code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __a: List[str] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , __lowerCAmelCase ) -> Union[str, Any]: super().__init__() lowercase__ : Optional[Any] = torchvision.models.resnetaaa(pretrained=__lowerCAmelCase ) lowercase__ : Optional[Any] = list(model.children() )[:-2] lowercase__ : Tuple = nn.Sequential(*__lowerCAmelCase ) lowercase__ : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Dict: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowercase__ : Dict = self.pool(self.model(__lowerCAmelCase ) ) lowercase__ : int = torch.flatten(__lowerCAmelCase , start_dim=2 ) lowercase__ : Union[str, Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: lowercase__ : Union[str, Any] = [json.loads(__lowerCAmelCase ) for l in open(__lowerCAmelCase )] lowercase__ : Optional[int] = os.path.dirname(__lowerCAmelCase ) lowercase__ : int = tokenizer lowercase__ : Optional[int] = labels lowercase__ : str = len(__lowerCAmelCase ) lowercase__ : Optional[Any] = max_seq_length lowercase__ : Dict = transforms def __len__( self ) -> Dict: return len(self.data ) def __getitem__( self , __lowerCAmelCase ) -> Union[str, Any]: lowercase__ : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=__lowerCAmelCase ) ) lowercase__ , lowercase__ , lowercase__ : Any = sentence[0], sentence[1:-1], sentence[-1] lowercase__ : Dict = sentence[: self.max_seq_length] lowercase__ : Any = torch.zeros(self.n_classes ) lowercase__ : Dict = 1 lowercase__ : Optional[int] = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' ) lowercase__ : Union[str, Any] = self.transforms(__lowerCAmelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _lowerCAmelCase( self ) -> str: lowercase__ : Dict = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Tuple = [len(row['''sentence'''] ) for row in batch] lowercase__ , lowercase__ : Any = len(UpperCAmelCase ), max(UpperCAmelCase ) lowercase__ : str = torch.zeros(UpperCAmelCase , UpperCAmelCase , dtype=torch.long ) lowercase__ : Dict = torch.zeros(UpperCAmelCase , UpperCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(UpperCAmelCase , UpperCAmelCase ) ): lowercase__ : Tuple = input_row['''sentence'''] lowercase__ : List[str] = 1 lowercase__ : Dict = torch.stack([row['''image'''] for row in batch] ) lowercase__ : int = torch.stack([row['''label'''] for row in batch] ) lowercase__ : Optional[int] = torch.stack([row['''image_start_token'''] for row in batch] ) lowercase__ : Optional[Any] = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __UpperCamelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __UpperCamelCase ( ): return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
198
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase( self ) -> Dict: lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase__ : Dict = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase__ : Any = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase__ : List[Any] = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase__ : str = model(__lowerCAmelCase , labels=__lowerCAmelCase ).loss lowercase__ : List[str] = -tf.math.reduce_mean(__lowerCAmelCase ).numpy() lowercase__ : str = -2_1.2_2_8_1_6_8 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
198
1
from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __A ( a__ ): """simple docstring""" UpperCamelCase__ : int ="""Salesforce/blip-image-captioning-base""" UpperCamelCase__ : Dict =( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) UpperCamelCase__ : Any ="""image_captioner""" UpperCamelCase__ : Union[str, Any] =AutoModelForVisionaSeq UpperCamelCase__ : List[Any] =["""image"""] UpperCamelCase__ : List[str] =["""text"""] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return self.pre_processor(images=lowerCamelCase__ , return_tensors='pt' ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return self.model.generate(**lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return self.pre_processor.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ )[0].strip()
370
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ :List[str] = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } A_ :int = logging.get_logger(__name__) class __A ( a ): """simple docstring""" UpperCamelCase__ : Union[str, Any] ="""mask2former""" UpperCamelCase__ : Tuple =["""swin"""] UpperCamelCase__ : Dict ={"""hidden_size""": """hidden_dim"""} def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __UpperCamelCase : Optional[int] =CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __UpperCamelCase : List[str] =backbone_config.pop('model_type' ) __UpperCamelCase : str =CONFIG_MAPPING[backbone_model_type] __UpperCamelCase : List[Any] =config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) __UpperCamelCase : Dict =backbone_config __UpperCamelCase : Optional[int] =feature_size __UpperCamelCase : Union[str, Any] =mask_feature_size __UpperCamelCase : Tuple =hidden_dim __UpperCamelCase : Optional[int] =encoder_feedforward_dim __UpperCamelCase : Optional[int] =activation_function __UpperCamelCase : Dict =encoder_layers __UpperCamelCase : List[Any] =decoder_layers __UpperCamelCase : int =num_attention_heads __UpperCamelCase : Optional[Any] =dropout __UpperCamelCase : int =dim_feedforward __UpperCamelCase : Any =pre_norm __UpperCamelCase : Union[str, Any] =enforce_input_projection __UpperCamelCase : str =common_stride __UpperCamelCase : List[str] =ignore_value __UpperCamelCase : Optional[int] =num_queries __UpperCamelCase : Any =no_object_weight __UpperCamelCase : int =class_weight __UpperCamelCase : str =mask_weight __UpperCamelCase : Dict =dice_weight __UpperCamelCase : str =train_num_points __UpperCamelCase : str =oversample_ratio __UpperCamelCase : int =importance_sample_ratio __UpperCamelCase : List[str] =init_std __UpperCamelCase : Union[str, Any] =init_xavier_std __UpperCamelCase : Any =use_auxiliary_loss __UpperCamelCase : Tuple =feature_strides __UpperCamelCase : Dict =output_auxiliary_logits __UpperCamelCase : Union[str, Any] =decoder_layers super().__init__(**lowerCamelCase__ ) @classmethod def __lowercase ( cls , lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" return cls( backbone_config=lowerCamelCase__ , **lowerCamelCase__ , ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =copy.deepcopy(self.__dict__ ) __UpperCamelCase : List[Any] =self.backbone_config.to_dict() __UpperCamelCase : Union[str, Any] =self.__class__.model_type return output
245
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = LDMTextToImagePipeline __lowercase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } __lowercase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } __lowercase = TEXT_TO_IMAGE_BATCH_PARAMS __lowercase = False def lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _snake_case = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _snake_case = CLIPTextModel(lowerCAmelCase_ ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ): """simple docstring""" if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = LDMTextToImagePipeline(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _snake_case = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=torch.floataa , lowerCAmelCase_=0 ): """simple docstring""" _snake_case = torch.manual_seed(lowerCAmelCase_ ) _snake_case = np.random.RandomState(lowerCAmelCase_ ).standard_normal((1, 4, 32, 32) ) _snake_case = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_inputs(lowerCAmelCase_ ) _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 2_56, 2_56, 3) _snake_case = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] ) _snake_case = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=torch.floataa , lowerCAmelCase_=0 ): """simple docstring""" _snake_case = torch.manual_seed(lowerCAmelCase_ ) _snake_case = np.random.RandomState(lowerCAmelCase_ ).standard_normal((1, 4, 32, 32) ) _snake_case = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_inputs(lowerCAmelCase_ ) _snake_case = pipe(**lowerCAmelCase_ ).images[0] _snake_case = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _snake_case = np.abs(expected_image - image ).max() assert max_diff < 1E-3
42
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ (__A ): __magic_name__ = '''detr''' __magic_name__ = ['''past_key_values'''] __magic_name__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Dict , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=100 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : Union[str, Any]=2_048 , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : Union[str, Any]=2_048 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[Any]="relu" , lowerCAmelCase_ : List[Any]=256 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : List[Any]=0.0_2 , lowerCAmelCase_ : Optional[int]=1.0 , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Tuple="sine" , lowerCAmelCase_ : str="resnet50" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Union[str, Any]=0.1 , **lowerCAmelCase_ : Dict , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Tuple = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Dict = backbone_config.get("model_type" ) UpperCAmelCase_ : Dict = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Tuple = config_class.from_dict(lowerCAmelCase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : str = use_timm_backbone UpperCAmelCase_ : Optional[Any] = backbone_config UpperCAmelCase_ : Tuple = num_channels UpperCAmelCase_ : Dict = num_queries UpperCAmelCase_ : str = d_model UpperCAmelCase_ : Any = encoder_ffn_dim UpperCAmelCase_ : Union[str, Any] = encoder_layers UpperCAmelCase_ : Optional[int] = encoder_attention_heads UpperCAmelCase_ : List[str] = decoder_ffn_dim UpperCAmelCase_ : Tuple = decoder_layers UpperCAmelCase_ : Optional[int] = decoder_attention_heads UpperCAmelCase_ : List[Any] = dropout UpperCAmelCase_ : Union[str, Any] = attention_dropout UpperCAmelCase_ : int = activation_dropout UpperCAmelCase_ : List[str] = activation_function UpperCAmelCase_ : Optional[int] = init_std UpperCAmelCase_ : Union[str, Any] = init_xavier_std UpperCAmelCase_ : List[str] = encoder_layerdrop UpperCAmelCase_ : Tuple = decoder_layerdrop UpperCAmelCase_ : str = encoder_layers UpperCAmelCase_ : Any = auxiliary_loss UpperCAmelCase_ : Optional[int] = position_embedding_type UpperCAmelCase_ : List[str] = backbone UpperCAmelCase_ : int = use_pretrained_backbone UpperCAmelCase_ : Any = dilation # Hungarian matcher UpperCAmelCase_ : str = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : List[str] = mask_loss_coefficient UpperCAmelCase_ : Dict = dice_loss_coefficient UpperCAmelCase_ : Any = bbox_loss_coefficient UpperCAmelCase_ : Union[str, Any] = giou_loss_coefficient UpperCAmelCase_ : int = eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : int ) -> int: return self.d_model @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , lowerCAmelCase_ : PretrainedConfig , **lowerCAmelCase_ : Tuple ) -> List[Any]: return cls(backbone_config=lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict[str, any]: UpperCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : Any = self.__class__.model_type return output class UpperCamelCase_ (__A ): __magic_name__ = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> float: return 1e-5 @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return 12
268
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : int = get_activation('swish' ) self.assertIsInstance(UpperCAmelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A_ ( self : Any ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = get_activation('silu' ) self.assertIsInstance(UpperCAmelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A_ ( self : Dict ) -> str: lowerCamelCase__ : int = get_activation('mish' ) self.assertIsInstance(UpperCAmelCase , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A_ ( self : List[Any] ) -> Tuple: lowerCamelCase__ : Dict = get_activation('gelu' ) self.assertIsInstance(UpperCAmelCase , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
45
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase : List[str] = logging.getLogger() _UpperCAmelCase : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Optional[int] , UpperCAmelCase : Optional[int] ) -> List[Any]: os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) lowerCamelCase__ : Tuple = {'source': 'What is love ?', 'target': 'life'} lowerCamelCase__ : str = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCamelCase__ : Optional[int] = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def A_ ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : str = "pytorch" ) -> str: lowerCamelCase__ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCamelCase__ : int = os.path.join(UpperCAmelCase , 'output' ) lowerCamelCase__ : int = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) lowerCamelCase__ : Dict = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) lowerCamelCase__ : Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) lowerCamelCase__ : Dict = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: lowerCamelCase__ : Dict = json.load(UpperCAmelCase ) return result @require_torch_gpu def A_ ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase__ : List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def A_ ( self : Any ) -> List[Any]: lowerCamelCase__ : str = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def A_ ( self : Optional[int] ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def A_ ( self : Dict ) -> List[str]: lowerCamelCase__ : Tuple = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
45
1
from typing import TYPE_CHECKING from ..utils import _LazyModule _a = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
209
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = (UnCLIPScheduler,) def __lowerCamelCase ( self , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = { '''num_train_timesteps''': 1_0_0_0, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCAmelCase ) return config def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCAmelCase , prev_timestep=__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) lowerCamelCase__ = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.999_4987 ) ) < 1E-5 def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config(variance_type='''learned_range''' ) lowerCamelCase__ = scheduler_class(**__lowerCAmelCase ) lowerCamelCase__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCAmelCase ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(4_8_7 , predicted_variance=__lowerCAmelCase ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(9_9_9 , predicted_variance=__lowerCAmelCase ) - -0.001_0011 < 1E-5 def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config() lowerCamelCase__ = scheduler_class(**__lowerCAmelCase ) lowerCamelCase__ = scheduler.timesteps lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter lowerCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCAmelCase ): # 1. predict noise residual lowerCamelCase__ = model(__lowerCAmelCase , __lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase__ = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample lowerCamelCase__ = pred_prev_sample lowerCamelCase__ = torch.sum(torch.abs(__lowerCAmelCase ) ) lowerCamelCase__ = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.scheduler_classes[0] lowerCamelCase__ = self.get_scheduler_config() lowerCamelCase__ = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(2_5 ) lowerCamelCase__ = scheduler.timesteps lowerCamelCase__ = self.dummy_model() lowerCamelCase__ = self.dummy_sample_deter lowerCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCAmelCase ): # 1. predict noise residual lowerCamelCase__ = model(__lowerCAmelCase , __lowerCAmelCase ) if i + 1 == timesteps.shape[0]: lowerCamelCase__ = None else: lowerCamelCase__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCamelCase__ = scheduler.step( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , prev_timestep=__lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample lowerCamelCase__ = pred_prev_sample lowerCamelCase__ = torch.sum(torch.abs(__lowerCAmelCase ) ) lowerCamelCase__ = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass
209
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowerCamelCase : Optional[int] = "bart" _lowerCamelCase : List[str] = True @st.cache(allow_output_mutation=UpperCamelCase_ ) def _UpperCAmelCase (): '''simple docstring''' if LOAD_DENSE_INDEX: _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) _lowerCAmelCase : str = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) _lowerCAmelCase : Union[str, Any] = qar_model.eval() else: _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = (None, None) if MODEL_TYPE == "bart": _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) _lowerCAmelCase : Tuple = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) _lowerCAmelCase : Tuple = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) _lowerCAmelCase : Union[str, Any] = sas_model.eval() else: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=UpperCamelCase_ ) def _UpperCAmelCase (): '''simple docstring''' if LOAD_DENSE_INDEX: _lowerCAmelCase : Optional[Any] = faiss.StandardGpuResources() _lowerCAmelCase : Tuple = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] _lowerCAmelCase : int = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) _lowerCAmelCase : Union[str, Any] = faiss.IndexFlatIP(128 ) _lowerCAmelCase : Optional[Any] = faiss.index_cpu_to_gpu(UpperCamelCase_ , 1 , UpperCamelCase_ ) wikiaab_gpu_index_flat.add(UpperCamelCase_ ) # TODO fix for larger GPU else: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = (None, None) _lowerCAmelCase : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=UpperCamelCase_ ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : List[str] = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) _lowerCAmelCase : Optional[int] = elia["""train_eli5"""] _lowerCAmelCase : Optional[Any] = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) _lowerCAmelCase : str = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(UpperCamelCase_ ) return (elia_train, eli5_train_q_index) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = load_indexes() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = load_models() _lowerCamelCase , _lowerCamelCase : Optional[int] = load_train_data() def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any]=10 ): '''simple docstring''' _lowerCAmelCase : str = embed_questions_for_retrieval([question] , UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = eli5_train_q_index.search(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Union[str, Any] = [elia_train[int(UpperCamelCase_ )] for i in I[0]] return nn_examples def _UpperCAmelCase (UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str]="wiki40b" , UpperCamelCase_ : Optional[int]="dense" , UpperCamelCase_ : Union[str, Any]=10 ): '''simple docstring''' if source == "none": _lowerCAmelCase , _lowerCAmelCase : List[str] = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = query_qa_dense_index( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = query_es_index( UpperCamelCase_ , UpperCamelCase_ , index_name="""english_wiki40b_snippets_100w""" , n_results=UpperCamelCase_ , ) _lowerCAmelCase : int = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] _lowerCAmelCase : Tuple = """question: {} context: {}""".format(UpperCamelCase_ , UpperCamelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda UpperCamelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda UpperCamelCase_ : None), } ) def _UpperCAmelCase (UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any]=64 , UpperCamelCase_ : List[str]=256 , UpperCamelCase_ : Dict=False , UpperCamelCase_ : Any=2 , UpperCamelCase_ : str=0.95 , UpperCamelCase_ : Optional[int]=0.8 ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = qa_sas_generate( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_answers=1 , num_beams=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ , do_sample=UpperCamelCase_ , temp=UpperCamelCase_ , top_p=UpperCamelCase_ , top_k=UpperCamelCase_ , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar _lowerCamelCase : Optional[int] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" _lowerCamelCase : Any = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowerCamelCase : List[str] = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) _lowerCamelCase : Any = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] _lowerCamelCase : int = st.sidebar.checkbox("Demo options") if demo_options: _lowerCamelCase : Optional[Any] = st.sidebar.selectbox( "", action_list, index=3, ) _lowerCamelCase : Dict = action_list.index(action_st) _lowerCamelCase : Tuple = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) _lowerCamelCase : int = show_type == "Show full text of passages" else: _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[int] = True _lowerCamelCase : str = st.sidebar.checkbox("Retrieval options") if retrieval_options: _lowerCamelCase : Dict = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) _lowerCamelCase : Optional[Any] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) _lowerCamelCase : Any = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: _lowerCamelCase : Union[str, Any] = "wiki40b" _lowerCamelCase : List[str] = "dense" _lowerCamelCase : Union[str, Any] = "beam" _lowerCamelCase : int = 2 _lowerCamelCase : Optional[Any] = 6_4 _lowerCamelCase : Dict = 2_5_6 _lowerCamelCase : Optional[int] = None _lowerCamelCase : str = None _lowerCamelCase : int = st.sidebar.checkbox("Generation options") if generate_options: _lowerCamelCase : Tuple = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) _lowerCamelCase : Optional[int] = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) _lowerCamelCase : Optional[int] = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=2_5_6, value=6_4, step=8, format=None, key=None ) _lowerCamelCase : Any = st.sidebar.slider( "Maximum generation length", min_value=6_4, max_value=5_1_2, value=2_5_6, step=1_6, format=None, key=None ) if sampled == "beam": _lowerCamelCase : Optional[int] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowerCamelCase : Union[str, Any] = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) _lowerCamelCase : List[Any] = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) _lowerCamelCase : int = None # start main text _lowerCamelCase : Optional[Any] = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] _lowerCamelCase : Tuple = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowerCamelCase : Tuple = st.text_input("Enter your question here:", "") else: _lowerCamelCase : Optional[Any] = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": _lowerCamelCase , _lowerCamelCase : Optional[Any] = make_support(question, source=wiki_source, method="dense", n_results=1_0) _lowerCamelCase , _lowerCamelCase : Dict = make_support(question, source=wiki_source, method="sparse", n_results=1_0) _lowerCamelCase : Tuple = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowerCamelCase : Optional[Any] = support_list[:1_0] _lowerCamelCase : Optional[int] = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: _lowerCamelCase , _lowerCamelCase : Dict = make_support(question, source=wiki_source, method=index_type, n_results=1_0) if action in [0, 3]: _lowerCamelCase , _lowerCamelCase : int = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): _lowerCamelCase : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) _lowerCamelCase : Tuple = res[1].strip() if sec_titles == "": _lowerCamelCase : Optional[Any] = "[{}]({})".format(res[0], wiki_url) else: _lowerCamelCase : Optional[int] = sec_titles.split(" & ") _lowerCamelCase : int = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: _lowerCamelCase : int = find_nearest_training(question) _lowerCamelCase : int = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) _lowerCamelCase : Optional[Any] = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) _lowerCamelCase : int = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
159
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED _lowerCamelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } _lowerCamelCase : List[str] = { "allenai/led-base-16384": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : str = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) _lowerCAmelCase : Any = bs[:] _lowerCAmelCase : str = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase : int = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def _UpperCAmelCase (UpperCamelCase_ : Any ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Dict = char return pairs class __snake_case (_a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any]="replace" , _UpperCAmelCase : Optional[Any]="<s>" , _UpperCAmelCase : Dict="</s>" , _UpperCAmelCase : List[str]="</s>" , _UpperCAmelCase : Any="<s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Any="<pad>" , _UpperCAmelCase : Tuple="<mask>" , _UpperCAmelCase : int=False , **_UpperCAmelCase : Optional[Any] , ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Any = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token _lowerCAmelCase : List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token _lowerCAmelCase : List[str] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token _lowerCAmelCase : Union[str, Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token _lowerCAmelCase : Optional[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token _lowerCAmelCase : Any = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Tuple = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle: _lowerCAmelCase : Dict = json.load(_UpperCAmelCase ) _lowerCAmelCase : Any = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Optional[Any] = errors # how to handle errors in decoding _lowerCAmelCase : Dict = bytes_to_unicode() _lowerCAmelCase : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding="""utf-8""" ) as merges_handle: _lowerCAmelCase : Tuple = merges_handle.read().split("""\n""" )[1:-1] _lowerCAmelCase : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase : Union[str, Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _lowerCAmelCase : Dict = {} _lowerCAmelCase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: '''simple docstring''' return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self : str , _UpperCAmelCase : List[str] ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] _lowerCAmelCase : Any = tuple(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: _lowerCAmelCase : Optional[int] = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : int = 0 while i < len(_UpperCAmelCase ): try: _lowerCAmelCase : Optional[int] = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : List[str] = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Tuple = tuple(_UpperCAmelCase ) _lowerCAmelCase : Dict = new_word if len(_UpperCAmelCase ) == 1: break else: _lowerCAmelCase : Union[str, Any] = get_pairs(_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = """ """.join(_UpperCAmelCase ) _lowerCAmelCase : Any = word return word def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : int ) -> str: '''simple docstring''' _lowerCAmelCase : List[Any] = [] for token in re.findall(self.pat , _UpperCAmelCase ): _lowerCAmelCase : Union[str, Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(""" """ ) ) return bpe_tokens def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = """""".join(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : Optional[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + """\n""" ) _lowerCAmelCase : Dict = 0 with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) _lowerCAmelCase : str = token_index writer.write(""" """.join(_UpperCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] _lowerCAmelCase : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=False , **_UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()): _lowerCAmelCase : Optional[Any] = """ """ + text return (text, kwargs) def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' _lowerCAmelCase : List[Any] = super()._pad( encoded_inputs=_UpperCAmelCase , max_length=_UpperCAmelCase , padding_strategy=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: _lowerCAmelCase : List[Any] = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCAmelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCAmelCase : str = len(encoded_inputs["""global_attention_mask"""] ) != len(_UpperCAmelCase ) if needs_to_be_padded: _lowerCAmelCase : Optional[Any] = len(_UpperCAmelCase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCAmelCase : Union[str, Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": _lowerCAmelCase : List[Any] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
159
1
'''simple docstring''' def snake_case_ (_a : list[list[int]] , _a : int , _a : int , _a : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def snake_case_ (_a : list[list[int]] , _a : list[int] , _a : int ): # Base Case if curr_ind == len(_a ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_a ) ): if valid_connection(_a , _a , _a , _a ): # Insert current vertex into path as next transition UpperCAmelCase = next_ver # Validate created path if util_hamilton_cycle(_a , _a , curr_ind + 1 ): return True # Backtrack UpperCAmelCase = -1 return False def snake_case_ (_a : list[list[int]] , _a : int = 0 ): UpperCAmelCase = [-1] * (len(_a ) + 1) # initialize start and end of path with starting index UpperCAmelCase = UpperCAmelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_a , _a , 1 ) else []
34
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' # word like '180' or '身高' or '神' for char in word: UpperCamelCase = ord(UpperCamelCase_ ) if not _is_chinese_char(UpperCamelCase_ ): return 0 return 1 def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCamelCase = set() for token in tokens: UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ ) if chinese_word: word_set.add(UpperCamelCase_ ) UpperCamelCase = list(UpperCamelCase_ ) return word_list def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] ) UpperCamelCase = bert_tokens UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ ) while start < end: UpperCamelCase = True if is_chinese(bert_word[start] ): UpperCamelCase = min(end - start , UpperCamelCase_ ) for i in range(UpperCamelCase_ , 1 , -1 ): UpperCamelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase = """##""" + bert_word[j] UpperCamelCase = start + i UpperCamelCase = False break if single_word: start += 1 return bert_word def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res] ltp_res.extend(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = [] for id in input_ids: UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ ) input_tokens.append(UpperCamelCase_ ) UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase_ ): if token[:2] == "##": UpperCamelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ): ref_id.append(UpperCamelCase_ ) ref_ids.append(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) return ref_ids def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase = LTP(args.ltp ) # faster in GPU device UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids] f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
343
0
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = TapasConfig.from_json_file(_snake_case ) # set absolute/relative position embeddings parameter UpperCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": UpperCAmelCase = TapasForQuestionAnswering(config=_snake_case ) elif task == "WTQ": # run_task_main.py hparams UpperCAmelCase = 4 UpperCAmelCase = True # hparam_utils.py hparams UpperCAmelCase = 0.664694 UpperCAmelCase = 0.207951 UpperCAmelCase = 0.121194 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = 0.0352513 UpperCAmelCase = TapasForQuestionAnswering(config=_snake_case ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams UpperCAmelCase = 4 UpperCAmelCase = False # hparam_utils.py hparams UpperCAmelCase = 36.4519 UpperCAmelCase = 0.903421 UpperCAmelCase = 222.088 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 0.763141 UpperCAmelCase = TapasForQuestionAnswering(config=_snake_case ) elif task == "TABFACT": UpperCAmelCase = TapasForSequenceClassification(config=_snake_case ) elif task == "MLM": UpperCAmelCase = TapasForMaskedLM(config=_snake_case ) elif task == "INTERMEDIATE_PRETRAINING": UpperCAmelCase = TapasModel(config=_snake_case ) else: raise ValueError(F'''Task {task} not supported.''' ) print(F'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_snake_case , _snake_case , _snake_case ) # Save pytorch-model (weights and configuration) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_snake_case ) # Save tokenizer files print(F'''Save tokenizer files to {pytorch_dump_path}''' ) UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(_snake_case ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
234
