward_with_filtered_kwargs( _lowerCamelCase, output_hidden_states=_lowerCamelCase, output_attentions=_lowerCamelCase ) __A = outputs.feature_maps __A = self.decode_head(_lowerCamelCase ) __A = nn.functional.interpolate(_lowerCamelCase, size=pixel_values.shape[2:], mode='''bilinear''', align_corners=_lowerCamelCase ) __A = None if self.auxiliary_head is not None: __A = self.auxiliary_head(_lowerCamelCase ) __A = nn.functional.interpolate( _lowerCamelCase, size=pixel_values.shape[2:], mode='''bilinear''', align_corners=_lowerCamelCase ) __A = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss __A = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) __A = loss_fct(_lowerCamelCase, _lowerCamelCase ) __A = loss_fct(_lowerCamelCase, _lowerCamelCase ) __A = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __A = (logits,) + outputs[1:] else: __A = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_lowerCamelCase, logits=_lowerCamelCase, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
266
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class snake_case : '''simple docstring''' def __init__( self : Optional[int], _lowerCamelCase : Optional[int]=2, _lowerCamelCase : Optional[int]=3, _lowerCamelCase : int=64, _lowerCamelCase : List[str]=None ): '''simple docstring''' __A = np.random.default_rng(_lowerCamelCase ) __A = length __A = rng.normal(size=(length,) ).astype(np.floataa ) __A = a * self.x + b + rng.normal(scale=0.1, size=(length,) ).astype(np.floataa ) def __len__( self : str ): '''simple docstring''' return self.length def __getitem__( self : Dict, _lowerCamelCase : Optional[int] ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class snake_case ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[Any], _lowerCamelCase : Tuple=0, _lowerCamelCase : Any=0, _lowerCamelCase : Optional[Any]=False ): '''simple docstring''' super().__init__() __A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __A = True def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Optional[Any]=None ): '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __A = False return x * self.a[0] + self.b[0] class snake_case ( torch.nn.Module ): '''simple docstring''' def __init__( self : str, _lowerCamelCase : Optional[Any]=0, _lowerCamelCase : Any=0, _lowerCamelCase : List[Any]=False ): '''simple docstring''' super().__init__() __A = torch.nn.Parameter(torch.tensor(_lowerCamelCase ).float() ) __A = torch.nn.Parameter(torch.tensor(_lowerCamelCase ).float() ) __A = True def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : List[str]=None ): '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __A = False return x * self.a + self.b def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase = 1_6 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __A = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __A = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} __A = load_dataset('''csv''' , data_files=__UpperCamelCase ) __A = datasets['''train'''].unique('''label''' ) __A = {v: i for i, v in enumerate(__UpperCamelCase )} def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) __A = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' ) if "label" in examples: __A = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __A = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(__UpperCamelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __A = DataLoader(tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=2 ) __A = DataLoader(tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
266
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
0
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) a_ = """hf-internal-testing/tiny-random-bert""" a_ = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") a_ = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' __A : List[str] = cached_file(__lowerCamelCase , __lowerCamelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__lowerCamelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__lowerCamelCase , __lowerCamelCase ) ) ) with open(os.path.join(__lowerCamelCase , '''refs''' , '''main''' ) ) as f: __A : List[Any] = f.read() self.assertEqual(__lowerCamelCase , os.path.join(__lowerCamelCase , '''snapshots''' , __lowerCamelCase , __lowerCamelCase ) ) self.assertTrue(os.path.isfile(__lowerCamelCase ) ) # File is cached at the same place the second time. __A : List[Any] = cached_file(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) # Using a specific revision to test the full commit hash. __A : int = cached_file(__lowerCamelCase , __lowerCamelCase , revision='''9b8c223''' ) self.assertEqual(__lowerCamelCase , os.path.join(__lowerCamelCase , '''snapshots''' , __lowerCamelCase , __lowerCamelCase ) ) def UpperCamelCase__( self ): '''simple docstring''' with self.assertRaisesRegex(__lowerCamelCase , '''is not a valid model identifier''' ): __A : List[Any] = cached_file('''tiny-random-bert''' , __lowerCamelCase ) with self.assertRaisesRegex(__lowerCamelCase , '''is not a valid git identifier''' ): __A : Optional[int] = cached_file(__lowerCamelCase , __lowerCamelCase , revision='''aaaa''' ) with self.assertRaisesRegex(__lowerCamelCase , '''does not appear to have a file named''' ): __A : Optional[Any] = cached_file(__lowerCamelCase , '''conf''' ) def UpperCamelCase__( self ): '''simple docstring''' with self.assertRaisesRegex(__lowerCamelCase , '''does not appear to have a file named''' ): __A : Any = cached_file(__lowerCamelCase , '''conf''' ) with open(os.path.join(__lowerCamelCase , '''refs''' , '''main''' ) ) as f: __A : Union[str, Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , '''.no_exist''' , __lowerCamelCase , '''conf''' ) ) ) __A : Any = cached_file(__lowerCamelCase , '''conf''' , _raise_exceptions_for_missing_entries=__lowerCamelCase ) self.assertIsNone(__lowerCamelCase ) __A : Optional[Any] = cached_file(__lowerCamelCase , '''conf''' , local_files_only=__lowerCamelCase , _raise_exceptions_for_missing_entries=__lowerCamelCase ) self.assertIsNone(__lowerCamelCase ) __A : List[Any] = mock.Mock() __A : List[str] = 500 __A : str = {} __A : Any = HTTPError __A : Optional[int] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__lowerCamelCase ) as mock_head: __A : List[str] = cached_file(__lowerCamelCase , '''conf''' , _raise_exceptions_for_connection_errors=__lowerCamelCase ) self.assertIsNone(__lowerCamelCase ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__( self ): '''simple docstring''' self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __lowerCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __lowerCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __lowerCamelCase ) ) def UpperCamelCase__( self ): '''simple docstring''' self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__lowerCamelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , __lowerCamelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__lowerCamelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , __lowerCamelCase , revision='''ahaha''' ) __A : List[str] = get_file_from_repo('''bert-base-cased''' , __lowerCamelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(__lowerCamelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def UpperCamelCase__( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : List[Any] = Path(__lowerCamelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(__lowerCamelCase , '''a.txt''' ) , str(__lowerCamelCase ) ) self.assertIsNone(get_file_from_repo(__lowerCamelCase , '''b.txt''' ) )
179
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __snake_case : """simple docstring""" _lowerCamelCase = 42 # setable values _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = None @classmethod def UpperCamelCase__( cls , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' return cls(common=__lowerCamelCase , init_noise_sigma=__lowerCamelCase , timesteps=__lowerCamelCase ) @dataclass class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 class __snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowerCamelCase = 42 @property def UpperCamelCase__( self ): '''simple docstring''' return True @register_to_config def __init__( self , __lowerCamelCase = 1000 , __lowerCamelCase = 0.0_0_0_1 , __lowerCamelCase = 0.0_2 , __lowerCamelCase = "linear" , __lowerCamelCase = None , __lowerCamelCase = "fixed_small" , __lowerCamelCase = True , __lowerCamelCase = "epsilon" , __lowerCamelCase = jnp.floataa , ): '''simple docstring''' __A : Tuple = dtype def UpperCamelCase__( self , __lowerCamelCase = None ): '''simple docstring''' if common is None: __A : Tuple = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __A : Tuple = jnp.array(1.0 , dtype=self.dtype ) __A : Optional[int] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__lowerCamelCase , init_noise_sigma=__lowerCamelCase , timesteps=__lowerCamelCase , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' return sample def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = () ): '''simple docstring''' __A : Optional[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __A : Optional[Any] = (jnp.arange(0 , __lowerCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__lowerCamelCase , timesteps=__lowerCamelCase , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ): '''simple docstring''' __A : int = state.common.alphas_cumprod[t] __A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __A : str = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __A : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __A : List[Any] = jnp.clip(__lowerCamelCase , a_min=1e-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __A : Optional[Any] = jnp.log(jnp.clip(__lowerCamelCase , a_min=1e-2_0 ) ) elif variance_type == "fixed_large": __A : Tuple = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __A : Union[str, Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __A : Optional[Any] = variance __A : Optional[Any] = state.common.betas[t] __A : Any = (predicted_variance + 1) / 2 __A : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True , ): '''simple docstring''' __A : Optional[int] = timestep if key is None: __A : List[Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __A , __A : Tuple = jnp.split(__lowerCamelCase , sample.shape[1] , axis=1 ) else: __A : List[str] = None # 1. compute alphas, betas __A : Dict = state.common.alphas_cumprod[t] __A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __A : Tuple = 1 - alpha_prod_t __A : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __A : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __A : Any = model_output elif self.config.prediction_type == "v_prediction": __A : str = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __A : str = jnp.clip(__lowerCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A : Optional[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __A : Union[str, Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __A : List[Any] = jax.random.split(__lowerCamelCase , num=1 ) __A : List[str] = jax.random.normal(__lowerCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__lowerCamelCase , __lowerCamelCase , predicted_variance=__lowerCamelCase ) ** 0.5) * noise __A : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __A : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__lowerCamelCase , state=__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' return add_noise_common(state.common , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' return get_velocity_common(state.common , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
179
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE_ = { 'camembert-base': 512, } SCREAMING_SNAKE_CASE_ = '▁' class a ( lowerCamelCase_ ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ["""input_ids""", """attention_mask"""] _lowercase = CamembertTokenizer def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=["<s>NOTUSED", "</s>NOTUSED"] , **A_ , ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) _UpperCAmelCase : List[str] = vocab_file _UpperCAmelCase : str = False if not self.vocab_file else True def _UpperCAmelCase ( self , A_ , A_ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : List[str] = [self.cls_token_id] _UpperCAmelCase : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self , A_ , A_ = None ): '''simple docstring''' _UpperCAmelCase : List[Any] = [self.sep_token_id] _UpperCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self , A_ , A_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase : Optional[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
367
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = "ZinengTang/tvlt-base" _UpperCAmelCase : int = tempfile.mkdtemp() def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **A_ ) def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = self.get_image_processor() _UpperCAmelCase : Optional[int] = self.get_feature_extractor() _UpperCAmelCase : Tuple = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : str = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , A_ ) self.assertIsInstance(processor.image_processor , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = self.get_image_processor() _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : Tuple = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) _UpperCAmelCase : List[str] = np.ones([12000] ) _UpperCAmelCase : int = feature_extractor(A_ , return_tensors="np" ) _UpperCAmelCase : int = processor(audio=A_ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.get_image_processor() _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : Optional[Any] = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) _UpperCAmelCase : Union[str, Any] = np.ones([3, 224, 224] ) _UpperCAmelCase : Tuple = image_processor(A_ , return_tensors="np" ) _UpperCAmelCase : List[str] = processor(images=A_ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.get_image_processor() _UpperCAmelCase : Any = self.get_feature_extractor() _UpperCAmelCase : Dict = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) _UpperCAmelCase : str = np.ones([12000] ) _UpperCAmelCase : Optional[Any] = np.ones([3, 224, 224] ) _UpperCAmelCase : List[Any] = processor(audio=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_image_processor() _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : str = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
189
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowercase : List[str] = logging.getLogger(__name__) torch.set_grad_enabled(False) lowercase : List[str] = """cuda""" if torch.cuda.is_available() else """cpu""" def A_ ( A__ , A__=100 , A__=" " ) -> List[str]: a__ : List[Any] = text.split(A__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(A__ ) , A__ )] def A_ ( A__ ) -> dict: a__ , a__ : Tuple = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(A__ ): titles.append(title if title is not None else '' ) texts.append(A__ ) return {"title": titles, "text": texts} def A_ ( A__ , A__ , A__ ) -> dict: a__ : Optional[int] = ctx_tokenizer( documents['title'] , documents['text'] , truncation=A__ , padding='longest' , return_tensors='pt' )['input_ids'] a__ : List[Any] = ctx_encoder(input_ids.to(device=A__ ) , return_dict=A__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def A_ ( A__ , A__ , A__ , ) -> Dict: ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way a__ : Optional[int] = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words a__ : Any = dataset.map(A__ , batched=A__ , num_proc=processing_args.num_proc ) # And compute the embeddings a__ : Any = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=A__ ) a__ : int = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) a__ : Union[str, Any] = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space a__ : str = dataset.map( partial(A__ , ctx_encoder=A__ , ctx_tokenizer=A__ ) , batched=A__ , batch_size=processing_args.batch_size , features=A__ , ) # And finally save your dataset a__ : Any = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(A__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search a__ : Optional[Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=A__ ) # And save the index a__ : Optional[int] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(A__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class A__ : """simple docstring""" __A : str = field( default=str(Path(__UpperCAmelCase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) __A : str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) __A : str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) __A : Optional[str] = field( default=str(Path(__UpperCAmelCase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class A__ : """simple docstring""" __A : Optional[int] = field( default=__UpperCAmelCase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) __A : int = field( default=1_6 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class A__ : """simple docstring""" __A : int = field( default=7_6_8 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) __A : int = field( default=1_2_8 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowercase : Any = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowercase , lowercase , lowercase : Optional[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowercase : Any = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
99
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata lowercase : Tuple = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class A__ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowercase = " ") -> Tuple: '''simple docstring''' a__ : Tuple = sentence_delimiter def __lowercase ( self , lowercase) -> Optional[int]: '''simple docstring''' return list(lowercase) def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' a__ : Tuple = [] for sent_idx, sentence in enumerate(lowercase): chars.extend(self.process_string(lowercase)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowercase) - 1: chars.append(self.sentence_delimiter) return chars lowercase : Union[str, Any] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowercase : List[str] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowercase : List[Any] = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowercase : Optional[int] = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ lowercase : Optional[Any] = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def __lowercase ( self , lowercase , lowercase , lowercase=False) -> Any: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , )["wer"] a__ : Optional[int] = 0 a__ : str = 0 for prediction, reference in zip(lowercase , lowercase): a__ : Optional[int] = jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
99
1
import os import re import shutil import sys import tempfile import unittest import black __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __UpperCAmelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class lowerCamelCase__ ( unittest.TestCase ): def _lowerCamelCase ( self : int ): a__: List[str] =tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) a__: Tuple =self.diffusers_dir shutil.copy( os.path.join(_a , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def _lowerCamelCase ( self : str ): a__: Tuple ="src/diffusers" shutil.rmtree(self.diffusers_dir ) def _lowerCamelCase ( self : List[str] , _a : Optional[Any] , _a : int , _a : Optional[int] , _a : str=None ): a__: int =comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: a__: Dict =comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result a__: List[str] =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) a__: Optional[int] =black.format_str(_a , mode=_a ) a__: Any =os.path.join(self.diffusers_dir , "new_code.py" ) with open(_a , "w" , newline="\n" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , "r" ) as f: self.assertTrue(f.read() , _a ) def _lowerCamelCase ( self : Optional[Any] ): a__: Union[str, Any] =check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(_a , _a ) def _lowerCamelCase ( self : str ): # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , _a , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , _a ) , ) # Copy consistency with a really long name a__: str ="TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , F"{long_class_name}SchedulerOutput" , re.sub("Bert" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , _a , overwrite_result=re.sub("DDPM" , "Test" , _a ) , )
42
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class lowerCamelCase__ ( _a ): _lowerCAmelCase = 42 class lowerCamelCase__ ( _a , _a ): @register_to_config def __init__( self : Union[str, Any] , _a : int = 1_6 , _a : int = 8_8 , _a : Optional[int] = None , _a : Optional[int] = None , _a : int = 1 , _a : float = 0.0 , _a : int = 3_2 , _a : Optional[int] = None , _a : bool = False , _a : Optional[int] = None , _a : str = "geglu" , _a : bool = True , _a : bool = True , ): super().__init__() a__: List[Any] =num_attention_heads a__: Tuple =attention_head_dim a__: Dict =num_attention_heads * attention_head_dim a__: List[Any] =in_channels a__: Dict =torch.nn.GroupNorm(num_groups=_a , num_channels=_a , eps=1e-6 , affine=_a ) a__: str =nn.Linear(_a , _a ) # 3. Define transformers blocks a__: Optional[int] =nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , cross_attention_dim=_a , activation_fn=_a , attention_bias=_a , double_self_attention=_a , norm_elementwise_affine=_a , ) for d in range(_a ) ] ) a__: Any =nn.Linear(_a , _a ) def _lowerCamelCase ( self : List[str] , _a : str , _a : Optional[Any]=None , _a : int=None , _a : int=None , _a : Optional[int]=1 , _a : Tuple=None , _a : bool = True , ): a__ , a__ , a__ , a__: int =hidden_states.shape a__: str =batch_frames // num_frames a__: Any =hidden_states a__: Optional[int] =hidden_states[None, :].reshape(_a , _a , _a , _a , _a ) a__: Union[str, Any] =hidden_states.permute(0 , 2 , 1 , 3 , 4 ) a__: Tuple =self.norm(_a ) a__: Union[str, Any] =hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _a , _a ) a__: Dict =self.proj_in(_a ) # 2. Blocks for block in self.transformer_blocks: a__: str =block( _a , encoder_hidden_states=_a , timestep=_a , cross_attention_kwargs=_a , class_labels=_a , ) # 3. Output a__: Any =self.proj_out(_a ) a__: Optional[int] =( hidden_states[None, None, :] .reshape(_a , _a , _a , _a , _a ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) a__: Dict =hidden_states.reshape(_a , _a , _a , _a ) a__: List[str] =hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_a )
42
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github __SCREAMING_SNAKE_CASE :str = [ '''good first issue''', '''feature request''', '''wip''', ] def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = Github(os.environ["GITHUB_TOKEN"] ) _UpperCAmelCase = g.get_repo("huggingface/accelerate" ) _UpperCAmelCase = repo.get_issues(state="open" ) for issue in open_issues: _UpperCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowercase : i.created_at , reverse=__lowercase ) _UpperCAmelCase = comments[0] if len(__lowercase ) > 0 else None _UpperCAmelCase = dt.utcnow() _UpperCAmelCase = (current_time - issue.updated_at).days _UpperCAmelCase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
22
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : str ) -> list: '''simple docstring''' if n_term == "": return [] _UpperCAmelCase = [] for temp in range(int(__lowercase ) ): series.append(f'1/{temp + 1}' if series else "1" ) return series if __name__ == "__main__": __SCREAMING_SNAKE_CASE :str = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
22
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _snake_case : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") _snake_case : Optional[Any] = {"target_lang": "fi", "source_lang": "en"} _snake_case : Any = ">>zh<<" _snake_case : Any = "Helsinki-NLP/" if is_torch_available(): _snake_case : Optional[Any] = "pt" elif is_tf_available(): _snake_case : Any = "tf" else: _snake_case : Optional[int] = "jax" @require_sentencepiece class a (__lowercase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = MarianTokenizer __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Dict = True def __snake_case ( self : Tuple ) -> List[Any]: super().setUp() __snake_case : List[str] = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] __snake_case : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) __snake_case : Dict = Path(self.tmpdirname ) save_json(_a , save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(_a , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_a , save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(_a , save_dir / VOCAB_FILES_NAMES["target_spm"] ) __snake_case : List[str] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : Any , **lowerCamelCase : List[Any] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **_a ) def __snake_case ( self : Optional[int] , lowerCamelCase : Optional[Any] ) -> Optional[int]: return ( "This is a test", "This is a test", ) def __snake_case ( self : Union[str, Any] ) -> Dict: __snake_case : Tuple = '''</s>''' __snake_case : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __snake_case ( self : str ) -> Tuple: __snake_case : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(_a ) , 9 ) def __snake_case ( self : Tuple ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __snake_case ( self : Optional[Any] ) -> List[Any]: __snake_case : Union[str, Any] = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) __snake_case : List[str] = en_de_tokenizer(["I am a small frog"] , return_tensors=_a ) self.assertIsInstance(_a , _a ) __snake_case : str = [38, 121, 14, 697, 38848, 0] self.assertListEqual(_a , batch.input_ids[0] ) __snake_case : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_a ) __snake_case : Optional[Any] = [x.name for x in Path(_a ).glob("*" )] self.assertIn("source.spm" , _a ) MarianTokenizer.from_pretrained(_a ) def __snake_case ( self : List[str] ) -> Optional[Any]: __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : List[str] = tok( ["I am a small frog" * 1000, "I am a small frog"] , padding=_a , truncation=_a , return_tensors=_a ) self.assertIsInstance(_a , _a ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def __snake_case ( self : List[Any] ) -> Any: __snake_case : Dict = self.get_tokenizer() __snake_case : List[Any] = tok(["I am a tiny frog", "I am a small frog"] , padding=_a , return_tensors=_a ) self.assertIsInstance(_a , _a ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __snake_case ( self : Tuple ) -> Dict: # fmt: off __snake_case : List[str] = {'''input_ids''': [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , ) def __snake_case ( self : List[str] ) -> Optional[Any]: __snake_case : Optional[int] = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) __snake_case : Any = '''Tämä on testi''' __snake_case : List[Any] = '''This is a test''' __snake_case : Tuple = [76, 7, 2047, 2] __snake_case : Union[str, Any] = [69, 12, 11, 940, 2] __snake_case : str = tokenizer(_a ).input_ids self.assertListEqual(_a , _a ) __snake_case : str = tokenizer(text_target=_a ).input_ids self.assertListEqual(_a , _a ) __snake_case : List[str] = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertEqual(_a , _a )
365
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _snake_case : List[str] = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return (abs(source - target ) / target) < 0.0_1 @pytest.mark.integration def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = _TestCommandArgs(dataset=__lowerCamelCase , all_configs=__lowerCamelCase , save_infos=__lowerCamelCase ) __snake_case : List[Any] = TestCommand(*__lowerCamelCase ) test_command.run() __snake_case : List[Any] = os.path.join(__lowerCamelCase , "README.md" ) assert os.path.exists(__lowerCamelCase ) __snake_case : Optional[Any] = DatasetInfosDict.from_directory(__lowerCamelCase ) __snake_case : List[str] = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 2_3_5_1_5_6_3, "num_examples": 1_0_0_0_0, }, { "name": "validation", "num_bytes": 2_3_8_4_1_8, "num_examples": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: __snake_case , __snake_case : Tuple = getattr(dataset_infos["default"] , __lowerCamelCase ), getattr(expected_dataset_infos["default"] , __lowerCamelCase ) if key == "num_bytes": assert is_apercent_close(__lowerCamelCase , __lowerCamelCase ) elif key == "splits": assert list(__lowerCamelCase ) == list(__lowerCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