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _UpperCamelCase = None _UpperCamelCase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _UpperCamelCase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def _a ( _snake_case , _snake_case=1 , _snake_case=256 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def _a ( _snake_case ): """simple docstring""" with open(_snake_case , """r""" ) as f: return json.load(_snake_case ) def _a ( _snake_case , _snake_case ): """simple docstring""" with open(_snake_case , """w""" ) as f: json.dump(_snake_case , _snake_case ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case=True ): """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) UpperCAmelCase = os.path.join(_snake_case , """tmp""" ) os.makedirs(_snake_case , exist_ok=_snake_case ) UpperCAmelCase = read_json(os.path.join(_snake_case , """params.json""" ) ) UpperCAmelCase = NUM_SHARDS[model_size] UpperCAmelCase = params["""n_layers"""] UpperCAmelCase = params["""n_heads"""] UpperCAmelCase = n_heads // num_shards UpperCAmelCase = params["""dim"""] UpperCAmelCase = dim // n_heads UpperCAmelCase = 10000.0 UpperCAmelCase = 1.0 / (base ** (torch.arange(0 , _snake_case , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase = params["""n_kv_heads"""] # for GQA / MQA UpperCAmelCase = n_heads_per_shard // num_key_value_heads UpperCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase = n_heads UpperCAmelCase = n_heads_per_shard UpperCAmelCase = dim # permute for sliced rotary def permute(_snake_case , _snake_case=n_heads , _snake_case=dim , _snake_case=dim ): return w.view(_snake_case , dima // n_heads // 2 , 2 , _snake_case ).transpose(1 , 2 ).reshape(_snake_case , _snake_case ) print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase = torch.load(os.path.join(_snake_case , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded UpperCAmelCase = [ torch.load(os.path.join(_snake_case , F'''consolidated.{i:02d}.pth''' ) , map_location="""cpu""" ) for i in range(_snake_case ) ] UpperCAmelCase = 0 UpperCAmelCase = {"""weight_map""": {}} for layer_i in range(_snake_case ): UpperCAmelCase = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded UpperCAmelCase = { F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wq.weight'''] ), F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wk.weight'''] ), F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''], F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''], F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''], F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''], F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''], F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''], F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase = { F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.attention_norm.weight''' ].clone(), F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } UpperCAmelCase = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(_snake_case , _snake_case , _snake_case ) for i in range(_snake_case ) ] , dim=0 , ).reshape(_snake_case , _snake_case ) ) UpperCAmelCase = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view( _snake_case , _snake_case , _snake_case ) for i in range(_snake_case ) ] , dim=0 , ).reshape(_snake_case , _snake_case ) , _snake_case , _snake_case , _snake_case , ) UpperCAmelCase = torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view( _snake_case , _snake_case , _snake_case ) for i in range(_snake_case ) ] , dim=0 , ).reshape(_snake_case , _snake_case ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(_snake_case )] , dim=1 ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_snake_case )] , dim=0 ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_snake_case )] , dim=1 ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_snake_case )] , dim=0 ) UpperCAmelCase = inv_freq for k, v in state_dict.items(): UpperCAmelCase = filename param_count += v.numel() torch.save(_snake_case , os.path.join(_snake_case , _snake_case ) ) UpperCAmelCase = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded UpperCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: UpperCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(_snake_case )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(_snake_case )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase = filename param_count += v.numel() torch.save(_snake_case , os.path.join(_snake_case , _snake_case ) ) # Write configs UpperCAmelCase = {"""total_size""": param_count * 2} write_json(_snake_case , os.path.join(_snake_case , """pytorch_model.bin.index.json""" ) ) UpperCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 UpperCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 UpperCAmelCase = LlamaConfig( hidden_size=_snake_case , intermediate_size=compute_intermediate_size(_snake_case , _snake_case , _snake_case ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=_snake_case , ) config.save_pretrained(_snake_case ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) UpperCAmelCase = LlamaForCausalLM.from_pretrained(_snake_case , torch_dtype=torch.floataa , low_cpu_mem_usage=_snake_case ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(_snake_case , safe_serialization=_snake_case ) shutil.rmtree(_snake_case ) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) UpperCAmelCase = tokenizer_class(_snake_case ) tokenizer.save_pretrained(_snake_case ) def _a ( ): """simple docstring""" UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=_snake_case , help="""Whether or not to save using `safetensors`.""" ) UpperCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , _snake_case ) if __name__ == "__main__": main()
234
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class UpperCAmelCase ( __lowercase ): A__ : Any = "lxmert" A__ : Dict = {} def __init__(self : Optional[int] , snake_case__ : Tuple=3_05_22 , snake_case__ : List[str]=7_68 , snake_case__ : Dict=12 , snake_case__ : Optional[int]=95_00 , snake_case__ : int=16_00 , snake_case__ : int=4_00 , snake_case__ : Any=30_72 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : str=0.1 , snake_case__ : str=0.1 , snake_case__ : Dict=5_12 , snake_case__ : Union[str, Any]=2 , snake_case__ : Optional[int]=0.02 , snake_case__ : List[Any]=1e-12 , snake_case__ : Tuple=9 , snake_case__ : Dict=5 , snake_case__ : Optional[Any]=5 , snake_case__ : Optional[Any]=20_48 , snake_case__ : str=4 , snake_case__ : List[str]=6.67 , snake_case__ : List[Any]=True , snake_case__ : List[str]=True , snake_case__ : int=True , snake_case__ : Any=True , snake_case__ : Optional[int]=True , snake_case__ : Optional[Any]=True , snake_case__ : Any=True , **snake_case__ : int , ) -> Any: '''simple docstring''' snake_case : Any = vocab_size snake_case : List[str] = hidden_size snake_case : Optional[int] = num_attention_heads snake_case : List[Any] = hidden_act snake_case : str = intermediate_size snake_case : Dict = hidden_dropout_prob snake_case : Optional[int] = attention_probs_dropout_prob snake_case : Optional[int] = max_position_embeddings snake_case : Dict = type_vocab_size snake_case : Union[str, Any] = initializer_range snake_case : Dict = layer_norm_eps snake_case : List[Any] = num_qa_labels snake_case : List[Any] = num_object_labels snake_case : List[Any] = num_attr_labels snake_case : Optional[int] = l_layers snake_case : Tuple = x_layers snake_case : Dict = r_layers snake_case : List[str] = visual_feat_dim snake_case : Optional[int] = visual_pos_dim snake_case : Any = visual_loss_normalizer snake_case : int = task_matched snake_case : str = task_mask_lm snake_case : Optional[int] = task_obj_predict snake_case : Union[str, Any] = task_qa snake_case : Union[str, Any] = visual_obj_loss snake_case : Optional[int] = visual_attr_loss snake_case : List[str] = visual_feat_loss snake_case : List[Any] = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**snake_case__ )
59
class lowerCamelCase__ : '''simple docstring''' def __init__( self :Union[str, Any] ) -> None: __UpperCamelCase : dict[str, TrieNode] = {} # Mapping from char to TrieNode __UpperCamelCase : List[str] = False def _lowerCamelCase ( self :Any , a :list[str] ) -> None: for word in words: self.insert(a ) def _lowerCamelCase ( self :List[str] , a :str ) -> None: __UpperCamelCase : Dict = self for char in word: if char not in curr.nodes: __UpperCamelCase : List[Any] = TrieNode() __UpperCamelCase : List[Any] = curr.nodes[char] __UpperCamelCase : Union[str, Any] = True def _lowerCamelCase ( self :Optional[int] , a :str ) -> bool: __UpperCamelCase : Union[str, Any] = self for char in word: if char not in curr.nodes: return False __UpperCamelCase : Union[str, Any] = curr.nodes[char] return curr.is_leaf def _lowerCamelCase ( self :Any , a :str ) -> None: def _delete(a :TrieNode , a :str , a :int ) -> bool: if index == len(a ): # If word does not exist if not curr.is_leaf: return False __UpperCamelCase : str = False return len(curr.nodes ) == 0 __UpperCamelCase : List[Any] = word[index] __UpperCamelCase : Optional[int] = curr.nodes.get(a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted __UpperCamelCase : int = _delete(a , a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , a , 0 ) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : TrieNode , _lowerCamelCase : str) -> None: '''simple docstring''' if node.is_leaf: print(_lowerCamelCase , end=" ") for key, value in node.nodes.items(): print_words(_lowerCamelCase , word + key) def _SCREAMING_SNAKE_CASE ( ) -> bool: '''simple docstring''' __UpperCamelCase : int = "banana bananas bandana band apple all beast".split() __UpperCamelCase : Union[str, Any] = TrieNode() root.insert_many(_lowerCamelCase) # print_words(root, "") assert all(root.find(_lowerCamelCase) for word in words) assert root.find("banana") assert not root.find("bandanas") assert not root.find("apps") assert root.find("apple") assert root.find("all") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : bool) -> None: '''simple docstring''' print(str(_lowerCamelCase) , "works!" if passes else "doesn't work :(") def _SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' assert test_trie() def _SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' print_results("Testing trie functionality" , test_trie()) if __name__ == "__main__": main()
232
0
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' return str(lowerCAmelCase__ ) == str(lowerCAmelCase__ )[::-1] def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> Optional[Any]: '''simple docstring''' return int(lowerCAmelCase__ ) + int(str(lowerCAmelCase__ )[::-1] ) def __UpperCAmelCase ( UpperCAmelCase_ : int = 1_00_00 ) -> List[str]: '''simple docstring''' __snake_case : Dict = [] for num in range(1 , lowerCAmelCase__ ): __snake_case : List[str] = 0 __snake_case : List[Any] = num while iterations < 50: __snake_case : Tuple = sum_reverse(lowerCAmelCase__ ) iterations += 1 if is_palindrome(lowerCAmelCase__ ): break else: lychrel_nums.append(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) if __name__ == "__main__": print(f'''{solution() = }''')
366
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __UpperCAmelCase ( UpperCAmelCase_ : Namespace ) -> Union[str, Any]: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _a : str= "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class UpperCamelCase ( lowercase ): @staticmethod def _lowercase (_A : ArgumentParser) -> Tuple: __snake_case : Optional[Any] = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=_A , required=_A , help='Model\'s type.') train_parser.add_argument( '--tf_checkpoint' , type=_A , required=_A , help='TensorFlow checkpoint path or folder.') train_parser.add_argument( '--pytorch_dump_output' , type=_A , required=_A , help='Path to the PyTorch saved model output.') train_parser.add_argument('--config' , type=_A , default='' , help='Configuration file path or folder.') train_parser.add_argument( '--finetuning_task_name' , type=_A , default=_A , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=_A) def __init__(self : List[str] , _A : str , _A : str , _A : str , _A : str , _A : str , *_A : Any , ) -> Optional[Any]: __snake_case : List[Any] = logging.get_logger('transformers-cli/converting') self._logger.info(f"Loading model {model_type}") __snake_case : List[str] = model_type __snake_case : int = tf_checkpoint __snake_case : Optional[int] = pytorch_dump_output __snake_case : Optional[Any] = config __snake_case : Optional[Any] = finetuning_task_name def _lowercase (self : List[str]) -> str: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_A) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A) if "ckpt" in self._tf_checkpoint.lower(): __snake_case : Union[str, Any] = self._tf_checkpoint __snake_case : List[Any] = '' else: __snake_case : Optional[Any] = self._tf_checkpoint __snake_case : List[Any] = '' convert_transfo_xl_checkpoint_to_pytorch( _A , self._config , self._pytorch_dump_output , _A) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]')
95
0
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __snake_case : Any = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: List[str] , **_SCREAMING_SNAKE_CASE: Any) -> Tuple: """simple docstring""" super().__init__(**_A) requires_backends(self , "vision") self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self: Any , _SCREAMING_SNAKE_CASE: Union[str, List[str], "Image", List["Image"]] , **_SCREAMING_SNAKE_CASE: Optional[int]) -> Union[str, Any]: """simple docstring""" return super().__call__(_A , **_A) def _SCREAMING_SNAKE_CASE ( self: Optional[int] , **_SCREAMING_SNAKE_CASE: Dict) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : str = {} if "candidate_labels" in kwargs: __lowerCAmelCase : List[str] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: __lowerCAmelCase : Optional[Any] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: Tuple="This is a photo of {}.") -> Optional[int]: """simple docstring""" __lowerCAmelCase : int = load_image(_A) __lowerCAmelCase : Optional[int] = self.image_processor(images=[image] , return_tensors=self.framework) __lowerCAmelCase : Optional[Any] = candidate_labels __lowerCAmelCase : Optional[int] = [hypothesis_template.format(_A) for x in candidate_labels] __lowerCAmelCase : Tuple = self.tokenizer(_A , return_tensors=self.framework , padding=_A) __lowerCAmelCase : Optional[int] = [text_inputs] return inputs def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = model_inputs.pop("candidate_labels") __lowerCAmelCase : Tuple = model_inputs.pop("text_inputs") if isinstance(text_inputs[0] , _A): __lowerCAmelCase : Tuple = text_inputs[0] else: # Batching case. __lowerCAmelCase : str = text_inputs[0][0] __lowerCAmelCase : Union[str, Any] = self.model(**_A , **_A) __lowerCAmelCase : Optional[Any] = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = model_outputs.pop("candidate_labels") __lowerCAmelCase : Any = model_outputs["logits"][0] if self.framework == "pt": __lowerCAmelCase : int = logits.softmax(dim=-1).squeeze(-1) __lowerCAmelCase : List[Any] = probs.tolist() if not isinstance(_A , _A): __lowerCAmelCase : Any = [scores] elif self.framework == "tf": __lowerCAmelCase : str = stable_softmax(_A , axis=-1) __lowerCAmelCase : str = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""") __lowerCAmelCase : Tuple = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(_A , _A) , key=lambda _SCREAMING_SNAKE_CASE: -x[0]) ] return result
269
'''simple docstring''' import functools def snake_case ( UpperCAmelCase , UpperCAmelCase )-> int: """simple docstring""" # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase ) == 0: return 0 if min(UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase ) >= 3_6_6: raise ValueError('All days elements should be less than 366' ) __A = set(UpperCAmelCase ) @functools.cache def dynamic_programming(UpperCAmelCase ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
161
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowerCamelCase_ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def lowerCAmelCase( __lowerCamelCase ): for pegasus_name, hf_name in PATTERNS: __a = k.replace(__lowerCamelCase , __lowerCamelCase ) return k def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = DEFAULTS.copy() cfg_kwargs.update(__lowerCamelCase ) __a = PegasusConfig(**__lowerCamelCase ) __a = PegasusForConditionalGeneration(__lowerCamelCase ) __a = torch_model.model.state_dict() __a = {} for k, v in tf_weights.items(): __a = rename_state_dict_key(__lowerCamelCase ) if new_k not in sd: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: __a = v.T __a = torch.tensor(__lowerCamelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected __a = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __a = mapping['shared.weight'] __a = mapping['shared.weight'] __a = {k: torch.zeros_like(__lowerCamelCase ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**__lowerCamelCase ) __a , __a = torch_model.model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) __a = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def lowerCAmelCase( __lowerCamelCase="./ckpt/aeslc/model.ckpt-32000" ): __a = tf.train.list_variables(__lowerCamelCase ) __a = {} __a = ['Adafactor', 'global_step'] for name, shape in tqdm(__lowerCamelCase , desc='converting tf checkpoint to dict' ): __a = any(pat in name for pat in ignore_name ) if skip_key: continue __a = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) __a = array return tf_weights def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): # save tokenizer first __a = Path(__lowerCamelCase ).parent.name __a = task_specific_params[f'''summarization_{dataset}''']['max_position_embeddings'] __a = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=__lowerCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCamelCase ) # convert model __a = get_tf_weights_as_numpy(__lowerCamelCase ) __a = task_specific_params[f'''summarization_{dataset}'''] if dataset == "large": __a = task_specific_params __a = convert_pegasus(__lowerCamelCase , __lowerCamelCase ) torch_model.save_pretrained(__lowerCamelCase ) __a = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(__lowerCamelCase , Path(__lowerCamelCase ) / 'pytorch_model.bin' ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCamelCase_ : Dict = parser.parse_args() if args.save_dir is None: lowerCamelCase_ : Optional[Any] = Path(args.tf_ckpt_path).parent.name lowerCamelCase_ : int = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
362
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
197
0
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging A: Tuple = logging.get_logger(__name__) def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Dict ): UpperCAmelCase : Tuple = set() UpperCAmelCase : Optional[Any] = [] def parse_line(UpperCamelCase : Optional[Any] ): for line in fp: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase : Dict = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCAmelCase_ ) > 0: UpperCAmelCase : Union[str, Any] = """\n""".join(lowerCAmelCase_ ) # Only keep the warnings specified in `targets` if any(F": {x}: " in warning for x in targets ): selected_warnings.add(lowerCAmelCase_ ) buffer.clear() continue else: UpperCAmelCase : Optional[int] = line.strip() buffer.append(lowerCAmelCase_ ) if from_gh: for filename in os.listdir(lowerCAmelCase_ ): UpperCAmelCase : Any = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) if not os.path.isdir(lowerCAmelCase_ ): # read the file if filename != "warnings.txt": continue with open(lowerCAmelCase_ ) as fp: parse_line(lowerCAmelCase_ ) else: try: with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file if filename != "warnings.txt": continue with z.open(lowerCAmelCase_ ) as fp: parse_line(lowerCAmelCase_ ) except Exception: logger.warning( F"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : Dict ): UpperCAmelCase : Optional[int] = set() UpperCAmelCase : str = [os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) for p in os.listdir(lowerCAmelCase_ ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCAmelCase_ , lowerCAmelCase_ ) ) return selected_warnings if __name__ == "__main__": def _snake_case ( UpperCamelCase : Dict ): return values.split(""",""" ) A: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) A: int = parser.parse_args() A: List[Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links A: Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts A: Optional[Any] = extract_warnings(args.output_dir, args.targets) A: int = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
109
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : List[Any] = logging.get_logger(__name__) _snake_case : List[Any] = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """beit""" def __init__( self : List[Any] , lowerCAmelCase_ : Tuple=8_1_9_2 , lowerCAmelCase_ : Optional[int]=7_6_8 , lowerCAmelCase_ : int=1_2 , lowerCAmelCase_ : Optional[int]=1_2 , lowerCAmelCase_ : Any=3_0_7_2 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : int=1e-12 , lowerCAmelCase_ : int=2_2_4 , lowerCAmelCase_ : str=1_6 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[Any]=[3, 5, 7, 1_1] , lowerCAmelCase_ : Optional[Any]=[1, 2, 3, 6] , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Dict=0.4 , lowerCAmelCase_ : Tuple=2_5_6 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Optional[int]=2_5_5 , **lowerCAmelCase_ : Any , ) -> Dict: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_mask_token __lowerCAmelCase = use_absolute_position_embeddings __lowerCAmelCase = use_relative_position_bias __lowerCAmelCase = use_shared_relative_position_bias __lowerCAmelCase = layer_scale_init_value __lowerCAmelCase = drop_path_rate __lowerCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCAmelCase = out_indices __lowerCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCAmelCase = use_auxiliary_head __lowerCAmelCase = auxiliary_loss_weight __lowerCAmelCase = auxiliary_channels __lowerCAmelCase = auxiliary_num_convs __lowerCAmelCase = auxiliary_concat_input __lowerCAmelCase = semantic_loss_ignore_index class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = version.parse("""1.11""" ) @property def lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase ( self : Optional[Any] ) -> float: return 1e-4
284
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] ={ 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple =[ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =[ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
367
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __lowerCAmelCase : Tuple =trt.Logger(trt.Logger.WARNING) __lowerCAmelCase : Optional[Any] =absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __lowerCAmelCase : List[Any] =logging.getLogger(__name__) __lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) __lowerCAmelCase : Tuple =parser.parse_args() if args.tokenizer_name: __lowerCAmelCase : int =AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) __lowerCAmelCase : Union[str, Any] =args.per_device_eval_batch_size __lowerCAmelCase : List[Any] =(args.eval_batch_size, args.max_seq_length) # TRT Engine properties __lowerCAmelCase : Tuple =True __lowerCAmelCase : int ="temp_engine/bert-fp32.engine" if args.fpaa: __lowerCAmelCase : Tuple ="temp_engine/bert-fp16.engine" if args.inta: __lowerCAmelCase : Optional[int] ="temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") __lowerCAmelCase : Tuple =1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __lowerCAmelCase : Optional[Any] =[network.get_input(i) for i in range(network.num_inputs)] __lowerCAmelCase : Any =[_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __lowerCAmelCase : Optional[Any] =1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __lowerCAmelCase : int =builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __lowerCAmelCase : Dict =builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def UpperCamelCase ( _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict ): A__ = np.asarray(inputs["input_ids"] , dtype=np.intaa ) A__ = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) A__ = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _lowerCamelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _lowerCamelCase ) # start time A__ = time.time() # Run inference context.execute_async( bindings=[int(_lowerCamelCase ) for d_inp in d_inputs] + [int(_lowerCamelCase ), int(_lowerCamelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) cuda.memcpy_dtoh_async(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Synchronize the stream and take time stream.synchronize() # end time A__ = time.time() A__ = end_time - start_time A__ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __lowerCAmelCase : str =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase : List[Any] =load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __lowerCAmelCase : Optional[Any] =raw_datasets["validation"].column_names __lowerCAmelCase : Optional[Any] ="question" if "question" in column_names else column_names[0] __lowerCAmelCase : str ="context" if "context" in column_names else column_names[1] __lowerCAmelCase : Optional[Any] ="answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __lowerCAmelCase : Any =tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __lowerCAmelCase : Any =min(args.max_seq_length, tokenizer.model_max_length) def UpperCamelCase ( _lowerCamelCase : Optional[int] ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A__ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A__ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=_lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A__ = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A__ = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A__ = tokenized_examples.sequence_ids(_lowerCamelCase ) A__ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A__ = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A__ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples __lowerCAmelCase : str =raw_datasets["validation"] # Validation Feature Creation __lowerCAmelCase : Union[str, Any] =eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) __lowerCAmelCase : List[Any] =default_data_collator __lowerCAmelCase : List[Any] =eval_dataset.remove_columns(["example_id", "offset_mapping"]) __lowerCAmelCase : List[str] =DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. A__ = postprocess_qa_predictions( examples=_lowerCamelCase , features=_lowerCamelCase , predictions=_lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A__ = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: A__ = [{"id": k, "prediction_text": v} for k, v in predictions.items()] A__ = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_lowerCamelCase , label_ids=_lowerCamelCase ) __lowerCAmelCase : Tuple =load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): return trt.volume(engine.get_binding_shape(_lowerCamelCase ) ) * engine.get_binding_dtype(_lowerCamelCase ).itemsize # Allocate device memory for inputs and outputs. __lowerCAmelCase : Any =[cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __lowerCAmelCase : List[Any] =cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __lowerCAmelCase : List[str] =cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __lowerCAmelCase : List[str] =cuda.mem_alloc(h_outputa.nbytes) __lowerCAmelCase : int =cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __lowerCAmelCase : Optional[Any] =cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") __lowerCAmelCase : str =0.0 __lowerCAmelCase : Tuple =0 __lowerCAmelCase : List[str] =timeit.default_timer() __lowerCAmelCase : Union[str, Any] =None for step, batch in enumerate(eval_dataloader): __lowerCAmelCase , __lowerCAmelCase : Dict =model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __lowerCAmelCase , __lowerCAmelCase : List[Any] =outputs __lowerCAmelCase : Tuple =torch.tensor(start_logits) __lowerCAmelCase : Tuple =torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __lowerCAmelCase : Tuple =accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __lowerCAmelCase : Union[str, Any] =accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __lowerCAmelCase : int =(accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __lowerCAmelCase : List[Any] =logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __lowerCAmelCase : Dict =nested_truncate(all_preds, len(eval_dataset)) __lowerCAmelCase : Optional[int] =timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000)) logger.info("Total Number of Inference = %d", niter) __lowerCAmelCase : Optional[Any] =post_processing_function(eval_examples, eval_dataset, all_preds) __lowerCAmelCase : Optional[Any] =metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
123
0
from collections.abc import Callable def lowerCAmelCase__ ( a__: Callable[[float], float] , a__: float , a__: float ) -> float: '''simple docstring''' _UpperCAmelCase = a _UpperCAmelCase = b if function(a__ ) == 0: # one of the a or b is a root for the function return a elif function(a__ ) == 0: return b elif ( function(a__ ) * function(a__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _UpperCAmelCase = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(a__ ) == 0: return mid elif function(a__ ) * function(a__ ) < 0: _UpperCAmelCase = mid else: _UpperCAmelCase = mid _UpperCAmelCase = start + (end - start) / 2.0 return mid def lowerCAmelCase__ ( a__: float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
329
from collections.abc import Generator def lowerCAmelCase__ ( ) -> Generator[int, None, None]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = 0, 1 while True: _UpperCAmelCase , _UpperCAmelCase = b, a + b yield b def lowerCAmelCase__ ( a__: int = 1_0_0_0 ) -> int: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = fibonacci_generator() while len(str(next(a__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
329
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : Union[str, Any] , *snake_case__ : Any , **snake_case__ : Dict ): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
298
"""simple docstring""" import numpy as np import datasets _lowerCAmelCase : Optional[int] = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ _lowerCAmelCase : Tuple = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ _lowerCAmelCase : Optional[int] = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __a ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ): '''simple docstring''' # convert to numpy arrays UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction UpperCAmelCase__ : Optional[Any] = X - np.mean(snake_case__ ) UpperCAmelCase__ : Tuple = np.cov(reference_distribution.T ) try: UpperCAmelCase__ : str = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: UpperCAmelCase__ : Optional[Any] = np.linalg.pinv(snake_case__ ) UpperCAmelCase__ : List[Any] = np.dot(snake_case__ , snake_case__ ) UpperCAmelCase__ : Tuple = np.dot(snake_case__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
298
1
import qiskit def __lowerCamelCase ( UpperCamelCase__ = 2 ): '''simple docstring''' snake_case_ = qubits # Using Aer's simulator snake_case_ = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register snake_case_ = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , UpperCamelCase__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , UpperCamelCase__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(UpperCamelCase__ ) ) , list(range(UpperCamelCase__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator snake_case_ = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=1000 ) return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": print(F'''Total count for various states are: {quantum_entanglement(3)}''')
285
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) # General docstring _UpperCAmelCase : Dict = """ResNetConfig""" # Base docstring _UpperCAmelCase : Optional[int] = """microsoft/resnet-50""" _UpperCAmelCase : Optional[Any] = [1, 2048, 7, 7] # Image classification docstring _UpperCAmelCase : Tuple = """microsoft/resnet-50""" _UpperCAmelCase : int = """tiger cat""" _UpperCAmelCase : Optional[Any] = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class lowercase ( nn.Module ): def __init__( self , snake_case , snake_case , snake_case = 3 , snake_case = 1 , snake_case = "relu" ): super().__init__() snake_case_ = nn.Convad( snake_case , snake_case , kernel_size=snake_case , stride=snake_case , padding=kernel_size // 2 , bias=snake_case ) snake_case_ = nn.BatchNormad(snake_case ) snake_case_ = ACTaFN[activation] if activation is not None else nn.Identity() def a ( self , snake_case ): snake_case_ = self.convolution(snake_case ) snake_case_ = self.normalization(snake_case ) snake_case_ = self.activation(snake_case ) return hidden_state class lowercase ( nn.Module ): def __init__( self , snake_case ): super().__init__() snake_case_ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) snake_case_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) snake_case_ = config.num_channels def a ( self , snake_case ): snake_case_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) snake_case_ = self.embedder(snake_case ) snake_case_ = self.pooler(snake_case ) return embedding class lowercase ( nn.Module ): def __init__( self , snake_case , snake_case , snake_case = 2 ): super().__init__() snake_case_ = nn.Convad(snake_case , snake_case , kernel_size=1 , stride=snake_case , bias=snake_case ) snake_case_ = nn.BatchNormad(snake_case ) def a ( self , snake_case ): snake_case_ = self.convolution(snake_case ) snake_case_ = self.normalization(snake_case ) return hidden_state class lowercase ( nn.Module ): def __init__( self , snake_case , snake_case , snake_case = 1 , snake_case = "relu" ): super().__init__() snake_case_ = in_channels != out_channels or stride != 1 snake_case_ = ( ResNetShortCut(snake_case , snake_case , stride=snake_case ) if should_apply_shortcut else nn.Identity() ) snake_case_ = nn.Sequential( ResNetConvLayer(snake_case , snake_case , stride=snake_case ) , ResNetConvLayer(snake_case , snake_case , activation=snake_case ) , ) snake_case_ = ACTaFN[activation] def a ( self , snake_case ): snake_case_ = hidden_state snake_case_ = self.layer(snake_case ) snake_case_ = self.shortcut(snake_case ) hidden_state += residual snake_case_ = self.activation(snake_case ) return hidden_state class lowercase ( nn.Module ): def __init__( self , snake_case , snake_case , snake_case = 1 , snake_case = "relu" , snake_case = 4 ): super().__init__() snake_case_ = in_channels != out_channels or stride != 1 snake_case_ = out_channels // reduction snake_case_ = ( ResNetShortCut(snake_case , snake_case , stride=snake_case ) if should_apply_shortcut else nn.Identity() ) snake_case_ = nn.Sequential( ResNetConvLayer(snake_case , snake_case , kernel_size=1 ) , ResNetConvLayer(snake_case , snake_case , stride=snake_case ) , ResNetConvLayer(snake_case , snake_case , kernel_size=1 , activation=snake_case ) , ) snake_case_ = ACTaFN[activation] def a ( self , snake_case ): snake_case_ = hidden_state snake_case_ = self.layer(snake_case ) snake_case_ = self.shortcut(snake_case ) hidden_state += residual snake_case_ = self.activation(snake_case ) return hidden_state class lowercase ( nn.Module ): def __init__( self , snake_case , snake_case , snake_case , snake_case = 2 , snake_case = 2 , ): super().__init__() snake_case_ = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer snake_case_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(snake_case , snake_case , stride=snake_case , activation=config.hidden_act ) , *[layer(snake_case , snake_case , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def a ( self , snake_case ): snake_case_ = input for layer in self.layers: snake_case_ = layer(snake_case ) return hidden_state class lowercase ( nn.Module ): def __init__( self , snake_case ): super().__init__() snake_case_ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) snake_case_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(snake_case , config.depths[1:] ): self.stages.append(ResNetStage(snake_case , snake_case , snake_case , depth=snake_case ) ) def a ( self , snake_case , snake_case = False , snake_case = True ): snake_case_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case_ = hidden_states + (hidden_state,) snake_case_ = stage_module(snake_case ) if output_hidden_states: snake_case_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=snake_case , hidden_states=snake_case , ) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : List[str] = ResNetConfig __SCREAMING_SNAKE_CASE : Any = '''resnet''' __SCREAMING_SNAKE_CASE : int = '''pixel_values''' __SCREAMING_SNAKE_CASE : Tuple = True def a ( self , snake_case ): if isinstance(snake_case , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(snake_case , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a ( self , snake_case , snake_case=False ): if isinstance(snake_case , snake_case ): snake_case_ = value _UpperCAmelCase : Tuple = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _UpperCAmelCase : Optional[int] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , lowercase_ , ) class lowercase ( lowercase_ ): def __init__( self , snake_case ): super().__init__(snake_case ) snake_case_ = config snake_case_ = ResNetEmbeddings(snake_case ) snake_case_ = ResNetEncoder(snake_case ) snake_case_ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self , snake_case , snake_case = None , snake_case = None ): snake_case_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = self.embedder(snake_case ) snake_case_ = self.encoder( snake_case , output_hidden_states=snake_case , return_dict=snake_case ) snake_case_ = encoder_outputs[0] snake_case_ = self.pooler(snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case , pooler_output=snake_case , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , lowercase_ , ) class lowercase ( lowercase_ ): def __init__( self , snake_case ): super().__init__(snake_case ) snake_case_ = config.num_labels snake_case_ = ResNetModel(snake_case ) # classification head snake_case_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self , snake_case = None , snake_case = None , snake_case = None , snake_case = None , ): snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = self.resnet(snake_case , output_hidden_states=snake_case , return_dict=snake_case ) snake_case_ = outputs.pooler_output if return_dict else outputs[1] snake_case_ = self.classifier(snake_case ) snake_case_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case_ = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case_ = 'single_label_classification' else: snake_case_ = 'multi_label_classification' if self.config.problem_type == "regression": snake_case_ = MSELoss() if self.num_labels == 1: snake_case_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case_ = loss_fct(snake_case , snake_case ) elif self.config.problem_type == "single_label_classification": snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case_ = BCEWithLogitsLoss() snake_case_ = loss_fct(snake_case , snake_case ) if not return_dict: snake_case_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=snake_case , logits=snake_case , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , lowercase_ , ) class lowercase ( lowercase_ , lowercase_ ): def __init__( self , snake_case ): super().__init__(snake_case ) super()._init_backbone(snake_case ) snake_case_ = [config.embedding_size] + config.hidden_sizes snake_case_ = ResNetEmbeddings(snake_case ) snake_case_ = ResNetEncoder(snake_case ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case ) @replace_return_docstrings(output_type=snake_case , config_class=_CONFIG_FOR_DOC ) def a ( self , snake_case , snake_case = None , snake_case = None ): snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ = self.embedder(snake_case ) snake_case_ = self.encoder(snake_case , output_hidden_states=snake_case , return_dict=snake_case ) snake_case_ = outputs.hidden_states snake_case_ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: snake_case_ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=snake_case , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=snake_case , )
285
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _UpperCAmelCase : Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: lowerCamelCase__ : int = UniSpeechSatForSequenceClassification.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase ) lowerCamelCase__ : Any = downstream_dict['projector.weight'] lowerCamelCase__ : Tuple = downstream_dict['projector.bias'] lowerCamelCase__ : str = downstream_dict['model.post_net.linear.weight'] lowerCamelCase__ : Dict = downstream_dict['model.post_net.linear.bias'] return model def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase ) lowerCamelCase__ : List[Any] = downstream_dict['model.linear.weight'] lowerCamelCase__ : Optional[int] = downstream_dict['model.linear.bias'] return model def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase__ : Any = UniSpeechSatForXVector.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase ) lowerCamelCase__ : List[Any] = downstream_dict['connector.weight'] lowerCamelCase__ : Optional[Any] = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowerCamelCase__ : Optional[Any] = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] lowerCamelCase__ : Dict = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] lowerCamelCase__ : List[str] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] lowerCamelCase__ : List[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] lowerCamelCase__ : str = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] lowerCamelCase__ : int = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] lowerCamelCase__ : List[str] = downstream_dict['objective.W'] return model @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: lowerCamelCase__ : Any = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : Union[str, Any] = checkpoint['Downstream'] lowerCamelCase__ : int = UniSpeechSatConfig.from_pretrained(_UpperCAmelCase ) lowerCamelCase__ : Dict = WavaVecaFeatureExtractor.from_pretrained( _UpperCAmelCase , return_attention_mask=_UpperCAmelCase , do_normalize=_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): lowerCamelCase__ : Optional[int] = convert_classification(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) elif arch.endswith('ForAudioFrameClassification' ): lowerCamelCase__ : Any = convert_diarization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) elif arch.endswith('ForXVector' ): lowerCamelCase__ : Union[str, Any] = convert_xvector(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: lowerCamelCase__ : Tuple = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(_UpperCAmelCase ) hf_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": _UpperCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") _UpperCAmelCase : List[str] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
45
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any=7 , UpperCAmelCase : int=3 , UpperCAmelCase : Optional[Any]=18 , UpperCAmelCase : str=30 , UpperCAmelCase : List[str]=400 , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=True , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = size if size is not None else {'shortest_edge': 18} lowerCamelCase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCamelCase__ : Optional[Any] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : List[str] = min_resolution lowerCamelCase__ : Union[str, Any] = max_resolution lowerCamelCase__ : Optional[int] = do_resize lowerCamelCase__ : int = size lowerCamelCase__ : Optional[int] = do_center_crop lowerCamelCase__ : str = crop_size lowerCamelCase__ : Optional[Any] = do_normalize lowerCamelCase__ : Tuple = image_mean lowerCamelCase__ : Union[str, Any] = image_std def A_ ( self : Any ) -> Optional[int]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = LevitImageProcessor if is_vision_available() else None def A_ ( self : Tuple ) -> Tuple: lowerCamelCase__ : str = LevitImageProcessingTester(self ) @property def A_ ( self : Tuple ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self : Optional[int] ) -> int: lowerCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'size' ) ) def A_ ( self : List[Any] ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCamelCase__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def A_ ( self : str ) -> str: pass def A_ ( self : Optional[int] ) -> List[Any]: # Initialize image_processing lowerCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input lowerCamelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase__ : Optional[Any] = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A_ ( self : List[str] ) -> List[Any]: # Initialize image_processing lowerCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input lowerCamelCase__ : Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase__ : Any = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A_ ( self : str ) -> int: # Initialize image_processing lowerCamelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input lowerCamelCase__ : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase__ : Any = image_processing(UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
45
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'data2vec-text' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ): super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = classifier_dropout class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
45
"""simple docstring""" def lowercase ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __a = set() # Replace all the whitespace in our sentence __a = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowerCAmelCase__ ) == 26 def lowercase ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __a = [False] * 26 for char in input_str: if char.islower(): __a = True elif char.isupper(): __a = True return all(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def lowercase ( ) -> None: from timeit import timeit __a = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=lowerCAmelCase__ ) ) print(timeit('''is_pangram_faster()''' , setup=lowerCAmelCase__ ) ) print(timeit('''is_pangram_fastest()''' , setup=lowerCAmelCase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
45
1
"""simple docstring""" from collections.abc import Callable class UpperCAmelCase_ : def __init__( self : Dict , A : Callable | None = None ): # Stores actual heap items. _UpperCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _UpperCAmelCase : dict = {} # Stores current size of heap. _UpperCAmelCase : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _UpperCAmelCase : Any = key or (lambda A : x) def snake_case_ ( self : List[Any] , A : int ): return int((i - 1) / 2 ) if i > 0 else None def snake_case_ ( self : List[Any] , A : int ): _UpperCAmelCase : Tuple = int(2 * i + 1 ) return left if 0 < left < self.size else None def snake_case_ ( self : List[Any] , A : int ): _UpperCAmelCase : Tuple = int(2 * i + 2 ) return right if 0 < right < self.size else None def snake_case_ ( self : Optional[int] , A : int , A : int ): _UpperCAmelCase , _UpperCAmelCase : int = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _UpperCAmelCase , _UpperCAmelCase : Any = self.arr[j], self.arr[i] def snake_case_ ( self : List[str] , A : int , A : int ): return self.arr[i][1] < self.arr[j][1] def snake_case_ ( self : Dict , A : int ): _UpperCAmelCase : str = self._left(A ) _UpperCAmelCase : str = self._right(A ) _UpperCAmelCase : List[Any] = i if left is not None and not self._cmp(A , A ): _UpperCAmelCase : Optional[int] = left if right is not None and not self._cmp(A , A ): _UpperCAmelCase : Any = right return valid_parent def snake_case_ ( self : Tuple , A : int ): _UpperCAmelCase : Tuple = self._parent(A ) while parent is not None and not self._cmp(A , A ): self._swap(A , A ) _UpperCAmelCase , _UpperCAmelCase : Dict = parent, self._parent(A ) def snake_case_ ( self : Optional[int] , A : int ): _UpperCAmelCase : Tuple = self._get_valid_parent(A ) while valid_parent != index: self._swap(A , A ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = valid_parent, self._get_valid_parent(A ) def snake_case_ ( self : Dict , A : int , A : int ): if item not in self.pos_map: return _UpperCAmelCase : Any = self.pos_map[item] _UpperCAmelCase : Optional[int] = [item, self.key(A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(A ) self._heapify_down(A ) def snake_case_ ( self : List[str] , A : int ): if item not in self.pos_map: return _UpperCAmelCase : str = self.pos_map[item] del self.pos_map[item] _UpperCAmelCase : Tuple = self.arr[self.size - 1] _UpperCAmelCase : List[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(A ) self._heapify_down(A ) def snake_case_ ( self : Any , A : int , A : int ): _UpperCAmelCase : Any = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(A )] ) else: _UpperCAmelCase : Any = [item, self.key(A )] _UpperCAmelCase : List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def snake_case_ ( self : Tuple ): return self.arr[0] if self.size else None def snake_case_ ( self : Any ): _UpperCAmelCase : Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __snake_case ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
202
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _lowerCAmelCase : List[str] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _UpperCAmelCase : str = k.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return k def __snake_case ( SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' _UpperCAmelCase : List[Any] = DEFAULTS.copy() cfg_kwargs.update(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = PegasusConfig(**SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = PegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[int] = torch_model.model.state_dict() _UpperCAmelCase : Union[str, Any] = {} for k, v in tf_weights.items(): _UpperCAmelCase : Union[str, Any] = rename_state_dict_key(SCREAMING_SNAKE_CASE__ ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: _UpperCAmelCase : Any = v.T _UpperCAmelCase : str = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected _UpperCAmelCase : Tuple = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) _UpperCAmelCase : Any = mapping["shared.weight"] _UpperCAmelCase : Dict = mapping["shared.weight"] _UpperCAmelCase : Dict = {k: torch.zeros_like(SCREAMING_SNAKE_CASE__ ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = torch_model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Union[str, Any] = {} _UpperCAmelCase : Optional[Any] = ["Adafactor", "global_step"] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ , desc="converting tf checkpoint to dict" ): _UpperCAmelCase : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase : int = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Dict = array return tf_weights def __snake_case ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict = Path(SCREAMING_SNAKE_CASE__ ).parent.name _UpperCAmelCase : Tuple = task_specific_params[f'summarization_{dataset}']["max_position_embeddings"] _UpperCAmelCase : Dict = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=SCREAMING_SNAKE_CASE__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(SCREAMING_SNAKE_CASE__ ) # convert model _UpperCAmelCase : Union[str, Any] = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = task_specific_params[f'summarization_{dataset}'] if dataset == "large": _UpperCAmelCase : Optional[int] = task_specific_params _UpperCAmelCase : str = convert_pegasus(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[Any] = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(SCREAMING_SNAKE_CASE__ , Path(SCREAMING_SNAKE_CASE__ ) / "pytorch_model.bin" ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") _lowerCAmelCase : Union[str, Any] = parser.parse_args() if args.save_dir is None: _lowerCAmelCase : Tuple = Path(args.tf_ckpt_path).parent.name _lowerCAmelCase : Dict = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
202
1
"""simple docstring""" SCREAMING_SNAKE_CASE : int = """Input must be a string of 8 numbers plus letter""" SCREAMING_SNAKE_CASE : List[Any] = """TRWAGMYFPDXBNJZSQVHLCKE""" def lowercase ( _snake_case : str ) ->bool: """simple docstring""" if not isinstance(_snake_case , _snake_case ): __snake_case : Optional[int] = f"""Expected string as input, found {type(_snake_case ).__name__}""" raise TypeError(_snake_case ) __snake_case : int = spanish_id.replace('''-''' , '''''' ).upper() if len(_snake_case ) != 9: raise ValueError(_snake_case ) try: __snake_case : List[Any] = int(spanish_id_clean[0:8] ) __snake_case : Any = spanish_id_clean[8] except ValueError as ex: raise ValueError(_snake_case ) from ex if letter.isdigit(): raise ValueError(_snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
102
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
162
0
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , a : List[Any] , a : List[Any]=13 , a : List[str]=7 , a : Optional[Any]=True , a : int=True , a : Union[str, Any]=True , a : Any=True , a : Any=99 , a : Tuple=32 , a : int=5 , a : Union[str, Any]=4 , a : Tuple=37 , a : Optional[int]="gelu" , a : Any=0.1 , a : List[Any]=0.1 , a : int=5_12 , a : Union[str, Any]=16 , a : Union[str, Any]=2 , a : List[Any]=0.02 , a : Dict=False , a : Any=True , a : Optional[Any]="None" , a : Optional[Any]=3 , a : Optional[int]=4 , a : Tuple=None , ): """simple docstring""" __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = relative_attention __lowerCamelCase = position_biased_input __lowerCamelCase = pos_att_type __lowerCamelCase = scope def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.get_config() __lowerCamelCase = 3_00 return config def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : List[Any] ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self : str , a : Union[str, Any] , a : int , a : Tuple , a : str , a : List[Any] , a : Tuple , a : Optional[Any] ): """simple docstring""" __lowerCamelCase = DebertaModel(config=a ) model.to(a ) model.eval() __lowerCamelCase = model(a , attention_mask=a , token_type_ids=a )[0] __lowerCamelCase = model(a , token_type_ids=a )[0] __lowerCamelCase = model(a )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : int , a : List[str] , a : List[Any] , a : List[Any] , a : Optional[Any] , a : List[str] , a : Optional[int] ): """simple docstring""" __lowerCamelCase = DebertaForMaskedLM(config=a ) model.to(a ) model.eval() __lowerCamelCase = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Optional[Any] , a : int , a : str , a : Union[str, Any] , a : Any , a : Dict , a : Any ): """simple docstring""" __lowerCamelCase = self.num_labels __lowerCamelCase = DebertaForSequenceClassification(a ) model.to(a ) model.eval() __lowerCamelCase = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : Dict , a : int , a : Any , a : Dict , a : Optional[int] , a : List[str] , a : str ): """simple docstring""" __lowerCamelCase = self.num_labels __lowerCamelCase = DebertaForTokenClassification(config=a ) model.to(a ) model.eval() __lowerCamelCase = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : Optional[Any] , a : Any , a : List[str] , a : Tuple , a : str , a : Optional[int] , a : Any ): """simple docstring""" __lowerCamelCase = DebertaForQuestionAnswering(config=a ) model.to(a ) model.eval() __lowerCamelCase = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Union[str, Any] =( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase : str =( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : int =True lowerCamelCase : List[str] =False lowerCamelCase : Optional[Any] =False lowerCamelCase : int =False lowerCamelCase : List[Any] =False def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = DebertaModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=a , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = DebertaModel.from_pretrained(a ) self.assertIsNotNone(a ) @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) __lowerCamelCase = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __lowerCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCamelCase = model(a , attention_mask=a )[0] # compare the actual values for a slice. __lowerCamelCase = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
237
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : Any , *, a : int = 4 , a : int = 7_68 , a : int , a : Optional[int] , ): """simple docstring""" super().__init__() __lowerCamelCase = nn.Parameter(torch.zeros(a ) ) # parameters for additional clip time embeddings __lowerCamelCase = nn.Linear(a , a ) __lowerCamelCase = nn.Linear(a , a ) # parameters for encoder hidden states __lowerCamelCase = clip_extra_context_tokens __lowerCamelCase = nn.Linear( a , self.clip_extra_context_tokens * cross_attention_dim ) __lowerCamelCase = nn.Linear(a , a ) __lowerCamelCase = nn.LayerNorm(a ) def SCREAMING_SNAKE_CASE__ ( self : int , *, a : Union[str, Any] , a : Any , a : str , a : Any ): """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowerCamelCase = image_embeddings.shape[0] __lowerCamelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowerCamelCase = classifier_free_guidance_embeddings.expand( a , -1 ) __lowerCamelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowerCamelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowerCamelCase = self.embedding_proj(a ) __lowerCamelCase = self.clip_image_embeddings_project_to_time_embeddings(a ) __lowerCamelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowerCamelCase = self.clip_extra_context_tokens_proj(a ) __lowerCamelCase = clip_extra_context_tokens.reshape(a , -1 , self.clip_extra_context_tokens ) __lowerCamelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowerCamelCase = self.encoder_hidden_states_proj(a ) __lowerCamelCase = self.text_encoder_hidden_states_norm(a ) __lowerCamelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
237
1
'''simple docstring''' from __future__ import annotations import math def __lowerCAmelCase (__lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = str(__lowerCAmelCase ) _UpperCAmelCase : str = [n] for i in range(1 , len(__lowerCAmelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __lowerCAmelCase (__lowerCAmelCase ): if len(str(__lowerCAmelCase ) ) > 3: if not is_prime(int(str(__lowerCAmelCase )[-3:] ) ) or not is_prime(int(str(__lowerCAmelCase )[:3] ) ): return False return True def __lowerCAmelCase (__lowerCAmelCase = 11 ): _UpperCAmelCase : list[int] = [] _UpperCAmelCase : List[Any] = 13 while len(__lowerCAmelCase ) != count: if validate(__lowerCAmelCase ): _UpperCAmelCase : List[str] = list_truncated_nums(__lowerCAmelCase ) if all(is_prime(__lowerCAmelCase ) for i in list_nums ): list_truncated_primes.append(__lowerCAmelCase ) num += 2 return list_truncated_primes def __lowerCAmelCase (): return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(11)) = }''')
234
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = DPTConfig() if "large" in checkpoint_url: _UpperCAmelCase : List[str] = 1_024 _UpperCAmelCase : Optional[int] = 4_096 _UpperCAmelCase : Union[str, Any] = 24 _UpperCAmelCase : List[Any] = 16 _UpperCAmelCase : List[Any] = [5, 11, 17, 23] _UpperCAmelCase : int = [256, 512, 1_024, 1_024] _UpperCAmelCase : Optional[Any] = (1, 384, 384) if "ade" in checkpoint_url: _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : List[Any] = 150 _UpperCAmelCase : Optional[Any] = "huggingface/label-files" _UpperCAmelCase : Optional[int] = "ade20k-id2label.json" _UpperCAmelCase : Tuple = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) ) , "r" ) ) _UpperCAmelCase : str = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : int = idalabel _UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : int = [1, 150, 480, 480] return config, expected_shape def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCAmelCase : str = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: _UpperCAmelCase : List[str] = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: _UpperCAmelCase : Dict = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: _UpperCAmelCase : int = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: _UpperCAmelCase : int = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: _UpperCAmelCase : int = name.replace("proj" , "projection" ) if "blocks" in name: _UpperCAmelCase : Tuple = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: _UpperCAmelCase : Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _UpperCAmelCase : Union[str, Any] = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: _UpperCAmelCase : Optional[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _UpperCAmelCase : int = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: _UpperCAmelCase : List[Any] = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: _UpperCAmelCase : List[str] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: _UpperCAmelCase : Union[str, Any] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: _UpperCAmelCase : str = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: _UpperCAmelCase : int = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: _UpperCAmelCase : Tuple = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: _UpperCAmelCase : Optional[Any] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCAmelCase : List[str] = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: _UpperCAmelCase : Tuple = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: _UpperCAmelCase : Optional[int] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: _UpperCAmelCase : Optional[int] = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: _UpperCAmelCase : Optional[Any] = name.replace("conv1" , "convolution1" ) if "conv2" in name: _UpperCAmelCase : Optional[Any] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCAmelCase : Optional[Any] = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: _UpperCAmelCase : Tuple = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: _UpperCAmelCase : Optional[int] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: _UpperCAmelCase : Union[str, Any] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: _UpperCAmelCase : Union[str, Any] = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: _UpperCAmelCase : List[str] = name.replace("pretrained" , "dpt" ) if "bn" in name: _UpperCAmelCase : Dict = name.replace("bn" , "batch_norm" ) if "head" in name: _UpperCAmelCase : Tuple = name.replace("head" , "head.head" ) if "encoder.norm" in name: _UpperCAmelCase : Optional[Any] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: _UpperCAmelCase : Dict = name.replace("auxlayer" , "auxiliary_head.head" ) return name def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : int = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) _UpperCAmelCase : str = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[: config.hidden_size, :] _UpperCAmelCase : Dict = in_proj_bias[: config.hidden_size] _UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : str = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase (): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Any = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL _UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): _UpperCAmelCase : Tuple = state_dict.pop(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model _UpperCAmelCase : Any = DPTForSemanticSegmentation(__lowerCAmelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image _UpperCAmelCase : Any = 480 if "ade" in checkpoint_url else 384 _UpperCAmelCase : List[str] = DPTImageProcessor(size=__lowerCAmelCase ) _UpperCAmelCase : Any = prepare_img() _UpperCAmelCase : Dict = image_processor(__lowerCAmelCase , return_tensors="pt" ) # forward pass _UpperCAmelCase : Tuple = model(**__lowerCAmelCase ).logits if "ade" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth # Assert logits _UpperCAmelCase : Dict = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: _UpperCAmelCase : str = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(__lowerCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __lowerCAmelCase ) ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=__lowerCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCamelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
234
1