134
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Optional[Any] = """informer""" _lowerCAmelCase : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "student_t" , lowerCAmelCase = "nll" , lowerCAmelCase = 1 , lowerCAmelCase = None , lowerCAmelCase = "mean" , lowerCAmelCase = 0 , lowerCAmelCase = 0 , lowerCAmelCase = 0 , lowerCAmelCase = 0 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = 64 , lowerCAmelCase = 32 , lowerCAmelCase = 32 , lowerCAmelCase = 2 , lowerCAmelCase = 2 , lowerCAmelCase = 2 , lowerCAmelCase = 2 , lowerCAmelCase = True , lowerCAmelCase = "gelu" , lowerCAmelCase = 0.05 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 1_00 , lowerCAmelCase = 0.02 , lowerCAmelCase=True , lowerCAmelCase = "prob" , lowerCAmelCase = 5 , lowerCAmelCase = True , **lowerCAmelCase , ): """simple docstring""" snake_case = prediction_length snake_case = context_length or prediction_length snake_case = distribution_output snake_case = loss snake_case = input_size snake_case = num_time_features snake_case = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case = scaling snake_case = num_dynamic_real_features snake_case = num_static_real_features snake_case = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) snake_case = cardinality else: snake_case = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) snake_case = embedding_dimension else: snake_case = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case = num_parallel_samples # Transformer architecture configuration snake_case = input_size * len(self.lags_sequence ) + self._number_of_features snake_case = d_model snake_case = encoder_attention_heads snake_case = decoder_attention_heads snake_case = encoder_ffn_dim snake_case = decoder_ffn_dim snake_case = encoder_layers snake_case = decoder_layers snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = activation_function snake_case = init_std snake_case = use_cache # Informer snake_case = attention_type snake_case = sampling_factor snake_case = distil super().__init__(is_encoder_decoder=lowerCAmelCase , **lowerCAmelCase ) @property def snake_case ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
150
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" snake_case = data snake_case = None class lowerCAmelCase_ : """simple docstring""" def __init__( self ): """simple docstring""" snake_case = None snake_case = None def __iter__( self ): """simple docstring""" snake_case = self.head while self.head: yield node.data snake_case = node.next if node == self.head: break def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join(str(lowerCAmelCase ) for item in iter(self ) ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" self.insert_nth(len(self ) , lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" self.insert_nth(0 , lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) snake_case = Node(lowerCAmelCase ) if self.head is None: snake_case = new_node # first node points itself snake_case = snake_case = new_node elif index == 0: # insert at head snake_case = self.head snake_case = snake_case = new_node else: snake_case = self.head for _ in range(index - 1 ): snake_case = temp.next snake_case = temp.next snake_case = new_node if index == len(self ) - 1: # insert at tail snake_case = new_node def snake_case ( self ): """simple docstring""" return self.delete_nth(0 ) def snake_case ( self ): """simple docstring""" return self.delete_nth(len(self ) - 1 ) def snake_case ( self , lowerCAmelCase = 0 ): """simple docstring""" if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) snake_case = self.head if self.head == self.tail: # just one node snake_case = snake_case = None elif index == 0: # delete head node snake_case = self.tail.next.next snake_case = self.head.next else: snake_case = self.head for _ in range(index - 1 ): snake_case = temp.next snake_case = temp.next snake_case = temp.next.next if index == len(self ) - 1: # delete at tail snake_case = temp return delete_node.data def snake_case ( self ): """simple docstring""" return len(self ) == 0 def lowerCAmelCase__ ( ) -> None: """simple docstring""" snake_case = CircularLinkedList() assert len(_UpperCamelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(_UpperCamelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(_UpperCamelCase ) == i circular_linked_list.insert_nth(_UpperCamelCase , i + 1 ) assert str(_UpperCamelCase ) == "->".join(str(_UpperCamelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(_UpperCamelCase ) == "->".join(str(_UpperCamelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(_UpperCamelCase ) == "->".join(str(_UpperCamelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(_UpperCamelCase ) == "->".join(str(_UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(_UpperCamelCase ) == "->".join(str(_UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
150
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "unispeech" def __init__( self: int , __A: Optional[int]=32 , __A: Union[str, Any]=7_68 , __A: Dict=12 , __A: Union[str, Any]=12 , __A: List[Any]=30_72 , __A: str="gelu" , __A: Tuple=0.1 , __A: str=0.1 , __A: Dict=0.1 , __A: Dict=0.0 , __A: int=0.0 , __A: List[Any]=0.1 , __A: Tuple=0.1 , __A: str=0.02 , __A: Optional[Any]=1e-5 , __A: List[Any]="group" , __A: List[str]="gelu" , __A: Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __A: Optional[int]=(5, 2, 2, 2, 2, 2, 2) , __A: Any=(10, 3, 3, 3, 3, 2, 2) , __A: int=False , __A: Any=1_28 , __A: int=16 , __A: str=False , __A: Optional[int]=True , __A: Union[str, Any]=0.05 , __A: int=10 , __A: Union[str, Any]=2 , __A: str=0.0 , __A: str=10 , __A: List[str]=0 , __A: Any=3_20 , __A: Union[str, Any]=2 , __A: Optional[Any]=0.1 , __A: Optional[int]=1_00 , __A: Optional[int]=2_56 , __A: Tuple=2_56 , __A: Tuple=0.1 , __A: Tuple="mean" , __A: Tuple=False , __A: Any=False , __A: int=2_56 , __A: Union[str, Any]=80 , __A: Optional[Any]=0 , __A: Optional[int]=1 , __A: str=2 , __A: Optional[int]=0.5 , **__A: Optional[int] , ) -> Optional[int]: super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) _A = hidden_size _A = feat_extract_norm _A = feat_extract_activation _A = list(__A ) _A = list(__A ) _A = list(__A ) _A = conv_bias _A = num_conv_pos_embeddings _A = num_conv_pos_embedding_groups _A = len(self.conv_dim ) _A = num_hidden_layers _A = intermediate_size _A = hidden_act _A = num_attention_heads _A = hidden_dropout _A = attention_dropout _A = activation_dropout _A = feat_proj_dropout _A = final_dropout _A = layerdrop _A = layer_norm_eps _A = initializer_range _A = num_ctc_classes _A = vocab_size _A = do_stable_layer_norm _A = use_weighted_layer_sum _A = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _A = apply_spec_augment _A = mask_time_prob _A = mask_time_length _A = mask_time_min_masks _A = mask_feature_prob _A = mask_feature_length _A = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _A = num_codevectors_per_group _A = num_codevector_groups _A = contrastive_logits_temperature _A = feat_quantizer_dropout _A = num_negatives _A = codevector_dim _A = proj_codevector_dim _A = diversity_loss_weight # ctc loss _A = ctc_loss_reduction _A = ctc_zero_infinity # pretraining loss _A = replace_prob @property def __A ( self: Any ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
358
__A = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
75
0
'''simple docstring''' from math import isqrt def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : int = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, __snake_case, __snake_case ): _UpperCAmelCase : Tuple = False return [i for i in range(2, __snake_case ) if is_prime[i]] def __UpperCAmelCase ( a_: str = 10**8 ): _UpperCAmelCase : int = calculate_prime_numbers(max_number // 2 ) _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : str = len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'{solution() = }')
145
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
0
import operator def __snake_case ( _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None ): __a = operator.lt if reverse else operator.gt __a = solution or [] if not arr: return solution __a = [arr.pop(0 )] for i, item in enumerate(_UpperCAmelCase ): if _operator(_UpperCAmelCase , sublist[-1] ): sublist.append(_UpperCAmelCase ) arr.pop(_UpperCAmelCase ) # merging sublist into solution list if not solution: solution.extend(_UpperCAmelCase ) else: while sublist: __a = sublist.pop(0 ) for i, xx in enumerate(_UpperCAmelCase ): if not _operator(_UpperCAmelCase , _UpperCAmelCase ): solution.insert(_UpperCAmelCase , _UpperCAmelCase ) break else: solution.append(_UpperCAmelCase ) strand_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
131
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : Any=16 , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 2, 1] , __SCREAMING_SNAKE_CASE : Optional[int]=[2, 2, 4] , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Tuple=2.0 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Dict=0.0 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Optional[int]=10 , __SCREAMING_SNAKE_CASE : int=8 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = embed_dim __a = depths __a = num_heads __a = window_size __a = mlp_ratio __a = qkv_bias __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = drop_path_rate __a = hidden_act __a = use_absolute_embeddings __a = patch_norm __a = layer_norm_eps __a = initializer_range __a = is_training __a = scope __a = use_labels __a = type_sequence_label_size __a = encoder_stride def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size) __a = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : List[Any]): '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' __a = SwinvaModel(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE) __a = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) __a = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = SwinvaForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images __a = 1 __a = SwinvaForMaskedImageModeling(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = self.type_sequence_label_size __a = SwinvaForImageClassification(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _A ( __UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : Dict = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCamelCase__ : Optional[int] = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) UpperCamelCase__ : int = False UpperCamelCase__ : Tuple = False UpperCamelCase__ : Optional[Any] = False UpperCamelCase__ : Optional[Any] = False def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = SwinvaModelTester(self) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , embed_dim=37) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''') def _lowerCamelCase ( self : List[Any]): '''simple docstring''' pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''') def _lowerCamelCase ( self : List[str]): '''simple docstring''' pass def _lowerCamelCase ( self : Any): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear)) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__SCREAMING_SNAKE_CASE) __a = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True for model_class in self.all_model_classes: __a = True __a = False __a = True __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) __a = outputs.attentions __a = len(self.model_tester.depths) self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) # check that output_attentions also work using config del inputs_dict["output_attentions"] __a = True __a = config.window_size**2 __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) __a = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __a = len(__SCREAMING_SNAKE_CASE) # Check attention is always last and order is fine __a = True __a = True __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) if hasattr(self.model_tester , '''num_hidden_states_types'''): __a = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __a = 2 self.assertEqual(out_len + added_hidden_states , len(__SCREAMING_SNAKE_CASE)) __a = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) __a = outputs.hidden_states __a = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths) + 1) self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) # Swinv2 has a different seq_length __a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) __a = outputs.reshaped_hidden_states self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) __a , __a , __a , __a = reshaped_hidden_states[0].shape __a = ( reshaped_hidden_states[0].view(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __a = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) __a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __a = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __a = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __a = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width)) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = SwinvaModel.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = _config_zero_init(__SCREAMING_SNAKE_CASE) for model_class in self.all_model_classes: __a = model_class(config=__SCREAMING_SNAKE_CASE) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''') if is_vision_available() else None ) @slow def _lowerCamelCase ( self : str): '''simple docstring''' __a = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''').to( __SCREAMING_SNAKE_CASE) __a = self.default_image_processor __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''').to(__SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): __a = model(**__SCREAMING_SNAKE_CASE) # verify the logits __a = torch.Size((1, 1_000)) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE) __a = torch.tensor([-0.39_47, -0.43_06, 0.00_26]).to(__SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4))
131
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Union[str, Any] = { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''', '''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''', '''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Dict = "big_bird" def __init__( self : Dict , UpperCAmelCase__ : Any=5_0_3_5_8 , UpperCAmelCase__ : Optional[int]=7_6_8 , UpperCAmelCase__ : Any=1_2 , UpperCAmelCase__ : str=1_2 , UpperCAmelCase__ : Dict=3_0_7_2 , UpperCAmelCase__ : Tuple="gelu_new" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : List[Any]=4_0_9_6 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : str=1E-12 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Optional[Any]=1 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : int=6_6 , UpperCAmelCase__ : Any="block_sparse" , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : str=6_4 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : int , ) -> List[str]: super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , sep_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = rescale_embeddings __SCREAMING_SNAKE_CASE = attention_type __SCREAMING_SNAKE_CASE = use_bias __SCREAMING_SNAKE_CASE = block_size __SCREAMING_SNAKE_CASE = num_random_blocks __SCREAMING_SNAKE_CASE = classifier_dropout class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"} else: __SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
54
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a__ : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __SCREAMING_SNAKE_CASE = json.loads(lowerCAmelCase_ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __SCREAMING_SNAKE_CASE = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __SCREAMING_SNAKE_CASE = json.loads(lowerCAmelCase_ ) if not mpi_options.get("sagemaker_mpi_enabled" , lowerCAmelCase_ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : str = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def UpperCAmelCase_ ( self : List[str] ) -> Any: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , UpperCAmelCase__ , ) @cached_property def UpperCAmelCase_ ( self : List[str] ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: __SCREAMING_SNAKE_CASE = torch.device("cpu" ) __SCREAMING_SNAKE_CASE = 0 elif is_sagemaker_model_parallel_available(): __SCREAMING_SNAKE_CASE = smp.local_rank() __SCREAMING_SNAKE_CASE = torch.device("cuda" , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) __SCREAMING_SNAKE_CASE = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) __SCREAMING_SNAKE_CASE = torch.device("cuda" , self.local_rank ) __SCREAMING_SNAKE_CASE = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __SCREAMING_SNAKE_CASE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __SCREAMING_SNAKE_CASE = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) __SCREAMING_SNAKE_CASE = torch.device("cuda" , self.local_rank ) __SCREAMING_SNAKE_CASE = 1 if device.type == "cuda": torch.cuda.set_device(UpperCAmelCase__ ) return device @property def UpperCAmelCase_ ( self : Dict ) -> Any: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: return not is_sagemaker_model_parallel_available() @property def UpperCAmelCase_ ( self : Tuple ) -> int: return False
54
1
"""simple docstring""" from itertools import permutations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowercase_ = [7, 11, 13, 17] for i, test in enumerate(__lowerCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 10 ) -> int: '''simple docstring''' return sum( int("""""".join(map(__lowerCAmelCase , __lowerCAmelCase ) ) ) for num in permutations(range(__lowerCAmelCase ) ) if is_substring_divisible(__lowerCAmelCase ) ) if __name__ == "__main__": print(F"{solution() = }")
313
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase : Union[str, Any] = { "allenai/led-base-16384": 1_6384, } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**lowerCAmelCase_) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = """post_processor""" lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["""sep"""]) if "cls" in state: lowercase_ = tuple(state["""cls"""]) lowercase_ = False if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type""")) lowercase_ = component_class(**lowerCAmelCase_) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : List[str]): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value lowercase_ = value def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_) return tuple(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None): """simple docstring""" lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ): """simple docstring""" lowercase_ = super()._pad( encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: lowercase_ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_) if needs_to_be_padded: lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""]) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase_ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowercase_ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side)) return encoded_inputs
313
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : Any = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
134
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int]=13 , lowerCAmelCase_ : Optional[int]=7 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=99 , lowerCAmelCase_ : List[Any]=32 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Dict=64 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : str=5_12 , lowerCAmelCase_ : Optional[Any]=16 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Union[str, Any]=1 , ) -> List[Any]: '''simple docstring''' A__ : Dict =parent A__ : Optional[int] =batch_size A__ : List[Any] =seq_length A__ : Any =is_training A__ : List[str] =use_input_mask A__ : str =use_token_type_ids A__ : Tuple =use_labels A__ : Tuple =vocab_size A__ : Optional[Any] =hidden_size A__ : Dict =num_hidden_layers A__ : str =num_attention_heads A__ : int =intermediate_size A__ : Union[str, Any] =hidden_act A__ : List[Any] =hidden_dropout_prob A__ : Union[str, Any] =attention_probs_dropout_prob A__ : Dict =max_position_embeddings A__ : Any =type_vocab_size A__ : Any =type_sequence_label_size A__ : int =initializer_range A__ : str =num_labels A__ : Optional[int] =num_choices A__ : Optional[int] =scope A__ : List[str] =q_groups A__ : Dict =k_groups A__ : Any =v_groups A__ : Optional[Any] =post_attention_groups A__ : Optional[int] =intermediate_groups A__ : Optional[int] =output_groups def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' A__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Optional[int] =None if self.use_input_mask: A__ : str =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] =None A__ : Tuple =None A__ : Dict =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : int =ids_tensor([self.batch_size] , self.num_choices ) A__ : str =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =SqueezeBertModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Dict =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any ) -> str: '''simple docstring''' A__ : Union[str, Any] =SqueezeBertForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' A__ : str =SqueezeBertForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' A__ : Dict =self.num_labels A__ : int =SqueezeBertForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ) -> Optional[int]: '''simple docstring''' A__ : str =self.num_labels A__ : int =SqueezeBertForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.num_choices A__ : Dict =SqueezeBertForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Any =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Optional[Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any ) -> int: '''simple docstring''' A__ : Any =self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__) , (A__) , (A__)) : Any =config_and_inputs A__ : str ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __snake_case = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __snake_case = False __snake_case = True __snake_case = False def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' A__ : Optional[Any] =SqueezeBertModelTester(self ) A__ : int =ConfigTester(self , config_class=lowerCAmelCase_ , dim=37 ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' A__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' A__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' A__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCAmelCase_ ) def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCAmelCase_ ) @slow def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : int =SqueezeBertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' A__ : List[str] =SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) A__ : List[str] =torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) A__ : Tuple =model(lowerCAmelCase_ )[0] A__ : Union[str, Any] =torch.Size((1, 3) ) self.assertEqual(output.shape , lowerCAmelCase_ ) A__ : Tuple =torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) )
134
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCamelCase ( self : Dict ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _UpperCamelCase = [[1, 2, 4], [1, 2, 3, 4]] _UpperCamelCase = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids , __UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCamelCase ( self : List[str] ) -> Tuple: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _UpperCamelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCamelCase ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase = [[1, 2, 3], [1, 2, 4]] _UpperCamelCase = DisjunctiveConstraint(__UpperCamelCase ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = dc.update(1 ) _UpperCamelCase = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = dc.update(2 ) _UpperCamelCase = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = dc.update(3 ) _UpperCamelCase = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCamelCase ( self : List[str] ) -> Optional[Any]: _UpperCamelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _UpperCamelCase = DisjunctiveConstraint(__UpperCamelCase ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
54
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase_ ( _lowercase): snake_case__ = ['''image_processor''', '''tokenizer'''] snake_case__ = '''OwlViTImageProcessor''' snake_case__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Any , __UpperCamelCase : int=None , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : List[str] ) -> Union[str, Any]: _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCamelCase , ) _UpperCamelCase = kwargs.pop('''feature_extractor''' ) _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self : List[str] , __UpperCamelCase : Dict=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]="max_length" , __UpperCamelCase : List[Any]="np" , **__UpperCamelCase : Optional[int] ) -> Optional[int]: if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ) or (isinstance(__UpperCamelCase , __UpperCamelCase ) and not isinstance(text[0] , __UpperCamelCase )): _UpperCamelCase = [self.tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )] elif isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(text[0] , __UpperCamelCase ): _UpperCamelCase = [] # Maximum number of queries across batch _UpperCamelCase = max([len(__UpperCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCamelCase ) != max_num_queries: _UpperCamelCase = t + [''' '''] * (max_num_queries - len(__UpperCamelCase )) _UpperCamelCase = self.tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) encodings.append(__UpperCamelCase ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": _UpperCamelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) _UpperCamelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCamelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) _UpperCamelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCamelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) _UpperCamelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCamelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) _UpperCamelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) _UpperCamelCase = BatchEncoding() _UpperCamelCase = input_ids _UpperCamelCase = attention_mask if query_images is not None: _UpperCamelCase = BatchEncoding() _UpperCamelCase = self.image_processor( __UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ).pixel_values _UpperCamelCase = query_pixel_values if images is not None: _UpperCamelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def _UpperCamelCase ( self : str , *__UpperCamelCase : str , **__UpperCamelCase : str ) -> List[Any]: return self.image_processor.post_process(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : str , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[Any] ) -> Optional[int]: return self.image_processor.post_process_object_detection(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : List[Any] , *__UpperCamelCase : List[str] , **__UpperCamelCase : Optional[Any] ) -> int: return self.image_processor.post_process_image_guided_detection(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Any ) -> str: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] , *__UpperCamelCase : Tuple , **__UpperCamelCase : List[Any] ) -> List[str]: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCamelCase , ) return self.image_processor_class @property def _UpperCamelCase ( self : List[str] ) -> Optional[Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCamelCase , ) return self.image_processor
54