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _snake_case = True except ImportError: _snake_case = False try: from torch.hub import _get_torch_home _snake_case = _get_torch_home() except ImportError: _snake_case = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) _snake_case = os.path.join(torch_cache_home, "transformers") _snake_case = "https://cdn.huggingface.co" _snake_case = "https://s3.amazonaws.com/models.huggingface.co/bert" _snake_case = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) _snake_case = os.path.join(PATH, "config.yaml") _snake_case = os.path.join(PATH, "attributes.txt") _snake_case = os.path.join(PATH, "objects.txt") _snake_case = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) _snake_case = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) _snake_case = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) _snake_case = "pytorch_model.bin" _snake_case = "config.yaml" def A ( _lowerCamelCase=OBJECTS , _lowerCamelCase=ATTRIBUTES ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] with open(_lowerCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _lowerCAmelCase : List[Any] = [] with open(_lowerCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = OrderedDict() with open(_lowerCamelCase , "rb" ) as f: _lowerCAmelCase : Tuple = pkl.load(_lowerCamelCase )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): _lowerCAmelCase : Optional[int] = ckp.pop(_lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): _lowerCAmelCase : Optional[int] = torch.tensor(_lowerCamelCase ) else: assert isinstance(_lowerCamelCase , torch.tensor ), type(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = v return r class UpperCAmelCase_ : lowerCamelCase__ = {} def __init__( self, __a, __a = "root", __a=0): '''simple docstring''' _lowerCAmelCase : Tuple = name _lowerCAmelCase : Union[str, Any] = level _lowerCAmelCase : Dict = {} for k, v in dictionary.items(): if v is None: raise ValueError() _lowerCAmelCase : Optional[int] = copy.deepcopy(lowerCamelCase__) _lowerCAmelCase : Optional[Any] = copy.deepcopy(lowerCamelCase__) if isinstance(lowerCamelCase__, lowerCamelCase__): _lowerCAmelCase : Union[str, Any] = Config(lowerCamelCase__, name=lowerCamelCase__, level=level + 1) _lowerCAmelCase : int = v setattr(self, lowerCamelCase__, lowerCamelCase__) _lowerCAmelCase : Tuple = d def __repr__( self): '''simple docstring''' return str(list((self._pointer.keys()))) def __setattr__( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = val _lowerCAmelCase : Dict = val _lowerCAmelCase : Dict = key.split(".") _lowerCAmelCase : int = len(lowerCamelCase__) - 1 _lowerCAmelCase : Dict = self._pointer if len(lowerCamelCase__) > 1: for i, l in enumerate(lowerCamelCase__): if hasattr(self, lowerCamelCase__) and isinstance(getattr(self, lowerCamelCase__), lowerCamelCase__): setattr(getattr(self, lowerCamelCase__), ".".join(levels[i:]), lowerCamelCase__) if l == last_level: _lowerCAmelCase : Dict = val else: _lowerCAmelCase : List[str] = pointer[l] def snake_case__ ( self): '''simple docstring''' return self._pointer def snake_case__ ( self, __a, __a): '''simple docstring''' with open(f"{file_name}", "w") as stream: dump(lowerCamelCase__, lowerCamelCase__) def snake_case__ ( self, __a, __a): '''simple docstring''' with open(f"{file_name}", "w") as stream: json.dump(lowerCamelCase__, lowerCamelCase__) @staticmethod def snake_case__ ( __a): '''simple docstring''' with open(lowerCamelCase__) as stream: _lowerCAmelCase : int = load(lowerCamelCase__, Loader=lowerCamelCase__) return data def __str__( self): '''simple docstring''' _lowerCAmelCase : str = ''' ''' if self._name != "root": _lowerCAmelCase : Dict = f"{t * (self._level-1)}{self._name}:\n" else: _lowerCAmelCase : Dict = '''''' _lowerCAmelCase : int = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(lowerCamelCase__, lowerCamelCase__): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(lowerCamelCase__).__name__})\n" _lowerCAmelCase : Optional[Any] = level return r[:-1] @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' _lowerCAmelCase : List[Any] = cls.get_config_dict(lowerCamelCase__, **lowerCamelCase__) return cls(lowerCamelCase__) @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = kwargs.pop("cache_dir", lowerCamelCase__) _lowerCAmelCase : List[str] = kwargs.pop("force_download", lowerCamelCase__) _lowerCAmelCase : Optional[Any] = kwargs.pop("resume_download", lowerCamelCase__) _lowerCAmelCase : int = kwargs.pop("proxies", lowerCamelCase__) _lowerCAmelCase : Tuple = kwargs.pop("local_files_only", lowerCamelCase__) if os.path.isdir(lowerCamelCase__): _lowerCAmelCase : List[str] = os.path.join(lowerCamelCase__, lowerCamelCase__) elif os.path.isfile(lowerCamelCase__) or is_remote_url(lowerCamelCase__): _lowerCAmelCase : Dict = pretrained_model_name_or_path else: _lowerCAmelCase : Optional[int] = hf_bucket_url(lowerCamelCase__, filename=lowerCamelCase__, use_cdn=lowerCamelCase__) try: # Load from URL or cache if already cached _lowerCAmelCase : List[str] = cached_path( lowerCamelCase__, cache_dir=lowerCamelCase__, force_download=lowerCamelCase__, proxies=lowerCamelCase__, resume_download=lowerCamelCase__, local_files_only=lowerCamelCase__, ) # Load config dict if resolved_config_file is None: raise EnvironmentError _lowerCAmelCase : Dict = Config.load_yaml(lowerCamelCase__) except EnvironmentError: _lowerCAmelCase : Optional[Any] = '''Can\'t load config for''' raise EnvironmentError(lowerCamelCase__) if resolved_config_file == config_file: print("loading configuration file from path") else: print("loading configuration file cache") return Config.load_yaml(lowerCamelCase__), kwargs def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.load("dump.pt" , map_location=in_tensor.device ) _lowerCAmelCase : List[Any] = in_tensor.numpy() _lowerCAmelCase : List[Any] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(_lowerCamelCase , _lowerCamelCase , rtol=0.01 , atol=0.1 ), ( F"{sum([1 for x in np.isclose(_lowerCamelCase , _lowerCamelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = urlparse(_lowerCamelCase ) return parsed.scheme in ("http", "https") def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : Any = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _lowerCAmelCase : int = '''/''' not in model_id if legacy_format: return F"{endpoint}/{model_id}-{filename}" else: return F"{endpoint}/{model_id}/{filename}" def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=0 , _lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_lowerCamelCase , _lowerCamelCase ): ua += "; " + "; ".join("{}/{}".format(_lowerCamelCase , _lowerCamelCase ) for k, v in user_agent.items() ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): ua += "; " + user_agent _lowerCAmelCase : List[str] = {'''user-agent''': ua} if resume_size > 0: _lowerCAmelCase : Any = '''bytes=%d-''' % (resume_size,) _lowerCAmelCase : List[str] = requests.get(_lowerCamelCase , stream=_lowerCamelCase , proxies=_lowerCamelCase , headers=_lowerCamelCase ) if response.status_code == 416: # Range not satisfiable return _lowerCAmelCase : Tuple = response.headers.get("Content-Length" ) _lowerCAmelCase : Any = resume_size + int(_lowerCamelCase ) if content_length is not None else None _lowerCAmelCase : int = tqdm( unit="B" , unit_scale=_lowerCamelCase , total=_lowerCamelCase , initial=_lowerCamelCase , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(_lowerCamelCase ) ) temp_file.write(_lowerCamelCase ) progress.close() def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=10 , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=False , ): '''simple docstring''' if cache_dir is None: _lowerCAmelCase : List[Any] = TRANSFORMERS_CACHE if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : int = str(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCAmelCase : Tuple = None if not local_files_only: try: _lowerCAmelCase : List[str] = requests.head(_lowerCamelCase , allow_redirects=_lowerCamelCase , proxies=_lowerCamelCase , timeout=_lowerCamelCase ) if response.status_code == 200: _lowerCAmelCase : Tuple = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _lowerCAmelCase : int = url_to_filename(_lowerCamelCase , _lowerCamelCase ) # get cache path to put the file _lowerCAmelCase : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_lowerCamelCase ): return cache_path else: _lowerCAmelCase : List[Any] = [ file for file in fnmatch.filter(os.listdir(_lowerCamelCase ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(_lowerCamelCase ) > 0: return os.path.join(_lowerCamelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set \'local_files_only\'" " to False." ) return None # From now on, etag is not None. if os.path.exists(_lowerCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _lowerCAmelCase : int = cache_path + '''.lock''' with FileLock(_lowerCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(_lowerCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _lowerCAmelCase : Any = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(_lowerCamelCase , "a+b" ) as f: yield f _lowerCAmelCase : List[str] = _resumable_file_manager if os.path.exists(_lowerCamelCase ): _lowerCAmelCase : Dict = os.stat(_lowerCamelCase ).st_size else: _lowerCAmelCase : Dict = 0 else: _lowerCAmelCase : Tuple = partial(tempfile.NamedTemporaryFile , dir=_lowerCamelCase , delete=_lowerCamelCase ) _lowerCAmelCase : int = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , _lowerCamelCase , temp_file.name , ) http_get( _lowerCamelCase , _lowerCamelCase , proxies=_lowerCamelCase , resume_size=_lowerCamelCase , user_agent=_lowerCamelCase , ) os.replace(temp_file.name , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = {'''url''': url, '''etag''': etag} _lowerCAmelCase : Dict = cache_path + '''.json''' with open(_lowerCamelCase , "w" ) as meta_file: json.dump(_lowerCamelCase , _lowerCamelCase ) return cache_path def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = url.encode("utf-8" ) _lowerCAmelCase : Tuple = shaaaa(_lowerCamelCase ) _lowerCAmelCase : Dict = url_hash.hexdigest() if etag: _lowerCAmelCase : Optional[Any] = etag.encode("utf-8" ) _lowerCAmelCase : str = shaaaa(_lowerCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , ): '''simple docstring''' if cache_dir is None: _lowerCAmelCase : Tuple = TRANSFORMERS_CACHE if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Tuple = str(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : int = str(_lowerCamelCase ) if is_remote_url(_lowerCamelCase ): # URL, so get it from the cache (downloading if necessary) _lowerCAmelCase : Optional[int] = get_from_cache( _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , proxies=_lowerCamelCase , resume_download=_lowerCamelCase , user_agent=_lowerCamelCase , local_files_only=_lowerCamelCase , ) elif os.path.exists(_lowerCamelCase ): # File, and it exists. _lowerCAmelCase : Optional[Any] = url_or_filename elif urlparse(_lowerCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(_lowerCamelCase ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(_lowerCamelCase ) ) if extract_compressed_file: if not is_zipfile(_lowerCamelCase ) and not tarfile.is_tarfile(_lowerCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _lowerCAmelCase : Union[str, Any] = os.path.split(_lowerCamelCase ) _lowerCAmelCase : List[str] = output_file.replace("." , "-" ) + '''-extracted''' _lowerCAmelCase : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.isdir(_lowerCamelCase ) and os.listdir(_lowerCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions _lowerCAmelCase : Union[str, Any] = output_path + '''.lock''' with FileLock(_lowerCamelCase ): shutil.rmtree(_lowerCamelCase , ignore_errors=_lowerCamelCase ) os.makedirs(_lowerCamelCase ) if is_zipfile(_lowerCamelCase ): with ZipFile(_lowerCamelCase , "r" ) as zip_file: zip_file.extractall(_lowerCamelCase ) zip_file.close() elif tarfile.is_tarfile(_lowerCamelCase ): _lowerCAmelCase : Dict = tarfile.open(_lowerCamelCase ) tar_file.extractall(_lowerCamelCase ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(_lowerCamelCase ) ) return output_path_extracted return output_path def A ( _lowerCamelCase , _lowerCamelCase="," ): '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): with open(_lowerCamelCase ) as f: _lowerCAmelCase : str = eval(f.read() ) else: _lowerCAmelCase : List[str] = requests.get(_lowerCamelCase ) try: _lowerCAmelCase : str = requests.json() except Exception: _lowerCAmelCase : int = req.content.decode() assert data is not None, "could not connect" try: _lowerCAmelCase : Dict = eval(_lowerCamelCase ) except Exception: _lowerCAmelCase : Any = data.split("\n" ) req.close() return data def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = requests.get(_lowerCamelCase ) _lowerCAmelCase : Tuple = np.array(Image.open(BytesIO(response.content ) ) ) return img def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_lowerCamelCase ) with open(_lowerCamelCase , "rb" ) as stream: _lowerCAmelCase : str = pkl.load(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = weights.pop("model" ) _lowerCAmelCase : Tuple = {} for k, v in model.items(): _lowerCAmelCase : Tuple = torch.from_numpy(_lowerCamelCase ) if "running_var" in k: _lowerCAmelCase : Optional[int] = torch.tensor([0] ) _lowerCAmelCase : Optional[int] = k.replace("running_var" , "num_batches_tracked" ) _lowerCAmelCase : Union[str, Any] = zero return new def A ( ): '''simple docstring''' print(F"{os.path.abspath(os.path.join(_lowerCamelCase , os.pardir ) )}/demo.ipynb" ) def A ( _lowerCamelCase , _lowerCamelCase="RGB" ): '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): _lowerCAmelCase : str = cva.imread(_lowerCamelCase ) else: _lowerCAmelCase : Dict = get_image_from_url(_lowerCamelCase ) assert img is not None, F"could not connect to: {im}" _lowerCAmelCase : Optional[int] = cva.cvtColor(_lowerCamelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": _lowerCAmelCase : Union[str, Any] = img[:, :, ::-1] return img def A ( _lowerCamelCase , _lowerCamelCase=1 ): '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ))
357
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
0
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask UpperCAmelCase : Tuple = logging.getLogger(__name__) class __lowercase ( a_ ): """simple docstring""" def __init__( self , A=-1 ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = label_idx def __A ( self , A , A ) -> List[InputExample]: '''simple docstring''' if isinstance(A , A ): lowerCamelCase = mode.value lowerCamelCase = os.path.join(A , F'{mode}.txt' ) lowerCamelCase = 1 lowerCamelCase = [] with open(A , encoding="""utf-8""" ) as f: lowerCamelCase = [] lowerCamelCase = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=A , labels=A ) ) guid_index += 1 lowerCamelCase = [] lowerCamelCase = [] else: lowerCamelCase = line.split(""" """ ) words.append(splits[0] ) if len(A ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=A , labels=A ) ) return examples def __A ( self , A , A , A ) -> List[Any]: '''simple docstring''' lowerCamelCase = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(A ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCamelCase = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(A ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __A ( self , A ) -> List[str]: '''simple docstring''' if path: with open(A , """r""" ) as f: lowerCamelCase = f.read().splitlines() if "O" not in labels: lowerCamelCase = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( a_ ): """simple docstring""" def __init__( self ) -> Any: '''simple docstring''' super().__init__(label_idx=-2 ) def __A ( self , A ) -> List[str]: '''simple docstring''' if path: with open(A , """r""" ) as f: lowerCamelCase = f.read().splitlines() if "O" not in labels: lowerCamelCase = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( a_ ): """simple docstring""" def __A ( self , A , A ) -> List[InputExample]: '''simple docstring''' if isinstance(A , A ): lowerCamelCase = mode.value lowerCamelCase = os.path.join(A , F'{mode}.txt' ) lowerCamelCase = 1 lowerCamelCase = [] with open(A , encoding="""utf-8""" ) as f: for sentence in parse_incr(A ): lowerCamelCase = [] lowerCamelCase = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(A ) == len(A ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=A , labels=A ) ) guid_index += 1 return examples def __A ( self , A , A , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = 0 for sentence in parse_incr(A ): lowerCamelCase = preds_list[example_id] lowerCamelCase = """""" for token in sentence: out += F'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(A ) example_id += 1 def __A ( self , A ) -> List[str]: '''simple docstring''' if path: with open(A , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
252
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=3 , A=30 , A=4_00 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , A=True , A=1 / 2_55 , A=True , ) -> str: '''simple docstring''' lowerCamelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = num_channels lowerCamelCase = min_resolution lowerCamelCase = max_resolution lowerCamelCase = do_resize lowerCamelCase = size lowerCamelCase = do_normalize lowerCamelCase = image_mean lowerCamelCase = image_std lowerCamelCase = do_rescale lowerCamelCase = rescale_factor lowerCamelCase = do_pad def __A ( self ) -> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __A ( self , A , A=False ) -> List[Any]: '''simple docstring''' if not batched: lowerCamelCase = image_inputs[0] if isinstance(A , Image.Image ): lowerCamelCase , lowerCamelCase = image.size else: lowerCamelCase , lowerCamelCase = image.shape[1], image.shape[2] if w < h: lowerCamelCase = int(self.size["""shortest_edge"""] * h / w ) lowerCamelCase = self.size["""shortest_edge"""] elif w > h: lowerCamelCase = self.size["""shortest_edge"""] lowerCamelCase = int(self.size["""shortest_edge"""] * w / h ) else: lowerCamelCase = self.size["""shortest_edge"""] lowerCamelCase = self.size["""shortest_edge"""] else: lowerCamelCase = [] for image in image_inputs: lowerCamelCase , lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase = max(A , key=lambda A : item[0] )[0] lowerCamelCase = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Union[str, Any] = YolosImageProcessor if is_vision_available() else None def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = YolosImageProcessingTester(self ) @property def __A ( self ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , """image_mean""" ) ) self.assertTrue(hasattr(A , """image_std""" ) ) self.assertTrue(hasattr(A , """do_normalize""" ) ) self.assertTrue(hasattr(A , """do_resize""" ) ) self.assertTrue(hasattr(A , """size""" ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , A ) lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' pass def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(A , batched=A ) lowerCamelCase = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase = image_processing(A , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase = image_processing(A , return_tensors="""pt""" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) lowerCamelCase = self.image_processing_class(do_resize=A , do_normalize=A , do_rescale=A ) # create random PyTorch tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowerCamelCase = image_processing_a.pad(A , return_tensors="""pt""" ) lowerCamelCase = image_processing_a(A , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCamelCase = json.loads(f.read() ) lowerCamelCase = {"""image_id""": 3_97_69, """annotations""": target} # encode them lowerCamelCase = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) lowerCamelCase = image_processing(images=A , annotations=A , return_tensors="""pt""" ) # verify pixel values lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , A ) lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowerCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A ) ) # verify boxes lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A ) lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A , atol=1e-3 ) ) # verify image_id lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A ) ) # verify is_crowd lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A ) ) # verify class_labels lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A ) ) # verify orig_size lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A ) ) # verify size lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A ) ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCamelCase = json.loads(f.read() ) lowerCamelCase = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} lowerCamelCase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCamelCase = YolosImageProcessor(format="""coco_panoptic""" ) lowerCamelCase = image_processing(images=A , annotations=A , masks_path=A , return_tensors="""pt""" ) # verify pixel values lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , A ) lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowerCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A ) ) # verify boxes lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A ) lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A , atol=1e-3 ) ) # verify image_id lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A ) ) # verify is_crowd lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A ) ) # verify class_labels lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A ) ) # verify masks lowerCamelCase = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , A ) # verify orig_size lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A ) ) # verify size lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A ) )
252
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE : List[str] = 16 SCREAMING_SNAKE_CASE : Optional[int] = 32 def lowercase ( _snake_case : Accelerator , _snake_case : int = 16 ) ->Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __snake_case : Tuple = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) __snake_case : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __snake_case : List[str] = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case : Dict = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. __snake_case : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __snake_case : List[Any] = 16 elif accelerator.mixed_precision != "no": __snake_case : List[str] = 8 else: __snake_case : Union[str, Any] = None return tokenizer.pad( __a , padding='''longest''' , max_length=__a , pad_to_multiple_of=__a , return_tensors='''pt''' , ) # Instantiate dataloaders. __snake_case : Any = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) __snake_case : Any = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE : Optional[Any] = mocked_dataloaders # noqa: F811 def lowercase ( _snake_case : List[Any] , _snake_case : Optional[Any] ) ->Any: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __a ) == "1": __snake_case : Optional[Any] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __snake_case : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __snake_case : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case : int = config['''lr'''] __snake_case : Optional[int] = int(config['''num_epochs'''] ) __snake_case : Optional[Any] = int(config['''seed'''] ) __snake_case : Dict = int(config['''batch_size'''] ) set_seed(__a ) __snake_case : Optional[int] = get_dataloaders(__a , __a ) __snake_case : List[str] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __snake_case : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __snake_case : Tuple = batch_size // MAX_GPU_BATCH_SIZE __snake_case : Dict = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case : Any = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __snake_case : Dict = model.to(accelerator.device ) # Instantiate optimizer __snake_case : Tuple = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler __snake_case : Dict = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=100 , num_training_steps=(len(__a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case : Tuple = accelerator.prepare( __a , __a , __a , __a , __a ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __snake_case : Optional[int] = os.path.split(__a )[-1].split('''.''' )[0] accelerator.init_trackers(__a , __a ) # Now we train the model for epoch in range(__a ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __snake_case : Tuple = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __snake_case : int = model(**__a ) __snake_case : Optional[int] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __snake_case : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __snake_case : Optional[int] = model(**__a ) __snake_case : Union[str, Any] = outputs.logits.argmax(dim=-1 ) __snake_case : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__a , references=__a , ) __snake_case : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __a ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(__a ), '''epoch''': epoch, } , step=__a , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__a , default=__a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=__a , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __snake_case : Optional[int] = parser.parse_args() __snake_case : Union[str, Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
365
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ): '''simple docstring''' __snake_case : Any = hans_processors[task]() __snake_case : int = os.path.join( a_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Dict = label_list[2], label_list[1] __snake_case : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : int = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case : Union[str, Any] = torch.load(a_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case : Dict = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info('''Training examples: %s''' , len(a_ ) ) __snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info('''Saving features into cached file %s''' , a_ ) torch.save(self.features , a_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ): '''simple docstring''' __snake_case : List[Any] = hans_processors[task]() __snake_case : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Tuple = label_list[2], label_list[1] __snake_case : Dict = label_list __snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case : Union[str, Any] = tf.data.Dataset.from_generator( a_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case : Tuple = '''%s-%s''' % (set_type, line[0]) __snake_case : Dict = line[5] __snake_case : int = line[6] __snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case : List[Any] = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )} __snake_case : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , ) __snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0 __snake_case : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE : Dict = { """hans""": 3, } SCREAMING_SNAKE_CASE : str = { """hans""": HansProcessor, }
24
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule __a: Optional[int] = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __a: List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
198
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __a: Tuple = None __a: Tuple = logging.get_logger(__name__) __a: Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __a: Optional[Any] = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 __a: Tuple = { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = TaTokenizer SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase=100 , __lowerCAmelCase=None , **__lowerCAmelCase , ) -> Union[str, Any]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase__ : Union[str, Any] = [F"""<extra_id_{i}>""" for i in range(__lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase__ : Dict = len(set(filter(lambda __lowerCAmelCase : bool('''extra_id_''' in str(__lowerCAmelCase ) ) , __lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , extra_ids=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase__ : Union[str, Any] = vocab_file lowercase__ : Optional[int] = False if not self.vocab_file else True lowercase__ : Any = extra_ids @staticmethod def _lowerCAmelCase( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase__ : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __lowerCAmelCase , ) return max_model_length def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : List[Any] = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) logger.info(F"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase__ : Dict = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Optional[int] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCAmelCase( self ) -> List[Any]: return list( set(filter(lambda __lowerCAmelCase : bool(re.search(r'''<extra_id_\d+>''' , __lowerCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCAmelCase( self ) -> Tuple: return [self.convert_tokens_to_ids(__lowerCAmelCase ) for token in self.get_sentinel_tokens()]
198
1
'''simple docstring''' __A : Union[str, Any] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def UpperCamelCase_ ( A__ : dict , A__ : Any , A__ : Union[str, Any] ): '''simple docstring''' lowerCAmelCase_ : List[str] = set() # keep track of all the paths to be checked lowerCAmelCase_ : Optional[int] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowerCAmelCase_ : Optional[int] = queue.pop(0 ) # get the last node from the path lowerCAmelCase_ : Dict = path[-1] if node not in explored: lowerCAmelCase_ : List[Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowerCAmelCase_ : int = list(A__ ) new_path.append(A__ ) queue.append(A__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A__ ) # in case there's no path between the 2 nodes return [] def UpperCamelCase_ ( A__ : dict , A__ : Tuple , A__ : Any ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowerCAmelCase_ : Tuple = [start] lowerCAmelCase_ : str = set(A__ ) # Keep tab on distances from `start` node. lowerCAmelCase_ : Optional[int] = {start: 0, target: -1} while queue: lowerCAmelCase_ : str = queue.pop(0 ) if node == target: lowerCAmelCase_ : Optional[Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A__ ) queue.append(A__ ) lowerCAmelCase_ : Union[str, Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
89
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( A__ : int | float | str , A__ : int | float | str ): '''simple docstring''' if nth_term == "": return [""] lowerCAmelCase_ : str = int(A__ ) lowerCAmelCase_ : Tuple = int(A__ ) lowerCAmelCase_ : list[str] = [] for temp in range(int(A__ ) ): series.append(f'1 / {pow(temp + 1 , int(A__ ) )}' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() __A : str = int(input("Enter the last number (nth term) of the P-Series")) __A : Tuple = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
89
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : int = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __UpperCamelCase ( a__ ): lowerCamelCase : Optional[int] ="""gptj""" lowerCamelCase : str ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase__=5_0400 , lowerCAmelCase__=2048 , lowerCAmelCase__=4096 , lowerCAmelCase__=28 , lowerCAmelCase__=16 , lowerCAmelCase__=64 , lowerCAmelCase__=None , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=5_0256 , lowerCAmelCase__=5_0256 , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Tuple: a : List[Any] = vocab_size a : Tuple = n_positions a : Optional[Any] = n_embd a : Any = n_layer a : Tuple = n_head a : Optional[Any] = n_inner a : Dict = rotary_dim a : Optional[int] = activation_function a : Any = resid_pdrop a : Optional[Any] = embd_pdrop a : Union[str, Any] = attn_pdrop a : Optional[int] = layer_norm_epsilon a : Union[str, Any] = initializer_range a : Optional[Any] = use_cache a : List[str] = bos_token_id a : List[Any] = eos_token_id super().__init__( bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , tie_word_embeddings=lowerCAmelCase__ , **lowerCAmelCase__ ) class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = "default" , lowerCAmelCase__ = None , lowerCAmelCase__ = False , ) -> Union[str, Any]: super().__init__(lowerCAmelCase__ , task=lowerCAmelCase__ , patching_specs=lowerCAmelCase__ , use_past=lowerCAmelCase__ ) if not getattr(self._config , "pad_token_id" , lowerCAmelCase__ ): # TODO: how to do that better? a : Optional[int] = 0 @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: a : Any = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="inputs" ) a : int = {0: "batch", 1: "past_sequence + sequence"} else: a : Union[str, Any] = {0: "batch", 1: "sequence"} return common_inputs @property def __a ( self ) -> int: return self._config.n_layer @property def __a ( self ) -> int: return self._config.n_head def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: a : Optional[int] = super(lowerCAmelCase__ , self ).generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) # We need to order the input in the way they appears in the forward() a : Optional[Any] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch a, a : List[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values a : Optional[int] = seqlen + 2 a : List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) a : List[str] = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers ) ] a : List[Any] = common_inputs["attention_mask"] if self.use_past: a : int = ordered_inputs["attention_mask"].dtype a : List[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) return ordered_inputs @property def __a ( self ) -> int: return 13
105
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A_ : List[str] =logging.get_logger(__name__) A_ : Optional[Any] ={"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A_ : Tuple ={ """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A_ : Any ={ """junnyu/roformer_chinese_small""": 1_5_3_6, """junnyu/roformer_chinese_base""": 1_5_3_6, """junnyu/roformer_chinese_char_small""": 5_1_2, """junnyu/roformer_chinese_char_base""": 5_1_2, """junnyu/roformer_small_discriminator""": 1_2_8, """junnyu/roformer_small_generator""": 1_2_8, } A_ : List[str] ={ """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : List[Any] = RoFormerTokenizer def __init__( self , a__=None , a__=None , a__=True , a__="[UNK]" , a__="[SEP]" , a__="[PAD]" , a__="[CLS]" , a__="[MASK]" , a__=True , a__=None , **a__ , ): super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , tokenize_chinese_chars=a__ , strip_accents=a__ , **a__ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , a__ ) != do_lower_case or pre_tok_state.get('strip_accents' , a__ ) != strip_accents ): _lowerCamelCase = getattr(a__ , pre_tok_state.pop('type' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = pre_tok_class(**a__ ) _lowerCamelCase = do_lower_case def __getstate__( self ): _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = BertPreTokenizer() return state def __setstate__( self , a__ ): _lowerCamelCase = d _lowerCamelCase = self.__dict__['_tokenizer'].get_vocab() _lowerCamelCase = PreTokenizer.custom(JiebaPreTokenizer(a__ ) ) def snake_case_ ( self , a__ , a__=None ): _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def snake_case_ ( self , a__ , a__=None , a__=None , a__=False , **a__ , ): _lowerCamelCase = BertPreTokenizer() return super().save_pretrained(a__ , a__ , a__ , a__ , **a__ )
80
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A_ : List[str] =logging.get_logger(__name__) A_ : Optional[Any] ={"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A_ : Tuple ={ """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A_ : Any ={ """junnyu/roformer_chinese_small""": 1_5_3_6, """junnyu/roformer_chinese_base""": 1_5_3_6, """junnyu/roformer_chinese_char_small""": 5_1_2, """junnyu/roformer_chinese_char_base""": 5_1_2, """junnyu/roformer_small_discriminator""": 1_2_8, """junnyu/roformer_small_generator""": 1_2_8, } A_ : List[str] ={ """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : List[Any] = RoFormerTokenizer def __init__( self , a__=None , a__=None , a__=True , a__="[UNK]" , a__="[SEP]" , a__="[PAD]" , a__="[CLS]" , a__="[MASK]" , a__=True , a__=None , **a__ , ): super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , tokenize_chinese_chars=a__ , strip_accents=a__ , **a__ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , a__ ) != do_lower_case or pre_tok_state.get('strip_accents' , a__ ) != strip_accents ): _lowerCamelCase = getattr(a__ , pre_tok_state.pop('type' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = pre_tok_class(**a__ ) _lowerCamelCase = do_lower_case def __getstate__( self ): _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = BertPreTokenizer() return state def __setstate__( self , a__ ): _lowerCamelCase = d _lowerCamelCase = self.__dict__['_tokenizer'].get_vocab() _lowerCamelCase = PreTokenizer.custom(JiebaPreTokenizer(a__ ) ) def snake_case_ ( self , a__ , a__=None ): _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def snake_case_ ( self , a__ , a__=None , a__=None , a__=False , **a__ , ): _lowerCamelCase = BertPreTokenizer() return super().save_pretrained(a__ , a__ , a__ , a__ , **a__ )
80
1
from __future__ import annotations from collections import Counter from random import random class A : def __init__(self ): __lowercase= {} def _A (self , lowerCAmelCase ): __lowercase= {} def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if nodea not in self.connections: self.add_node(lowerCAmelCase ) if nodea not in self.connections: self.add_node(lowerCAmelCase ) __lowercase= probability def _A (self ): return list(self.connections ) def _A (self , lowerCAmelCase ): __lowercase= 0 __lowercase= random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> dict[str, int]: '''simple docstring''' __lowercase= MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase= Counter(graph.get_nodes() ) __lowercase= start for _ in range(_UpperCAmelCase ): __lowercase= graph.transition(_UpperCAmelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
295
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def A ( _UpperCAmelCase : Matrix , _UpperCAmelCase : Matrix ) -> Matrix: '''simple docstring''' _UpperCAmelCase = len(_UpperCAmelCase ) _UpperCAmelCase = [[0 for _ in range(size + 1 )] for _ in range(_UpperCAmelCase )] _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 for row in range(_UpperCAmelCase ): for col in range(_UpperCAmelCase ): _UpperCAmelCase = matrix[row][col] _UpperCAmelCase = vector[row][0] _UpperCAmelCase = 0 _UpperCAmelCase = 0 while row < size and col < size: # pivoting _UpperCAmelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_UpperCAmelCase , _UpperCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _UpperCAmelCase ): _UpperCAmelCase = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _UpperCAmelCase ): for row in range(_UpperCAmelCase ): _UpperCAmelCase = augmented[row][col] / augmented[col][col] for cola in range(_UpperCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_UpperCAmelCase ) ] def A ( _UpperCAmelCase : list[int] ) -> Callable[[int], int]: '''simple docstring''' _UpperCAmelCase = len(_UpperCAmelCase ) _UpperCAmelCase = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] _UpperCAmelCase = [[0] for _ in range(_UpperCAmelCase )] _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 for x_val, y_val in enumerate(_UpperCAmelCase ): for col in range(_UpperCAmelCase ): _UpperCAmelCase = (x_val + 1) ** (size - col - 1) _UpperCAmelCase = y_val _UpperCAmelCase = solve(_UpperCAmelCase , _UpperCAmelCase ) def interpolated_func(_UpperCAmelCase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_UpperCAmelCase ) ) return interpolated_func def A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A ( _UpperCAmelCase : Callable[[int], int] = question_function , _UpperCAmelCase : int = 10 ) -> int: '''simple docstring''' _UpperCAmelCase = [func(_UpperCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase = 0 _UpperCAmelCase = 42 _UpperCAmelCase = 42 for poly in polynomials: _UpperCAmelCase = 1 while func(_UpperCAmelCase ) == poly(_UpperCAmelCase ): x_val += 1 ret += poly(_UpperCAmelCase ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
339
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowercase: str = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Dict = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: str = ["CLIPFeatureExtractor"] __lowercase: str = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: int = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[Any] = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __lowercase: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowercase: str = random.Random() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]=1.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase): def __init__( self : List[Any], a_ : List[str], a_ : Any=7, a_ : Dict=400, a_ : str=2000, a_ : List[Any]=24, a_ : int=24, a_ : int=0.0, a_ : Union[str, Any]=1_6000, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def lowercase_ ( self : Tuple ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : Optional[Any], a_ : Union[str, Any]=False, a_ : Optional[int]=False ): """simple docstring""" def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def lowercase_ ( self : Optional[int], a_ : Tuple ): """simple docstring""" self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(a_, padding=a_, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(a_ ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, padding=a_, max_length=a_, return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, max_length=a_, padding=a_, return_tensors="np", return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="max_length", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=16, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100, 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self : List[str], a_ : int ): """simple docstring""" from datasets import load_dataset UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = feature_extractor(a_, return_tensors="pt" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], a_, atol=1e-4 ) )
31
1
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py lowercase_ = "." if __name__ == "__main__": lowercase_ = os.path.join(REPO_PATH, "utils/documentation_tests.txt") lowercase_ = [] lowercase_ = [] with open(doctest_file_path) as fp: for line in fp: lowercase_ = line.strip() lowercase_ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: lowercase_ = "\n".join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
45
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = get_activation('''swish''' ) self.assertIsInstance(_a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCAmelCase ( self ): __a = get_activation('''silu''' ) self.assertIsInstance(_a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCAmelCase ( self ): __a = get_activation('''mish''' ) self.assertIsInstance(_a , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCAmelCase ( self ): __a = get_activation('''gelu''' ) self.assertIsInstance(_a , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
45
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Optional[int]="pt" ) -> Any: A_ : Union[str, Any] = {"add_prefix_space": True} if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not line.startswith(" " ) else {} A_ : Dict = padding_side return tokenizer( [line] , max_length=_lowerCAmelCase , padding="max_length" if pad_to_max_length else None , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) def __snake_case ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , ) -> str: A_ : Optional[Any] = input_ids.ne(_lowerCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :List[Any] , snake_case :List[Any] , snake_case :str , snake_case :str , snake_case :Dict , snake_case :Any="train" , snake_case :List[Any]=None , snake_case :Tuple=None , snake_case :int=None , snake_case :Any="" , ): '''simple docstring''' super().__init__() A_ : List[str] = Path(snake_case ).joinpath(type_path + ".source" ) A_ : Any = Path(snake_case ).joinpath(type_path + ".target" ) A_ : str = self.get_char_lens(self.src_file ) A_ : Tuple = max_source_length A_ : int = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" A_ : str = tokenizer A_ : List[Any] = prefix if n_obs is not None: A_ : List[str] = self.src_lens[:n_obs] A_ : Any = src_lang A_ : Tuple = tgt_lang def __len__( self :Union[str, Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self :List[str] , snake_case :List[Any] ): '''simple docstring''' A_ : Optional[int] = index + 1 # linecache starts at 1 A_ : Optional[int] = self.prefix + linecache.getline(str(self.src_file ) , snake_case ).rstrip("\n" ) A_ : Union[str, Any] = linecache.getline(str(self.tgt_file ) , snake_case ).rstrip("\n" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : Tuple = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case ) else self.tokenizer ) A_ : Union[str, Any] = self.tokenizer.generator if isinstance(self.tokenizer , snake_case ) else self.tokenizer A_ : int = encode_line(snake_case , snake_case , self.max_source_length , "right" ) A_ : Optional[int] = encode_line(snake_case , snake_case , self.max_target_length , "right" ) A_ : str = source_inputs["input_ids"].squeeze() A_ : Union[str, Any] = target_inputs["input_ids"].squeeze() A_ : Dict = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def SCREAMING_SNAKE_CASE ( snake_case :Optional[int] ): '''simple docstring''' return [len(snake_case ) for x in Path(snake_case ).open().readlines()] def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = torch.stack([x["input_ids"] for x in batch] ) A_ : Tuple = torch.stack([x["attention_mask"] for x in batch] ) A_ : int = torch.stack([x["decoder_input_ids"] for x in batch] ) A_ : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case ) else self.tokenizer.pad_token_id ) A_ : Union[str, Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case ) else self.tokenizer.pad_token_id ) A_ : Optional[Any] = trim_batch(snake_case , snake_case ) A_ : Optional[int] = trim_batch(snake_case , snake_case , attention_mask=snake_case ) A_ : str = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch _lowerCAmelCase : Tuple = getLogger(__name__) def __snake_case ( _lowerCAmelCase : List[List] ) -> Union[str, Any]: return list(itertools.chain.from_iterable(_lowerCAmelCase ) ) def __snake_case ( _lowerCAmelCase : str ) -> None: A_ : List[Any] = get_git_info() save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , "git_log.json" ) ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=4 , **_lowerCAmelCase : Dict ) -> Dict: with open(_lowerCAmelCase , "w" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=_lowerCAmelCase , **_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Optional[int] ) -> List[str]: with open(_lowerCAmelCase ) as f: return json.load(_lowerCAmelCase ) def __snake_case ( ) -> int: A_ : Tuple = git.Repo(search_parent_directories=_lowerCAmelCase ) A_ : List[str] = { "repo_id": str(_lowerCAmelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def __snake_case ( _lowerCAmelCase : Callable , _lowerCAmelCase : Iterable ) -> List: return list(map(_lowerCAmelCase , _lowerCAmelCase ) ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> int: with open(_lowerCAmelCase , "wb" ) as f: return pickle.dump(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : Dict ) -> Union[str, Any]: def remove_articles(_lowerCAmelCase : Optional[Any] ): return re.sub(r"\b(a|an|the)\b" , " " , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : List[str] ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : List[str] ): A_ : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> int: A_ : List[str] = normalize_answer(_lowerCAmelCase ).split() A_ : Optional[Any] = normalize_answer(_lowerCAmelCase ).split() A_ : Tuple = Counter(_lowerCAmelCase ) & Counter(_lowerCAmelCase ) A_ : List[Any] = sum(common.values() ) if num_same == 0: return 0 A_ : List[str] = 1.0 * num_same / len(_lowerCAmelCase ) A_ : Optional[int] = 1.0 * num_same / len(_lowerCAmelCase ) A_ : Dict = (2 * precision * recall) / (precision + recall) return fa def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple ) -> Optional[Any]: return normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] ) -> Dict: assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) A_ : List[Any] = 0 for hypo, pred in zip(_lowerCAmelCase , _lowerCAmelCase ): em += exact_match_score(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: em /= len(_lowerCAmelCase ) return {"em": em} def __snake_case ( _lowerCAmelCase : Optional[Any] ) -> str: return model_prefix.startswith("rag" ) def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ) -> Optional[Any]: A_ : Tuple = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : int = "dropout_rate" for p in extra_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if not hasattr(_lowerCAmelCase , _lowerCAmelCase ) and not hasattr(_lowerCAmelCase , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(_lowerCAmelCase ) ) delattr(_lowerCAmelCase , _lowerCAmelCase ) continue A_ : Union[str, Any] = p if hasattr(_lowerCAmelCase , _lowerCAmelCase ) else equivalent_param[p] setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) delattr(_lowerCAmelCase , _lowerCAmelCase ) return hparams, config
353
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCAmelCase : Optional[Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCAmelCase : Tuple = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCAmelCase : List[str] = '''zero2''' _lowerCAmelCase : Dict = '''zero3''' _lowerCAmelCase : Tuple = [ZEROa, ZEROa] def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> Any: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param A_ : Dict = parameterized.to_safe_name("_".join(str(_lowerCAmelCase ) for x in param.args ) ) return f"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test _lowerCAmelCase : List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :str , snake_case :Tuple , snake_case :Tuple ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Tuple , snake_case :Optional[Any] ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :str , snake_case :Tuple ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :int ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :str , snake_case :str , snake_case :int = 10 , snake_case :bool = True , snake_case :bool = True , snake_case :bool = True , ): '''simple docstring''' A_ : Any = models[model] A_ : List[Any] = self.run_trainer( stage=snake_case , model_name=snake_case , eval_steps=snake_case , num_train_epochs=1 , distributed=snake_case , fpaa=snake_case , ) self.do_checks(snake_case ) return output_dir def SCREAMING_SNAKE_CASE ( self :str , snake_case :str , snake_case :str , snake_case :int = 10 , snake_case :int = 1 , snake_case :bool = True , snake_case :bool = True , ): '''simple docstring''' A_ : List[Any] = self.get_auto_remove_tmp_dir("./xxx" , after=snake_case ) A_ : Tuple = f"\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(snake_case )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n ".split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A_ : List[str] = f"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() A_ : List[str] = [f"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] A_ : str = self.get_launcher(snake_case ) A_ : Dict = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Optional[Any]=False ): '''simple docstring''' A_ : int = min(2 , get_gpu_count() ) if distributed else 1 return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
70
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class a__ : def __init__( self , _a , _a=13 , _a=7 , _a=False , _a=True , _a=False , _a=False , _a=19 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.0_2 , _a=3 , _a=4 , _a=None , ): lowercase : Dict = parent lowercase : List[Any] = batch_size lowercase : Any = seq_length lowercase : Optional[int] = is_training lowercase : Dict = use_input_mask lowercase : Dict = use_token_type_ids lowercase : int = use_labels lowercase : List[Any] = vocab_size lowercase : Optional[int] = hidden_size lowercase : List[Any] = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : Optional[int] = intermediate_size lowercase : Dict = hidden_act lowercase : Any = hidden_dropout_prob lowercase : int = attention_probs_dropout_prob lowercase : Any = max_position_embeddings lowercase : str = type_vocab_size lowercase : Optional[int] = type_sequence_label_size lowercase : Any = initializer_range lowercase : Dict = num_labels lowercase : List[str] = num_choices lowercase : List[str] = scope def __magic_name__ ( self ): lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any = None if self.use_input_mask: lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : int = None lowercase : Any = None lowercase : List[Any] = None if self.use_labels: lowercase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : int = ids_tensor([self.batch_size] , self.num_choices ) lowercase : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self ): lowercase : List[Any] = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=_a , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , ) return config def __magic_name__ ( self , _a , _a , _a , _a , _a , _a ): lowercase : Optional[int] = EsmForProteinFolding(config=_a ).float() model.to(_a ) model.eval() lowercase : Any = model(_a , attention_mask=_a ) lowercase : Union[str, Any] = model(_a ) lowercase : int = model(_a ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : List[str] = config_and_inputs lowercase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( a_, a_, unittest.TestCase ): __lowerCAmelCase = False __lowerCAmelCase = (EsmForProteinFolding,) if is_torch_available() else () __lowerCAmelCase = () __lowerCAmelCase = {} if is_torch_available() else {} __lowerCAmelCase = False def __magic_name__ ( self ): lowercase : Dict = EsmFoldModelTester(self ) lowercase : List[Any] = ConfigTester(self , config_class=_a , hidden_size=37 ) def __magic_name__ ( self ): self.config_tester.run_common_tests() def __magic_name__ ( self ): lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @unittest.skip("Does not support attention outputs" ) def __magic_name__ ( self ): pass @unittest.skip def __magic_name__ ( self ): pass @unittest.skip("Esm does not support embedding resizing" ) def __magic_name__ ( self ): pass @unittest.skip("Esm does not support embedding resizing" ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold does not support passing input embeds!" ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold does not support head pruning." ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold does not support head pruning." ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold does not support head pruning." ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold does not support head pruning." ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold does not support head pruning." ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def __magic_name__ ( self ): pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold only has one output format." ) def __magic_name__ ( self ): pass @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold does not support input chunking." ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def __magic_name__ ( self ): pass @unittest.skip("ESMFold doesn't support data parallel." ) def __magic_name__ ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __magic_name__ ( self ): pass @require_torch class a__ ( a_ ): @slow def __magic_name__ ( self ): lowercase : Dict = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() lowercase : List[str] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase : List[str] = model(_a )["positions"] lowercase : Any = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , _a , atol=1E-4 ) )
202
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Optional[int] = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : int = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys _A : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
202
1
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> list: '''simple docstring''' if len(__UpperCAmelCase ) <= 1: return [tuple(__UpperCAmelCase )] snake_case_ = [] def generate(__UpperCAmelCase, __UpperCAmelCase ): snake_case_ = [0] * n res.append(tuple(__UpperCAmelCase ) ) snake_case_ = 0 while i < n: if c[i] < i: if i % 2 == 0: snake_case_ ,snake_case_ = arr[i], arr[0] else: snake_case_ ,snake_case_ = arr[i], arr[c[i]] res.append(tuple(__UpperCAmelCase ) ) c[i] += 1 snake_case_ = 0 else: snake_case_ = 0 i += 1 generate(len(__UpperCAmelCase ), __UpperCAmelCase ) return res if __name__ == "__main__": a : int = input('Enter numbers separated by a comma:\n').strip() a : Tuple = [int(item) for item in user_input.split(',')] print(heaps(arr))
72
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a : Union[str, Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. a : Any = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) a : int = spec.loader.load_module() a : Dict = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` a : str = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') a : str = { 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def __magic_name__ ( ) -> Any: '''simple docstring''' snake_case_ = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case_ = False # source code of `config_class` snake_case_ = inspect.getsource(__UpperCAmelCase ) snake_case_ = _re_checkpoint.findall(__UpperCAmelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case_ ,snake_case_ = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case_ = F"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: snake_case_ = True break snake_case_ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: snake_case_ = '''\n'''.join(sorted(__UpperCAmelCase ) ) raise ValueError(F"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
72
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase : List[Any] =16 __lowerCAmelCase : Any =32 def UpperCamelCase ( _lowerCamelCase : Accelerator , _lowerCamelCase : int = 16 ): A__ = AutoTokenizer.from_pretrained("bert-base-cased" ) A__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCamelCase : Any ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) A__ = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCAmelCase : List[Any] =mocked_dataloaders # noqa: F811 def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : int ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase ) == "1": A__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: A__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["lr"] A__ = int(config["num_epochs"] ) A__ = int(config["seed"] ) A__ = int(config["batch_size"] ) set_seed(_lowerCamelCase ) A__, A__ = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) A__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__, A__, A__, A__, A__ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: A__ = os.path.split(_lowerCamelCase )[-1].split("." )[0] accelerator.init_trackers(_lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: A__ = 0 for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**_lowerCamelCase ) A__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() A__ = loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_lowerCamelCase ) A__ = outputs.logits.argmax(dim=-1 ) A__, A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , _lowerCamelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_lowerCamelCase ), "epoch": epoch, } , step=_lowerCamelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def UpperCamelCase ( ): A__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_lowerCamelCase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) A__ = parser.parse_args() A__ = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
237
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class UpperCAmelCase : __lowercase = 42 __lowercase = None @staticmethod def UpperCAmelCase_ ( )-> Dict: raise NotImplementedError def UpperCAmelCase_ ( self :List[Any] , lowercase_ :str , lowercase_ :int , lowercase_ :str , **lowercase_ :Dict )-> str: raise NotImplementedError def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :int )-> Any: raise NotImplementedError def UpperCAmelCase_ ( self :List[Any] )-> Optional[Any]: if not self.is_available(): raise RuntimeError( F"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def UpperCAmelCase_ ( cls :int )-> Any: return F"`pip install {cls.pip_package or cls.name}`" class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """optuna""" @staticmethod def UpperCAmelCase_ ( )-> int: return is_optuna_available() def UpperCAmelCase_ ( self :List[str] , lowercase_ :str , lowercase_ :int , lowercase_ :str , **lowercase_ :List[Any] )-> Tuple: return run_hp_search_optuna(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :str , lowercase_ :Optional[int] )-> Optional[Any]: return default_hp_space_optuna(lowercase_ ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """ray""" __lowercase = """'ray[tune]'""" @staticmethod def UpperCAmelCase_ ( )-> str: return is_ray_available() def UpperCAmelCase_ ( self :int , lowercase_ :Dict , lowercase_ :int , lowercase_ :str , **lowercase_ :List[str] )-> int: return run_hp_search_ray(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Dict )-> int: return default_hp_space_ray(lowercase_ ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """sigopt""" @staticmethod def UpperCAmelCase_ ( )-> Union[str, Any]: return is_sigopt_available() def UpperCAmelCase_ ( self :Any , lowercase_ :Union[str, Any] , lowercase_ :int , lowercase_ :str , **lowercase_ :Dict )-> Dict: return run_hp_search_sigopt(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Optional[int] )-> List[str]: return default_hp_space_sigopt(lowercase_ ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """wandb""" @staticmethod def UpperCAmelCase_ ( )-> List[str]: return is_wandb_available() def UpperCAmelCase_ ( self :Dict , lowercase_ :Optional[Any] , lowercase_ :int , lowercase_ :str , **lowercase_ :Dict )-> List[str]: return run_hp_search_wandb(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :str )-> Dict: return default_hp_space_wandb(lowercase_ ) __lowerCAmelCase : int ={ HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCamelCase ( ): A__ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_lowerCamelCase ) > 0: A__ = available_backends[0].name if len(_lowerCamelCase ) > 1: logger.info( F"{len(_lowerCamelCase )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
237
1
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } UpperCamelCase = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } UpperCamelCase = { '''ctrl''': 256, } UpperCamelCase = { '''Pregnancy''': 168629, '''Christianity''': 7675, '''Explain''': 106423, '''Fitness''': 63440, '''Saving''': 63163, '''Ask''': 27171, '''Ass''': 95985, '''Joke''': 163509, '''Questions''': 45622, '''Thoughts''': 49605, '''Retail''': 52342, '''Feminism''': 164338, '''Writing''': 11992, '''Atheism''': 192263, '''Netflix''': 48616, '''Computing''': 39639, '''Opinion''': 43213, '''Alone''': 44967, '''Funny''': 58917, '''Gaming''': 40358, '''Human''': 4088, '''India''': 1331, '''Joker''': 77138, '''Diet''': 36206, '''Legal''': 11859, '''Norman''': 4939, '''Tip''': 72689, '''Weight''': 52343, '''Movies''': 46273, '''Running''': 23425, '''Science''': 2090, '''Horror''': 37793, '''Confession''': 60572, '''Finance''': 12250, '''Politics''': 16360, '''Scary''': 191985, '''Support''': 12654, '''Technologies''': 32516, '''Teenage''': 66160, '''Event''': 32769, '''Learned''': 67460, '''Notion''': 182770, '''Wikipedia''': 37583, '''Books''': 6665, '''Extract''': 76050, '''Confessions''': 102701, '''Conspiracy''': 75932, '''Links''': 63674, '''Narcissus''': 150425, '''Relationship''': 54766, '''Relationships''': 134796, '''Reviews''': 41671, '''News''': 4256, '''Translation''': 26820, '''multilingual''': 128406, } def SCREAMING_SNAKE_CASE( __lowercase ) -> Union[str, Any]: A: Dict = set() A: Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A: Optional[int] = char A: Union[str, Any] = set(__lowercase ) return pairs class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : str = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = CONTROL_CODES def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any="<unk>" , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Dict: '''simple docstring''' super().__init__(unk_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: A: int = json.load(SCREAMING_SNAKE_CASE_ ) A: str = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: A: List[Any] = merges_handle.read().split('''\n''' )[1:-1] A: Any = [tuple(merge.split() ) for merge in merges] A: Optional[int] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Any = {} @property def _snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' return len(self.encoder ) def _snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any ) -> Tuple: '''simple docstring''' if token in self.cache: return self.cache[token] A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ ) A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) A: int = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: A: Union[str, Any] = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break A , A: Any = bigram A: Optional[int] = [] A: Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: A: Optional[Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A: List[Any] = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A: Optional[int] = tuple(SCREAMING_SNAKE_CASE_ ) A: List[Any] = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: A: Tuple = get_pairs(SCREAMING_SNAKE_CASE_ ) A: Optional[int] = '''@@ '''.join(SCREAMING_SNAKE_CASE_ ) A: Any = word[:-4] A: Tuple = word return word def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' A: int = [] A: Any = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE_ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) ) return split_tokens def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[int]: '''simple docstring''' A: Tuple = ''' '''.join(SCREAMING_SNAKE_CASE_ ).replace('''@@ ''' , '''''' ).strip() return out_string def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Optional[Any] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) A: Any = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) A: Optional[int] = 0 with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) A: Optional[Any] = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
334
'''simple docstring''' import os from distutils.util import strtobool def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[Any]: for e in env_keys: A: Dict = int(os.environ.get(__lowercase , -1 ) ) if val >= 0: return val return default def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False ) -> List[str]: A: str = os.environ.get(__lowercase , str(__lowercase ) ) return strtobool(__lowercase ) == 1 # As its name indicates `strtobool` actually returns an int... def SCREAMING_SNAKE_CASE( __lowercase , __lowercase="no" ) -> str: A: Optional[int] = os.environ.get(__lowercase , str(__lowercase ) ) return value
334
1
from argparse import ArgumentParser from .env import EnvironmentCommand def A_ ( ) -> str: UpperCamelCase : List[str] = ArgumentParser("Diffusers CLI tool" , usage="diffusers-cli <command> [<args>]" ) UpperCamelCase : Optional[Any] = parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(_lowerCAmelCase ) # Let's go UpperCamelCase : Optional[int] = parser.parse_args() if not hasattr(_lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run UpperCamelCase : str = args.func(_lowerCAmelCase ) service.run() if __name__ == "__main__": main()
52
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Optional[int] = ''' Human: <<task>> Assistant: ''' _lowerCAmelCase : int = '''huggingface-tools/default-prompts''' _lowerCAmelCase : Any = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict="run" ) -> List[Any]: if prompt_or_repo_id is None: A_ : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id A_ : Optional[Any] = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
300
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = '''blip_2_vision_model''' def __init__( self : int , _UpperCAmelCase : Tuple=1_408 , _UpperCAmelCase : Dict=6_144 , _UpperCAmelCase : Tuple=39 , _UpperCAmelCase : Dict=16 , _UpperCAmelCase : List[str]=224 , _UpperCAmelCase : Dict=14 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Any=0.0_0001 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Union[str, Any]=1E-1_0 , _UpperCAmelCase : Optional[Any]=True , **_UpperCAmelCase : Optional[int] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = intermediate_size _A = num_hidden_layers _A = num_attention_heads _A = patch_size _A = image_size _A = initializer_range _A = attention_dropout _A = layer_norm_eps _A = hidden_act _A = qkv_bias @classmethod def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[Any] ): cls._set_token_in_kwargs(_UpperCAmelCase ) _A , _A = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _A = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = '''blip_2_qformer''' def __init__( self : int , _UpperCAmelCase : int=30_522 , _UpperCAmelCase : Optional[Any]=768 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : int=0 , _UpperCAmelCase : str="absolute" , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=1_408 , **_UpperCAmelCase : Any , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = cross_attention_frequency _A = encoder_hidden_size @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Optional[int] ): cls._set_token_in_kwargs(_UpperCAmelCase ) _A , _A = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _A = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = '''blip-2''' UpperCAmelCase : List[str] = True def __init__( self : List[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[str]=32 , **_UpperCAmelCase : Union[str, Any] ): super().__init__(**_UpperCAmelCase ) if vision_config is None: _A = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _A = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _A = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _A = BlipaVisionConfig(**_UpperCAmelCase ) _A = BlipaQFormerConfig(**_UpperCAmelCase ) _A = text_config['model_type'] if 'model_type' in text_config else 'opt' _A = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) _A = self.text_config.tie_word_embeddings _A = self.text_config.is_encoder_decoder _A = num_query_tokens _A = self.vision_config.hidden_size _A = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _A = 1.0 _A = 0.02 @classmethod def lowerCAmelCase_ ( cls : List[str] , _UpperCAmelCase : BlipaVisionConfig , _UpperCAmelCase : BlipaQFormerConfig , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Tuple , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = copy.deepcopy(self.__dict__ ) _A = self.vision_config.to_dict() _A = self.qformer_config.to_dict() _A = self.text_config.to_dict() _A = self.__class__.model_type return output