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ , snake_case__ : Tuple = image.size snake_case__ , snake_case__ : Union[str, Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case__ : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) snake_case__ : Union[str, Any] = np.array(_lowerCAmelCase ).astype(np.floataa ) / 255.0 snake_case__ : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) snake_case__ : Tuple = torch.from_numpy(_lowerCAmelCase ) return 2.0 * image - 1.0 class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : List[str] , snake_case_ : VQModel , snake_case_ : UNetaDModel , snake_case_ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=snake_case_ , unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self : Optional[Any] , snake_case_ : Union[torch.Tensor, PIL.Image.Image] = None , snake_case_ : Optional[int] = 1 , snake_case_ : Optional[int] = 100 , snake_case_ : Optional[float] = 0.0 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): if isinstance(snake_case_ , PIL.Image.Image ): snake_case__ : str = 1 elif isinstance(snake_case_ , torch.Tensor ): snake_case__ : List[Any] = image.shape[0] else: raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case_ )}" ) if isinstance(snake_case_ , PIL.Image.Image ): snake_case__ : Union[str, Any] = preprocess(snake_case_ ) snake_case__ , snake_case__ : Tuple = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image snake_case__ : str = (batch_size, self.unet.config.in_channels // 2, height, width) snake_case__ : Dict = next(self.unet.parameters() ).dtype snake_case__ : int = randn_tensor(snake_case_ , generator=snake_case_ , device=self.device , dtype=snake_case_ ) snake_case__ : Optional[Any] = image.to(device=self.device , dtype=snake_case_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case_ , device=self.device ) snake_case__ : Optional[Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler snake_case__ : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case__ : Union[str, Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case__ : Optional[int] = {} if accepts_eta: snake_case__ : Optional[Any] = eta for t in self.progress_bar(snake_case_ ): # concat latents and low resolution image in the channel dimension. snake_case__ : int = torch.cat([latents, image] , dim=1 ) snake_case__ : Optional[int] = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) # predict the noise residual snake_case__ : str = self.unet(snake_case_ , snake_case_ ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case__ : Tuple = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample # decode the image latents with the VQVAE snake_case__ : Optional[int] = self.vqvae.decode(snake_case_ ).sample snake_case__ : Optional[int] = torch.clamp(snake_case_ , -1.0 , 1.0 ) snake_case__ : Dict = image / 2 + 0.5 snake_case__ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case__ : Tuple = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
35
from __future__ import annotations from PIL import Image # Define glider example A : Any = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example A : Optional[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __lowerCamelCase ( __a :list[list[int]] ) -> list[list[int]]: """simple docstring""" A__ = [] for i in range(len(__a ) ): A__ = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A__ = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__a ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__a ) - 1: neighbour_count += cells[i + 1][j] if i < len(__a ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A__ = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__a ) return next_generation def __lowerCamelCase ( __a :list[list[int]] , __a :int ) -> list[Image.Image]: """simple docstring""" A__ = [] for _ in range(__a ): # Create output image A__ = Image.new("""RGB""" , (len(cells[0] ), len(__a )) ) A__ = img.load() # Save cells to image for x in range(len(__a ) ): for y in range(len(cells[0] ) ): A__ = 2_5_5 - cells[y][x] * 2_5_5 A__ = (colour, colour, colour) # Save image images.append(__a ) A__ = new_generation(__a ) return images if __name__ == "__main__": A : str = generate_images(GLIDER, 1_6) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
274
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __a :Dict = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' __a :List[Any] = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' __a :int = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def __A ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def __A ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]="auto" , UpperCAmelCase : Any=-1 , UpperCAmelCase : Union[str, Any]=0.9 , UpperCAmelCase : List[Any]=5 , UpperCAmelCase : Optional[int]=500 , UpperCAmelCase : List[str]="gpt2-large" , UpperCAmelCase : Union[str, Any]=-1 , UpperCAmelCase : List[Any]=1024 , UpperCAmelCase : str=25 , UpperCAmelCase : Union[str, Any]=5 , UpperCAmelCase : str=True , UpperCAmelCase : Any=25 , ): A_ = compute_mauve( p_text=lowerCAmelCase__ , q_text=lowerCAmelCase__ , p_features=lowerCAmelCase__ , q_features=lowerCAmelCase__ , p_tokens=lowerCAmelCase__ , q_tokens=lowerCAmelCase__ , num_buckets=lowerCAmelCase__ , pca_max_data=lowerCAmelCase__ , kmeans_explained_var=lowerCAmelCase__ , kmeans_num_redo=lowerCAmelCase__ , kmeans_max_iter=lowerCAmelCase__ , featurize_model_name=lowerCAmelCase__ , device_id=lowerCAmelCase__ , max_text_length=lowerCAmelCase__ , divergence_curve_discretization_size=lowerCAmelCase__ , mauve_scaling_factor=lowerCAmelCase__ , verbose=lowerCAmelCase__ , seed=lowerCAmelCase__ , ) return out
366
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ): A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = "gelu" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): A_ = TFConvBertModel(config=UpperCAmelCase ) A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A_ = [input_ids, input_mask] A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = TFConvBertForMaskedLM(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ): A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ): A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ): A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : List[str] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase : Any = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False def __A ( self : List[str] ): A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Tuple ): self.config_tester.run_common_tests() def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(UpperCAmelCase , "use_cache" ): A_ = True A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) A_ = len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" ) A_ = tf.keras.models.load_model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) if self.is_encoder_decoder: A_ = outputs["encoder_hidden_states"] A_ = outputs["encoder_attentions"] else: A_ = outputs["hidden_states"] A_ = outputs["attentions"] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self : List[str] ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ): A_ = len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCAmelCase )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
329
0
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int = 10 , SCREAMING_SNAKE_CASE_ : int = 10_00 , SCREAMING_SNAKE_CASE_ : bool = True ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: return int((number_a + number_a) / 2 ) def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: assert ( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(SCREAMING_SNAKE_CASE_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) SCREAMING_SNAKE_CASE = lower SCREAMING_SNAKE_CASE = higher SCREAMING_SNAKE_CASE = [] while True: SCREAMING_SNAKE_CASE = get_avg(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) last_numbers.append(SCREAMING_SNAKE_CASE_ ) if answer(SCREAMING_SNAKE_CASE_ ) == "low": SCREAMING_SNAKE_CASE = number elif answer(SCREAMING_SNAKE_CASE_ ) == "high": SCREAMING_SNAKE_CASE = number else: break print(F'guess the number : {last_numbers[-1]}' ) print(F'details : {last_numbers!s}' ) def lowercase () -> None: SCREAMING_SNAKE_CASE = int(input('Enter lower value : ' ).strip() ) SCREAMING_SNAKE_CASE = int(input('Enter high value : ' ).strip() ) SCREAMING_SNAKE_CASE = int(input('Enter value to guess : ' ).strip() ) guess_the_number(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
113
"""simple docstring""" from math import isclose, sqrt def lowercase (SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> tuple[float, float, float]: SCREAMING_SNAKE_CASE = point_y / 4 / point_x SCREAMING_SNAKE_CASE = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) SCREAMING_SNAKE_CASE = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) SCREAMING_SNAKE_CASE = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 SCREAMING_SNAKE_CASE = outgoing_gradient**2 + 4 SCREAMING_SNAKE_CASE = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) SCREAMING_SNAKE_CASE = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 SCREAMING_SNAKE_CASE = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) SCREAMING_SNAKE_CASE = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point SCREAMING_SNAKE_CASE = x_minus if isclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else x_plus SCREAMING_SNAKE_CASE = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowercase (SCREAMING_SNAKE_CASE_ : float = 1.4 , SCREAMING_SNAKE_CASE_ : float = -9.6 ) -> int: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = first_x_coord SCREAMING_SNAKE_CASE = first_y_coord SCREAMING_SNAKE_CASE = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = next_point(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
113
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __UpperCamelCase = random.Random() def _a ( _lowerCamelCase , _lowerCamelCase=1.0 , _lowerCamelCase=None , _lowerCamelCase=None ) -> Optional[int]: """simple docstring""" if rng is None: __snake_case : Dict = global_rng __snake_case : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _A ( unittest.TestCase ): def __init__( self : Any , __magic_name__ : Optional[int] , __magic_name__ : List[str]=7 , __magic_name__ : List[str]=4_00 , __magic_name__ : List[Any]=20_00 , __magic_name__ : int=24 , __magic_name__ : List[str]=24 , __magic_name__ : Union[str, Any]=0.0 , __magic_name__ : List[str]=1_60_00 , __magic_name__ : Dict=True , __magic_name__ : Tuple=True , ) -> int: """simple docstring""" __snake_case : List[str] = parent __snake_case : Dict = batch_size __snake_case : List[str] = min_seq_length __snake_case : str = max_seq_length __snake_case : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case : Optional[Any] = feature_size __snake_case : Tuple = num_mel_bins __snake_case : Union[str, Any] = padding_value __snake_case : str = sampling_rate __snake_case : Tuple = return_attention_mask __snake_case : List[Any] = do_normalize def lowercase__ ( self : List[str] ) -> int: """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self : int , __magic_name__ : str=False , __magic_name__ : Tuple=False ) -> int: """simple docstring""" def _flatten(__magic_name__ : List[Any] ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: __snake_case : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __snake_case : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __snake_case : str = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase__: Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case : List[str] = SpeechaTextFeatureExtractionTester(self ) def lowercase__ ( self : Tuple , __magic_name__ : str ) -> str: """simple docstring""" self.assertTrue(np.all(np.mean(__UpperCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __snake_case : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : List[str] = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size __snake_case : Dict = feature_extractor(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input __snake_case : Optional[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features __snake_case : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test batched __snake_case : Union[str, Any] = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_features __snake_case : List[Any] = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __snake_case : Any = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __snake_case : Dict = np.asarray(__UpperCAmelCase ) __snake_case : Any = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_features __snake_case : List[Any] = feature_extractor(__UpperCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : Tuple = ["""longest""", """max_length""", """do_not_pad"""] __snake_case : Tuple = [None, 16, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): __snake_case : Optional[int] = feature_extractor( __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase ) __snake_case : int = inputs.input_features __snake_case : int = inputs.attention_mask __snake_case : str = [np.sum(__UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Any = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : int = ["""longest""", """max_length""", """do_not_pad"""] __snake_case : str = [None, 16, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): __snake_case : List[str] = feature_extractor( __UpperCAmelCase , max_length=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="""np""" , return_attention_mask=__UpperCAmelCase ) __snake_case : Tuple = inputs.input_features __snake_case : str = inputs.attention_mask __snake_case : Any = [np.sum(__UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : Any = feature_extractor( __UpperCAmelCase , padding="""max_length""" , max_length=4 , truncation=__UpperCAmelCase , return_tensors="""np""" , return_attention_mask=__UpperCAmelCase , ) __snake_case : List[Any] = inputs.input_features __snake_case : Any = inputs.attention_mask __snake_case : str = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : Dict = feature_extractor( __UpperCAmelCase , padding="""longest""" , max_length=4 , truncation=__UpperCAmelCase , return_tensors="""np""" , return_attention_mask=__UpperCAmelCase , ) __snake_case : Dict = inputs.input_features __snake_case : List[str] = inputs.attention_mask __snake_case : str = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) __snake_case : str = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __snake_case : Any = feature_extractor( __UpperCAmelCase , padding="""longest""" , max_length=16 , truncation=__UpperCAmelCase , return_tensors="""np""" , return_attention_mask=__UpperCAmelCase , ) __snake_case : List[str] = inputs.input_features __snake_case : Tuple = inputs.attention_mask __snake_case : List[Any] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def lowercase__ ( self : Any ) -> Any: """simple docstring""" import torch __snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : List[str] = np.random.rand(1_00 , 32 ).astype(np.floataa ) __snake_case : Optional[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __snake_case : Any = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __snake_case : List[str] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase__ ( self : str , __magic_name__ : Union[str, Any] ) -> int: """simple docstring""" from datasets import load_dataset __snake_case : Optional[int] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __snake_case : List[Any] = ds.sort("""id""" ).select(range(__UpperCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : Any = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on __snake_case : Tuple = self._load_datasamples(1 ) __snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Union[str, Any] = feature_extractor(__UpperCAmelCase , return_tensors="""pt""" ).input_features self.assertEquals(input_features.shape , (1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , __UpperCAmelCase , atol=1E-4 ) )
365
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : int = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : Optional[int] = pentagonal_nums[j] __snake_case : str = pentagonal_i + pentagonal_j __snake_case : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
13
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = BloomTokenizerFast lowerCAmelCase__ : Tuple = BloomTokenizerFast lowerCAmelCase__ : Dict = True lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : Union[str, Any] = """tokenizer_file""" lowerCAmelCase__ : Dict = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def UpperCamelCase__ (self : int ): '''simple docstring''' super().setUp() lowercase__ = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self : str , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = self.get_rust_tokenizer() lowercase__ = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] lowercase__ = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase__ = tokenizer.batch_encode_plus(UpperCamelCase )['''input_ids'''] self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowercase__ = tokenizer.batch_decode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] , UpperCamelCase : Optional[Any]=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase__ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase__ = '''This is a simple input''' lowercase__ = ['''This is a simple input 1''', '''This is a simple input 2'''] lowercase__ = ('''This is a simple input''', '''This is a pair''') lowercase__ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(UpperCamelCase , max_length=UpperCamelCase ) tokenizer_r.encode_plus(UpperCamelCase , max_length=UpperCamelCase ) tokenizer_r.batch_encode_plus(UpperCamelCase , max_length=UpperCamelCase ) tokenizer_r.encode(UpperCamelCase , max_length=UpperCamelCase ) tokenizer_r.batch_encode_plus(UpperCamelCase , max_length=UpperCamelCase ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) lowercase__ = None # Hotfixing padding = None self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' ) # Simple input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' ) # Simple input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' ) # Pair input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='''max_length''' , ) def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = self.get_rust_tokenizer() lowercase__ = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=UpperCamelCase ) lowercase__ = next(iter(UpperCamelCase ) )['''premise'''] # pick up one data lowercase__ = list(sample_data.values() ) lowercase__ = list(map(tokenizer.encode , UpperCamelCase ) ) lowercase__ = [tokenizer.decode(UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase ) for x in output_tokens] self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
2
"""simple docstring""" import math import sys def A__ ( UpperCamelCase ): A = "" try: with open(UpperCamelCase , "rb" ) as binary_file: A = binary_file.read() for dat in data: A = F"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def A__ ( UpperCamelCase ): A = {"0": "0", "1": "1"} A, A = "", "" A = len(UpperCamelCase ) for i in range(len(UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue A = lexicon[curr_string] result += last_match_id A = last_match_id + "0" if math.loga(UpperCamelCase ).is_integer(): A = {} for curr_key in list(UpperCamelCase ): A = lexicon.pop(UpperCamelCase ) A = new_lex A = last_match_id + "1" index += 1 A = "" return result def A__ ( UpperCamelCase , UpperCamelCase ): A = 8 try: with open(UpperCamelCase , "wb" ) as opened_file: A = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase ) , UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def A__ ( UpperCamelCase ): A = 0 for letter in data_bits: if letter == "1": break counter += 1 A = data_bits[counter:] A = data_bits[counter + 1 :] return data_bits def A__ ( UpperCamelCase , UpperCamelCase ): A = read_file_binary(UpperCamelCase ) A = remove_prefix(UpperCamelCase ) A = decompress_data(UpperCamelCase ) write_file_binary(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
292
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase__ : int =logging.get_logger(__name__) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = ["""audio_values""", """audio_mask"""] def __init__( self , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=1 , lowerCAmelCase__=[1_6, 1_6] , lowerCAmelCase__=1_2_8 , lowerCAmelCase__=4_4_1_0_0 , lowerCAmelCase__=8_6 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=0.0 , **lowerCAmelCase__ , ): """simple docstring""" super().__init__( feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = spectrogram_length SCREAMING_SNAKE_CASE_ : int = num_channels SCREAMING_SNAKE_CASE_ : List[str] = patch_size SCREAMING_SNAKE_CASE_ : List[Any] = feature_size // self.patch_size[1] SCREAMING_SNAKE_CASE_ : Optional[int] = n_fft SCREAMING_SNAKE_CASE_ : List[str] = sampling_rate // hop_length_to_sampling_rate SCREAMING_SNAKE_CASE_ : Optional[Any] = sampling_rate SCREAMING_SNAKE_CASE_ : Dict = padding_value SCREAMING_SNAKE_CASE_ : List[str] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=lowerCAmelCase__ , norm='slaney' , mel_scale='slaney' , ).T def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = spectrogram( lowerCAmelCase__ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) SCREAMING_SNAKE_CASE_ : int = log_spec[:, :-1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = log_spec - 20.0 SCREAMING_SNAKE_CASE_ : List[str] = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , **lowerCAmelCase__ , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ : Optional[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): SCREAMING_SNAKE_CASE_ : Any = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ : List[str] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis SCREAMING_SNAKE_CASE_ : Tuple = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Any = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask SCREAMING_SNAKE_CASE_ : Union[str, Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: SCREAMING_SNAKE_CASE_ : str = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] SCREAMING_SNAKE_CASE_ : List[str] = np.array(lowerCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding SCREAMING_SNAKE_CASE_ : Optional[int] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch SCREAMING_SNAKE_CASE_ : str = np.ones([len(lowerCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ : str = padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase__ ) ): SCREAMING_SNAKE_CASE_ : Tuple = audio_features[i] SCREAMING_SNAKE_CASE_ : List[str] = feature # return as BatchFeature if return_attention_mask: SCREAMING_SNAKE_CASE_ : Optional[Any] = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: SCREAMING_SNAKE_CASE_ : List[str] = {'audio_values': padded_audio_features} SCREAMING_SNAKE_CASE_ : int = BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) return encoded_inputs
361
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def a__ ( A__ ): if is_torch_version('<', '2.0.0' ) or not hasattr(A__, '_dynamo' ): return False return isinstance(A__, torch._dynamo.eval_frame.OptimizedModule ) def a__ ( A__, A__ = True ): SCREAMING_SNAKE_CASE_ : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) SCREAMING_SNAKE_CASE_ : List[str] = is_compiled_module(A__ ) if is_compiled: SCREAMING_SNAKE_CASE_ : List[Any] = model SCREAMING_SNAKE_CASE_ : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A__, A__ ): SCREAMING_SNAKE_CASE_ : int = model.module if not keep_fpaa_wrapper: SCREAMING_SNAKE_CASE_ : str = getattr(A__, 'forward' ) SCREAMING_SNAKE_CASE_ : Any = model.__dict__.pop('_original_forward', A__ ) if original_forward is not None: while hasattr(A__, '__wrapped__' ): SCREAMING_SNAKE_CASE_ : Optional[int] = forward.__wrapped__ if forward == original_forward: break SCREAMING_SNAKE_CASE_ : Any = forward if getattr(A__, '_converted_to_transformer_engine', A__ ): convert_model(A__, to_transformer_engine=A__ ) if is_compiled: SCREAMING_SNAKE_CASE_ : List[str] = model SCREAMING_SNAKE_CASE_ : Dict = compiled_model return model def a__ ( ): PartialState().wait_for_everyone() def a__ ( A__, A__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(A__, A__ ) elif PartialState().local_process_index == 0: torch.save(A__, A__ ) @contextmanager def a__ ( **A__ ): for key, value in kwargs.items(): SCREAMING_SNAKE_CASE_ : List[Any] = str(A__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def a__ ( A__ ): if not hasattr(A__, '__qualname__' ) and not hasattr(A__, '__name__' ): SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(A__, '__class__', A__ ) if hasattr(A__, '__qualname__' ): return obj.__qualname__ if hasattr(A__, '__name__' ): return obj.__name__ return str(A__ ) def a__ ( A__, A__ ): for key, value in source.items(): if isinstance(A__, A__ ): SCREAMING_SNAKE_CASE_ : Dict = destination.setdefault(A__, {} ) merge_dicts(A__, A__ ) else: SCREAMING_SNAKE_CASE_ : Tuple = value return destination def a__ ( A__ = None ): if port is None: SCREAMING_SNAKE_CASE_ : Tuple = 2_9_5_0_0 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
162
0
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case : str = logging.get_logger(__name__) __snake_case : Union[str, Any] = {'vocab_file': 'spiece.model'} __snake_case : int = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } __snake_case : Optional[Any] = { 'AI-Sweden/gpt-sw3-126m': 2_048, 'AI-Sweden/gpt-sw3-350m': 2_048, 'AI-Sweden/gpt-sw3-1.6b': 2_048, 'AI-Sweden/gpt-sw3-6.7b': 2_048, 'AI-Sweden/gpt-sw3-20b': 2_048, } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Union[str, Any]=False , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Any=False , _SCREAMING_SNAKE_CASE: List[str]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Any , ) -> None: """simple docstring""" __lowerCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs __lowerCAmelCase : Dict = kwargs.get("name_or_path") if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored") __lowerCAmelCase : List[str] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __lowerCAmelCase : int = "<|endoftext|>" if eos_token is None else eos_token __lowerCAmelCase : Tuple = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __lowerCAmelCase : List[str] = unk_token if pad_token is None else pad_token __lowerCAmelCase : List[str] = eos_token if bos_token is None else bos_token else: __lowerCAmelCase : Optional[int] = "<pad>" if pad_token is None else pad_token __lowerCAmelCase : List[Any] = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = do_lower_case __lowerCAmelCase : str = remove_space __lowerCAmelCase : Tuple = keep_accents __lowerCAmelCase : List[Any] = vocab_file __lowerCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_SCREAMING_SNAKE_CASE) # Used for whitespace normalization in input texts # fmt : off __lowerCAmelCase : Any = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __lowerCAmelCase : Dict = re.compile( F"""[{''.join(map(_SCREAMING_SNAKE_CASE , list(range(0 , 9)) + list(range(11 , 32)) + list(range(127 , 160)) + [160, 173, 8203]))}]""") def __getstate__( self: Any) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.__dict__.copy() __lowerCAmelCase : Tuple = None return state def __setstate__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): __lowerCAmelCase : Union[str, Any] = {} __lowerCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _SCREAMING_SNAKE_CASE ( self: int) -> int: """simple docstring""" return len(self.sp_model) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: str) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = self.non_printing_characters_re.sub("" , _SCREAMING_SNAKE_CASE) # Normalize whitespaces __lowerCAmelCase : List[Any] = "".join([char if char not in self.whitespaces else " " for char in text]) # NFC Unicode normalization __lowerCAmelCase : Dict = unicodedata.normalize("NFC" , _SCREAMING_SNAKE_CASE) return text def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Any) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = self.preprocess_text(_SCREAMING_SNAKE_CASE) return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: str) -> int: """simple docstring""" return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int) -> str: """simple docstring""" return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE) @staticmethod def _SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE: str) -> str: """simple docstring""" return out_string def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[str]) -> str: """simple docstring""" __lowerCAmelCase : Optional[Any] = [] __lowerCAmelCase : str = "" __lowerCAmelCase : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE) + token __lowerCAmelCase : Dict = True __lowerCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = False out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE) return out_string def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Dict[str, int]: """simple docstring""" __lowerCAmelCase : List[str] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return __lowerCAmelCase : Optional[int] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(_SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.vocab_file): with open(_SCREAMING_SNAKE_CASE , "wb") as fi: __lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, List[str]] , _SCREAMING_SNAKE_CASE: Union[str, bool] = False) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : str = self.preprocess_text(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = self.sp_model.encode(_SCREAMING_SNAKE_CASE) else: __lowerCAmelCase : Optional[Any] = [self.preprocess_text(_SCREAMING_SNAKE_CASE) for t in text] __lowerCAmelCase : Optional[int] = self.sp_model.encode(_SCREAMING_SNAKE_CASE) if return_tensors is True or return_tensors == "pt": __lowerCAmelCase : Optional[int] = torch.tensor(_SCREAMING_SNAKE_CASE) return token_ids def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Union[int, List[int]]) -> str: """simple docstring""" return self.sp_model.decode(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: "Conversation") -> List[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __lowerCAmelCase : int = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(_SCREAMING_SNAKE_CASE) + F"""{self.bos_token}Bot:""" ) return self.encode(text=_SCREAMING_SNAKE_CASE)
269
"""simple docstring""" import gc import threading import time import psutil import torch class A__ : '''simple docstring''' def __init__( self: str) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = psutil.Process() __lowerCAmelCase : str = False def _SCREAMING_SNAKE_CASE ( self: int) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = -1 while True: __lowerCAmelCase : str = max(self.process.memory_info().rss , self.cpu_memory_peak) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" __lowerCAmelCase : List[str] = True __lowerCAmelCase : str = threading.Thread(target=self.peak_monitor) __lowerCAmelCase : Tuple = True self.thread.start() def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = False self.thread.join() return self.cpu_memory_peak __snake_case : Tuple = PeakCPUMemory() def _lowercase ( ) -> str: # Time __lowerCAmelCase : str = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCAmelCase : Optional[Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowerCAmelCase : Union[str, Any] = torch.cuda.memory_allocated(__snake_case ) torch.cuda.reset_peak_memory_stats() return measures def _lowercase ( __snake_case ) -> Optional[Any]: # Time __lowerCAmelCase : str = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCAmelCase : str = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 __lowerCAmelCase : List[str] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __lowerCAmelCase : Union[str, Any] = (torch.cuda.memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**20 __lowerCAmelCase : Any = (torch.cuda.max_memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**20 return measures def _lowercase ( __snake_case ,__snake_case ) -> Dict: print(F"""{description}:""" ) print(F"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(__snake_case )]:.2f}MiB""" ) __lowerCAmelCase : Optional[Any] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
269
1
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def __lowerCAmelCase ( lowercase : int ) -> str: """simple docstring""" if not isinstance(lowercase , lowercase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) snake_case : Tuple = precision snake_case : int = ceil(precision / 14 ) snake_case : Any = 42_6880 * Decimal(1_0005 ).sqrt() snake_case : Optional[Any] = 1 snake_case : List[str] = 1359_1409 snake_case : Any = Decimal(lowercase ) for k in range(1 , lowercase ): snake_case : Any = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __snake_case = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
112
"""simple docstring""" def __lowerCAmelCase ( lowercase : int ) -> int: """simple docstring""" if not isinstance(lowercase , lowercase ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
112
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: A: List[Any] = torch.load(__lowercase , map_location='''cpu''' ) return sd def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]: A: Tuple = OrderedDict() A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A: int = key for name_pair in rename_keys_prefix: A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] ) A: Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A: int = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: A: Optional[Any] = '''pretraining''' if "vcr" in checkpoint_path: A: Optional[int] = {'''visual_embedding_dim''': 5_1_2} elif "vqa_advanced" in checkpoint_path: A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8} elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8} elif "nlvr" in checkpoint_path: A: Tuple = {'''visual_embedding_dim''': 1_0_2_4} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 5_1_2} A: List[str] = '''multichoice''' elif "vqa_advanced" in checkpoint_path: A: List[str] = {'''visual_embedding_dim''': 2_0_4_8} A: Optional[int] = '''vqa_advanced''' elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9} A: Union[str, Any] = '''vqa''' elif "nlvr" in checkpoint_path: A: Optional[int] = { '''visual_embedding_dim''': 1_0_2_4, '''num_labels''': 2, } A: str = '''nlvr''' A: Union[str, Any] = VisualBertConfig(**__lowercase ) # Load State Dict A: Union[str, Any] = load_state_dict(__lowercase ) A: str = get_new_dict(__lowercase , __lowercase ) if model_type == "pretraining": A: Optional[Any] = VisualBertForPreTraining(__lowercase ) elif model_type == "vqa": A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase ) elif model_type == "nlvr": A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase ) elif model_type == "multichoice": A: Any = VisualBertForMultipleChoice(__lowercase ) model.load_state_dict(__lowercase ) # Save Checkpoints Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "swinv2" lowercase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] ,lowercase_ : Any=2_2_4 ,lowercase_ : List[str]=4 ,lowercase_ : str=3 ,lowercase_ : Union[str, Any]=9_6 ,lowercase_ : Optional[Any]=[2, 2, 6, 2] ,lowercase_ : Union[str, Any]=[3, 6, 1_2, 2_4] ,lowercase_ : Union[str, Any]=7 ,lowercase_ : Union[str, Any]=4.0 ,lowercase_ : Tuple=True ,lowercase_ : Union[str, Any]=0.0 ,lowercase_ : List[Any]=0.0 ,lowercase_ : Optional[Any]=0.1 ,lowercase_ : Union[str, Any]="gelu" ,lowercase_ : Any=False ,lowercase_ : List[Any]=0.02 ,lowercase_ : List[str]=1E-5 ,lowercase_ : Any=3_2 ,**lowercase_ : Dict ,): super().__init__(**lowercase_ ) lowerCAmelCase__ : Union[str, Any] = image_size lowerCAmelCase__ : Union[str, Any] = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Optional[Any] = embed_dim lowerCAmelCase__ : Optional[Any] = depths lowerCAmelCase__ : int = len(lowercase_ ) lowerCAmelCase__ : Optional[int] = num_heads lowerCAmelCase__ : Dict = window_size lowerCAmelCase__ : Optional[Any] = mlp_ratio lowerCAmelCase__ : Optional[Any] = qkv_bias lowerCAmelCase__ : List[str] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = drop_path_rate lowerCAmelCase__ : Any = hidden_act lowerCAmelCase__ : Dict = use_absolute_embeddings lowerCAmelCase__ : List[Any] = layer_norm_eps lowerCAmelCase__ : Tuple = initializer_range lowerCAmelCase__ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase__ : List[Any] = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase__ : Union[str, Any] = (0, 0, 0, 0)
74
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
74
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version snake_case_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") snake_case_ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) snake_case_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _lowerCAmelCase ( lowercase_ ): with open(lowercase_ , 'rb' ) as f: UpperCAmelCase = Image.open(lowercase_ ) return im.convert('RGB' ) @dataclass class A_ : """simple docstring""" __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __UpperCamelCase = field(default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """A folder containing the training data."""} ) __UpperCamelCase = field(default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """A folder containing the validation data."""} ) __UpperCamelCase = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCAmelCase__ ( self :Tuple ) -> str: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class A_ : """simple docstring""" __UpperCamelCase = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(SCREAMING_SNAKE_CASE_ )} , ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) __UpperCamelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase = field(default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Name or path of preprocessor config."""} ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = torch.stack([example['pixel_values'] for example in examples] ) UpperCAmelCase = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: UpperCAmelCase = {} if data_args.train_dir is not None: UpperCAmelCase = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: UpperCAmelCase = os.path.join(data_args.validation_dir , '**' ) UpperCAmelCase = load_dataset( 'imagefolder' , data_files=lowercase_ , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase_ ) and data_args.train_val_split > 0.0: UpperCAmelCase = dataset['train'].train_test_split(data_args.train_val_split ) UpperCAmelCase = split['train'] UpperCAmelCase = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCAmelCase = dataset['train'].features['labels'].names UpperCAmelCase , UpperCAmelCase = {}, {} for i, label in enumerate(lowercase_ ): UpperCAmelCase = str(lowercase_ ) UpperCAmelCase = label # Load the accuracy metric from the datasets package UpperCAmelCase = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase_ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) UpperCAmelCase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: UpperCAmelCase = image_processor.size['shortest_edge'] else: UpperCAmelCase = (image_processor.size['height'], image_processor.size['width']) UpperCAmelCase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) UpperCAmelCase = Compose( [ RandomResizedCrop(lowercase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) UpperCAmelCase = Compose( [ Resize(lowercase_ ), CenterCrop(lowercase_ ), ToTensor(), normalize, ] ) def train_transforms(lowercase_ ): UpperCAmelCase = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(lowercase_ ): UpperCAmelCase = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: UpperCAmelCase = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowercase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: UpperCAmelCase = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowercase_ ) # Initalize our trainer UpperCAmelCase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , data_collator=lowercase_ , ) # Training if training_args.do_train: UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase = last_checkpoint UpperCAmelCase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase = trainer.evaluate() trainer.log_metrics('eval' , lowercase_ ) trainer.save_metrics('eval' , lowercase_ ) # Write model card and (optionally) push to hub UpperCAmelCase = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
78
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class A_ : """simple docstring""" def UpperCAmelCase__ ( self :Any ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , thresholding=lowercase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase__ ( self :List[Any] ) -> Any: torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.414 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , thresholding=lowercase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase__ ( self :List[str] ) -> str: UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase = inputs['prompt'] UpperCAmelCase = inputs['generator'] UpperCAmelCase = inputs['num_inference_steps'] UpperCAmelCase = inputs['output_type'] if "image" in inputs: UpperCAmelCase = inputs['image'] else: UpperCAmelCase = None if "mask_image" in inputs: UpperCAmelCase = inputs['mask_image'] else: UpperCAmelCase = None if "original_image" in inputs: UpperCAmelCase = inputs['original_image'] else: UpperCAmelCase = None UpperCAmelCase , UpperCAmelCase = pipe.encode_prompt(lowercase_ ) # inputs with prompt converted to embeddings UpperCAmelCase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = pipe(**lowercase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase_ ) UpperCAmelCase = self.pipeline_class.from_pretrained(lowercase_ ) pipe_loaded.to(lowercase_ ) pipe_loaded.set_progress_bar_config(disable=lowercase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowercase_ , lowercase_ ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) UpperCAmelCase = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase = inputs['generator'] UpperCAmelCase = inputs['num_inference_steps'] UpperCAmelCase = inputs['output_type'] # inputs with prompt converted to embeddings UpperCAmelCase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image UpperCAmelCase = pipe_loaded(**lowercase_ )[0] UpperCAmelCase = np.abs(to_np(lowercase_ ) - to_np(lowercase_ ) ).max() self.assertLess(lowercase_ , 1E-4 ) def UpperCAmelCase__ ( self :List[Any] ) -> str: UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase = pipe(**lowercase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase_ ) UpperCAmelCase = self.pipeline_class.from_pretrained(lowercase_ ) pipe_loaded.to(lowercase_ ) pipe_loaded.set_progress_bar_config(disable=lowercase_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCAmelCase = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase = pipe_loaded(**lowercase_ )[0] UpperCAmelCase = np.abs(to_np(lowercase_ ) - to_np(lowercase_ ) ).max() self.assertLess(lowercase_ , 1E-4 )
78
1
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) UpperCAmelCase_ = logging.getLogger() def lowerCAmelCase_ ( __UpperCAmelCase: Path , __UpperCAmelCase: list ) -> Optional[Any]: UpperCamelCase__ : List[str] = '''\n'''.join(__UpperCAmelCase ) Path(__UpperCAmelCase ).open('''w''' ).writelines(__UpperCAmelCase ) UpperCAmelCase_ = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase_ = 'sshleifer/bart-tiny-random' UpperCAmelCase_ = 'sshleifer/tiny-mbart' UpperCAmelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def UpperCamelCase__ ( self, __magic_name__ ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[int] = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' UpperCamelCase__ : int = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() UpperCamelCase__ : int = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(__magic_name__, __magic_name__ ) UpperCamelCase__ : Dict = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) UpperCamelCase__ : Union[str, Any] = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' UpperCamelCase__ : Dict = f"\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n ".split() with patch.object(__magic_name__, '''argv''', __magic_name__ ): run_generate() assert Path(__magic_name__ ).exists() # os.remove(Path(output_file_name)) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" self.run_eval_tester(__magic_name__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def UpperCamelCase__ ( self, __magic_name__ ) -> Union[str, Any]: """simple docstring""" self.run_eval_tester(__magic_name__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def UpperCamelCase__ ( self, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' UpperCamelCase__ : Union[str, Any] = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() UpperCamelCase__ : int = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } UpperCamelCase__ : Optional[Any] = Path(self.get_auto_remove_tmp_dir() ) UpperCamelCase__ : str = str(tmp_dir / '''scores.json''' ) UpperCamelCase__ : Tuple = str(tmp_dir / '''val.target''' ) _dump_articles(__magic_name__, text['''en'''] ) _dump_articles(__magic_name__, text['''de'''] ) UpperCamelCase__ : List[str] = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' UpperCamelCase__ : int = f"\n run_eval_search.py\n {model}\n {str(__magic_name__ )}\n {str(__magic_name__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n ".split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(__magic_name__, '''argv''', __magic_name__ ): with CaptureStdout() as cs: run_search() UpperCamelCase__ : int = [''' num_beams | length_penalty''', model, '''Best score args'''] UpperCamelCase__ : str = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(__magic_name__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__magic_name__ ).exists() os.remove(Path(__magic_name__ ) )
247
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Optional[Any]=False ) -> List[Any]: UpperCamelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCAmelCase_ ( __UpperCAmelCase: Dict , __UpperCAmelCase: Any , __UpperCAmelCase: Dict=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ : Tuple = '''''' else: UpperCamelCase__ : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Dict = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCamelCase__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ : int = in_proj_bias[: config.hidden_size] UpperCamelCase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : List[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] ) -> Optional[Any]: UpperCamelCase__ : int = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] , __UpperCAmelCase: str , __UpperCAmelCase: Tuple ) -> Dict: UpperCamelCase__ : List[str] = dct.pop(__UpperCAmelCase ) UpperCamelCase__ : int = val def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase__ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : int = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __UpperCAmelCase: List[str] , __UpperCAmelCase: Dict , __UpperCAmelCase: List[Any]=True ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ViTConfig() # patch_size if model_name[-1] == "8": UpperCamelCase__ : List[str] = 8 # set labels if required if not base_model: UpperCamelCase__ : Union[str, Any] = 1000 UpperCamelCase__ : Optional[Any] = '''huggingface/label-files''' UpperCamelCase__ : Dict = '''imagenet-1k-id2label.json''' UpperCamelCase__ : str = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ : Dict = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : str = idalabel UpperCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCamelCase__ : str = 384 UpperCamelCase__ : str = 1536 UpperCamelCase__ : Tuple = 12 UpperCamelCase__ : Optional[int] = 6 # load original model from torch hub UpperCamelCase__ : Any = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ : str = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) UpperCamelCase__ : int = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: UpperCamelCase__ : int = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: UpperCamelCase__ : Optional[int] = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor UpperCamelCase__ : Dict = ViTImageProcessor() UpperCamelCase__ : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCamelCase__ : Optional[Any] = encoding['''pixel_values'''] UpperCamelCase__ : Optional[Any] = model(__UpperCAmelCase ) if base_model: UpperCamelCase__ : Union[str, Any] = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: UpperCamelCase__ : Any = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1e-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) UpperCAmelCase_ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
247
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __A : Dict = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
120
'''simple docstring''' from statistics import mean, stdev def UpperCamelCase_ ( A__ : list , A__ : int = 3 ): '''simple docstring''' lowerCAmelCase_ : List[str] = min(A__ ) lowerCAmelCase_ : Optional[int] = max(A__ ) # normalize data return [round((x - x_min) / (x_max - x_min) , A__ ) for x in data] def UpperCamelCase_ ( A__ : list , A__ : int = 3 ): '''simple docstring''' lowerCAmelCase_ : str = mean(A__ ) lowerCAmelCase_ : List[Any] = stdev(A__ ) # standardize data return [round((x - mu) / (sigma) , A__ ) for x in data]
120
1
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __UpperCamelCase : Optional[Any] = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __UpperCamelCase : Union[str, Any] = 'UperNetConfig' class lowercase__ ( nn.Module): def __init__( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Union[int, Tuple[int, int]] , UpperCamelCase__ : Union[int, Tuple[int, int], str] = 0 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Union[int, Tuple[int, int]] = 1 , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = nn.Convad( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , kernel_size=UpperCamelCase__ , padding=UpperCamelCase__ , bias=UpperCamelCase__ , dilation=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Dict = nn.BatchNormad(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = nn.ReLU() def __A ( self : List[str] , UpperCamelCase__ : torch.Tensor ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.conv(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = self.batch_norm(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = self.activation(UpperCamelCase__ ) return output class lowercase__ ( nn.Module): def __init__( self : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[Any] = [ nn.AdaptiveAvgPoolad(UpperCamelCase__ ), UperNetConvModule(UpperCamelCase__ , UpperCamelCase__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(UpperCamelCase__ ) , UpperCamelCase__ ) def __A ( self : Optional[int] , UpperCamelCase__ : torch.Tensor ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = input for layer in self.layers: SCREAMING_SNAKE_CASE : List[str] = layer(UpperCamelCase__ ) return hidden_state class lowercase__ ( nn.Module): def __init__( self : Tuple , UpperCamelCase__ : Tuple[int, ...] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : bool ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = pool_scales SCREAMING_SNAKE_CASE : Any = align_corners SCREAMING_SNAKE_CASE : Any = in_channels SCREAMING_SNAKE_CASE : Optional[int] = channels SCREAMING_SNAKE_CASE : str = [] for i, pool_scale in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=UpperCamelCase__ , in_channels=UpperCamelCase__ , channels=UpperCamelCase__ ) self.blocks.append(UpperCamelCase__ ) self.add_module(str(UpperCamelCase__ ) , UpperCamelCase__ ) def __A ( self : List[str] , UpperCamelCase__ : torch.Tensor ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] for ppm in self.blocks: SCREAMING_SNAKE_CASE : Any = ppm(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = nn.functional.interpolate( UpperCamelCase__ , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(UpperCamelCase__ ) return ppm_outs class lowercase__ ( nn.Module): def __init__( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Any = config SCREAMING_SNAKE_CASE : Union[str, Any] = config.pool_scales # e.g. (1, 2, 3, 6) SCREAMING_SNAKE_CASE : int = in_channels SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module SCREAMING_SNAKE_CASE : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) SCREAMING_SNAKE_CASE : Any = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module SCREAMING_SNAKE_CASE : int = nn.ModuleList() SCREAMING_SNAKE_CASE : Dict = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetConvModule(UpperCamelCase__ , self.channels , kernel_size=1 ) SCREAMING_SNAKE_CASE : List[str] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(UpperCamelCase__ ) self.fpn_convs.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __A ( self : Optional[Any] ): '''simple docstring''' self.apply(self._init_weights ) def __A ( self : Any , UpperCamelCase__ : List[str] ): '''simple docstring''' if isinstance(UpperCamelCase__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __A ( self : Any , UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = inputs[-1] SCREAMING_SNAKE_CASE : Optional[Any] = [x] psp_outs.extend(self.psp_modules(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : str = torch.cat(UpperCamelCase__ , dim=1 ) SCREAMING_SNAKE_CASE : Dict = self.bottleneck(UpperCamelCase__ ) return output def __A ( self : Any , UpperCamelCase__ : torch.Tensor ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(UpperCamelCase__ ) ) # build top-down path SCREAMING_SNAKE_CASE : str = len(UpperCamelCase__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE : int = laterals[i - 1].shape[2:] SCREAMING_SNAKE_CASE : List[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=UpperCamelCase__ , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs SCREAMING_SNAKE_CASE : Union[str, Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE : Dict = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) SCREAMING_SNAKE_CASE : List[Any] = torch.cat(UpperCamelCase__ , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = self.fpn_bottleneck(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = self.classifier(UpperCamelCase__ ) return output class lowercase__ ( nn.Module): def __init__( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 3 , UpperCamelCase__ : Union[int, Tuple[int, int]] = 1 ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Any = config SCREAMING_SNAKE_CASE : Tuple = config.auxiliary_in_channels SCREAMING_SNAKE_CASE : Tuple = config.auxiliary_channels SCREAMING_SNAKE_CASE : str = config.auxiliary_num_convs SCREAMING_SNAKE_CASE : Optional[int] = config.auxiliary_concat_input SCREAMING_SNAKE_CASE : Tuple = in_index SCREAMING_SNAKE_CASE : Optional[Any] = (kernel_size // 2) * dilation SCREAMING_SNAKE_CASE : Union[str, Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=UpperCamelCase__ , padding=UpperCamelCase__ , dilation=UpperCamelCase__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=UpperCamelCase__ , padding=UpperCamelCase__ , dilation=UpperCamelCase__ ) ) if self.num_convs == 0: SCREAMING_SNAKE_CASE : Any = nn.Identity() else: SCREAMING_SNAKE_CASE : Any = nn.Sequential(*UpperCamelCase__ ) if self.concat_input: SCREAMING_SNAKE_CASE : Dict = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=UpperCamelCase__ , padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE : int = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __A ( self : List[str] ): '''simple docstring''' self.apply(self._init_weights ) def __A ( self : Any , UpperCamelCase__ : Tuple ): '''simple docstring''' if isinstance(UpperCamelCase__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __A ( self : Optional[Any] , UpperCamelCase__ : torch.Tensor ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = encoder_hidden_states[self.in_index] SCREAMING_SNAKE_CASE : Optional[Any] = self.convs(UpperCamelCase__ ) if self.concat_input: SCREAMING_SNAKE_CASE : Any = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) SCREAMING_SNAKE_CASE : Optional[int] = self.classifier(UpperCamelCase__ ) return output class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = UperNetConfig UpperCamelCase_ = """pixel_values""" UpperCamelCase_ = True def __A ( self : List[str] , UpperCamelCase__ : int ): '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __A ( self : Dict ): '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __A ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[str]=False ): '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : List[str] = value __UpperCamelCase : List[Any] = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __UpperCamelCase : Union[str, Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , UpperCamelCase_ , ) class lowercase__ ( UpperCamelCase_): def __init__( self : Tuple , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' super().__init__(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) SCREAMING_SNAKE_CASE : Optional[Any] = UperNetHead(UpperCamelCase__ , in_channels=self.backbone.channels ) SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetFCNHead(UpperCamelCase__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=UpperCamelCase__ , config_class=_CONFIG_FOR_DOC ) def __A ( self : str , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[bool] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : Any = output_attentions if output_attentions is not None else self.config.output_attentions SCREAMING_SNAKE_CASE : Any = self.backbone.forward_with_filtered_kwargs( UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , output_attentions=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = outputs.feature_maps SCREAMING_SNAKE_CASE : int = self.decode_head(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = nn.functional.interpolate(UpperCamelCase__ , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = None if self.auxiliary_head is not None: SCREAMING_SNAKE_CASE : Tuple = self.auxiliary_head(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = nn.functional.interpolate( UpperCamelCase__ , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss SCREAMING_SNAKE_CASE : Any = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) SCREAMING_SNAKE_CASE : Optional[int] = loss_fct(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = loss_fct(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: SCREAMING_SNAKE_CASE : Dict = (logits,) + outputs[1:] else: SCREAMING_SNAKE_CASE : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=UpperCamelCase__ , logits=UpperCamelCase__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