271
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a = { '''num_train_timesteps''': 40, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } a = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } a = { '''num_train_timesteps''': 151, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' if isinstance(_snake_case , _snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict , _snake_case : Optional[Any]=False ) -> List[str]: '''simple docstring''' _A = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _A = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _A = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _A = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _A = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _A = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _A = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _A = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _A = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _A = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _A = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _A = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def _snake_case ( _snake_case : List[Any] , _snake_case : int , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : int=None ) -> Optional[int]: '''simple docstring''' _A , _A , _A = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _A , _A , _A = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _A = checkpoint[F'''{old_prefix}.norm.weight'''] _A = checkpoint[F'''{old_prefix}.norm.bias'''] _A = weight_q.squeeze(-1 ).squeeze(-1 ) _A = bias_q.squeeze(-1 ).squeeze(-1 ) _A = weight_k.squeeze(-1 ).squeeze(-1 ) _A = bias_k.squeeze(-1 ).squeeze(-1 ) _A = weight_v.squeeze(-1 ).squeeze(-1 ) _A = bias_v.squeeze(-1 ).squeeze(-1 ) _A = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _A = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _snake_case ( _snake_case : str , _snake_case : Any ) -> str: '''simple docstring''' _A = torch.load(_snake_case , map_location='cpu' ) _A = {} _A = checkpoint['time_embed.0.weight'] _A = checkpoint['time_embed.0.bias'] _A = checkpoint['time_embed.2.weight'] _A = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _A = checkpoint['label_emb.weight'] _A = checkpoint['input_blocks.0.0.weight'] _A = checkpoint['input_blocks.0.0.bias'] _A = unet_config['down_block_types'] _A = unet_config['layers_per_block'] _A = unet_config['attention_head_dim'] _A = unet_config['block_out_channels'] _A = 1 _A = channels_list[0] for i, layer_type in enumerate(_snake_case ): _A = channels_list[i] _A = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_snake_case ): _A = F'''down_blocks.{i}.resnets.{j}''' _A = F'''input_blocks.{current_layer}.0''' _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_snake_case ): _A = F'''down_blocks.{i}.resnets.{j}''' _A = F'''input_blocks.{current_layer}.0''' _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) _A = F'''down_blocks.{i}.attentions.{j}''' _A = F'''input_blocks.{current_layer}.1''' _A = convert_attention( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: _A = F'''down_blocks.{i}.downsamplers.0''' _A = F'''input_blocks.{current_layer}.0''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 _A = current_channels # hardcoded the mid-block for now _A = 'mid_block.resnets.0' _A = 'middle_block.0' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) _A = 'mid_block.attentions.0' _A = 'middle_block.1' _A = convert_attention(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) _A = 'mid_block.resnets.1' _A = 'middle_block.2' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) _A = 0 _A = unet_config['up_block_types'] for i, layer_type in enumerate(_snake_case ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _A = F'''up_blocks.{i}.resnets.{j}''' _A = F'''output_blocks.{current_layer}.0''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: _A = F'''up_blocks.{i}.upsamplers.0''' _A = F'''output_blocks.{current_layer-1}.1''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _A = F'''up_blocks.{i}.resnets.{j}''' _A = F'''output_blocks.{current_layer}.0''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) _A = F'''up_blocks.{i}.attentions.{j}''' _A = F'''output_blocks.{current_layer}.1''' _A = convert_attention( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: _A = F'''up_blocks.{i}.upsamplers.0''' _A = F'''output_blocks.{current_layer-1}.2''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) _A = checkpoint['out.0.weight'] _A = checkpoint['out.0.bias'] _A = checkpoint['out.2.weight'] _A = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
271
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=10 ) -> int: """simple docstring""" A__ = [] for _ in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=10 ) -> List[str]: """simple docstring""" A__ = [] for step in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(lowercase_ , '''schedule.bin''' ) torch.save(scheduler.state_dict() , lowercase_ ) A__ = torch.load(lowercase_ ) scheduler.load_state_dict(lowercase_ ) return lrs @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]) ->Optional[int]: '''simple docstring''' self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__)) for a, b in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assertAlmostEqual(UpperCAmelCase__ , UpperCAmelCase__ , delta=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: '''simple docstring''' A__ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase__) A__ = torch.tensor([0.4, 0.2, -0.5]) A__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A__ = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0) for _ in range(100): A__ = criterion(UpperCAmelCase__ , UpperCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2) def SCREAMING_SNAKE_CASE ( self : str) ->Tuple: '''simple docstring''' A__ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase__) A__ = torch.tensor([0.4, 0.2, -0.5]) A__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A__ = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase__ , weight_decay=0.0 , relative_step=UpperCAmelCase__ , scale_parameter=UpperCAmelCase__ , warmup_init=UpperCAmelCase__ , ) for _ in range(1_000): A__ = criterion(UpperCAmelCase__ , UpperCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2) @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = nn.Linear(50 , 50 ) if is_torch_available() else None UpperCAmelCase__ = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ = 10 def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str]=None) ->Any: '''simple docstring''' self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__)) for a, b in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assertAlmostEqual(UpperCAmelCase__ , UpperCAmelCase__ , delta=UpperCAmelCase__ , msg=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) A__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): A__ , A__ = data A__ = scheduler_func(self.optimizer , **UpperCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) A__ = unwrap_schedule(UpperCAmelCase__ , self.num_steps) self.assertListAlmostEqual( UpperCAmelCase__ , UpperCAmelCase__ , tol=1e-2 , msg=f"""failed for {scheduler_func} in normal scheduler""" , ) A__ = scheduler_func(self.optimizer , **UpperCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase__) # wrap to test picklability of the schedule A__ = unwrap_and_save_reload_schedule(UpperCAmelCase__ , self.num_steps) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ , msg=f"""failed for {scheduler_func} in save and reload""") class UpperCamelCase_ : '''simple docstring''' def __init__( self : int , UpperCAmelCase__ : int) ->Tuple: '''simple docstring''' A__ = fn def __call__( self : Optional[Any] , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Dict) ->List[str]: '''simple docstring''' return self.fn(*UpperCAmelCase__ , **UpperCAmelCase__) @classmethod def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str) ->str: '''simple docstring''' A__ = list(map(self , scheduler.lr_lambdas))
14
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = ['image_processor', 'tokenizer'] A_ : Optional[Any] = 'CLIPImageProcessor' A_ : Any = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self : int , a__ : int=None , a__ : Dict=None , **a__ : List[str] ): """simple docstring""" __snake_case = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) __snake_case = kwargs.pop('''feature_extractor''' ) __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__(self : Any , a__ : Dict=None , a__ : List[str]=None , a__ : Dict=None , **a__ : Tuple ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: __snake_case = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: __snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def a (self : Union[str, Any] , *a__ : int , **a__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*a__ , **a__ ) def a (self : Any , *a__ : List[Any] , **a__ : List[str] ): """simple docstring""" return self.tokenizer.decode(*a__ , **a__ ) @property def a (self : int ): """simple docstring""" __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _lowerCAmelCase : Dict = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class __magic_name__ ( unittest.TestCase , lowerCamelCase__ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-question-answering' ) self.tool.setup() __a =load_tool('text-question-answering' , remote=__lowerCamelCase ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tool(__lowerCamelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__lowerCamelCase , 'launched the BigScience Research Workshop' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.remote_tool(__lowerCamelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__lowerCamelCase , 'launched the BigScience Research Workshop' ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.tool(text=__lowerCamelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__lowerCamelCase , 'launched the BigScience Research Workshop' ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.remote_tool(text=__lowerCamelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__lowerCamelCase , 'launched the BigScience Research Workshop' )
356
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
0
import os import pytest from transformers.dynamic_module_utils import get_imports _lowercase : List[str] ="\nimport os\n" _lowercase : int ="\ndef foo():\n import os\n return False\n" _lowercase : Any ="\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" _lowercase : Optional[int] ="\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" _lowercase : List[Any] ="\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" _lowercase : Optional[Any] ="\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" _lowercase : str ="\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" _lowercase : Any ="\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" _lowercase : int ="\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" _lowercase : Optional[Any] ="\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" _lowercase : Any =[ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , _lowercase) def lowerCAmelCase_ ( _lowercase : str , _lowercase : Any) -> str: """simple docstring""" a__ : Tuple = os.path.join(_lowercase , """test_file.py""") with open(_lowercase , """w""") as _tmp_file: _tmp_file.write(_lowercase) a__ : List[str] = get_imports(_lowercase) assert parsed_imports == ["os"]
170
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase : int ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] =["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowercase : Optional[int] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
170
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} _SCREAMING_SNAKE_CASE = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } _SCREAMING_SNAKE_CASE = { 'moussaKam/mbarthez': 1_024, 'moussaKam/barthez': 1_024, 'moussaKam/barthez-orangesum-title': 1_024, } _SCREAMING_SNAKE_CASE = '▁' class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase :Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase :Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase_ ) ) _A = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} _A = len(self.sp_model ) - 1 _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> Union[str, Any]: return len(self.sp_model ) def UpperCAmelCase ( self ) -> int: _A = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A = self.sp_model.PieceToId(lowerCAmelCase_ ) return spm_id if spm_id else self.unk_token_id def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: _A = [] _A = """""" _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token _A = True _A = [] else: current_sub_tokens.append(lowerCAmelCase_ ) _A = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def __getstate__( self ) -> Any: _A = self.__dict__.copy() _A = None return state def __setstate__( self , lowerCAmelCase_ ) -> List[str]: _A = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , """wb""" ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
81
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :torch.FloatTensor lowerCamelCase :torch.FloatTensor class a ( __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowerCamelCase :int = 1 @register_to_config def __init__( self , lowerCAmelCase_ = 20_00 , lowerCAmelCase_ = 0.15 , lowerCAmelCase_ = 0.01 , lowerCAmelCase_ = 1348.0 , lowerCAmelCase_ = 1E-5 , lowerCAmelCase_ = 1 , ) -> Tuple: # standard deviation of the initial noise distribution _A = sigma_max # setable values _A = None self.set_sigmas(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> torch.FloatTensor: return sample def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> Tuple: _A = sampling_eps if sampling_eps is not None else self.config.sampling_eps _A = torch.linspace(1 , lowerCAmelCase_ , lowerCAmelCase_ , device=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> Any: _A = sigma_min if sigma_min is not None else self.config.sigma_min _A = sigma_max if sigma_max is not None else self.config.sigma_max _A = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ ) _A = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _A = torch.exp(torch.linspace(math.log(lowerCAmelCase_ ) , math.log(lowerCAmelCase_ ) , lowerCAmelCase_ ) ) _A = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) _A = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _A = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _A = timesteps.to(self.discrete_sigmas.device ) _A = self.discrete_sigmas[timesteps].to(sample.device ) _A = self.get_adjacent_sigma(lowerCAmelCase_ , lowerCAmelCase_ ).to(sample.device ) _A = torch.zeros_like(lowerCAmelCase_ ) _A = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _A = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _A = diffusion.unsqueeze(-1 ) _A = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _A = randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase_ , device=sample.device , dtype=sample.dtype ) _A = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _A = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase_ , prev_sample_mean=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _A = randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _A = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _A = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _A = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _A = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _A = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _A = step_size.unsqueeze(-1 ) _A = sample + step_size * model_output _A = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _A = timesteps.to(original_samples.device ) _A = self.discrete_sigmas.to(original_samples.device )[timesteps] _A = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase_ ) * sigmas[:, None, None, None] ) _A = noise + original_samples return noisy_samples def __len__( self ) -> List[str]: return self.config.num_train_timesteps
81
1
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _a = '.' if __name__ == "__main__": _a = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') _a = [] _a = [] with open(doctest_file_path) as fp: for line in fp: _a = line.strip() _a = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _a = '\n'.join(non_existent_paths) raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
61
def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _SCREAMING_SNAKE_CASE = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 'imagegpt' SCREAMING_SNAKE_CASE_ = ['past_key_values'] SCREAMING_SNAKE_CASE_ = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , lowercase_ : str=512 + 1 , lowercase_ : Optional[int]=32 * 32 , lowercase_ : Tuple=512 , lowercase_ : Any=24 , lowercase_ : List[str]=8 , lowercase_ : int=None , lowercase_ : Union[str, Any]="quick_gelu" , lowercase_ : int=0.1 , lowercase_ : Any=0.1 , lowercase_ : Any=0.1 , lowercase_ : List[Any]=1e-5 , lowercase_ : List[str]=0.0_2 , lowercase_ : int=True , lowercase_ : str=True , lowercase_ : Union[str, Any]=False , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[int]=False , **lowercase_ : int , ): UpperCamelCase__ : Optional[Any] =vocab_size UpperCamelCase__ : Tuple =n_positions UpperCamelCase__ : Any =n_embd UpperCamelCase__ : Union[str, Any] =n_layer UpperCamelCase__ : Dict =n_head UpperCamelCase__ : Any =n_inner UpperCamelCase__ : List[str] =activation_function UpperCamelCase__ : Tuple =resid_pdrop UpperCamelCase__ : List[Any] =embd_pdrop UpperCamelCase__ : Optional[int] =attn_pdrop UpperCamelCase__ : Optional[Any] =layer_norm_epsilon UpperCamelCase__ : Optional[int] =initializer_range UpperCamelCase__ : int =scale_attn_weights UpperCamelCase__ : Dict =use_cache UpperCamelCase__ : Union[str, Any] =scale_attn_by_inverse_layer_idx UpperCamelCase__ : int =reorder_and_upcast_attn UpperCamelCase__ : List[Any] =tie_word_embeddings super().__init__(tie_word_embeddings=lowercase_ , **lowercase_ ) class __a ( snake_case__ ): """simple docstring""" @property def _lowerCAmelCase ( self : List[str] ): return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def _lowerCAmelCase ( self : Union[str, Any] , lowercase_ : "FeatureExtractionMixin" , lowercase_ : int = 1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 3 , lowercase_ : int = 32 , lowercase_ : int = 32 , ): UpperCamelCase__ : Dict =self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCamelCase__ : str =dict(preprocessor(images=lowercase_ , return_tensors=lowercase_ ) ) return inputs
157
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float ): '''simple docstring''' if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def _lowerCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float , ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _lowerCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float , ): '''simple docstring''' if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( UpperCAmelCase , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
157
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def UpperCamelCase_ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Union[str, Any]=False ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[str] = "backbone." if is_semantic else "" _UpperCAmelCase : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""{prefix}blocks.{i}.norm1.weight""", F"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm1.bias""", F"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""{prefix}blocks.{i}.attn.proj.weight""", F"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""{prefix}blocks.{i}.attn.proj.bias""", F"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm2.weight""", F"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.norm2.bias""", F"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.weight""", F"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.bias""", F"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.weight""", F"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.bias""", F"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (F"""{prefix}cls_token""", "beit.embeddings.cls_token"), (F"""{prefix}patch_embed.proj.weight""", "beit.embeddings.patch_embeddings.projection.weight"), (F"""{prefix}patch_embed.proj.bias""", "beit.embeddings.patch_embeddings.projection.bias"), (F"""{prefix}pos_embed""", "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def UpperCamelCase_ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : List[Any]=False ) -> int: """simple docstring""" for i in range(config.num_hidden_layers ): _UpperCAmelCase : List[str] = "backbone." if is_semantic else "" # queries, keys and values _UpperCAmelCase : int = state_dict.pop(F"""{prefix}blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase : Dict = state_dict.pop(F"""{prefix}blocks.{i}.attn.q_bias""" ) _UpperCAmelCase : Dict = state_dict.pop(F"""{prefix}blocks.{i}.attn.v_bias""" ) _UpperCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : Optional[int] = q_bias _UpperCAmelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Dict = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained _UpperCAmelCase : Any = state_dict.pop(F"""{prefix}blocks.{i}.gamma_1""" ) _UpperCAmelCase : Tuple = state_dict.pop(F"""{prefix}blocks.{i}.gamma_2""" ) _UpperCAmelCase : List[Any] = gamma_a _UpperCAmelCase : Any = gamma_a def UpperCamelCase_ ( _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = dct.pop(_UpperCAmelCase ) _UpperCAmelCase : Optional[int] = val def UpperCamelCase_ ( ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[str] = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any]=False ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = False if "rvlcdip" in checkpoint_url else True _UpperCAmelCase : Tuple = BeitConfig(use_absolute_position_embeddings=_UpperCAmelCase , use_mask_token=_UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: _UpperCAmelCase : Optional[int] = 1_024 _UpperCAmelCase : Union[str, Any] = 4_096 _UpperCAmelCase : Tuple = 24 _UpperCAmelCase : int = 16 # labels if "rvlcdip" in checkpoint_url: _UpperCAmelCase : int = 16 _UpperCAmelCase : Optional[int] = "huggingface/label-files" _UpperCAmelCase : Dict = "rvlcdip-id2label.json" _UpperCAmelCase : Any = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : Optional[Any] = idalabel _UpperCAmelCase : int = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys _UpperCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location="cpu" )["model"] _UpperCAmelCase : Tuple = create_rename_keys(_UpperCAmelCase , has_lm_head=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , has_lm_head=_UpperCAmelCase ) # load HuggingFace model _UpperCAmelCase : Union[str, Any] = BeitForMaskedImageModeling(_UpperCAmelCase ) if has_lm_head else BeitForImageClassification(_UpperCAmelCase ) model.eval() model.load_state_dict(_UpperCAmelCase ) # Check outputs on an image _UpperCAmelCase : int = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = prepare_img() _UpperCAmelCase : Any = image_processor(images=_UpperCAmelCase , return_tensors="pt" ) _UpperCAmelCase : Optional[int] = encoding["pixel_values"] _UpperCAmelCase : List[str] = model(_UpperCAmelCase ) _UpperCAmelCase : str = outputs.logits # verify logits _UpperCAmelCase : Any = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(_UpperCAmelCase ), "Shape of logits not as expected" Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: if has_lm_head: _UpperCAmelCase : Optional[int] = "dit-base" if "base" in checkpoint_url else "dit-large" else: _UpperCAmelCase : List[str] = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
31
'''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def UpperCamelCase_ ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCamelCase_ ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
31
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging A = logging.get_logger(__name__) A = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __lowercase ( UpperCamelCase_ ): '''simple docstring''' __lowerCAmelCase = """perceiver""" def __init__( self , _UpperCAmelCase=256 , _UpperCAmelCase=1280 , _UpperCAmelCase=768 , _UpperCAmelCase=1 , _UpperCAmelCase=26 , _UpperCAmelCase=8 , _UpperCAmelCase=8 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="kv" , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=True , _UpperCAmelCase=262 , _UpperCAmelCase=2048 , _UpperCAmelCase=56 , _UpperCAmelCase=[368, 496] , _UpperCAmelCase=16 , _UpperCAmelCase=1920 , _UpperCAmelCase=16 , _UpperCAmelCase=[1, 16, 224, 224] , **_UpperCAmelCase , ): super().__init__(**_a ) __a : Optional[Any] = num_latents __a : Tuple = d_latents __a : Optional[int] = d_model __a : List[Any] = num_blocks __a : str = num_self_attends_per_block __a : str = num_self_attention_heads __a : Dict = num_cross_attention_heads __a : Dict = qk_channels __a : List[Any] = v_channels __a : Any = cross_attention_shape_for_attention __a : List[Any] = self_attention_widening_factor __a : Tuple = cross_attention_widening_factor __a : Tuple = hidden_act __a : Dict = attention_probs_dropout_prob __a : List[str] = initializer_range __a : str = layer_norm_eps __a : int = use_query_residual # masked language modeling attributes __a : int = vocab_size __a : Optional[int] = max_position_embeddings # image classification attributes __a : str = image_size # flow attributes __a : int = train_size # multimodal autoencoding attributes __a : Optional[Any] = num_frames __a : Optional[int] = audio_samples_per_frame __a : Union[str, Any] = samples_per_patch __a : Optional[int] = output_shape class __lowercase ( UpperCamelCase_ ): '''simple docstring''' @property def _lowerCamelCase ( self ): if self.task == "multiple-choice": __a : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def _lowerCamelCase ( self ): return 1e-4 def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = 3 , _UpperCAmelCase = 40 , _UpperCAmelCase = 40 , ): if isinstance(_a , _a ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __a : Optional[int] = compute_effective_axis_dimension( _a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __a : List[str] = preprocessor.num_special_tokens_to_add(_a ) __a : Union[str, Any] = compute_effective_axis_dimension( _a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_a ) # Generate dummy inputs according to compute batch and sequence __a : str = [""" """.join(['''a'''] ) * seq_length] * batch_size __a : Optional[int] = dict(preprocessor(_a , return_tensors=_a ) ) __a : List[str] = inputs.pop('''input_ids''' ) return inputs elif isinstance(_a , _a ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __a : Dict = compute_effective_axis_dimension(_a , fixed_dimension=OnnxConfig.default_fixed_batch ) __a : Any = self._generate_dummy_images(_a , _a , _a , _a ) __a : Optional[Any] = dict(preprocessor(images=_a , return_tensors=_a ) ) __a : Dict = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
362
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''image_processor''', '''tokenizer'''] __lowerCAmelCase = '''CLIPImageProcessor''' __lowerCAmelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): __a : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _UpperCAmelCase , ) __a : Any = kwargs.pop('''feature_extractor''' ) __a : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __a : Any = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: __a : List[str] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: __a : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def _lowerCamelCase ( self ): __a : Union[str, Any] = self.tokenizer.model_input_names __a : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
188
0
'''simple docstring''' from __future__ import annotations import math def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _SCREAMING_SNAKE_CASE = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) _lowerCAmelCase = [] for num in range(len(SCREAMING_SNAKE_CASE_ ) ): _lowerCAmelCase = 0 while 2 * i * i <= odd_composites[num]: _lowerCAmelCase = odd_composites[num] - 2 * i * i if is_prime(SCREAMING_SNAKE_CASE_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(SCREAMING_SNAKE_CASE_ ) == n: return list_nums return [] def __a(): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
158
'''simple docstring''' import math import unittest def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> str: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _snake_case ( self ) -> List[Any]: with self.assertRaises(_lowerCAmelCase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
158
1
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :str = VQModel __magic_name__ :List[Any] = """sample""" @property def snake_case ( self , __UpperCAmelCase=(3_2, 3_2) ): '''simple docstring''' lowerCAmelCase__ :str = 4 lowerCAmelCase__ :Any = 3 lowerCAmelCase__ :Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCAmelCase ) return {"sample": image} @property def snake_case ( self ): '''simple docstring''' return (3, 3_2, 3_2) @property def snake_case ( self ): '''simple docstring''' return (3, 3_2, 3_2) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } lowerCAmelCase__ :List[Any] = self.dummy_input return init_dict, inputs_dict def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Dict = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(__UpperCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCAmelCase__ :Optional[int] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowerCAmelCase__ :Union[str, Any] = image.to(__UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :Dict = model(__UpperCAmelCase ).sample lowerCAmelCase__ :int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ :Optional[int] = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
254
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __A = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
254