358
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def A ( _lowercase , _lowercase , _lowercase , _lowercase ): if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = np.full((len(_lowercase ), sequence_length, 2) , _lowercase ) else: SCREAMING_SNAKE_CASE : List[Any] = np.full((len(_lowercase ), sequence_length) , _lowercase ) for i, tensor in enumerate(_lowercase ): if padding_side == "right": if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Tuple = tensor[:sequence_length] else: SCREAMING_SNAKE_CASE : Any = tensor[:sequence_length] else: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = tensor[:sequence_length] else: SCREAMING_SNAKE_CASE : Union[str, Any] = tensor[:sequence_length] return out_tensor.tolist() def A ( _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = ord(_lowercase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True SCREAMING_SNAKE_CASE : Optional[Any] = unicodedata.category(_lowercase ) if cat.startswith('''P''' ): return True return False @dataclass class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = 42 UpperCamelCase_ = True UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = -100 UpperCamelCase_ = "pt" def __A ( self : Optional[int] , UpperCamelCase__ : List[Any] ): '''simple docstring''' import torch SCREAMING_SNAKE_CASE : str = '''label''' if '''label''' in features[0].keys() else '''labels''' SCREAMING_SNAKE_CASE : str = [feature[label_name] for feature in features] if label_name in features[0].keys() else None SCREAMING_SNAKE_CASE : Dict = self.tokenizer.pad( UpperCamelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch SCREAMING_SNAKE_CASE : Tuple = torch.tensor(batch['''entity_ids'''] ).shape[1] SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.padding_side if padding_side == "right": SCREAMING_SNAKE_CASE : int = [ list(UpperCamelCase__ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase__ )) for label in labels ] else: SCREAMING_SNAKE_CASE : str = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase__ )) + list(UpperCamelCase__ ) for label in labels ] SCREAMING_SNAKE_CASE : List[str] = [feature['''ner_tags'''] for feature in features] SCREAMING_SNAKE_CASE : Dict = padding_tensor(UpperCamelCase__ , -1 , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = [feature['''original_entity_spans'''] for feature in features] SCREAMING_SNAKE_CASE : Dict = padding_tensor(UpperCamelCase__ , (-1, -1) , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.tensor(UpperCamelCase__ , dtype=torch.intaa ) for k, v in batch.items()} return batch
258
0
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name def _A ( SCREAMING_SNAKE_CASE : Union[List, PIL.Image.Image, torch.Tensor] ): """simple docstring""" warnings.warn( "The preprocess method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor.preprocess instead" , SCREAMING_SNAKE_CASE , ) if isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE , PIL.Image.Image ): a__ : Optional[Any] =[image] if isinstance(image[0] , PIL.Image.Image ): a__ , a__ : List[str] =image[0].size a__ , a__ : List[Any] =(x - x % 8 for x in (w, h)) # resize to integer multiple of 8 a__ : Union[str, Any] =[np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] a__ : Optional[Any] =np.concatenate(SCREAMING_SNAKE_CASE , axis=0 ) a__ : Optional[Any] =np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 2_5_5.0 a__ : List[Any] =image.transpose(0 , 3 , 1 , 2 ) a__ : Tuple =2.0 * image - 1.0 a__ : Optional[int] =torch.from_numpy(SCREAMING_SNAKE_CASE ) elif isinstance(image[0] , torch.Tensor ): a__ : List[str] =torch.cat(SCREAMING_SNAKE_CASE , dim=0 ) return image def _A ( SCREAMING_SNAKE_CASE : Union[List, PIL.Image.Image, torch.Tensor] ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): return mask elif isinstance(SCREAMING_SNAKE_CASE , PIL.Image.Image ): a__ : Dict =[mask] if isinstance(mask[0] , PIL.Image.Image ): a__ , a__ : Optional[int] =mask[0].size a__ , a__ : Dict =(x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a__ : List[str] =[np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask] a__ : int =np.concatenate(SCREAMING_SNAKE_CASE , axis=0 ) a__ : List[Any] =mask.astype(np.floataa ) / 2_5_5.0 a__ : str =0 a__ : int =1 a__ : Union[str, Any] =torch.from_numpy(SCREAMING_SNAKE_CASE ) elif isinstance(mask[0] , torch.Tensor ): a__ : Any =torch.cat(SCREAMING_SNAKE_CASE , dim=0 ) return mask class __lowerCAmelCase ( UpperCamelCase__): _lowercase : UNetaDModel _lowercase : RePaintScheduler def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 2_5_0 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 1_0 , lowerCAmelCase__ = 1_0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' a__ : List[str] =image a__ : Tuple =_preprocess_image(lowerCAmelCase__ ) a__ : int =original_image.to(device=self.device , dtype=self.unet.dtype ) a__ : Tuple =_preprocess_mask(lowerCAmelCase__ ) a__ : Optional[int] =mask_image.to(device=self.device , dtype=self.unet.dtype ) a__ : Dict =original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCAmelCase__ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) a__ : Union[str, Any] =original_image.shape a__ : Dict =randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , self.device ) a__ : int =eta a__ : Tuple =self.scheduler.timesteps[0] + 1 a__ : Optional[Any] =generator[0] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual a__ : str =self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # compute previous image: x_t -> x_t-1 a__ : int =self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample else: # compute the reverse: x_t-1 -> x_t a__ : Any =self.scheduler.undo_step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : List[Any] =t a__ : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 ) a__ : str =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : List[Any] =self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
95
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __lowerCAmelCase : def _lowercase ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError() def _lowercase ( self ) -> int: '''simple docstring''' raise NotImplementedError() class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = False , **lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : str =tokenizer a__ : List[str] =skip_prompt a__ : List[Any] =decode_kwargs # variables used in the streaming process a__ : Dict =[] a__ : int =0 a__ : str =True def _lowercase ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: a__ : Any =value[0] if self.skip_prompt and self.next_tokens_are_prompt: a__ : Dict =False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) a__ : Union[str, Any] =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): a__ : List[Any] =text[self.print_len :] a__ : List[str] =[] a__ : Optional[int] =0 # If the last token is a CJK character, we print the characters. elif len(lowerCAmelCase__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): a__ : List[str] =text[self.print_len :] self.print_len += len(lowerCAmelCase__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: a__ : str =text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(lowerCAmelCase__ ) self.on_finalized_text(lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' if len(self.token_cache ) > 0: a__ : Union[str, Any] =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) a__ : List[Any] =text[self.print_len :] a__ : List[str] =[] a__ : Optional[int] =0 else: a__ : Union[str, Any] ="" a__ : Any =True self.on_finalized_text(lowerCAmelCase__ , stream_end=lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> Optional[Any]: '''simple docstring''' print(lowerCAmelCase__ , flush=lowerCAmelCase__ , end="" if not stream_end else None ) def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : str =Queue() a__ : Optional[Any] =None a__ : Any =timeout def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> List[str]: '''simple docstring''' self.text_queue.put(lowerCAmelCase__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Dict: '''simple docstring''' return self def _lowercase ( self ) -> int: '''simple docstring''' a__ : int =self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
95
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) UpperCamelCase__ = """A painting of a squirrel eating a burger""" UpperCamelCase__ = jax.device_count() UpperCamelCase__ = num_samples * [prompt] UpperCamelCase__ = sd_pipe.prepare_inputs(__lowerCAmelCase ) UpperCamelCase__ = replicate(__lowerCAmelCase ) UpperCamelCase__ = shard(__lowerCAmelCase ) UpperCamelCase__ = jax.random.PRNGKey(0 ) UpperCamelCase__ = jax.random.split(__lowerCAmelCase , jax.device_count() ) UpperCamelCase__ = sd_pipe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_inference_steps=25 , jit=__lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) UpperCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase__ = images[0, 253:256, 253:256, -1] UpperCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase__ = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ): UpperCamelCase__ = """stabilityai/stable-diffusion-2""" UpperCamelCase__ , UpperCamelCase__ = FlaxDPMSolverMultistepScheduler.from_pretrained(__lowerCAmelCase , subfolder="""scheduler""" ) UpperCamelCase__ , UpperCamelCase__ = FlaxStableDiffusionPipeline.from_pretrained( __lowerCAmelCase , scheduler=__lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) UpperCamelCase__ = scheduler_params UpperCamelCase__ = """A painting of a squirrel eating a burger""" UpperCamelCase__ = jax.device_count() UpperCamelCase__ = num_samples * [prompt] UpperCamelCase__ = sd_pipe.prepare_inputs(__lowerCAmelCase ) UpperCamelCase__ = replicate(__lowerCAmelCase ) UpperCamelCase__ = shard(__lowerCAmelCase ) UpperCamelCase__ = jax.random.PRNGKey(0 ) UpperCamelCase__ = jax.random.split(__lowerCAmelCase , jax.device_count() ) UpperCamelCase__ = sd_pipe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , num_inference_steps=25 , jit=__lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) UpperCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase__ = images[0, 253:256, 253:256, -1] UpperCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase__ = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
363
import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def _UpperCamelCase (a__ :int ): """simple docstring""" if hor == 128: UpperCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") UpperCamelCase__ = (32, 128, 256) UpperCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: UpperCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") UpperCamelCase__ = (32, 64, 128, 256) UpperCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") UpperCamelCase__ = torch.load(f"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) UpperCamelCase__ = model.state_dict() UpperCamelCase__ = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } UpperCamelCase__ = UNetaDModel(**a__ ) print(f"""length of state dict: {len(state_dict.keys() )}""" ) print(f"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) UpperCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCamelCase__ = state_dict.pop(a__ ) hf_value_function.load_state_dict(a__ ) torch.save(hf_value_function.state_dict() , f"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(f"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , """w""" ) as f: json.dump(a__ , a__ ) def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } UpperCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) UpperCamelCase__ = model UpperCamelCase__ = UNetaDModel(**a__ ) print(f"""length of state dict: {len(state_dict.keys() )}""" ) print(f"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) UpperCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCamelCase__ = state_dict.pop(a__ ) hf_value_function.load_state_dict(a__ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(a__ , a__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
87
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __snake_case :Union[str, Any] = logging.get_logger(__name__) __snake_case :Optional[int] = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Optional[int] = '''van''' def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]=224 , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Any=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Optional[Any]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : Tuple=[64, 128, 320, 512] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE : Dict=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=1E-6 , __SCREAMING_SNAKE_CASE : Optional[Any]=1E-2 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , **__SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE) __a = image_size __a = num_channels __a = patch_sizes __a = strides __a = hidden_sizes __a = depths __a = mlp_ratios __a = hidden_act __a = initializer_range __a = layer_norm_eps __a = layer_scale_init_value __a = drop_path_rate __a = dropout_rate
49
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : int ) ->str: '''simple docstring''' a : Optional[Any] = Mock() a : Dict = conn, Mock() a : Union[str, Any] = iter([1, None] ) a : Optional[int] = lambda _lowercase : next(_lowercase ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=_lowercase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
105
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _lowercase: Optional[Any] = None _lowercase: Any = logging.get_logger(__name__) _lowercase: Any = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} _lowercase: str = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } _lowercase: int = { "google/rembert": 256, } _lowercase: Dict = "▁" class _lowercase ( A__ ): """simple docstring""" __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = RemBertTokenizer def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="[CLS]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="<unk>" , lowerCamelCase_="[SEP]" , lowerCamelCase_="<pad>" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , **lowerCamelCase_ , ): """simple docstring""" a = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = False if not self.vocab_file else True def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if not os.path.isdir(__snake_case ): logger.error("Vocabulary path ({}) should be a directory".format(__snake_case ) ) return a = os.path.join( __snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
353
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
71
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __snake_case : def __init__( self ,snake_case ,snake_case=13 ,snake_case=2 ,snake_case=24 ,snake_case=16 ,snake_case=True ,snake_case=True ,snake_case=32 ,snake_case=5 ,snake_case=4 ,snake_case=37 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=10 ,snake_case=0.02 ,snake_case=None ,snake_case=2 ,snake_case=2 ,): '''simple docstring''' lowercase : List[str] = parent lowercase : Tuple = batch_size lowercase : List[str] = patch_size lowercase : List[str] = max_length lowercase : Union[str, Any] = num_mel_bins lowercase : Any = is_training lowercase : str = use_labels lowercase : List[Any] = hidden_size lowercase : Any = num_hidden_layers lowercase : Any = num_attention_heads lowercase : Tuple = intermediate_size lowercase : Optional[int] = hidden_act lowercase : Optional[int] = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : Optional[Any] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : Any = scope lowercase : Any = frequency_stride lowercase : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase : Union[str, Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowercase : Optional[Any] = (self.max_length - self.patch_size) // self.time_stride + 1 lowercase : List[str] = frequency_out_dimension * time_out_dimension lowercase : List[Any] = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowercase : List[Any] = None if self.use_labels: lowercase : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : Tuple = self.get_config() return config, input_values, labels def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size ,max_length=self.max_length ,num_mel_bins=self.num_mel_bins ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,frequency_stride=self.frequency_stride ,time_stride=self.time_stride ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = ASTModel(config=snake_case ) model.to(snake_case ) model.eval() lowercase : List[str] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : List[Any] = config_and_inputs lowercase : Optional[int] = {"""input_values""": input_values} return config, inputs_dict @require_torch class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Union[str, Any]= ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _a : Any= ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) _a : Union[str, Any]= False _a : Tuple= False _a : int= False _a : Optional[Any]= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = ASTModelTester(self ) lowercase : Any = ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Union[str, Any] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : int = model_class(snake_case ) lowercase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : int = [*signature.parameters.keys()] lowercase : Union[str, Any] = ["""input_values"""] self.assertListEqual(arg_names[:1] ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = ASTModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _snake_case( ) -> Union[str, Any]: lowercase : Optional[int] = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) lowercase , lowercase : List[str] = torchaudio.load(__lowerCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class __snake_case ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.default_feature_extractor lowercase : int = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(snake_case ) lowercase : List[str] = self.default_feature_extractor lowercase , lowercase : int = prepare_audio() lowercase : Dict = audio.squeeze().numpy() lowercase : Union[str, Any] = feature_extractor(snake_case ,sampling_rate=snake_case ,return_tensors="""pt""" ).to(snake_case ) # forward pass with torch.no_grad(): lowercase : Union[str, Any] = model(**snake_case ) # verify the logits lowercase : List[Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape ,snake_case ) lowercase : str = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,snake_case ,atol=1e-4 ) )
20
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __UpperCamelCase : List[str] = logging.get_logger(__name__) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: a = WavaVecaForSequenceClassification.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) a = downstream_dict["""projector.weight"""] a = downstream_dict["""projector.bias"""] a = downstream_dict["""model.post_net.linear.weight"""] a = downstream_dict["""model.post_net.linear.bias"""] return model def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: a = WavaVecaForAudioFrameClassification.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) a = downstream_dict["""model.linear.weight"""] a = downstream_dict["""model.linear.bias"""] return model def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: a = WavaVecaForXVector.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) a = downstream_dict["""connector.weight"""] a = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] a = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] a = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] a = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] a = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] a = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] a = downstream_dict["""objective.W"""] return model @torch.no_grad() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: a = torch.load(__lowerCamelCase , map_location="""cpu""" ) a = checkpoint["""Downstream"""] a = WavaVecaConfig.from_pretrained(__lowerCamelCase ) a = WavaVecaFeatureExtractor.from_pretrained( __lowerCamelCase , return_attention_mask=__lowerCamelCase , do_normalize=__lowerCamelCase ) a = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): a = convert_classification(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): a = convert_diarization(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif arch.endswith("""ForXVector""" ): a = convert_xvector(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: a = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __UpperCamelCase : List[Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
228
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase_ = logging.getLogger(__name__) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' if os.path.exists(UpperCamelCase__ ): if os.path.exists(os.path.join(UpperCamelCase__ , 'config.json' ) ) and os.path.isfile( os.path.join(UpperCamelCase__ , 'config.json' ) ): os.remove(os.path.join(UpperCamelCase__ , 'config.json' ) ) if os.path.exists(os.path.join(UpperCamelCase__ , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(UpperCamelCase__ , 'pytorch_model.bin' ) ): os.remove(os.path.join(UpperCamelCase__ , 'pytorch_model.bin' ) ) else: os.makedirs(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : str=False ) -> List[Any]: '''simple docstring''' _snake_case = 2 if unlogit: _snake_case = torch.pow(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = p * torch.log(UpperCamelCase__ ) _snake_case = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] ) -> str: '''simple docstring''' logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(UpperCamelCase__ ) ) ) ) for row in range(len(UpperCamelCase__ ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Union[str, Any]=False ) -> Optional[Any]: '''simple docstring''' _snake_case , _snake_case = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case = torch.zeros(UpperCamelCase__ , UpperCamelCase__ ).to(args.device ) _snake_case = torch.zeros(UpperCamelCase__ , UpperCamelCase__ ).to(args.device ) if head_mask is None: _snake_case = torch.ones(UpperCamelCase__ , UpperCamelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=UpperCamelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case = None _snake_case = 0.0 _snake_case = 0.0 for step, inputs in enumerate(tqdm(UpperCamelCase__ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case = tuple(t.to(args.device ) for t in inputs ) ((_snake_case ) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case = model(UpperCamelCase__ , labels=UpperCamelCase__ , head_mask=UpperCamelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(UpperCamelCase__ ): _snake_case = entropy(attn.detach() , UpperCamelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(UpperCamelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case = 2 _snake_case = torch.pow(torch.pow(UpperCamelCase__ , UpperCamelCase__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: _snake_case = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(UpperCamelCase__ ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(UpperCamelCase__ ) logger.info('Head ranked by importance scores' ) _snake_case = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case = torch.arange( head_importance.numel() , device=args.device ) _snake_case = head_ranks.view_as(UpperCamelCase__ ) print_ad_tensor(UpperCamelCase__ ) return attn_entropy, head_importance, total_loss def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ) -> int: '''simple docstring''' _snake_case , _snake_case , _snake_case = compute_heads_importance(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ ) _snake_case = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , UpperCamelCase__ , original_score * args.masking_threshold ) _snake_case = torch.ones_like(UpperCamelCase__ ) _snake_case = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case = original_score while current_score >= original_score * args.masking_threshold: _snake_case = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case = float('Inf' ) _snake_case = head_importance.view(-1 ).sort()[1] if len(UpperCamelCase__ ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case = new_head_mask.view(-1 ) _snake_case = 0.0 _snake_case = new_head_mask.view_as(UpperCamelCase__ ) _snake_case = new_head_mask.clone().detach() print_ad_tensor(UpperCamelCase__ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case = compute_heads_importance( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ , head_mask=UpperCamelCase__ ) _snake_case = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , UpperCamelCase__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('Final head mask' ) print_ad_tensor(UpperCamelCase__ ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple ) -> int: '''simple docstring''' _snake_case = datetime.now() _snake_case , _snake_case , _snake_case = compute_heads_importance( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ , compute_importance=UpperCamelCase__ , head_mask=UpperCamelCase__ ) _snake_case = 1 / loss _snake_case = datetime.now() - before_time _snake_case = sum(p.numel() for p in model.parameters() ) _snake_case = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCamelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = [ v, ] assert sum(len(UpperCamelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(UpperCamelCase__ ) _snake_case = sum(p.numel() for p in model.parameters() ) _snake_case = datetime.now() _snake_case , _snake_case , _snake_case = compute_heads_importance( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ , compute_importance=UpperCamelCase__ , head_mask=UpperCamelCase__ , actually_pruned=UpperCamelCase__ , ) _snake_case = 1 / loss _snake_case = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , UpperCamelCase__ , UpperCamelCase__ , pruned_num_params / original_num_params * 100 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , UpperCamelCase__ , UpperCamelCase__ ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 ) save_model(UpperCamelCase__ , args.output_dir ) def lowerCamelCase__ ( ) -> Optional[Any]: '''simple docstring''' _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=UpperCamelCase__ , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=UpperCamelCase__ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=UpperCamelCase__ , type=UpperCamelCase__ , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=UpperCamelCase__ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=UpperCamelCase__ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=UpperCamelCase__ , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=UpperCamelCase__ , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=128 , type=UpperCamelCase__ , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=UpperCamelCase__ , help='Batch size.' ) parser.add_argument('--seed' , type=UpperCamelCase__ , default=42 ) parser.add_argument('--local_rank' , type=UpperCamelCase__ , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=UpperCamelCase__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=UpperCamelCase__ , default='' , help='Can be used for distant debugging.' ) _snake_case = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCamelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case = torch.device('cuda' , args.local_rank ) _snake_case = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case = nn.parallel.DistributedDataParallel( UpperCamelCase__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=UpperCamelCase__ ) elif args.n_gpu > 1: _snake_case = nn.DataParallel(UpperCamelCase__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) torch.save(UpperCamelCase__ , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , UpperCamelCase__ ) # Prepare dataset _snake_case = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case = (torch.from_numpy(UpperCamelCase__ ),) _snake_case = TensorDataset(*UpperCamelCase__ ) _snake_case = RandomSampler(UpperCamelCase__ ) _snake_case = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case = mask_heads(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) prune_heads(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
361
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase_ = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ UpperCAmelCase_ = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ UpperCAmelCase_ = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def lowerCAmelCase ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase_ , hypotheses=lowerCAmelCase_ , min_len=lowerCAmelCase_ , max_len=lowerCAmelCase_ ) }
295
0
"""simple docstring""" from heapq import heappop, heappush import numpy as np def A ( snake_case :np.ndarray , snake_case :tuple[int, int] , snake_case :tuple[int, int] , snake_case :bool , ) -> tuple[float | int, list[tuple[int, int]]]: __UpperCamelCase , __UpperCamelCase = grid.shape __UpperCamelCase = [-1, 1, 0, 0] __UpperCamelCase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __UpperCamelCase , __UpperCamelCase = [(0, source)], set() __UpperCamelCase = np.full((rows, cols) , np.inf ) __UpperCamelCase = 0 __UpperCamelCase = np.empty((rows, cols) , dtype=snake_case ) __UpperCamelCase = None while queue: ((__UpperCamelCase) , (__UpperCamelCase)) = heappop(snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __UpperCamelCase = [] while (x, y) != source: path.append((x, y) ) __UpperCamelCase , __UpperCamelCase = predecessors[x, y] path.append(snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case ) ): __UpperCamelCase , __UpperCamelCase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __UpperCamelCase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case , (dist + 1, (nx, ny)) ) __UpperCamelCase = dist + 1 __UpperCamelCase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class UpperCamelCase ( snake_case_ ): '''simple docstring''' lowercase : Tuple ="""realm""" def __init__( self , UpperCamelCase_=3_0522 , UpperCamelCase_=768 , UpperCamelCase_=128 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=8 , UpperCamelCase_=3072 , UpperCamelCase_="gelu_new" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=2 , UpperCamelCase_=0.02 , UpperCamelCase_=1E-12 , UpperCamelCase_=256 , UpperCamelCase_=10 , UpperCamelCase_=1E-3 , UpperCamelCase_=5 , UpperCamelCase_=320 , UpperCamelCase_=1335_3718 , UpperCamelCase_=5000 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) # Common config lowercase_ :Any = vocab_size lowercase_ :Union[str, Any] = max_position_embeddings lowercase_ :Optional[int] = hidden_size lowercase_ :Any = retriever_proj_size lowercase_ :Optional[Any] = num_hidden_layers lowercase_ :int = num_attention_heads lowercase_ :Optional[int] = num_candidates lowercase_ :Optional[int] = intermediate_size lowercase_ :Any = hidden_act lowercase_ :Union[str, Any] = hidden_dropout_prob lowercase_ :Dict = attention_probs_dropout_prob lowercase_ :List[Any] = initializer_range lowercase_ :Dict = type_vocab_size lowercase_ :int = layer_norm_eps # Reader config lowercase_ :Any = span_hidden_size lowercase_ :Optional[Any] = max_span_width lowercase_ :str = reader_layer_norm_eps lowercase_ :Tuple = reader_beam_size lowercase_ :str = reader_seq_len # Retrieval config lowercase_ :Optional[Any] = num_block_records lowercase_ :Tuple = searcher_beam_size
353
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase ( _a , _a , _a ) -> Tuple: '''simple docstring''' if gpta_config_file == "": lowercase_ :int = GPTaConfig() else: lowercase_ :Union[str, Any] = GPTaConfig.from_json_file(_a ) lowercase_ :List[str] = GPTaModel(_a ) # Load weights from numpy load_tf_weights_in_gpta(_a , _a , _a ) # Save pytorch-model lowercase_ :Dict = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowercase_ :int = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , _a ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
252
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE :str = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Optional[Any] = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :int = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :List[Any] = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :int = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class A_ : def __init__( self : str , snake_case_ : int , snake_case_ : Union[str, Any]=2 , snake_case_ : List[Any]=True , snake_case_ : str=False , snake_case_ : str=1_0 , snake_case_ : str=3 , snake_case_ : Dict=3_2 * 4 , snake_case_ : Any=3_2 * 6 , snake_case_ : Optional[Any]=4 , snake_case_ : Optional[int]=3_2 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = is_training _UpperCAmelCase = use_auxiliary_loss _UpperCAmelCase = num_queries _UpperCAmelCase = num_channels _UpperCAmelCase = min_size _UpperCAmelCase = max_size _UpperCAmelCase = num_labels _UpperCAmelCase = mask_feature_size def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case_ ) _UpperCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case_ ) _UpperCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case_ ) > 0.5 ).float() _UpperCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=snake_case_ ) > 0.5).long() _UpperCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self : List[Any] ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowercase ( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] ): _UpperCAmelCase = output.encoder_hidden_states _UpperCAmelCase = output.pixel_decoder_hidden_states _UpperCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , config.decoder_config.decoder_layers ) def lowercase ( self : Tuple , snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Optional[Any]=False ): with torch.no_grad(): _UpperCAmelCase = MaskFormerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) _UpperCAmelCase = model(snake_case_ , output_hidden_states=snake_case_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case_ , snake_case_ ) def lowercase ( self : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : str , snake_case_ : List[Any] ): _UpperCAmelCase = MaskFormerForInstanceSegmentation(config=snake_case_ ) model.to(snake_case_ ) model.eval() def comm_check_on_output(snake_case_ : int ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _UpperCAmelCase = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) _UpperCAmelCase = model(snake_case_ ) comm_check_on_output(snake_case_ ) _UpperCAmelCase = model( pixel_values=snake_case_ , pixel_mask=snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) comm_check_on_output(snake_case_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : Dict = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () _lowerCamelCase : Tuple = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Dict = False _lowerCamelCase : Any = False _lowerCamelCase : List[Any] = False def lowercase ( self : Optional[int] ): _UpperCAmelCase = MaskFormerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowercase ( self : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def lowercase ( self : int ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*snake_case_ ) @unittest.skip(reason="MaskFormer does not use inputs_embeds" ) def lowercase ( self : Any ): pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" ) def lowercase ( self : List[str] ): pass @unittest.skip(reason="MaskFormer is not a generative model" ) def lowercase ( self : List[str] ): pass @unittest.skip(reason="MaskFormer does not use token embeddings" ) def lowercase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowercase ( self : Any ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase ( self : Union[str, Any] ): pass def lowercase ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) @slow def lowercase ( self : Optional[int] ): for model_name in ["facebook/maskformer-swin-small-coco"]: _UpperCAmelCase = MaskFormerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = (self.model_tester.min_size,) * 2 _UpperCAmelCase = { "pixel_values": torch.randn((2, 3, *size) , device=snake_case_ ), "mask_labels": torch.randn((2, 1_0, *size) , device=snake_case_ ), "class_labels": torch.zeros(2 , 1_0 , device=snake_case_ ).long(), } _UpperCAmelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(snake_case_ ) _UpperCAmelCase = model(**snake_case_ ) self.assertTrue(outputs.loss is not None ) def lowercase ( self : Dict ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ).to(snake_case_ ) _UpperCAmelCase = model(**snake_case_ , output_attentions=snake_case_ ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self : int ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.train() _UpperCAmelCase = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ).loss loss.backward() def lowercase ( self : int ): # only MaskFormerForInstanceSegmentation has the loss _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.train() _UpperCAmelCase = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) _UpperCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _UpperCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __SCREAMING_SNAKE_CASE :Dict = 1e-4 def UpperCAmelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class A_ ( unittest.TestCase ): @cached_property def lowercase ( self : Dict ): return ( MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" ) if is_vision_available() else None ) def lowercase ( self : List[Any] ): _UpperCAmelCase = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(snake_case_ ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(snake_case_ , return_tensors="pt" ).to(snake_case_ ) _UpperCAmelCase = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) _UpperCAmelCase = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) _UpperCAmelCase = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) _UpperCAmelCase = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowercase ( self : Tuple ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(snake_case_ ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(snake_case_ , return_tensors="pt" ).to(snake_case_ ) _UpperCAmelCase = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) # masks_queries_logits _UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCAmelCase = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] _UpperCAmelCase = torch.tensor(snake_case_ ).to(snake_case_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) # class_queries_logits _UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase = torch.tensor( [ [1.6_512e00, -5.2_572e00, -3.3_519e00], [3.6_169e-02, -5.9_025e00, -2.9_313e00], [1.0_766e-04, -7.7_630e00, -5.1_263e00], ] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowercase ( self : int ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" ) .to(snake_case_ ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(snake_case_ , return_tensors="pt" ).to(snake_case_ ) _UpperCAmelCase = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) # masks_queries_logits _UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCAmelCase = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]] _UpperCAmelCase = torch.tensor(snake_case_ ).to(snake_case_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) # class_queries_logits _UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowercase ( self : List[Any] ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(snake_case_ ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors="pt" , ) _UpperCAmelCase = inputs["pixel_values"].to(snake_case_ ) _UpperCAmelCase = [el.to(snake_case_ ) for el in inputs["mask_labels"]] _UpperCAmelCase = [el.to(snake_case_ ) for el in inputs["class_labels"]] with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) self.assertTrue(outputs.loss is not None )
22
1
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract snake_case__ : Optional[Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : int , _snake_case : List[Any] , _snake_case : List[Any] ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _snake_case ( _snake_case : np.ndarray , _snake_case : Optional[str] , _snake_case : Optional[str] ): lowerCAmelCase : str = to_pil_image(_snake_case ) lowerCAmelCase : Any = pil_image.size lowerCAmelCase : Optional[Any] = pytesseract.image_to_data(_snake_case , lang=_snake_case , output_type='''dict''' , config=_snake_case ) lowerCAmelCase : Optional[Any] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowerCAmelCase : int = [idx for idx, word in enumerate(_snake_case ) if not word.strip()] lowerCAmelCase : int = [word for idx, word in enumerate(_snake_case ) if idx not in irrelevant_indices] lowerCAmelCase : Any = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] lowerCAmelCase : List[str] = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] lowerCAmelCase : str = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] lowerCAmelCase : List[str] = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase : List[str] = [] for x, y, w, h in zip(_snake_case , _snake_case , _snake_case , _snake_case ): lowerCAmelCase : Tuple = [x, y, x + w, y + h] actual_boxes.append(_snake_case ) # finally, normalize the bounding boxes lowerCAmelCase : List[Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_snake_case , _snake_case , _snake_case ) ) assert len(_snake_case ) == len(_snake_case ), "Not as many words as there are bounding boxes" return words, normalized_boxes class snake_case_( a__ ): __UpperCamelCase = ['''pixel_values'''] def __init__( self : Union[str, Any] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , UpperCamelCase_ : float = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[float, Iterable[float]] = None , UpperCamelCase_ : Union[float, Iterable[float]] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[str] = "" , **UpperCamelCase_ : int , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = do_resize lowerCAmelCase : str = size lowerCAmelCase : List[str] = resample lowerCAmelCase : Optional[int] = do_rescale lowerCAmelCase : int = rescale_value lowerCAmelCase : Optional[Any] = do_normalize lowerCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase : Any = apply_ocr lowerCAmelCase : Tuple = ocr_lang lowerCAmelCase : Union[str, Any] = tesseract_config def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : str , ): lowerCAmelCase : List[str] = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase : int = (size['''height'''], size['''width''']) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[int, float] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Tuple , ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, Iterable[float]] , UpperCamelCase_ : Union[float, Iterable[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Any , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Union[float, Iterable[float]] = None , UpperCamelCase_ : Union[float, Iterable[float]] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : str = size if size is not None else self.size lowerCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase_ ) lowerCAmelCase : Any = resample if resample is not None else self.resample lowerCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : int = image_std if image_std is not None else self.image_std lowerCAmelCase : int = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase : Optional[int] = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase : Optional[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase : List[Any] = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowerCAmelCase : Optional[Any] = [to_numpy_array(UpperCamelCase_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowerCAmelCase : Optional[int] = [] lowerCAmelCase : str = [] for image in images: lowerCAmelCase : Union[str, Any] = apply_tesseract(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) words_batch.append(UpperCamelCase_ ) boxes_batch.append(UpperCamelCase_ ) if do_resize: lowerCAmelCase : int = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_rescale: lowerCAmelCase : Dict = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: lowerCAmelCase : int = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] lowerCAmelCase : str = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] lowerCAmelCase : Optional[Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCamelCase_ ) if apply_ocr: lowerCAmelCase : Tuple = words_batch lowerCAmelCase : Dict = boxes_batch return data
359
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
0
"""simple docstring""" def A_ ( ): '''simple docstring''' snake_case_ :int = [] snake_case_ :int = 1 while len(_lowercase ) < 1e6: constant.append(str(_lowercase ) ) i += 1 snake_case_ :str = """""".join(_lowercase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
66
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = TransfoXLTokenizer _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def lowercase_ ( self : Optional[int] ) ->Any: super().setUp() snake_case__ : Tuple = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] snake_case__ : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self : Union[str, Any], **_snake_case : List[Any] ) ->Dict: snake_case__ : str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname, **_snake_case ) def lowercase_ ( self : Optional[Any], _snake_case : str ) ->Dict: snake_case__ : List[Any] = '<unk> UNwanted , running' snake_case__ : List[Any] = '<unk> unwanted, running' return input_text, output_text def lowercase_ ( self : List[Any] ) ->Tuple: snake_case__ : Dict = TransfoXLTokenizer(vocab_file=self.vocab_file, lower_case=_snake_case ) snake_case__ : str = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(_snake_case, ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ), [0, 4, 8, 7] ) def lowercase_ ( self : List[str] ) ->List[Any]: snake_case__ : str = TransfoXLTokenizer(lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ), ['hello', '!', 'how', 'are', 'you', '?'] ) def lowercase_ ( self : Optional[int] ) ->Optional[Any]: snake_case__ : Optional[int] = TransfoXLTokenizer(lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ), ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowercase_ ( self : Optional[int] ) ->Union[str, Any]: snake_case__ : List[Any] = TransfoXLTokenizer(lower_case=_snake_case ) snake_case__ : Dict = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' snake_case__ : List[Any] = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(_snake_case ), _snake_case ) self.assertEqual(tokenizer.convert_tokens_to_string(_snake_case ), _snake_case ) def lowercase_ ( self : Dict ) ->Any: snake_case__ : Dict = self.get_tokenizer() snake_case__ : Optional[Any] = len(_snake_case ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1', 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_snake_case ), original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ), [1] ) self.assertEqual(tokenizer.decode([1] ), 'new1' )
277
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : int = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __UpperCamelCase ( lowercase__ ): A_ = '''wavlm''' def __init__( self , __a=32 , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1E-5 , __a="group" , __a="gelu" , __a=(512, 512, 512, 512, 512, 512, 512) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=128 , __a=16 , __a=320 , __a=800 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=320 , __a=2 , __a=0.1 , __a=100 , __a=256 , __a=256 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=256 , __a=(512, 512, 512, 512, 1500) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=512 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ): '''simple docstring''' super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) __a : Any = hidden_size __a : Union[str, Any] = feat_extract_norm __a : List[str] = feat_extract_activation __a : Optional[int] = list(_a ) __a : str = list(_a ) __a : Dict = list(_a ) __a : int = conv_bias __a : Dict = num_buckets __a : Optional[Any] = max_bucket_distance __a : List[str] = num_conv_pos_embeddings __a : int = num_conv_pos_embedding_groups __a : Union[str, Any] = len(self.conv_dim ) __a : Optional[int] = num_hidden_layers __a : Any = intermediate_size __a : Any = hidden_act __a : Optional[int] = num_attention_heads __a : str = hidden_dropout __a : Tuple = attention_dropout __a : Union[str, Any] = activation_dropout __a : str = feat_proj_dropout __a : str = final_dropout __a : List[str] = layerdrop __a : List[str] = layer_norm_eps __a : str = initializer_range __a : str = num_ctc_classes __a : Union[str, Any] = vocab_size __a : Dict = do_stable_layer_norm __a : Optional[int] = use_weighted_layer_sum __a : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a : List[str] = apply_spec_augment __a : Tuple = mask_time_prob __a : Optional[Any] = mask_time_length __a : List[str] = mask_time_min_masks __a : Tuple = mask_feature_prob __a : List[Any] = mask_feature_length # parameters for pretraining with codevector quantized representations __a : List[Any] = num_codevectors_per_group __a : Any = num_codevector_groups __a : Any = contrastive_logits_temperature __a : Union[str, Any] = num_negatives __a : Tuple = codevector_dim __a : Tuple = proj_codevector_dim __a : List[Any] = diversity_loss_weight # ctc loss __a : int = ctc_loss_reduction __a : List[Any] = ctc_zero_infinity # adapter __a : Optional[Any] = add_adapter __a : int = adapter_kernel_size __a : List[Any] = adapter_stride __a : Tuple = num_adapter_layers __a : Dict = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __a : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __a : Optional[int] = list(_a ) __a : Dict = list(_a ) __a : str = list(_a ) __a : List[str] = xvector_output_dim @property def __UpperCAmelCase ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
355
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __lowercase : str = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "dhaka" , _SCREAMING_SNAKE_CASE : int = 5 ): __a : Optional[Any] = min(_SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse! __a : Optional[Any] = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } __a : Tuple = requests.get('https://www.google.com/search' , params=_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ) __a : Dict = BeautifulSoup(html.text , 'html.parser' ) __a : List[str] = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) __a : Optional[Any] = json.dumps(_SCREAMING_SNAKE_CASE ) __a : List[str] = json.loads(_SCREAMING_SNAKE_CASE ) __a : List[Any] = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , _SCREAMING_SNAKE_CASE , ) if not matched_google_image_data: return 0 __a : Tuple = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(_SCREAMING_SNAKE_CASE ) , ) __a : Optional[Any] = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , _SCREAMING_SNAKE_CASE , ) for index, fixed_full_res_image in enumerate(_SCREAMING_SNAKE_CASE ): if index >= max_images: return index __a : List[str] = bytes(_SCREAMING_SNAKE_CASE , 'ascii' ).decode( 'unicode-escape' ) __a : Tuple = bytes(_SCREAMING_SNAKE_CASE , 'ascii' ).decode( 'unicode-escape' ) __a : Dict = urllib.request.build_opener() __a : Union[str, Any] = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(_SCREAMING_SNAKE_CASE ) __a : List[Any] = F"""query_{query.replace(" " , "_" )}""" if not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) urllib.request.urlretrieve( # noqa: S310 _SCREAMING_SNAKE_CASE , F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: __lowercase : Optional[int] = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
294
0
import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class A__ ( UpperCamelCase__ ): _UpperCAmelCase :Any = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) _UpperCAmelCase :int = """CIDAS/clipseg-rd64-refined""" _UpperCAmelCase :List[Any] = """image_segmenter""" _UpperCAmelCase :str = CLIPSegForImageSegmentation _UpperCAmelCase :List[Any] = ["""image""", """text"""] _UpperCAmelCase :int = ["""image"""] def __init__( self , *A_ , **A_ ): '''simple docstring''' requires_backends(self , ["vision"] ) super().__init__(*__a , **__a ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=__a , return_tensors="pt" ) def __UpperCamelCase( self , A_ ): '''simple docstring''' with torch.no_grad(): UpperCamelCase : str = self.model(**__a ).logits return logits def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = outputs.cpu().detach().numpy() UpperCamelCase : int = 0 UpperCamelCase : str = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
52
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE_: Optional[int] =Lock() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase_ = min(snake_case_ , snake_case_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase_ = max(snake_case_ , snake_case_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr for i in range(1 , len(snake_case_ ) - 1 ): UpperCAmelCase_ = Pipe() UpperCAmelCase_ = Pipe() process_array_.append( Process( target=snake_case_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase_ = temp_rs UpperCAmelCase_ = temp_rr process_array_.append( Process( target=snake_case_ , args=( len(snake_case_ ) - 1, arr[len(snake_case_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case_ ) ): UpperCAmelCase_ = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*snake_case_ ) UpperCAmelCase_ = odd_even_transposition(snake_case_ ) print("Sorted List\n" ) print(*snake_case_ ) if __name__ == "__main__": main()
1
0
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : Tuple = {'vocab_file': 'vocab.txt'} snake_case__ : str = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } snake_case__ : str = { 'facebook/esm2_t6_8M_UR50D': 1024, 'facebook/esm2_t12_35M_UR50D': 1024, } def _a ( lowerCamelCase: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(lowerCamelCase , '''r''' ) as f: __A = f.read().splitlines() return [l.strip() for l in lines] class A_ ( _lowerCamelCase ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] def __init__(self :List[str] , _UpperCamelCase :str , _UpperCamelCase :Any="<unk>" , _UpperCamelCase :Tuple="<cls>" , _UpperCamelCase :List[str]="<pad>" , _UpperCamelCase :str="<mask>" , _UpperCamelCase :Tuple="<eos>" , **_UpperCamelCase :Optional[int] , )-> Optional[int]: super().__init__(**_UpperCamelCase ) __A = load_vocab_file(_UpperCamelCase ) __A = dict(enumerate(self.all_tokens ) ) __A = {tok: ind for ind, tok in enumerate(self.all_tokens )} __A = unk_token __A = cls_token __A = pad_token __A = mask_token __A = eos_token __A = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCAmelCase (self :str , _UpperCamelCase :int )-> str: return self._id_to_token.get(_UpperCamelCase , self.unk_token ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :str )-> int: return self._token_to_id.get(_UpperCamelCase , self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase (self :str , _UpperCamelCase :str , **_UpperCamelCase :Union[str, Any] )-> str: return text.split() def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :Dict=False )-> Dict: return len(self._id_to_token ) def _lowerCAmelCase (self :Union[str, Any] )-> Optional[Any]: return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCAmelCase (self :List[str] , _UpperCamelCase :str )-> int: return self._token_to_id.get(_UpperCamelCase , self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :int )-> str: return self._id_to_token.get(_UpperCamelCase , self.unk_token ) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :List[int] , _UpperCamelCase :Optional[List[int]] = None )-> List[int]: __A = [self.cls_token_id] __A = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List , _UpperCamelCase :Optional[List] = None , _UpperCamelCase :bool = False )-> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] __A = [1] + ([0] * len(_UpperCamelCase )) + [1] if token_ids_a is not None: mask += [0] * len(_UpperCamelCase ) + [1] return mask def _lowerCAmelCase (self :Dict , _UpperCamelCase :List[str] , _UpperCamelCase :List[str] )-> Union[str, Any]: __A = os.path.join(_UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(_UpperCamelCase , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCAmelCase (self :Optional[Any] )-> int: return self.get_vocab_size(with_added_tokens=_UpperCamelCase ) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :Union[List[str], List[AddedToken]] , _UpperCamelCase :bool = False )-> int: return super()._add_tokens(_UpperCamelCase , special_tokens=_UpperCamelCase )