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: List[Any] , __UpperCAmelCase: Dict=[] ) -> Optional[int]: UpperCamelCase__ : Dict = size[0] - overlap_pixels * 2 UpperCamelCase__ : int = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCamelCase__ : Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 UpperCamelCase__ : List[str] = np.pad(lowercase__ , mode='''linear_ramp''' , pad_width=lowercase__ , end_values=0 ) if "l" in remove_borders: UpperCamelCase__ : Tuple = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCamelCase__ : Any = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCamelCase__ : Optional[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCamelCase__ : Union[str, Any] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: Optional[Any] ) -> str: return max(lowercase__ , min(lowercase__ , lowercase__ ) ) def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Any ) -> Tuple: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowerCAmelCase_ ( __UpperCAmelCase: Any , __UpperCAmelCase: Dict , __UpperCAmelCase: str ) -> Union[str, Any]: UpperCamelCase__ : Any = list(lowercase__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCamelCase__ : str = clamp_rect(lowercase__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: Any , __UpperCAmelCase: Tuple , __UpperCAmelCase: Tuple ) -> Optional[Any]: UpperCamelCase__ : Tuple = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(lowercase__ , (original_slice, 0) ) return result def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: Union[str, Any] ) -> Dict: UpperCamelCase__ : Optional[int] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCamelCase__ : Optional[int] = tile.crop(lowercase__ ) return tile def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] , __UpperCAmelCase: Tuple ) -> List[str]: UpperCamelCase__ : Tuple = n % d return n - divisor class lowercase__ ( __lowerCamelCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__ = 350, ) -> List[str]: """simple docstring""" super().__init__( vae=__magic_name__, text_encoder=__magic_name__, tokenizer=__magic_name__, unet=__magic_name__, low_res_scheduler=__magic_name__, scheduler=__magic_name__, max_noise_level=__magic_name__, ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, **__magic_name__ ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : Optional[int] = ( min(image.size[0] - (tile_size + original_image_slice), x * tile_size ), min(image.size[1] - (tile_size + original_image_slice), y * tile_size ), min(image.size[0], (x + 1) * tile_size ), min(image.size[1], (y + 1) * tile_size ), ) UpperCamelCase__ : str = add_overlap_rect(__magic_name__, __magic_name__, image.size ) UpperCamelCase__ : Dict = image.crop(__magic_name__ ) UpperCamelCase__ : Optional[int] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCamelCase__ : List[str] = translated_slice_x - (original_image_slice / 2) UpperCamelCase__ : List[Any] = max(0, __magic_name__ ) UpperCamelCase__ : Optional[Any] = squeeze_tile(__magic_name__, __magic_name__, __magic_name__, __magic_name__ ) UpperCamelCase__ : int = to_input.size UpperCamelCase__ : Union[str, Any] = to_input.resize((tile_size, tile_size), Image.BICUBIC ) UpperCamelCase__ : Union[str, Any] = super(__magic_name__, self ).__call__(image=__magic_name__, **__magic_name__ ).images[0] UpperCamelCase__ : Tuple = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4), Image.BICUBIC ) UpperCamelCase__ : List[Any] = unsqueeze_tile(__magic_name__, __magic_name__ ) UpperCamelCase__ : Dict = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4), Image.BICUBIC ) UpperCamelCase__ : Dict = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) UpperCamelCase__ : str = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]), tile_border * 4, remove_borders=__magic_name__ ), mode='''L''', ) final_image.paste( __magic_name__, (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4), __magic_name__ ) @torch.no_grad() def __call__( self, __magic_name__, __magic_name__, __magic_name__ = 75, __magic_name__ = 9.0, __magic_name__ = 50, __magic_name__ = None, __magic_name__ = 1, __magic_name__ = 0.0, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = 1, __magic_name__ = 128, __magic_name__ = 32, __magic_name__ = 32, ) -> str: """simple docstring""" UpperCamelCase__ : Any = Image.new('''RGB''', (image.size[0] * 4, image.size[1] * 4) ) UpperCamelCase__ : Optional[int] = math.ceil(image.size[0] / tile_size ) UpperCamelCase__ : Optional[Any] = math.ceil(image.size[1] / tile_size ) UpperCamelCase__ : Dict = tcx * tcy UpperCamelCase__ : List[str] = 0 for y in range(__magic_name__ ): for x in range(__magic_name__ ): self._process_tile( __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, prompt=__magic_name__, num_inference_steps=__magic_name__, guidance_scale=__magic_name__, noise_level=__magic_name__, negative_prompt=__magic_name__, num_images_per_prompt=__magic_name__, eta=__magic_name__, generator=__magic_name__, latents=__magic_name__, ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def lowerCAmelCase_ ( ) -> Dict: # Run a demo UpperCamelCase__ : int = 'stabilityai/stable-diffusion-x4-upscaler' UpperCamelCase__ : Optional[Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(lowercase__ , revision='''fp16''' , torch_dtype=torch.floataa ) UpperCamelCase__ : Optional[int] = pipe.to('''cuda''' ) UpperCamelCase__ : List[Any] = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(__UpperCAmelCase: str ): print(f"progress: {obj['progress']:.4f}" ) obj["image"].save('''diffusers_library_progress.jpg''' ) UpperCamelCase__ : str = pipe(image=lowercase__ , prompt='''Black font, white background, vector''' , noise_level=40 , callback=lowercase__ ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
201
"""simple docstring""" import functools from typing import Any def _snake_case ( lowercase__ , lowercase__ ): # Validation if not isinstance(lowercase__ , lowercase__ ) or len(lowercase__ ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(lowercase__ , lowercase__ ) or not all( isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie _lowerCamelCase : dict[str, Any] = {} _lowerCamelCase : List[Any] = 'WORD_KEEPER' for word in words: _lowerCamelCase : Dict = trie for c in word: if c not in trie_node: _lowerCamelCase : Any = {} _lowerCamelCase : str = trie_node[c] _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Dict = len(lowercase__ ) # Dynamic programming method @functools.cache def is_breakable(lowercase__ ) -> bool: if index == len_string: return True _lowerCamelCase : List[Any] = trie for i in range(lowercase__ , lowercase__ ): _lowerCamelCase : Any = trie_node.get(string[i] , lowercase__ ) if trie_node is None: return False if trie_node.get(lowercase__ , lowercase__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
96
0
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowercase__ :Tuple = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__ = 1_0_1): lowercase = length def __len__( self): return self.length def __getitem__( self ,A__): return i class lowercase : def __call__( self ,A__): return {"input_ids": torch.tensor(A__), "labels": torch.tensor(A__)} class lowercase ( nn.Module ): def __init__( self): super().__init__() # Add some (unused) params otherwise DDP will complain. lowercase = nn.Linear(1_2_0 ,8_0) def A__ ( self ,A__ ,A__=None): if labels is not None: return torch.tensor(0.0 ,device=input_ids.device), input_ids else: return input_ids class lowercase ( SCREAMING_SNAKE_CASE__ ): @require_torch_neuroncore def A__ ( self): lowercase = f'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowercase = self.get_auto_remove_tmp_dir() lowercase = f'--output_dir {output_dir}'.split() lowercase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(A__ ,env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class lowercase ( SCREAMING_SNAKE_CASE__ ): @require_torch_multi_gpu def A__ ( self): lowercase = f'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowercase = self.get_auto_remove_tmp_dir() lowercase = f'--output_dir {output_dir}'.split() lowercase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(A__ ,env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowercase__ :List[str] = HfArgumentParser((TrainingArguments,)) lowercase__ :Any = parser.parse_args_into_dataclasses()[0] logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' F'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: lowercase__ :Tuple = DummyDataset(dataset_length) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = list(range(len(lowerCAmelCase__ ) ) ) lowercase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} lowercase__ :List[str] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowercase__ :Tuple = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase__ :Any = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase__ :Union[str, Any] = 2 lowercase__ :Union[str, Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase__ :Optional[int] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase__ :List[str] = None
364
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase : def __init__( self ,A__ ,A__=9_9 ,A__=1_3 ,A__=1_6 ,A__=7 ,A__=True ,A__=True ,A__=True ,A__=False ,A__=True ,A__=2 ,A__=3_2 ,A__=4 ,A__=4 ,A__=3_0 ,A__=0 ,A__=1 ,A__=2 ,A__=None ,): lowercase = parent lowercase = batch_size lowercase = decoder_seq_length # For common tests lowercase = self.decoder_seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_labels lowercase = vocab_size lowercase = d_model lowercase = d_model lowercase = decoder_layers lowercase = decoder_layers lowercase = decoder_ffn_dim lowercase = decoder_attention_heads lowercase = decoder_attention_heads lowercase = eos_token_id lowercase = bos_token_id lowercase = pad_token_id lowercase = decoder_start_token_id lowercase = use_cache lowercase = max_position_embeddings lowercase = None lowercase = decoder_seq_length lowercase = 2 lowercase = 1 def A__ ( self): lowercase = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size) lowercase = None if self.use_attention_mask: lowercase = ids_tensor([self.batch_size, self.decoder_seq_length] ,vocab_size=2) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size) lowercase = TrOCRConfig( vocab_size=self.vocab_size ,d_model=self.d_model ,decoder_layers=self.decoder_layers ,decoder_ffn_dim=self.decoder_ffn_dim ,decoder_attention_heads=self.decoder_attention_heads ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,use_cache=self.use_cache ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,max_position_embeddings=self.max_position_embeddings ,) return (config, input_ids, attention_mask, lm_labels) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,): lowercase = True lowercase = TrOCRDecoder(config=A__).to(A__).eval() lowercase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase = model(A__ ,use_cache=A__) lowercase = model(A__) lowercase = model(A__ ,use_cache=A__) self.parent.assertTrue(len(A__) == len(A__)) self.parent.assertTrue(len(A__) == len(A__) + 1) lowercase = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase = ids_tensor((2, 1) ,config.vocab_size - 1) + 1 # append to next input_ids and lowercase = torch.cat([input_ids, next_tokens] ,dim=-1) lowercase = model(A__)['''last_hidden_state'''] lowercase = model(A__ ,past_key_values=A__)['''last_hidden_state'''] # select random slice lowercase = ids_tensor((1,) ,output_from_past.shape[-1]).item() lowercase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(A__ ,A__ ,atol=1E-3) def A__ ( self): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Any =(TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowercase_ : Dict =(TrOCRForCausalLM,) if is_torch_available() else () lowercase_ : int ={'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowercase_ : List[Any] =True lowercase_ : int =False def A__ ( self): lowercase = TrOCRStandaloneDecoderModelTester(self ,is_training=A__) lowercase = ConfigTester(self ,config_class=A__) def A__ ( self): pass def A__ ( self): pass def A__ ( self): pass def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*A__) def A__ ( self): return @unittest.skip('''The model doesn\'t support left padding''') # and it's not used enough to be worth fixing :) def A__ ( self): pass
97
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=True, _UpperCAmelCase="pt" ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : List[str] = {'add_prefix_space': True} if isinstance(_UpperCAmelCase, _UpperCAmelCase ) and not line.startswith(' ' ) else {} lowerCAmelCase : Dict = padding_side return tokenizer( [line], max_length=_UpperCAmelCase, padding='max_length' if pad_to_max_length else None, truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase, add_special_tokens=_UpperCAmelCase, **_UpperCAmelCase, ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, ) -> Any: '''simple docstring''' lowerCAmelCase : Union[str, Any] = input_ids.ne(_UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __A ( lowerCAmelCase ): def __init__( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any]="train" , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Dict="" , ): super().__init__() lowerCAmelCase : int = Path(UpperCAmelCase_ ).joinpath(type_path + '.source' ) lowerCAmelCase : Optional[int] = Path(UpperCAmelCase_ ).joinpath(type_path + '.target' ) lowerCAmelCase : Optional[int] = self.get_char_lens(self.src_file ) lowerCAmelCase : Tuple = max_source_length lowerCAmelCase : List[Any] = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" lowerCAmelCase : Union[str, Any] = tokenizer lowerCAmelCase : List[Any] = prefix if n_obs is not None: lowerCAmelCase : str = self.src_lens[:n_obs] lowerCAmelCase : Union[str, Any] = src_lang lowerCAmelCase : int = tgt_lang def __len__( self : Optional[Any] ): return len(self.src_lens ) def __getitem__( self : Optional[Any] , UpperCAmelCase_ : str ): lowerCAmelCase : List[str] = index + 1 # linecache starts at 1 lowerCAmelCase : Any = self.prefix + linecache.getline(str(self.src_file ) , UpperCAmelCase_ ).rstrip('\n' ) lowerCAmelCase : int = linecache.getline(str(self.tgt_file ) , UpperCAmelCase_ ).rstrip('\n' ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , UpperCAmelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCAmelCase : Union[str, Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCAmelCase_ ) else self.tokenizer ) lowerCAmelCase : Tuple = self.tokenizer.generator if isinstance(self.tokenizer , UpperCAmelCase_ ) else self.tokenizer lowerCAmelCase : int = encode_line(UpperCAmelCase_ , UpperCAmelCase_ , self.max_source_length , 'right' ) lowerCAmelCase : Any = encode_line(UpperCAmelCase_ , UpperCAmelCase_ , self.max_target_length , 'right' ) lowerCAmelCase : Any = source_inputs['input_ids'].squeeze() lowerCAmelCase : Optional[Any] = target_inputs['input_ids'].squeeze() lowerCAmelCase : Any = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase__ ( UpperCAmelCase_ : Union[str, Any] ): return [len(UpperCAmelCase_ ) for x in Path(UpperCAmelCase_ ).open().readlines()] def lowercase__ ( self : Dict , UpperCAmelCase_ : str ): lowerCAmelCase : Optional[Any] = torch.stack([x['input_ids'] for x in batch] ) lowerCAmelCase : str = torch.stack([x['attention_mask'] for x in batch] ) lowerCAmelCase : List[str] = torch.stack([x['decoder_input_ids'] for x in batch] ) lowerCAmelCase : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , UpperCAmelCase_ ) else self.tokenizer.pad_token_id ) lowerCAmelCase : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , UpperCAmelCase_ ) else self.tokenizer.pad_token_id ) lowerCAmelCase : List[str] = trim_batch(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase , lowerCAmelCase : List[str] = trim_batch(UpperCAmelCase_ , UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __A : Tuple = getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> None: '''simple docstring''' lowerCAmelCase : Optional[Any] = get_git_info() save_json(_UpperCAmelCase, os.path.join(_UpperCAmelCase, 'git_log.json' ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=4, **_UpperCAmelCase ) -> Dict: '''simple docstring''' with open(_UpperCAmelCase, 'w' ) as f: json.dump(_UpperCAmelCase, _UpperCAmelCase, indent=_UpperCAmelCase, **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' with open(_UpperCAmelCase ) as f: return json.load(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase : Any = git.Repo(search_parent_directories=_UpperCAmelCase ) lowerCAmelCase : Dict = { 'repo_id': str(_UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List: '''simple docstring''' return list(map(_UpperCAmelCase, _UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' with open(_UpperCAmelCase, 'wb' ) as f: return pickle.dump(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' def remove_articles(_UpperCAmelCase ): return re.sub(r'\b(a|an|the)\b', ' ', _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase ): lowerCAmelCase : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : List[str] = normalize_answer(_UpperCAmelCase ).split() lowerCAmelCase : Optional[Any] = normalize_answer(_UpperCAmelCase ).split() lowerCAmelCase : List[str] = Counter(_UpperCAmelCase ) & Counter(_UpperCAmelCase ) lowerCAmelCase : str = sum(common.values() ) if num_same == 0: return 0 lowerCAmelCase : Tuple = 1.0 * num_same / len(_UpperCAmelCase ) lowerCAmelCase : str = 1.0 * num_same / len(_UpperCAmelCase ) lowerCAmelCase : int = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' return normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase : str = 0 for hypo, pred in zip(_UpperCAmelCase, _UpperCAmelCase ): em += exact_match_score(_UpperCAmelCase, _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: em /= len(_UpperCAmelCase ) return {"em": em} def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return model_prefix.startswith('rag' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Dict = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCAmelCase : Union[str, Any] = 'dropout_rate' for p in extra_params: if getattr(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): if not hasattr(_UpperCAmelCase, _UpperCAmelCase ) and not hasattr(_UpperCAmelCase, equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCAmelCase ) ) delattr(_UpperCAmelCase, _UpperCAmelCase ) continue lowerCAmelCase : Any = p if hasattr(_UpperCAmelCase, _UpperCAmelCase ) else equivalent_param[p] setattr(_UpperCAmelCase, _UpperCAmelCase, getattr(_UpperCAmelCase, _UpperCAmelCase ) ) delattr(_UpperCAmelCase, _UpperCAmelCase ) return hparams, config
138
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Optional[int]=99 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=37 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Dict=0 , ): lowerCAmelCase : Any = parent lowerCAmelCase : int = batch_size lowerCAmelCase : Optional[int] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Optional[Any] = use_input_mask lowerCAmelCase : Union[str, Any] = use_token_type_ids lowerCAmelCase : Any = use_labels lowerCAmelCase : Dict = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : str = type_sequence_label_size lowerCAmelCase : int = initializer_range lowerCAmelCase : Dict = num_labels lowerCAmelCase : List[Any] = num_choices lowerCAmelCase : Optional[Any] = scope lowerCAmelCase : Optional[Any] = projection_dim def lowercase__ ( self : Any ): lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : List[Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Any = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : str = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) lowerCAmelCase : Tuple = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ): lowerCAmelCase : int = TFDPRContextEncoder(config=UpperCAmelCase_ ) lowerCAmelCase : Any = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : List[str] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : List[str] = TFDPRQuestionEncoder(config=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : int = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Any = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[int] = TFDPRReader(config=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowercase__ ( self : Any ): lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : List[Any] = config_and_inputs lowerCAmelCase : str = {'input_ids': input_ids} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : int = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCAmelCase_ : str = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : str = False lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False def lowercase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = TFDPRModelTester(self ) lowerCAmelCase : List[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCAmelCase_ ) def lowercase__ ( self : Any ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCAmelCase_ ) def lowercase__ ( self : Dict ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCAmelCase_ ) @slow def lowercase__ ( self : List[Any] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : str = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Any = TFDPRQuestionEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[int] = TFDPRReader.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) lowerCAmelCase : List[Any] = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCAmelCase : List[Any] = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
138
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class a ( UpperCAmelCase ): _lowercase = "realm" def __init__( self , A_=30522 , A_=768 , A_=128 , A_=12 , A_=12 , A_=8 , A_=3072 , A_="gelu_new" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=256 , A_=10 , A_=1e-3 , A_=5 , A_=320 , A_=13353718 , A_=5000 , A_=1 , A_=0 , A_=2 , **A_ , ): '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) # Common config _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : Tuple = retriever_proj_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : List[Any] = num_candidates _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : int = type_vocab_size _UpperCAmelCase : List[Any] = layer_norm_eps # Reader config _UpperCAmelCase : Optional[Any] = span_hidden_size _UpperCAmelCase : Dict = max_span_width _UpperCAmelCase : Union[str, Any] = reader_layer_norm_eps _UpperCAmelCase : List[Any] = reader_beam_size _UpperCAmelCase : Any = reader_seq_len # Retrieval config _UpperCAmelCase : Tuple = num_block_records _UpperCAmelCase : List[str] = searcher_beam_size
357
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: List[str] , lowerCAmelCase: int=8 ) -> int: _UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _UpperCAmelCase : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a ( UpperCAmelCase ): def __init__( self , A_ , A_ , A_ , ): '''simple docstring''' super().__init__() self.register_modules( unet=A_ , scheduler=A_ , movq=A_ , ) _UpperCAmelCase : Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if latents is None: _UpperCAmelCase : Any = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _UpperCAmelCase : Optional[int] = latents.to(A_ ) _UpperCAmelCase : Tuple = latents * scheduler.init_noise_sigma return latents def _UpperCAmelCase ( self , A_=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase : Union[str, Any] = torch.device(f'cuda:{gpu_id}' ) _UpperCAmelCase : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) def _UpperCAmelCase ( self , A_=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _UpperCAmelCase : str = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=A_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCAmelCase : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: _UpperCAmelCase , _UpperCAmelCase : Dict = cpu_offload_with_hook(A_ , A_ , prev_module_hook=A_ ) # We'll offload the last model manually. _UpperCAmelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self , A_ , A_ , A_ , A_ = 512 , A_ = 512 , A_ = 100 , A_ = 4.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , ): '''simple docstring''' _UpperCAmelCase : str = self._execution_device _UpperCAmelCase : Tuple = guidance_scale > 1.0 if isinstance(A_ , A_ ): _UpperCAmelCase : Union[str, Any] = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): _UpperCAmelCase : Dict = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): _UpperCAmelCase : Any = torch.cat(A_ , dim=0 ) _UpperCAmelCase : Optional[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(A_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = negative_image_embeds.repeat_interleave(A_ , dim=0 ) _UpperCAmelCase : Tuple = hint.repeat_interleave(A_ , dim=0 ) _UpperCAmelCase : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) _UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) self.scheduler.set_timesteps(A_ , device=A_ ) _UpperCAmelCase : Dict = self.scheduler.timesteps _UpperCAmelCase : Union[str, Any] = self.movq.config.latent_channels _UpperCAmelCase , _UpperCAmelCase : Optional[int] = downscale_height_and_width(A_ , A_ , self.movq_scale_factor ) # create initial latent _UpperCAmelCase : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A_ , A_ , A_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase : Optional[Any] = {"image_embeds": image_embeds, "hint": hint} _UpperCAmelCase : Optional[int] = self.unet( sample=A_ , timestep=A_ , encoder_hidden_states=A_ , added_cond_kwargs=A_ , return_dict=A_ , )[0] if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) _UpperCAmelCase , _UpperCAmelCase : Tuple = noise_pred.chunk(2 ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = variance_pred.chunk(2 ) _UpperCAmelCase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( A_ , A_ , A_ , generator=A_ , )[0] # post-processing _UpperCAmelCase : Optional[Any] = self.movq.decode(A_ , force_not_quantize=A_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _UpperCAmelCase : Union[str, Any] = image * 0.5 + 0.5 _UpperCAmelCase : Dict = image.clamp(0 , 1 ) _UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
189
0
'''simple docstring''' from statistics import mean, stdev def UpperCAmelCase_ (__a : list , __a : int = 3 ): """simple docstring""" _a : Optional[Any] = min(__a ) _a : int = max(__a ) # normalize data return [round((x - x_min) / (x_max - x_min) , __a ) for x in data] def UpperCAmelCase_ (__a : list , __a : int = 3 ): """simple docstring""" _a : Dict = mean(__a ) _a : Union[str, Any] = stdev(__a ) # standardize data return [round((x - mu) / (sigma) , __a ) for x in data]
271
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : List[Any] = None @property def __lowercase ( self : Dict ): '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def __lowercase ( self : str ): '''simple docstring''' _a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a ,'feature_size' ) ) self.assertTrue(hasattr(_a ,'sampling_rate' ) ) self.assertTrue(hasattr(_a ,'padding_value' ) ) def __lowercase ( self : int ): '''simple docstring''' _a : Any = self.feat_extract_tester.prepare_inputs_for_common() _a : str = self.feature_extraction_class(**self.feat_extract_dict ) _a : int = feat_extract.model_input_names[0] _a : List[Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_a ) == len(_a ) for x, y in zip(_a ,processed_features[input_name] ) ) ) _a : Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) _a : Union[str, Any] = BatchFeature({input_name: speech_inputs} ,tensor_type='np' ) _a : Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a : Optional[int] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def __lowercase ( self : Any ): '''simple docstring''' _a : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) _a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) _a : int = feat_extract.model_input_names[0] _a : str = BatchFeature({input_name: speech_inputs} ,tensor_type='pt' ) _a : str = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def __lowercase ( self : int ): '''simple docstring''' _a : int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) _a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) _a : Tuple = feat_extract.model_input_names[0] _a : int = BatchFeature({input_name: speech_inputs} ,tensor_type='tf' ) _a : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _a : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def __lowercase ( self : Dict ,_a : Any=False ): '''simple docstring''' def _inputs_have_equal_length(_a : Tuple ): _a : Tuple = len(input[0] ) for input_slice in input[1:]: if len(_a ) != length: return False return True def _inputs_are_equal(_a : Optional[Any] ,_a : Union[str, Any] ): if len(_a ) != len(_a ): return False for input_slice_a, input_slice_a in zip(_a ,_a ): if not np.allclose(np.asarray(_a ) ,np.asarray(_a ) ,atol=1E-3 ): return False return True _a : int = self.feature_extraction_class(**self.feat_extract_dict ) _a : Tuple = self.feat_extract_tester.prepare_inputs_for_common(numpify=_a ) _a : Union[str, Any] = feat_extract.model_input_names[0] _a : Tuple = BatchFeature({input_name: speech_inputs} ) _a : str = self.feat_extract_tester.seq_length_diff _a : Dict = self.feat_extract_tester.max_seq_length + pad_diff _a : Dict = self.feat_extract_tester.min_seq_length _a : Optional[Any] = self.feat_extract_tester.batch_size _a : Tuple = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _a : int = feat_extract.pad(_a ,padding=_a ) _a : List[Any] = input_a[input_name] _a : Tuple = feat_extract.pad(_a ,padding='longest' ) _a : Any = input_a[input_name] _a : Optional[Any] = feat_extract.pad(_a ,padding='max_length' ,max_length=len(speech_inputs[-1] ) ) _a : List[str] = input_a[input_name] _a : List[str] = feat_extract.pad(_a ,padding='longest' ,return_tensors='np' ) _a : str = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_a ): feat_extract.pad(_a ,padding='max_length' )[input_name] _a : int = feat_extract.pad( _a ,padding='max_length' ,max_length=_a ,return_tensors='np' ) _a : Optional[int] = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_are_equal(_a ,_a ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _a : Tuple = feat_extract.pad(_a ,pad_to_multiple_of=10 ) _a : List[str] = input_a[input_name] _a : str = feat_extract.pad(_a ,padding='longest' ,pad_to_multiple_of=10 ) _a : Tuple = input_a[input_name] _a : Optional[int] = feat_extract.pad( _a ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=_a ) _a : Any = input_a[input_name] _a : Optional[int] = feat_extract.pad( _a ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=_a ,return_tensors='np' ,) _a : Dict = input_a[input_name] self.assertTrue(all(len(_a ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_a ,_a ) ) _a : List[str] = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_a ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _a : Any = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def __lowercase ( self : List[Any] ,_a : Optional[int]=False ): '''simple docstring''' def _inputs_have_equal_length(_a : List[str] ): _a : Union[str, Any] = len(input[0] ) for input_slice in input[1:]: if len(_a ) != length: return False return True def _inputs_are_equal(_a : List[str] ,_a : List[str] ): if len(_a ) != len(_a ): return False for input_slice_a, input_slice_a in zip(_a ,_a ): if not np.allclose(np.asarray(_a ) ,np.asarray(_a ) ,atol=1E-3 ): return False return True _a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) _a : str = self.feat_extract_tester.prepare_inputs_for_common(numpify=_a ) _a : Any = feat_extract.model_input_names[0] _a : List[Any] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _a : Union[str, Any] = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=_a ) _a : str = input_a[input_name] _a : List[str] = feat_extract.pad(_a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ) _a : Tuple = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertFalse(_inputs_have_equal_length(_a ) ) # truncate to smallest with np _a : Dict = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=_a ,) _a : Any = input_a[input_name] _a : List[Any] = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ) _a : int = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_a ) ) # truncate to middle _a : Dict = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=_a ,return_tensors='np' ,) _a : List[Any] = input_a[input_name] _a : Tuple = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=_a ) _a : Tuple = input_a[input_name] _a : Tuple = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' ) _a : Dict = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_are_equal(_a ,_a ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_a ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a ,truncation=_a )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a ,padding='longest' ,truncation=_a )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a ,padding='longest' ,truncation=_a )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_a ): feat_extract.pad(_a ,padding='max_length' ,truncation=_a )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _a : Optional[Any] = 12 _a : List[Any] = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=_a ,truncation=_a ,) _a : Tuple = input_a[input_name] _a : str = feat_extract.pad( _a ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=_a ,) _a : List[Any] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _a : List[Any] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _a : Union[str, Any] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertFalse(_inputs_have_equal_length(_a ) ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self._check_padding(numpify=_a ) def __lowercase ( self : Tuple ): '''simple docstring''' self._check_padding(numpify=_a ) def __lowercase ( self : Dict ): '''simple docstring''' self._check_truncation(numpify=_a ) def __lowercase ( self : str ): '''simple docstring''' self._check_truncation(numpify=_a ) @require_torch def __lowercase ( self : Dict ): '''simple docstring''' _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) _a : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() _a : Union[str, Any] = feat_extract.model_input_names[0] _a : Optional[int] = BatchFeature({input_name: speech_inputs} ) _a : List[Any] = feat_extract.pad(_a ,padding='longest' ,return_tensors='np' )[input_name] _a : List[str] = feat_extract.pad(_a ,padding='longest' ,return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def __lowercase ( self : int ): '''simple docstring''' _a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) _a : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() _a : Dict = feat_extract.model_input_names[0] _a : Optional[Any] = BatchFeature({input_name: speech_inputs} ) _a : Dict = feat_extract.pad(_a ,padding='longest' ,return_tensors='np' )[input_name] _a : Any = feat_extract.pad(_a ,padding='longest' ,return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : str = self.feat_extract_dict _a : List[Any] = True _a : Optional[int] = self.feature_extraction_class(**_a ) _a : List[Any] = self.feat_extract_tester.prepare_inputs_for_common() _a : Tuple = [len(_a ) for x in speech_inputs] _a : int = feat_extract.model_input_names[0] _a : Optional[Any] = BatchFeature({input_name: speech_inputs} ) _a : str = feat_extract.pad(_a ,padding='longest' ,return_tensors='np' ) self.assertIn('attention_mask' ,_a ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Any = self.feat_extract_dict _a : Tuple = True _a : Optional[int] = self.feature_extraction_class(**_a ) _a : Dict = self.feat_extract_tester.prepare_inputs_for_common() _a : Dict = [len(_a ) for x in speech_inputs] _a : Union[str, Any] = feat_extract.model_input_names[0] _a : Any = BatchFeature({input_name: speech_inputs} ) _a : List[Any] = min(_a ) _a : Dict = feat_extract.pad( _a ,padding='max_length' ,max_length=_a ,truncation=_a ,return_tensors='np' ) self.assertIn('attention_mask' ,_a ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
271