250
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification snake_case__ : Dict = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co snake_case__ : Any = 'main' # Default branch name snake_case__ : Union[str, Any] = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) snake_case__ : Optional[int] = 'aaaaaaa' # This commit does not exist, so we should 404. snake_case__ : int = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes snake_case__ : Any = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def _a ( ) -> Tuple: '''simple docstring''' print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def _a ( ) -> Optional[int]: '''simple docstring''' print('''Bonjour!''' ) yield print('''Au revoir!''' ) class A_ ( unittest.TestCase ): def _lowerCAmelCase (self :Any )-> Optional[Any]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class A_ ( unittest.TestCase ): @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :str , _UpperCamelCase :str )-> Optional[int]: with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[Any] )-> Union[str, Any]: with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :int , _UpperCamelCase :Union[str, Any] )-> int: with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def _lowerCAmelCase (self :int )-> str: self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) @require_tf def _lowerCAmelCase (self :Any )-> str: self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) @require_flax def _lowerCAmelCase (self :Optional[int] )-> Dict: # Flax models don't have labels self.assertEqual(find_labels(_UpperCamelCase ) , [] ) self.assertEqual(find_labels(_UpperCamelCase ) , [] ) self.assertEqual(find_labels(_UpperCamelCase ) , [] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , [] )
250
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class A__ ( metaclass=_lowerCamelCase): A_ : Optional[int] = ['keras_nlp'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): requires_backends(self , ['keras_nlp'] )
86
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = CodeGenTokenizer lowercase__ = CodeGenTokenizerFast lowercase__ = True lowercase__ = {"add_prefix_space": True} lowercase__ = False def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _snake_case : Tuple = dict(zip(a_, range(len(a_ ) ) ) ) _snake_case : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _snake_case : List[Any] = {"""unk_token""": """<unk>"""} _snake_case : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) _snake_case : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) with open(self.merges_file, """w""", encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a_ ) ) def UpperCamelCase_ ( self: Any, **a_: int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Any, **a_: str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: Dict ): '''simple docstring''' _snake_case : Union[str, Any] = """lower newer""" _snake_case : Tuple = """lower newer""" return input_text, output_text def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Union[str, Any] = CodeGenTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) _snake_case : Optional[Any] = """lower newer""" _snake_case : Optional[int] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _snake_case : int = tokenizer.tokenize(a_, add_prefix_space=a_ ) self.assertListEqual(a_, a_ ) _snake_case : str = tokens + [tokenizer.unk_token] _snake_case : Optional[int] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : int = self.get_tokenizer() _snake_case : int = self.get_rust_tokenizer(add_prefix_space=a_ ) _snake_case : Dict = """lower newer""" # Testing tokenization _snake_case : Dict = tokenizer.tokenize(a_, add_prefix_space=a_ ) _snake_case : List[str] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Testing conversion to ids without special tokens _snake_case : Optional[Any] = tokenizer.encode(a_, add_special_tokens=a_, add_prefix_space=a_ ) _snake_case : Tuple = rust_tokenizer.encode(a_, add_special_tokens=a_ ) self.assertListEqual(a_, a_ ) # Testing conversion to ids with special tokens _snake_case : Tuple = self.get_rust_tokenizer(add_prefix_space=a_ ) _snake_case : int = tokenizer.encode(a_, add_prefix_space=a_ ) _snake_case : Optional[Any] = rust_tokenizer.encode(a_ ) self.assertListEqual(a_, a_ ) # Testing the unknown token _snake_case : Tuple = tokens + [rust_tokenizer.unk_token] _snake_case : List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a_ ), a_ ) def UpperCamelCase_ ( self: Dict, *a_: Dict, **a_: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: int, a_: List[Any]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) # Simple input _snake_case : Any = """This is a simple input""" _snake_case : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _snake_case : Optional[int] = ("""This is a simple input""", """This is a pair""") _snake_case : Optional[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a_, tokenizer_r.encode, a_, max_length=a_, padding="""max_length""" ) # Simple input self.assertRaises(a_, tokenizer_r.encode_plus, a_, max_length=a_, padding="""max_length""" ) # Simple input self.assertRaises( a_, tokenizer_r.batch_encode_plus, a_, max_length=a_, padding="""max_length""", ) # Pair input self.assertRaises(a_, tokenizer_r.encode, a_, max_length=a_, padding="""max_length""" ) # Pair input self.assertRaises(a_, tokenizer_r.encode_plus, a_, max_length=a_, padding="""max_length""" ) # Pair input self.assertRaises( a_, tokenizer_r.batch_encode_plus, a_, max_length=a_, padding="""max_length""", ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname, pad_token="""<pad>""" ) # Simple input _snake_case : List[Any] = """This is a simple input""" _snake_case : int = ["""This is a simple input looooooooong""", """This is a simple input"""] _snake_case : Any = ("""This is a simple input""", """This is a pair""") _snake_case : str = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _snake_case : str = tokenizer.pad_token_id _snake_case : Optional[int] = tokenizer(a_, padding="""max_length""", max_length=30, return_tensors="""np""" ) _snake_case : Dict = tokenizer(a_, padding=a_, truncate=a_, return_tensors="""np""" ) _snake_case : Tuple = tokenizer(*a_, padding="""max_length""", max_length=60, return_tensors="""np""" ) _snake_case : Optional[Any] = tokenizer(a_, padding=a_, truncate=a_, return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1], 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1], 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1], 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1], 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = """$$$""" _snake_case : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname, bos_token=a_, add_bos_token=a_ ) _snake_case : str = """This is a simple input""" _snake_case : int = ["""This is a simple input 1""", """This is a simple input 2"""] _snake_case : Union[str, Any] = tokenizer.bos_token_id _snake_case : Tuple = tokenizer(a_ ) _snake_case : Optional[Any] = tokenizer(a_ ) self.assertEqual(out_s.input_ids[0], a_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _snake_case : Optional[int] = tokenizer.decode(out_s.input_ids ) _snake_case : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0], a_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[int] = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _snake_case : Dict = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _snake_case : Union[str, Any] = """\nif len_a > len_b: result = a\nelse: result = b""" _snake_case : Optional[Any] = tokenizer.encode(a_ ) _snake_case : Dict = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _snake_case : Optional[Any] = tokenizer.decode(a_, truncate_before_pattern=a_ ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass
64
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "spiece.model"} _lowerCAmelCase = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } _lowerCAmelCase = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } _lowerCAmelCase = "▁" class _SCREAMING_SNAKE_CASE ( __lowercase ): __SCREAMING_SNAKE_CASE :Dict = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , a__ : Optional[int] , a__ : Tuple=True , a__ : Any=True , a__ : List[Any]=False , a__ : List[str]="[CLS]" , a__ : List[Any]="[SEP]" , a__ : List[str]="<unk>" , a__ : Dict="[SEP]" , a__ : Tuple="<pad>" , a__ : str="[CLS]" , a__ : List[str]="[MASK]" , a__ : Optional[Dict[str, Any]] = None , **a__ : Tuple , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __magic_name__ = ( AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ , normalized=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token ) __magic_name__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) __magic_name__ = do_lower_case __magic_name__ = remove_space __magic_name__ = keep_accents __magic_name__ = vocab_file __magic_name__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @property def snake_case__ ( self : Optional[Any] ): return len(self.sp_model ) def snake_case__ ( self : List[Any] ): __magic_name__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): __magic_name__ = self.__dict__.copy() __magic_name__ = None return state def __setstate__( self : Any , a__ : Optional[int] ): __magic_name__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __magic_name__ = {} __magic_name__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self : Optional[Any] , a__ : Union[str, Any] ): if self.remove_space: __magic_name__ = ''' '''.join(inputs.strip().split() ) else: __magic_name__ = inputs __magic_name__ = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __magic_name__ = unicodedata.normalize('''NFKD''' , snake_case_ ) __magic_name__ = ''''''.join([c for c in outputs if not unicodedata.combining(snake_case_ )] ) if self.do_lower_case: __magic_name__ = outputs.lower() return outputs def snake_case__ ( self : Optional[int] , a__ : str ): __magic_name__ = self.preprocess_text(snake_case_ ) __magic_name__ = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) __magic_name__ = [] for piece in pieces: if len(snake_case_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __magic_name__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case_ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __magic_name__ = cur_pieces[1:] else: __magic_name__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case_ ) else: new_pieces.append(snake_case_ ) return new_pieces def snake_case__ ( self : List[Any] , a__ : Dict ): return self.sp_model.PieceToId(snake_case_ ) def snake_case__ ( self : int , a__ : Tuple ): return self.sp_model.IdToPiece(snake_case_ ) def snake_case__ ( self : Union[str, Any] , a__ : Union[str, Any] ): __magic_name__ = [] __magic_name__ = '''''' __magic_name__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token __magic_name__ = True __magic_name__ = [] else: current_sub_tokens.append(snake_case_ ) __magic_name__ = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def snake_case__ ( self : List[Any] , a__ : List[int] , a__ : Optional[List[int]] = None ): __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self : str , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is not None: return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1] def snake_case__ ( self : Union[str, Any] , a__ : List[int] , a__ : Optional[List[int]] = None ): __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : str , a__ : str , a__ : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , '''wb''' ) as fi: __magic_name__ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
352
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def UpperCamelCase ( a , a , a , a=1024 ) -> Union[str, Any]: '''simple docstring''' __magic_name__ , __magic_name__ = [], [] __magic_name__ = list(zip(a , a ) ) __magic_name__ , __magic_name__ = sorted_examples[0] def is_too_big(a ): return tok(a , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __magic_name__ = new_src + ''' ''' + src __magic_name__ = new_tgt + ''' ''' + tgt if is_too_big(a ) or is_too_big(a ): # cant fit, finalize example finished_src.append(a ) finished_tgt.append(a ) __magic_name__ , __magic_name__ = src, tgt else: # can fit, keep adding __magic_name__ , __magic_name__ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(a ) finished_tgt.append(a ) return finished_src, finished_tgt def UpperCamelCase ( a , a , a , a ) -> Any: '''simple docstring''' __magic_name__ = Path(a ) save_path.mkdir(exist_ok=a ) for split in ["train"]: __magic_name__ , __magic_name__ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' __magic_name__ = [x.rstrip() for x in Path(a ).open().readlines()] __magic_name__ = [x.rstrip() for x in Path(a ).open().readlines()] __magic_name__ , __magic_name__ = pack_examples(a , a , a , a ) print(F'''packed {split} split from {len(a )} examples -> {len(a )}.''' ) Path(save_path / F'''{split}.source''' ).open('''w''' ).write('''\n'''.join(a ) ) Path(save_path / F'''{split}.target''' ).open('''w''' ).write('''\n'''.join(a ) ) for split in ["val", "test"]: __magic_name__ , __magic_name__ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(a , save_path / F'''{split}.source''' ) shutil.copyfile(a , save_path / F'''{split}.target''' ) def UpperCamelCase ( ) -> List[str]: '''simple docstring''' __magic_name__ = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=a , default=128 ) parser.add_argument('''--data_dir''' , type=a ) parser.add_argument('''--save_path''' , type=a ) __magic_name__ = parser.parse_args() __magic_name__ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(a , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
98
0
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : List[str] ): snake_case_ : Optional[Any] = 0 @slow def _snake_case ( self : int ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): snake_case_ : List[Any] = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(snake_case__ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): snake_case_ : List[Any] = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(snake_case__ ) , 0 ) def _snake_case ( self : Optional[int] ): snake_case_ : str = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _snake_case ( self : Optional[int] ): snake_case_ : int = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def _snake_case ( self : List[Any] ): snake_case_ : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) # Check that tokenizer_type ≠ model_type snake_case_ : Dict = AutoTokenizer.from_pretrained(snake_case__ , config=snake_case__ ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _snake_case ( self : str ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(snake_case__ , '''vocab.txt''' ) ) snake_case_ : Optional[int] = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type='''bert''' , use_fast=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(snake_case__ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(snake_case__ , '''merges.txt''' ) ) snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type='''gpt2''' , use_fast=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @require_tokenizers def _snake_case ( self : Tuple ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(snake_case__ , '''vocab.txt''' ) ) snake_case_ : int = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type='''bert''' ) self.assertIsInstance(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(snake_case__ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(snake_case__ , '''merges.txt''' ) ) snake_case_ : int = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type='''gpt2''' ) self.assertIsInstance(snake_case__ , snake_case__ ) def _snake_case ( self : int ): with pytest.raises(snake_case__ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def _snake_case ( self : Dict ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: snake_case_ : Union[str, Any] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) if isinstance(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , snake_case__ ) else: self.assertEqual(tokenizer.do_lower_case , snake_case__ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def _snake_case ( self : int ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( snake_case__ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): snake_case_ : Tuple = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def _snake_case ( self : Optional[int] ): snake_case_ : Any = TOKENIZER_MAPPING.values() snake_case_ : Union[str, Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(snake_case__ ) @require_tokenizers def _snake_case ( self : List[str] ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=snake_case__ ) , snake_case__ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , snake_case__ ) @require_tokenizers def _snake_case ( self : Optional[int] ): snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=snake_case__ ) snake_case_ : Dict = '''Hello, world. How are you?''' snake_case_ : int = tokenizer.tokenize(snake_case__ ) self.assertEqual('''[UNK]''' , tokens[0] ) snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=snake_case__ ) snake_case_ : str = tokenizer.tokenize(snake_case__ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def _snake_case ( self : Dict ): snake_case_ : str = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(snake_case__ ) , snake_case__ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def _snake_case ( self : Union[str, Any] ): snake_case_ : str = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) snake_case_ : Optional[int] = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def _snake_case ( self : Any ): snake_case_ : Tuple = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(snake_case__ , snake_case__ ) def _snake_case ( self : Tuple ): snake_case_ : str = get_tokenizer_config('''bert-base-cased''' ) snake_case_ : Any = config.pop('''_commit_hash''' , snake_case__ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(snake_case__ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. snake_case_ : Dict = get_tokenizer_config(snake_case__ ) self.assertDictEqual(snake_case__ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. snake_case_ : List[str] = AutoTokenizer.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) snake_case_ : Dict = get_tokenizer_config(snake_case__ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def _snake_case ( self : Optional[int] ): try: AutoConfig.register('''custom''' , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) snake_case_ : Tuple = CustomTokenizer.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) snake_case_ : str = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def _snake_case ( self : Dict ): try: AutoConfig.register('''custom''' , snake_case__ ) # Can register in two steps AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( snake_case__ , slow_tokenizer_class=snake_case__ , fast_tokenizer_class=snake_case__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : int = BertTokenizerFast.from_pretrained(snake_case__ ) bert_tokenizer.save_pretrained(snake_case__ ) snake_case_ : Dict = CustomTokenizerFast.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) snake_case_ : Tuple = AutoTokenizer.from_pretrained(snake_case__ , use_fast=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _snake_case ( self : List[str] ): with self.assertRaises(snake_case__ ): snake_case_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): snake_case_ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=snake_case__ ) snake_case_ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=snake_case__ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) snake_case_ : Optional[int] = AutoTokenizer.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version snake_case_ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ ) snake_case_ : int = AutoTokenizer.from_pretrained(snake_case__ , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def _snake_case ( self : int ): class _UpperCAmelCase ( a_): _lowerCAmelCase : str = False class _UpperCAmelCase ( a_): _lowerCAmelCase : List[Any] = NewTokenizer _lowerCAmelCase : List[Any] = False try: AutoConfig.register('''custom''' , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ ) # If remote code is not set, the default is to use local snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. snake_case_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) snake_case_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub snake_case_ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _snake_case ( self : Tuple ): snake_case_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=snake_case__ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=snake_case__ , use_fast=snake_case__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def _snake_case ( self : int ): with self.assertRaisesRegex( snake_case__ , '''bert-base is not a local folder and is not a valid model identifier''' ): snake_case_ : List[Any] = AutoTokenizer.from_pretrained('''bert-base''' ) def _snake_case ( self : int ): with self.assertRaisesRegex( snake_case__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(snake_case__ , revision='''aaaaaa''' ) def _snake_case ( self : List[str] ): snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: snake_case_ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
264
def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = len(_lowerCAmelCase) UpperCamelCase_ = len(matrix[0]) UpperCamelCase_ = min(_lowerCAmelCase , _lowerCAmelCase) for row in range(_lowerCAmelCase): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _lowerCAmelCase): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(_lowerCAmelCase , _lowerCAmelCase): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , _lowerCAmelCase): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(_lowerCAmelCase): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
128
0
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def UpperCamelCase_( snake_case : Any , snake_case : Union[str, Any]="shi-labs/oneformer_demo" ): '''simple docstring''' with open(hf_hub_download(snake_case , snake_case , repo_type="dataset" ) , "r" ) as f: snake_case_ = json.load(snake_case ) snake_case_ = {} snake_case_ = [] snake_case_ = [] for key, info in class_info.items(): snake_case_ = info['name'] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(snake_case ) ) snake_case_ = thing_ids snake_case_ = class_names return metadata class _snake_case ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=30 , a__=400 , a__=None , a__=True , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , a__=10 , a__=False , a__=255 , a__="shi-labs/oneformer_demo" , a__="ade20k_panoptic.json" , a__=10 , ) -> Tuple: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = {'shortest_edge': 32, 'longest_edge': 1_333} if size is None else size snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std snake_case_ = class_info_file snake_case_ = prepare_metadata(a__ , a__ ) snake_case_ = num_text snake_case_ = repo_path # for the post_process_functions snake_case_ = 2 snake_case_ = 10 snake_case_ = 10 snake_case_ = 3 snake_case_ = 4 snake_case_ = num_labels snake_case_ = do_reduce_labels snake_case_ = ignore_index def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowerCAmelCase__ ( self , a__ , a__=False ) -> int: '''simple docstring''' if not batched: snake_case_ = image_inputs[0] if isinstance(a__ , Image.Image ): snake_case_ = image.size else: snake_case_ = image.shape[1], image.shape[2] if w < h: snake_case_ = int(self.size["shortest_edge"] * h / w ) snake_case_ = self.size['shortest_edge'] elif w > h: snake_case_ = self.size['shortest_edge'] snake_case_ = int(self.size["shortest_edge"] * w / h ) else: snake_case_ = self.size['shortest_edge'] snake_case_ = self.size['shortest_edge'] else: snake_case_ = [] for image in image_inputs: snake_case_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ = max(a__ , key=lambda a__ : item[0] )[0] snake_case_ = max(a__ , key=lambda a__ : item[1] )[1] return expected_height, expected_width def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _snake_case ( snake_case_ , unittest.TestCase ): lowerCAmelCase_ : Union[str, Any] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string lowerCAmelCase_ : List[Any] = image_processing_class def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = OneFormerImageProcessorTester(self ) @property def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , "image_mean" ) ) self.assertTrue(hasattr(a__ , "image_std" ) ) self.assertTrue(hasattr(a__ , "do_normalize" ) ) self.assertTrue(hasattr(a__ , "do_resize" ) ) self.assertTrue(hasattr(a__ , "size" ) ) self.assertTrue(hasattr(a__ , "ignore_index" ) ) self.assertTrue(hasattr(a__ , "class_info_file" ) ) self.assertTrue(hasattr(a__ , "num_text" ) ) self.assertTrue(hasattr(a__ , "repo_path" ) ) self.assertTrue(hasattr(a__ , "metadata" ) ) self.assertTrue(hasattr(a__ , "do_reduce_labels" ) ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input snake_case_ = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values snake_case_ = self.image_processing_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = self.image_processing_tester.get_expected_values(a__ , batched=a__ ) snake_case_ = image_processor( a__ , ["semantic"] * len(a__ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input snake_case_ = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values snake_case_ = self.image_processing_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = self.image_processing_tester.get_expected_values(a__ , batched=a__ ) snake_case_ = image_processor( a__ , ["semantic"] * len(a__ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input snake_case_ = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values snake_case_ = self.image_processing_tester.get_expected_values(a__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = self.image_processing_tester.get_expected_values(a__ , batched=a__ ) snake_case_ = image_processor( a__ , ["semantic"] * len(a__ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self , a__=False , a__=False , a__="np" ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.image_processing_class(**self.image_processor_dict ) # prepare image and target snake_case_ = self.image_processing_tester.num_labels snake_case_ = None snake_case_ = None snake_case_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=a__ ) if with_segmentation_maps: snake_case_ = num_labels if is_instance_map: snake_case_ = list(range(a__ ) ) * 2 snake_case_ = dict(enumerate(a__ ) ) snake_case_ = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": snake_case_ = [Image.fromarray(a__ ) for annotation in annotations] snake_case_ = image_processor( a__ , ["semantic"] * len(a__ ) , a__ , return_tensors="pt" , instance_id_to_semantic_id=a__ , pad_and_return_pixel_mask=a__ , ) return inputs def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' def common(a__=False , a__=None ): snake_case_ = self.comm_get_image_processor_inputs( with_segmentation_maps=a__ , is_instance_map=a__ , segmentation_type=a__ ) snake_case_ = inputs['mask_labels'] snake_case_ = inputs['class_labels'] snake_case_ = inputs['pixel_values'] snake_case_ = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(a__ , a__ , a__ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(a__ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=a__ ) common(is_instance_map=a__ , segmentation_type="pil" ) common(is_instance_map=a__ , segmentation_type="pil" ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = np.zeros((20, 50) ) snake_case_ = 1 snake_case_ = 1 snake_case_ = 1 snake_case_ = binary_mask_to_rle(a__ ) self.assertEqual(len(a__ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) snake_case_ = self.image_processing_tester.get_fake_oneformer_outputs() snake_case_ = fature_extractor.post_process_semantic_segmentation(a__ ) self.assertEqual(len(a__ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) snake_case_ = [(1, 4) for i in range(self.image_processing_tester.batch_size )] snake_case_ = fature_extractor.post_process_semantic_segmentation(a__ , target_sizes=a__ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) snake_case_ = self.image_processing_tester.get_fake_oneformer_outputs() snake_case_ = image_processor.post_process_instance_segmentation(a__ , threshold=0 ) self.assertTrue(len(a__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , a__ ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) snake_case_ = self.image_processing_tester.get_fake_oneformer_outputs() snake_case_ = image_processor.post_process_panoptic_segmentation(a__ , threshold=0 ) self.assertTrue(len(a__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , a__ ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
356
'''simple docstring''' from __future__ import annotations import numpy as np def UpperCamelCase_( snake_case : np.ndarray ): '''simple docstring''' snake_case_ , snake_case_ = np.shape(snake_case ) if rows != columns: snake_case_ = ( "'table' has to be of square shaped array but got a " f'{rows}x{columns} array:\n{table}' ) raise ValueError(snake_case ) snake_case_ = np.zeros((rows, columns) ) snake_case_ = np.zeros((rows, columns) ) for i in range(snake_case ): for j in range(snake_case ): snake_case_ = sum(lower[i][k] * upper[k][j] for k in range(snake_case ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) snake_case_ = (table[i][j] - total) / upper[j][j] snake_case_ = 1 for j in range(snake_case , snake_case ): snake_case_ = sum(lower[i][k] * upper[k][j] for k in range(snake_case ) ) snake_case_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
92
0
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case : """simple docstring""" def __init__( self : int , __A : str , __A : Tuple=2 , __A : Optional[Any]=3 , __A : List[str]=4 , __A : Union[str, Any]=2 , __A : str=7 , __A : Tuple=True , __A : List[Any]=True , __A : Tuple=True , __A : int=True , __A : List[Any]=9_9 , __A : Any=3_6 , __A : Any=3 , __A : str=4 , __A : Tuple=3_7 , __A : Union[str, Any]="gelu" , __A : Tuple=0.1 , __A : int=0.1 , __A : Tuple=5_1_2 , __A : List[Any]=1_6 , __A : Any=2 , __A : Optional[int]=0.02 , __A : Any=6 , __A : Optional[Any]=6 , __A : Tuple=3 , __A : Optional[int]=4 , __A : str=None , __A : Tuple=1_0_0_0 , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = text_seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = coordinate_size __UpperCamelCase = shape_size __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope __UpperCamelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __UpperCamelCase = text_seq_length __UpperCamelCase = (image_size // patch_size) ** 2 + 1 __UpperCamelCase = self.text_seq_length + self.image_seq_length def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __UpperCamelCase = bbox[i, j, 3] __UpperCamelCase = bbox[i, j, 1] __UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: __UpperCamelCase = bbox[i, j, 2] __UpperCamelCase = bbox[i, j, 0] __UpperCamelCase = t __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __UpperCamelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowerCamelCase ( self : Any , __A : int , __A : str , __A : Optional[int] , __A : int , __A : Tuple , __A : List[Any] , __A : List[str] , __A : List[str] ): __UpperCamelCase = LayoutLMvaModel(config=__A ) model.to(__A ) model.eval() # text + image __UpperCamelCase = model(__A , pixel_values=__A ) __UpperCamelCase = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A ) __UpperCamelCase = model(__A , bbox=__A , pixel_values=__A , token_type_ids=__A ) __UpperCamelCase = model(__A , bbox=__A , pixel_values=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __UpperCamelCase = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __UpperCamelCase = model(pixel_values=__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowerCamelCase ( self : List[str] , __A : Union[str, Any] , __A : List[Any] , __A : Any , __A : List[Any] , __A : Optional[int] , __A : List[str] , __A : int , __A : List[Any] ): __UpperCamelCase = self.num_labels __UpperCamelCase = LayoutLMvaForSequenceClassification(__A ) model.to(__A ) model.eval() __UpperCamelCase = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : List[str] , __A : Dict , __A : Tuple , __A : int , __A : Optional[int] , __A : List[str] , __A : str , __A : Dict , __A : List[str] ): __UpperCamelCase = self.num_labels __UpperCamelCase = LayoutLMvaForTokenClassification(config=__A ) model.to(__A ) model.eval() __UpperCamelCase = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowerCamelCase ( self : Tuple , __A : Dict , __A : Dict , __A : List[str] , __A : Tuple , __A : List[str] , __A : Dict , __A : int , __A : Optional[int] ): __UpperCamelCase = LayoutLMvaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() __UpperCamelCase = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =False SCREAMING_SNAKE_CASE_ : str =False SCREAMING_SNAKE_CASE_ : int =False SCREAMING_SNAKE_CASE_ : Any =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : int =( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def _lowerCamelCase ( self : Optional[Any] , __A : str , __A : Dict , __A : Optional[int] , __A : Union[str, Any] , __A : Union[str, Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _lowerCamelCase ( self : int ): __UpperCamelCase = LayoutLMvaModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def _lowerCamelCase ( self : str , __A : Dict , __A : Optional[int] , __A : Tuple=False ): __UpperCamelCase = copy.deepcopy(__A ) if model_class in get_values(__A ): __UpperCamelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__A , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__A ): __UpperCamelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in get_values(__A ): __UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) __UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in [ *get_values(__A ), ]: __UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in [ *get_values(__A ), ]: __UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__A , ) return inputs_dict def _lowerCamelCase ( self : Optional[int] ): self.config_tester.run_common_tests() def _lowerCamelCase ( self : str ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowerCamelCase ( self : Any ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase = type self.model_tester.create_and_check_model(*__A ) def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def _lowerCamelCase ( self : str ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) @slow def _lowerCamelCase ( self : List[str] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = LayoutLMvaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowercase__ ( ) -> Optional[int]: """simple docstring""" __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCamelCase ( self : List[str] ): return LayoutLMvaImageProcessor(apply_ocr=__A ) if is_vision_available() else None @slow def _lowerCamelCase ( self : str ): __UpperCamelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(__A ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__A , return_tensors='pt' ).pixel_values.to(__A ) __UpperCamelCase = torch.tensor([[1, 2]] ) __UpperCamelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __UpperCamelCase = model( input_ids=input_ids.to(__A ) , bbox=bbox.to(__A ) , pixel_values=pixel_values.to(__A ) , ) # verify the logits __UpperCamelCase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , __A ) __UpperCamelCase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __A , atol=1e-4 ) )
53
'''simple docstring''' import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( __lowercase : int , __lowercase : int , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : Any ) -> Optional[Any]: """simple docstring""" with open(__lowercase ) as metadata_file: __UpperCamelCase = json.load(__lowercase ) __UpperCamelCase = LukeConfig(use_entity_aware_attention=__lowercase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path __UpperCamelCase = torch.load(__lowercase , map_location='cpu' ) # Load the entity vocab file __UpperCamelCase = load_entity_vocab(__lowercase ) __UpperCamelCase = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks __UpperCamelCase = AddedToken('<ent>' , lstrip=__lowercase , rstrip=__lowercase ) __UpperCamelCase = AddedToken('<ent2>' , lstrip=__lowercase , rstrip=__lowercase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(__lowercase , __lowercase ) __UpperCamelCase = LukeTokenizer.from_pretrained(__lowercase ) # Initialize the embeddings of the special tokens __UpperCamelCase = state_dict['embeddings.word_embeddings.weight'] __UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) __UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) __UpperCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __UpperCamelCase = F'''encoder.layer.{layer_index}.attention.self.''' __UpperCamelCase = state_dict[prefix + matrix_name] __UpperCamelCase = state_dict[prefix + matrix_name] __UpperCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __UpperCamelCase = state_dict['entity_embeddings.entity_embeddings.weight'] __UpperCamelCase = entity_emb[entity_vocab['[MASK]']] __UpperCamelCase = LukeModel(config=__lowercase ).eval() __UpperCamelCase , __UpperCamelCase = model.load_state_dict(__lowercase , strict=__lowercase ) if not (len(__lowercase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {', '.join(__lowercase )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' F''' {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}''' ) # Check outputs __UpperCamelCase = LukeTokenizer.from_pretrained(__lowercase , task='entity_classification' ) __UpperCamelCase = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) __UpperCamelCase = (39, 42) __UpperCamelCase = tokenizer(__lowercase , entity_spans=[span] , add_prefix_space=__lowercase , return_tensors='pt' ) __UpperCamelCase = model(**__lowercase ) # Verify word hidden states if model_size == "large": __UpperCamelCase = torch.Size((1, 42, 1024) ) __UpperCamelCase = torch.tensor( [[0.0_1_3_3, 0.0_8_6_5, 0.0_0_9_5], [0.3_0_9_3, -0.2_5_7_6, -0.7_4_1_8], [-0.1_7_2_0, -0.2_1_1_7, -0.2_8_6_9]] ) else: # base __UpperCamelCase = torch.Size((1, 42, 768) ) __UpperCamelCase = torch.tensor([[0.0_0_3_7, 0.1_3_6_8, -0.0_0_9_1], [0.1_0_9_9, 0.3_3_2_9, -0.1_0_9_5], [0.0_7_6_5, 0.5_3_3_5, 0.1_1_7_9]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": __UpperCamelCase = torch.Size((1, 1, 1024) ) __UpperCamelCase = torch.tensor([[0.0_4_6_6, -0.0_1_0_6, -0.0_1_7_9]] ) else: # base __UpperCamelCase = torch.Size((1, 1, 768) ) __UpperCamelCase = torch.tensor([[0.1_4_5_7, 0.1_0_4_4, 0.0_1_7_4]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __lowercase , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(__lowercase ) ) model.save_pretrained(__lowercase ) def lowercase__ ( __lowercase : Dict ) -> List[str]: """simple docstring""" __UpperCamelCase = {} with open(__lowercase , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(__lowercase ): __UpperCamelCase , __UpperCamelCase = line.rstrip().split('\t' ) __UpperCamelCase = index return entity_vocab if __name__ == "__main__": a__ : Any =argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ : str =parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
53
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """falcon""" snake_case_ = ["""past_key_values"""] def __init__( self : List[Any] , __lowercase : Optional[int]=6_50_24 , __lowercase : List[str]=45_44 , __lowercase : Tuple=32 , __lowercase : Tuple=71 , __lowercase : List[str]=1e-5 , __lowercase : List[str]=0.02 , __lowercase : Optional[Any]=True , __lowercase : Optional[int]=0.0 , __lowercase : Union[str, Any]=0.0 , __lowercase : int=None , __lowercase : Union[str, Any]=False , __lowercase : Any=False , __lowercase : Tuple=True , __lowercase : List[str]=True , __lowercase : Optional[Any]=False , __lowercase : Optional[Any]=11 , __lowercase : Optional[Any]=11 , **__lowercase : str , ) -> Any: SCREAMING_SNAKE_CASE__ : Union[str, Any] =vocab_size # Backward compatibility with n_embed kwarg SCREAMING_SNAKE_CASE__ : Optional[Any] =kwargs.pop('''n_embed''' , __lowercase ) SCREAMING_SNAKE_CASE__ : int =hidden_size if n_embed is None else n_embed SCREAMING_SNAKE_CASE__ : str =num_hidden_layers SCREAMING_SNAKE_CASE__ : str =num_attention_heads SCREAMING_SNAKE_CASE__ : int =layer_norm_epsilon SCREAMING_SNAKE_CASE__ : Dict =initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] =use_cache SCREAMING_SNAKE_CASE__ : List[str] =hidden_dropout SCREAMING_SNAKE_CASE__ : List[Any] =attention_dropout SCREAMING_SNAKE_CASE__ : Dict =bos_token_id SCREAMING_SNAKE_CASE__ : Union[str, Any] =eos_token_id SCREAMING_SNAKE_CASE__ : Dict =num_attention_heads if num_kv_heads is None else num_kv_heads SCREAMING_SNAKE_CASE__ : Any =alibi SCREAMING_SNAKE_CASE__ : Optional[int] =new_decoder_architecture SCREAMING_SNAKE_CASE__ : Any =multi_query # Ignored when new_decoder_architecture is True SCREAMING_SNAKE_CASE__ : List[Any] =parallel_attn SCREAMING_SNAKE_CASE__ : Tuple =bias super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) @property def __magic_name__ ( self : Union[str, Any] ) -> int: return self.hidden_size // self.num_attention_heads @property def __magic_name__ ( self : Optional[Any] ) -> Any: return not self.alibi
222
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """biogpt""" def __init__( self : str , __lowercase : Union[str, Any]=4_23_84 , __lowercase : Union[str, Any]=10_24 , __lowercase : Any=24 , __lowercase : Any=16 , __lowercase : Optional[Any]=40_96 , __lowercase : Any="gelu" , __lowercase : Optional[Any]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : Union[str, Any]=10_24 , __lowercase : List[Any]=0.02 , __lowercase : Tuple=1e-12 , __lowercase : Optional[Any]=True , __lowercase : Optional[Any]=True , __lowercase : Any=0.0 , __lowercase : int=0.0 , __lowercase : str=1 , __lowercase : int=0 , __lowercase : Optional[int]=2 , **__lowercase : Dict , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] =max_position_embeddings SCREAMING_SNAKE_CASE__ : str =hidden_size SCREAMING_SNAKE_CASE__ : int =num_hidden_layers SCREAMING_SNAKE_CASE__ : Tuple =num_attention_heads SCREAMING_SNAKE_CASE__ : Any =intermediate_size SCREAMING_SNAKE_CASE__ : int =hidden_act SCREAMING_SNAKE_CASE__ : List[Any] =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Dict =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] =initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] =layer_norm_eps SCREAMING_SNAKE_CASE__ : Optional[Any] =scale_embedding SCREAMING_SNAKE_CASE__ : str =use_cache SCREAMING_SNAKE_CASE__ : str =layerdrop SCREAMING_SNAKE_CASE__ : Dict =activation_dropout super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
222
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''▁''' __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCamelCase = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } __UpperCamelCase = { '''facebook/mbart-large-50-one-to-many-mmt''': 1024, } # fmt: off __UpperCamelCase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __init__( self, lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> None: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs snake_case_ = kwargs.get('additional_special_tokens', []) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase__, tgt_lang=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, sp_model_kwargs=self.sp_model_kwargs, **lowerCAmelCase__, ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowerCAmelCase__)) snake_case_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ = 1 snake_case_ = len(self.sp_model) snake_case_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__) } snake_case_ = {v: k for k, v in self.lang_code_to_id.items()} snake_case_ = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case_ = src_lang if src_lang is not None else 'en_XX' snake_case_ = self.lang_code_to_id[self._src_lang] snake_case_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def a_ ( self) -> int: return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a_ ( self) -> str: return self._src_lang @src_lang.setter def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self) -> Dict: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self, lowerCAmelCase__) -> None: snake_case_ = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs'): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def a_ ( self) -> Dict: snake_case_ = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def a_ ( self, lowerCAmelCase__) -> List[str]: return self.sp_model.encode(lowerCAmelCase__, out_type=lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(lowerCAmelCase__) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a_ ( self, lowerCAmelCase__) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def a_ ( self, lowerCAmelCase__) -> Tuple: snake_case_ = [] snake_case_ = '' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(lowerCAmelCase__) snake_case_ = False out_string += self.sp_model.decode(lowerCAmelCase__) return out_string.strip() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, lowerCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase__, 'wb') as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__) return (out_vocab_file,) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__, token_ids_a=lowerCAmelCase__, already_has_special_tokens=lowerCAmelCase__) snake_case_ = [1] * len(self.prefix_tokens) snake_case_ = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__)) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__)) + ([0] * len(lowerCAmelCase__)) + suffix_ones def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') snake_case_ = src_lang snake_case_ = self(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__) snake_case_ = tgt_lang_id return inputs def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = "en_XX", lowerCAmelCase__ = None, lowerCAmelCase__ = "ro_RO", **lowerCAmelCase__, ) -> BatchEncoding: snake_case_ = src_lang snake_case_ = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang) def a_ ( self) -> Tuple: return self.set_tgt_lang_special_tokens(self.tgt_lang) def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.lang_code_to_id[src_lang] snake_case_ = [self.cur_lang_code_id] snake_case_ = [self.eos_token_id] def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.lang_code_to_id[tgt_lang] snake_case_ = [self.cur_lang_code_id] snake_case_ = [self.eos_token_id]
69
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False )-> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(lowerCAmelCase_ ), magnitude * sin(lowerCAmelCase_ )] return [magnitude * cos(radians(lowerCAmelCase_ ) ), magnitude * sin(radians(lowerCAmelCase_ ) )] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10**-1 )-> bool: '''simple docstring''' _UpperCAmelCase : NDArray[floataa] = cross(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : float = sum(lowerCAmelCase_ ) return abs(lowerCAmelCase_ ) < eps if __name__ == "__main__": # Test to check if it works A_ : str = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) A_ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg A_ : List[str] = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) A_ : Tuple = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg A_ : Dict = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) A_ : Union[str, Any] = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
215
0
import argparse import os import re _snake_case = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _snake_case = re.compile(r'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings _snake_case = re.compile(r'''\s*\(\s*"(\S[^"]+)"''') def _UpperCamelCase ( snake_case__, snake_case__ = False ) -> Optional[int]: with open(snake_case__, "r", encoding="utf-8" ) as f: __UpperCAmelCase : Optional[Any] = f.read() __UpperCAmelCase : Union[str, Any] = content.split("\n" ) __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : List[Any] = 0 while line_idx < len(snake_case__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __UpperCAmelCase : Any = len(re.search(r"^(\s*)\S", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 __UpperCAmelCase : int = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __UpperCAmelCase : Optional[int] = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __UpperCAmelCase : str = sorted(snake_case__, key=lambda snake_case__ : _re_identifier.search(snake_case__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(snake_case__, "w", encoding="utf-8" ) as f: f.write("\n".join(snake_case__ ) ) elif "\n".join(snake_case__ ) != content: return True def _UpperCamelCase ( snake_case__ = False ) -> str: __UpperCAmelCase : Dict = [os.path.join(snake_case__, snake_case__ ) for f in os.listdir(snake_case__ ) if f.endswith(".py" )] __UpperCAmelCase : Any = [sort_auto_mapping(snake_case__, overwrite=snake_case__ ) for fname in fnames] if not overwrite and any(snake_case__ ): __UpperCAmelCase : Dict = [f for f, d in zip(snake_case__, snake_case__ ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {', '.join(snake_case__ )}. Run `make style` to fix''' " this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') _snake_case = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int]=3 , lowerCamelCase__ : Any=32 , lowerCamelCase__ : List[str]=3 , lowerCamelCase__ : Optional[Any]=10 , lowerCamelCase__ : List[str]=[10, 20, 30, 40] , lowerCamelCase__ : Optional[Any]=[1, 1, 2, 1] , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : List[Any]="relu" , lowerCamelCase__ : str=3 , lowerCamelCase__ : Tuple=None , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Any = image_size _UpperCAmelCase : Any = num_channels _UpperCAmelCase : Dict = embeddings_size _UpperCAmelCase : List[Any] = hidden_sizes _UpperCAmelCase : List[Any] = depths _UpperCAmelCase : Union[str, Any] = is_training _UpperCAmelCase : Any = use_labels _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Union[str, Any] = num_labels _UpperCAmelCase : Dict = scope _UpperCAmelCase : str = len(lowerCamelCase__ ) def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Any = None if self.use_labels: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase : int = TFResNetModel(config=lowerCamelCase__ ) _UpperCAmelCase : Tuple = model(lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = self.num_labels _UpperCAmelCase : Dict = TFResNetForImageClassification(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _UpperCAmelCase : int = config_and_inputs _UpperCAmelCase : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): lowerCAmelCase : List[str] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Optional[Any] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : str = False lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Tuple = False lowerCAmelCase : Tuple = False lowerCAmelCase : Any = False def lowerCAmelCase__ ( self : Dict ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = TFResNetModelTester(self ) _UpperCAmelCase : str = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowerCAmelCase__ ( self : Any ) ->List[Any]: '''simple docstring''' pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : List[str] = [*signature.parameters.keys()] _UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Dict ) ->Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Any ): _UpperCAmelCase : Tuple = model_class(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _UpperCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Optional[int] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[Any] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def lowerCAmelCase__ ( self : Optional[Any] ) ->Any: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Any = TFResNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowerCAmelCase (): _UpperCAmelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : Union[str, Any] ) ->Any: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self : Dict ) ->Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase : str = self.default_image_processor _UpperCAmelCase : Optional[Any] = prepare_img() _UpperCAmelCase : int = image_processor(images=lowerCamelCase__ , return_tensors="tf" ) # forward pass _UpperCAmelCase : List[str] = model(**lowerCamelCase__ ) # verify the logits _UpperCAmelCase : Optional[int] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _UpperCAmelCase : List[str] = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase__ , atol=1E-4 ) )
234
from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict = logging.get_logger(__name__) _A : Union[str, Any] = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Any = "vit_msn" def __init__( self : Optional[Any] , A : Dict=7_6_8 , A : Union[str, Any]=1_2 , A : Optional[Any]=1_2 , A : List[Any]=3_0_7_2 , A : List[str]="gelu" , A : Optional[int]=0.0 , A : int=0.0 , A : int=0.02 , A : Tuple=1e-06 , A : int=2_2_4 , A : Union[str, Any]=1_6 , A : Dict=3 , A : Optional[Any]=True , **A : Optional[Any] , ) ->Dict: super().__init__(**A ) lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Dict = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : Optional[int] = layer_norm_eps lowerCamelCase__ : Any = image_size lowerCamelCase__ : Any = patch_size lowerCamelCase__ : Union[str, Any] = num_channels lowerCamelCase__ : Tuple = qkv_bias
142
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCamelCase_ ( __a ): def __init__( self : Optional[Any] , _A : Optional[NestedDataStructureLike[PathLike]] = None , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : str = None , _A : bool = False , _A : bool = False , _A : Optional[int] = None , **_A : Optional[Any] , ): '''simple docstring''' UpperCAmelCase__ : List[str] = path_or_paths UpperCAmelCase__ : str = split if split or isinstance(_A , _A ) else '''train''' UpperCAmelCase__ : Tuple = features UpperCAmelCase__ : str = cache_dir UpperCAmelCase__ : List[Any] = keep_in_memory UpperCAmelCase__ : Dict = streaming UpperCAmelCase__ : Optional[Any] = num_proc UpperCAmelCase__ : str = kwargs @abstractmethod def lowercase_ ( self : Tuple ): '''simple docstring''' pass class lowerCamelCase_ ( __a ): def __init__( self : List[str] , _A : Optional[Features] = None , _A : str = None , _A : bool = False , _A : bool = False , _A : Optional[int] = None , **_A : str , ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = features UpperCAmelCase__ : Optional[Any] = cache_dir UpperCAmelCase__ : Union[str, Any] = keep_in_memory UpperCAmelCase__ : Union[str, Any] = streaming UpperCAmelCase__ : Optional[Any] = num_proc UpperCAmelCase__ : Optional[int] = kwargs @abstractmethod def lowercase_ ( self : List[str] ): '''simple docstring''' pass
369
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : Union[str, Any]=7 , _A : List[str]=3 , _A : str=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : List[str]=None , _A : int=True , _A : int=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 255 , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean UpperCAmelCase__ : Optional[int] = image_std UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : int = do_pad def lowercase_ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Optional[int] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : int = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[str] = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] else: UpperCAmelCase__ : int = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DetaImageProcessingTester(self ) @property def lowercase_ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : str = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {'''image_id''': 39_769, '''annotations''': target} # encode them UpperCAmelCase__ : Optional[int] = DetaImageProcessor() UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : int = json.loads(f.read() ) UpperCAmelCase__ : str = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} UpperCAmelCase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase__ : Any = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks UpperCAmelCase__ : Dict = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
299
0