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =GPTSwaTokenizer UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : Optional[int] =True UpperCamelCase__ : Tuple =False def __a ( self :str) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = GPTSwaTokenizer(_lowercase , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''') tokenizer.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , _lowercase :int) -> str: UpperCAmelCase_ = '''This is a test''' UpperCAmelCase_ = '''This is a test''' return input_text, output_text def __a ( self :Optional[Any]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :int) -> int: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(_lowercase) , 2000) def __a ( self :Union[str, Any]) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 2000) def __a ( self :Dict) -> str: UpperCAmelCase_ = GPTSwaTokenizer(_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase) , [465, 287, 265, 631, 842]) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') # fmt: off self.assertListEqual( _lowercase , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) # fmt: off self.assertListEqual( _lowercase , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.''']) # fmt: on def __a ( self :str) -> Any: UpperCAmelCase_ = GPTSwaTokenizer(_lowercase) UpperCAmelCase_ = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] UpperCAmelCase_ = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowercase , _lowercase): self.assertListEqual(tokenizer.encode_fast(_lowercase) , _lowercase) # Test that decode_fast returns the input text for text, token_ids in zip(_lowercase , _lowercase): self.assertEqual(tokenizer.decode_fast(_lowercase) , _lowercase) @slow def __a ( self :Optional[Any]) -> Optional[int]: UpperCAmelCase_ = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off UpperCAmelCase_ = {'''input_ids''': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=_lowercase , )
350
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase__ : List[str] ='''\ Text data. Second line of data.''' lowerCAmelCase__ : Tuple ='''file''' @pytest.fixture(scope='session' ) def __lowercase ( a__ ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data' ) / (FILE_PATH + """.zstd""") __SCREAMING_SNAKE_CASE = bytes(lowerCAmelCase_ , 'utf-8' ) with zstd.open(lowerCAmelCase_ , 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture def __lowercase ( a__ ) -> int: with open(os.path.join(tmpfs.local_root_dir , lowerCAmelCase_ ) , 'w' ) as f: f.write(lowerCAmelCase_ ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def __lowercase ( a__ , a__ , a__ , a__ , a__ , a__ ) -> Any: __SCREAMING_SNAKE_CASE = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} __SCREAMING_SNAKE_CASE = input_paths[compression_format] __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = DownloadConfig(cache_dir=lowerCAmelCase_ , extract_compressed_file=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = cached_path(lowerCAmelCase_ , download_config=lowerCAmelCase_ ) with open(lowerCAmelCase_ ) as f: __SCREAMING_SNAKE_CASE = f.read() with open(lowerCAmelCase_ ) as f: __SCREAMING_SNAKE_CASE = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def __lowercase ( a__ , a__ , a__ , a__ , a__ ) -> Tuple: __SCREAMING_SNAKE_CASE = """custom_cache""" __SCREAMING_SNAKE_CASE = """custom_extracted_dir""" __SCREAMING_SNAKE_CASE = tmp_path / """custom_extracted_path""" if default_extracted: __SCREAMING_SNAKE_CASE = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , lowerCAmelCase_ ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __SCREAMING_SNAKE_CASE = xz_file __SCREAMING_SNAKE_CASE = ( DownloadConfig(extract_compressed_file=lowerCAmelCase_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = cached_path(lowerCAmelCase_ , download_config=lowerCAmelCase_ ) assert Path(lowerCAmelCase_ ).parent.parts[-2:] == expected def __lowercase ( a__ ) -> Optional[int]: # absolute path __SCREAMING_SNAKE_CASE = str(Path(lowerCAmelCase_ ).resolve() ) assert cached_path(lowerCAmelCase_ ) == text_file # relative path __SCREAMING_SNAKE_CASE = str(Path(lowerCAmelCase_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCAmelCase_ ) == text_file def __lowercase ( a__ ) -> str: # absolute path __SCREAMING_SNAKE_CASE = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(lowerCAmelCase_ ): cached_path(lowerCAmelCase_ ) # relative path __SCREAMING_SNAKE_CASE = """./__missing_file__.txt""" with pytest.raises(lowerCAmelCase_ ): cached_path(lowerCAmelCase_ ) def __lowercase ( a__ ) -> Any: __SCREAMING_SNAKE_CASE = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(lowerCAmelCase_ ) as f: __SCREAMING_SNAKE_CASE = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , lowerCAmelCase_ ) def __lowercase ( ) -> Tuple: with pytest.raises(lowerCAmelCase_ ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , lowerCAmelCase_ ) def __lowercase ( a__ ) -> List[Any]: __SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(lowerCAmelCase_ ): http_get('https://huggingface.co' , temp_file=lowerCAmelCase_ ) with pytest.raises(lowerCAmelCase_ ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , lowerCAmelCase_ ) def __lowercase ( a__ ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(lowerCAmelCase_ ): ftp_get('ftp://huggingface.co' , temp_file=lowerCAmelCase_ ) with pytest.raises(lowerCAmelCase_ ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , lowerCAmelCase_ ) def __lowercase ( a__ ) -> int: __SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(lowerCAmelCase_ ): fsspec_get('s3://huggingface.co' , temp_file=lowerCAmelCase_ ) with pytest.raises(lowerCAmelCase_ ): fsspec_head('s3://huggingface.co' )
257
def snake_case_ ( lowerCAmelCase_ : list ): if len(lowerCAmelCase_ ) <= 1: return [tuple(lowerCAmelCase_ )] __lowercase : Any = [] def generate(lowerCAmelCase_ : int , lowerCAmelCase_ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __lowercase , __lowercase : List[str] = arr[k - 1], arr[i] else: # k is odd __lowercase , __lowercase : Any = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase_ ) generate(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) return res if __name__ == "__main__": lowerCamelCase : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
233
0
"""simple docstring""" _a : Optional[int] = [0, 2, 4, 6, 8] _a : Tuple = [1, 3, 5, 7, 9] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _UpperCamelCase = 0 for digit in range(10 ): _UpperCamelCase = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, __snake_case, __snake_case ) return result _UpperCamelCase = 0 for digita in range(10 ): _UpperCamelCase = digita if (remainder + digita) % 2 == 0: _UpperCamelCase = ODD_DIGITS else: _UpperCamelCase = EVEN_DIGITS for digita in other_parity_digits: _UpperCamelCase = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, __snake_case, __snake_case, ) return result def lowerCamelCase__ ( __snake_case = 9 ) -> int: """simple docstring""" _UpperCamelCase = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(__snake_case, 0, [0] * length, __snake_case ) return result if __name__ == "__main__": print(F"""{solution() = }""")
364
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
100
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : str =UnCLIPImageVariationPipeline lowercase : Optional[Any] =IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase : List[str] =IMAGE_VARIATION_BATCH_PARAMS lowercase : Optional[int] =[ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase : int =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 100 @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, ) return CLIPTextModelWithProjection(lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, ) return CLIPVisionModelWithProjection(lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } lowerCamelCase_ =UnCLIPTextProjModel(**lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } lowerCamelCase_ =UNetaDConditionModel(**lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(1 ) lowerCamelCase_ =UNetaDModel(**self.dummy_super_res_kwargs ) return model def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_decoder lowerCamelCase_ =self.dummy_text_proj lowerCamelCase_ =self.dummy_text_encoder lowerCamelCase_ =self.dummy_tokenizer lowerCamelCase_ =self.dummy_super_res_first lowerCamelCase_ =self.dummy_super_res_last lowerCamelCase_ =UnCLIPScheduler( variance_type='''learned_range''', prediction_type='''epsilon''', num_train_timesteps=1_000, ) lowerCamelCase_ =UnCLIPScheduler( variance_type='''fixed_small_log''', prediction_type='''epsilon''', num_train_timesteps=1_000, ) lowerCamelCase_ =CLIPImageProcessor(crop_size=32, size=32 ) lowerCamelCase_ =self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0, lowerCAmelCase=True ): """simple docstring""" lowerCamelCase_ =floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) if pil_image: lowerCamelCase_ =input_image * 0.5 + 0.5 lowerCamelCase_ =input_image.clamp(0, 1 ) lowerCamelCase_ =input_image.cpu().permute(0, 2, 3, 1 ).float().numpy() lowerCamelCase_ =DiffusionPipeline.numpy_to_pil(lowerCAmelCase )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase, pil_image=lowerCAmelCase ) lowerCamelCase_ =pipe(**lowerCAmelCase ) lowerCamelCase_ =output.images lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase, pil_image=lowerCAmelCase ) lowerCamelCase_ =pipe( **lowerCAmelCase, return_dict=lowerCAmelCase, )[0] lowerCamelCase_ =image[0, -3:, -3:, -1] lowerCamelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ =np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase, pil_image=lowerCAmelCase ) lowerCamelCase_ =pipe(**lowerCAmelCase ) lowerCamelCase_ =output.images lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase, pil_image=lowerCAmelCase ) lowerCamelCase_ =pipe( **lowerCAmelCase, return_dict=lowerCAmelCase, )[0] lowerCamelCase_ =image[0, -3:, -3:, -1] lowerCamelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ =np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase, pil_image=lowerCAmelCase ) lowerCamelCase_ =[ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] lowerCamelCase_ =pipe(**lowerCAmelCase ) lowerCamelCase_ =output.images lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase, pil_image=lowerCAmelCase ) lowerCamelCase_ =[ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] lowerCamelCase_ =pipe( **lowerCAmelCase, return_dict=lowerCAmelCase, )[0] lowerCamelCase_ =image[0, -3:, -3:, -1] lowerCamelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCamelCase_ =np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch.device('''cpu''' ) class __UpperCamelCase : lowercase : Union[str, Any] =1 lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) lowerCamelCase_ =pipe.decoder.dtype lowerCamelCase_ =1 lowerCamelCase_ =( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCamelCase_ =pipe.prepare_latents( lowerCAmelCase, dtype=lowerCAmelCase, device=lowerCAmelCase, generator=lowerCAmelCase, latents=lowerCAmelCase, scheduler=DummyScheduler() ) lowerCamelCase_ =( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCamelCase_ =pipe.prepare_latents( lowerCAmelCase, dtype=lowerCAmelCase, device=lowerCAmelCase, generator=lowerCAmelCase, latents=lowerCAmelCase, scheduler=DummyScheduler() ) lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase, pil_image=lowerCAmelCase ) lowerCamelCase_ =pipe( **lowerCAmelCase, decoder_latents=lowerCAmelCase, super_res_latents=lowerCAmelCase ).images lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase, pil_image=lowerCAmelCase ) # Don't pass image, instead pass embedding lowerCamelCase_ =pipeline_inputs.pop('''image''' ) lowerCamelCase_ =pipe.image_encoder(lowerCAmelCase ).image_embeds lowerCamelCase_ =pipe( **lowerCAmelCase, decoder_latents=lowerCAmelCase, super_res_latents=lowerCAmelCase, image_embeddings=lowerCAmelCase, ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCamelCase_ =1e-2 self._test_attention_slicing_forward_pass( test_max_difference=lowerCAmelCase, expected_max_diff=lowerCAmelCase ) @skip_mps def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' lowerCamelCase_ =True lowerCamelCase_ =[ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, additional_params_copy_to_batched_inputs=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCamelCase_ =[2, 3] self._test_inference_batch_consistent( batch_sizes=lowerCAmelCase, additional_params_copy_to_batched_inputs=lowerCAmelCase, ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowerCAmelCase ) @skip_mps def lowercase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowercase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def lowercase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) lowerCamelCase_ =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) lowerCamelCase_ =UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''', torch_dtype=torch.floataa ) lowerCamelCase_ =pipeline.to(lowerCAmelCase ) pipeline.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCamelCase_ =pipeline( lowerCAmelCase, generator=lowerCAmelCase, output_type='''np''', ) lowerCamelCase_ =output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(lowerCAmelCase, lowerCAmelCase, 15 )
75
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return 0.0 def a_ ( __snake_case : np.ndarray , __snake_case : int ) -> tuple[int | float, int | float]: """simple docstring""" lowerCamelCase_ =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowerCamelCase_ =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def a_ ( __snake_case : FilterType , __snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ =512 lowerCamelCase_ =[1] + [0] * (size - 1) lowerCamelCase_ =[filter_type.process(__snake_case ) for item in inputs] lowerCamelCase_ =[0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase_ =np.abs(np.fft.fft(__snake_case ) ) lowerCamelCase_ =20 * np.logaa(__snake_case ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds lowerCamelCase_ =get_bounds(__snake_case , __snake_case ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(__snake_case ) plt.show() def a_ ( __snake_case : FilterType , __snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ =512 lowerCamelCase_ =[1] + [0] * (size - 1) lowerCamelCase_ =[filter_type.process(__snake_case ) for item in inputs] lowerCamelCase_ =[0] * (samplerate - size) # zero-padding outputs += filler lowerCamelCase_ =np.angle(np.fft.fft(__snake_case ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(__snake_case , -2 * pi ) ) plt.show()
75
1
'''simple docstring''' from __future__ import annotations import math lowerCamelCase__ : str = "2020.9.26" lowerCamelCase__ : str = "xcodz-dot, cclaus, dhruvmanila" def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not all(isinstance(UpperCAmelCase_ , (float, int) ) for val in locals().values() ): _UpperCAmelCase : Union[str, Any] = F"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(UpperCAmelCase_ ) _UpperCAmelCase : List[Any] = ((x * distance) / (z + distance)) * scale _UpperCAmelCase : List[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError("Axis must be a str" ) _UpperCAmelCase : Tuple = locals() del input_variables["axis"] if not all(isinstance(UpperCAmelCase_ , (float, int) ) for val in input_variables.values() ): _UpperCAmelCase : Optional[Any] = ( 'Input values except axis must either be float or int: ' F"""{list(input_variables.values() )}""" ) raise TypeError(UpperCAmelCase_ ) _UpperCAmelCase : Dict = (angle % 360) / 450 * 180 / math.pi if axis == "z": _UpperCAmelCase : List[str] = x * math.cos(UpperCAmelCase_ ) - y * math.sin(UpperCAmelCase_ ) _UpperCAmelCase : str = y * math.cos(UpperCAmelCase_ ) + x * math.sin(UpperCAmelCase_ ) _UpperCAmelCase : str = z elif axis == "x": _UpperCAmelCase : Union[str, Any] = y * math.cos(UpperCAmelCase_ ) - z * math.sin(UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = z * math.cos(UpperCAmelCase_ ) + y * math.sin(UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = x elif axis == "y": _UpperCAmelCase : Tuple = x * math.cos(UpperCAmelCase_ ) - z * math.sin(UpperCAmelCase_ ) _UpperCAmelCase : List[str] = z * math.cos(UpperCAmelCase_ ) + x * math.sin(UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = y else: raise ValueError("not a valid axis, choose one of \'x\', \'y\', \'z\'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, "y", 90.0) = }''')
357
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "rb" ) as f: _UpperCAmelCase : List[str] = Image.open(__lowerCAmelCase ) return im.convert("RGB" ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase__ ( self : int ) ->List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class lowerCAmelCase__ : lowerCAmelCase : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCAmelCase__ )} , ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : str = torch.stack([example["pixel_values"] for example in examples] ) _UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: _UpperCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: _UpperCAmelCase : List[Any] = {} if data_args.train_dir is not None: _UpperCAmelCase : str = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: _UpperCAmelCase : Optional[Any] = os.path.join(data_args.validation_dir , "**" ) _UpperCAmelCase : Any = load_dataset( "imagefolder" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : int = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: _UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) _UpperCAmelCase : List[str] = split["train"] _UpperCAmelCase : Union[str, Any] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase : Optional[int] = dataset["train"].features["labels"].names _UpperCAmelCase , _UpperCAmelCase : int = {}, {} for i, label in enumerate(__lowerCAmelCase ): _UpperCAmelCase : int = str(__lowerCAmelCase ) _UpperCAmelCase : str = label # Load the accuracy metric from the datasets package _UpperCAmelCase : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : List[str] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: _UpperCAmelCase : int = image_processor.size["shortest_edge"] else: _UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) _UpperCAmelCase : str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) _UpperCAmelCase : Optional[int] = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _UpperCAmelCase : Union[str, Any] = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : Optional[Any] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: _UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : int = last_checkpoint _UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , __lowerCAmelCase ) trainer.save_metrics("eval" , __lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
322
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) lowerCAmelCase_ : List[str] = logging.getLogger(__name__) lowerCAmelCase_ : List[Any] = tf.data.AUTOTUNE def _lowerCamelCase ( ) -> Optional[int]: _a = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase , default=2**18 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase , default=512 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase , required=lowercase , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase , help="Model ID to upload to on the Hugging Face Hub." ) _a = parser.parse_args() return args def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Optional[int]: try: if args.tpu_name: _a = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: _a = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase ) tf.tpu.experimental.initialize_tpu_system(lowercase ) return tpu def _lowerCamelCase ( lowercase : List[str] ) -> Any: _a = 0 for file in file_list: _a = file.split("/" )[-1] _a = re.search(r"-\d+-(\d+)\.tfrecord" , lowercase ).group(1 ) _a = int(lowercase ) num_samples += sample_count return num_samples def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Tuple , lowercase : List[str] , lowercase : Any , lowercase : Tuple , lowercase : Optional[int]=None ) -> int: _a = count_samples(lowercase ) _a = tf.data.Dataset.from_tensor_slices(lowercase ) if shuffle: _a = dataset.shuffle(len(lowercase ) ) _a = tf.data.TFRecordDataset(lowercase , num_parallel_reads=lowercase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _a = dataset.apply(tf.data.experimental.assert_cardinality(lowercase ) ) _a = dataset.map(lowercase , num_parallel_calls=lowercase ) if shuffle: assert shuffle_buffer_size is not None _a = dataset.shuffle(args.shuffle_buffer_size ) _a = dataset.batch(lowercase , drop_remainder=lowercase ) _a = dataset.map(lowercase , num_parallel_calls=lowercase ) _a = dataset.prefetch(lowercase ) return dataset def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Dict: if not args.no_tpu: _a = initialize_tpu(lowercase ) _a = tf.distribute.TPUStrategy(lowercase ) else: _a = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) _a = AutoTokenizer.from_pretrained(args.tokenizer ) _a = AutoConfig.from_pretrained(args.pretrained_model_config ) _a = tokenizer.vocab_size _a = tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) _a = tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) _a = count_samples(lowercase ) _a = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _a = steps_per_epoch * args.num_epochs with strategy.scope(): _a = TFAutoModelForMaskedLM.from_config(lowercase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _a , _a = create_optimizer( num_train_steps=lowercase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase , metrics=["accuracy"] ) def decode_fn(lowercase : int ): _a = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase , lowercase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _a = DataCollatorForLanguageModeling( tokenizer=lowercase , mlm_probability=args.mlm_probability , mlm=lowercase , return_tensors="tf" ) def mask_with_collator(lowercase : List[Any] ): # TF really needs an isin() function _a = ( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) _a , _a = data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase , ) return batch _a = args.per_replica_batch_size * strategy.num_replicas_in_sync _a = prepare_dataset( lowercase , decode_fn=lowercase , mask_fn=lowercase , batch_size=lowercase , shuffle=lowercase , shuffle_buffer_size=args.shuffle_buffer_size , ) _a = prepare_dataset( lowercase , decode_fn=lowercase , mask_fn=lowercase , batch_size=lowercase , shuffle=lowercase , ) _a = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase ) ) model.fit( lowercase , validation_data=lowercase , epochs=args.num_epochs , callbacks=lowercase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": lowerCAmelCase_ : Any = parse_args() main(args)
63
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> List[List[ImageInput]]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE_ ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class __magic_name__ ( snake_case ): UpperCamelCase_ :Any = ["""pixel_values"""] def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BILINEAR , _lowercase = True , _lowercase = None , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = True , _lowercase = None , _lowercase = None , **_lowercase , )-> None: super().__init__(**_lowercase ) UpperCamelCase_ = size if size is not None else {"shortest_edge": 256} UpperCamelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase ) UpperCamelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCamelCase_ = get_size_dict(_lowercase , param_name="crop_size" ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = resample UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = offset UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BILINEAR , _lowercase = None , **_lowercase , )-> np.ndarray: UpperCamelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(_lowercase , size["shortest_edge"] , default_to_square=_lowercase ) elif "height" in size and "width" in size: UpperCamelCase_ = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , )-> np.ndarray: UpperCamelCase_ = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(_lowercase , size=(size["height"], size["width"]) , data_format=_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = True , _lowercase = None , **_lowercase , )-> Tuple: UpperCamelCase_ = image.astype(np.floataa ) if offset: UpperCamelCase_ = image - (scale / 2) return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , )-> np.ndarray: return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , )-> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. UpperCamelCase_ = to_numpy_array(_lowercase ) if do_resize: UpperCamelCase_ = self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) if do_center_crop: UpperCamelCase_ = self.center_crop(_lowercase , size=_lowercase ) if do_rescale: UpperCamelCase_ = self.rescale(image=_lowercase , scale=_lowercase , offset=_lowercase ) if do_normalize: UpperCamelCase_ = self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) UpperCamelCase_ = to_channel_dimension_format(_lowercase , _lowercase ) return image def UpperCAmelCase_ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , )-> PIL.Image.Image: UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = offset if offset is not None else self.offset UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase ) UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_lowercase , param_name="crop_size" ) if not valid_images(_lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCamelCase_ = make_batched(_lowercase ) UpperCamelCase_ = [ [ self._preprocess_image( image=_lowercase , do_resize=_lowercase , size=_lowercase , resample=_lowercase , do_center_crop=_lowercase , crop_size=_lowercase , do_rescale=_lowercase , rescale_factor=_lowercase , offset=_lowercase , do_normalize=_lowercase , image_mean=_lowercase , image_std=_lowercase , data_format=_lowercase , ) for img in video ] for video in videos ] UpperCamelCase_ = {"pixel_values": videos} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
60
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ = 1_0_0 )-> int: """simple docstring""" UpperCamelCase_ = (n * (n + 1) // 2) ** 2 UpperCamelCase_ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
60
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : List[str] = 'blenderbot-small' UpperCAmelCase__ : int = ['past_key_values'] UpperCAmelCase__ : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self: Tuple , UpperCamelCase_: Dict=5_02_65 , UpperCamelCase_: List[str]=5_12 , UpperCamelCase_: Any=8 , UpperCamelCase_: int=20_48 , UpperCamelCase_: str=16 , UpperCamelCase_: Tuple=8 , UpperCamelCase_: Optional[int]=20_48 , UpperCamelCase_: Any=16 , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: Any=0.0 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Dict=True , UpperCamelCase_: str="gelu" , UpperCamelCase_: List[str]=5_12 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: Dict=0.0 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: Tuple=1 , UpperCamelCase_: Tuple=False , UpperCamelCase_: int=0 , UpperCamelCase_: List[Any]=1 , UpperCamelCase_: List[str]=2 , UpperCamelCase_: Union[str, Any]=2 , **UpperCamelCase_: Tuple , ): __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = d_model __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , forced_eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) class lowerCamelCase__( __lowerCamelCase): @property def lowerCAmelCase__ ( self: Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowerCamelCase = {0: """batch"""} __lowerCamelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __lowerCamelCase = {0: """batch""", 1: """decoder_sequence"""} __lowerCamelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __lowerCamelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowerCamelCase, __lowerCamelCase = self.num_layers for i in range(UpperCamelCase_ ): __lowerCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} __lowerCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} else: __lowerCamelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def lowerCAmelCase__ ( self: Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase = super().outputs else: __lowerCamelCase = super(UpperCamelCase_ , self ).outputs if self.use_past: __lowerCamelCase, __lowerCamelCase = self.num_layers for i in range(UpperCamelCase_ ): __lowerCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} __lowerCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ): __lowerCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Generate decoder inputs __lowerCamelCase = seq_length if not self.use_past else 1 __lowerCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowerCamelCase = dict(**UpperCamelCase_ , **UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCamelCase, __lowerCamelCase = common_inputs["""input_ids"""].shape __lowerCamelCase = common_inputs["""decoder_input_ids"""].shape[1] __lowerCamelCase, __lowerCamelCase = self.num_attention_heads __lowerCamelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCamelCase = decoder_seq_length + 3 __lowerCamelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowerCamelCase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(UpperCamelCase_ , UpperCamelCase_ )] , dim=1 ) __lowerCamelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowerCamelCase, __lowerCamelCase = self.num_layers __lowerCamelCase = min(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = max(UpperCamelCase_ , UpperCamelCase_ ) - min_num_layers __lowerCamelCase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(UpperCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), ) ) # TODO: test this. __lowerCamelCase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(UpperCamelCase_ , UpperCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) ) return common_inputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ): __lowerCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCamelCase, __lowerCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCamelCase = seqlen + 2 __lowerCamelCase, __lowerCamelCase = self.num_layers __lowerCamelCase, __lowerCamelCase = self.num_attention_heads __lowerCamelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCamelCase = common_inputs["""attention_mask"""].dtype __lowerCamelCase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 ) __lowerCamelCase = [ (torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(UpperCamelCase_ ) ] return common_inputs def lowerCAmelCase__ ( self: Any , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowerCamelCase = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowerCamelCase = tokenizer.num_special_tokens_to_add(UpperCamelCase_ ) __lowerCamelCase = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ ) # Generate dummy inputs according to compute batch and sequence __lowerCamelCase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowerCamelCase = dict(tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) ) return common_inputs def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) elif self.task == "causal-lm": __lowerCamelCase = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) else: __lowerCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) return common_inputs def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: List[str] ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase = super()._flatten_past_key_values_(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: __lowerCamelCase = super(UpperCamelCase_ , self )._flatten_past_key_values_( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
12
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowerCamelCase__ ( __lowerCAmelCase : str = "" ): """simple docstring""" lowerCAmelCase_ = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" lowerCAmelCase_ = BeautifulSoup(requests.get(__lowerCAmelCase ).text , "html.parser" ) lowerCAmelCase_ = soup.find_all("td" , attrs="titleColumn" ) lowerCAmelCase_ = soup.find_all("td" , class_="ratingColumn imdbRating" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__lowerCAmelCase , __lowerCAmelCase ) } def lowerCamelCase__ ( __lowerCAmelCase : str = "IMDb_Top_250_Movies.csv" ): """simple docstring""" lowerCAmelCase_ = get_imdb_top_aaa_movies() with open(__lowerCAmelCase , "w" , newline="" ) as out_file: lowerCAmelCase_ = csv.writer(__lowerCAmelCase ) writer.writerow(["Movie title", "IMDb rating"] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
231
0
'''simple docstring''' import numpy as np from PIL import Image def UpperCAmelCase_ ( __lowercase : np.ndarray , __lowercase : int , __lowercase : int ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase = np.array(__lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 # compute the shape of the output matrix _UpperCAmelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape _UpperCAmelCase = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix _UpperCAmelCase = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 return updated_arr def UpperCAmelCase_ ( __lowercase : np.ndarray , __lowercase : int , __lowercase : int ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase = np.array(__lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 # compute the shape of the output matrix _UpperCAmelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape _UpperCAmelCase = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix _UpperCAmelCase = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image __SCREAMING_SNAKE_CASE :str = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
371
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __SCREAMING_SNAKE_CASE :Tuple = '''\ ''' __SCREAMING_SNAKE_CASE :Union[str, Any] = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' __SCREAMING_SNAKE_CASE :List[Any] = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowercase ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def lowercase ( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : int = 1_6 , snake_case_ : bool = True , snake_case_ : int=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _UpperCAmelCase = "cuda" else: _UpperCAmelCase = "cuda" if torch.cuda.is_available() else "cpu" _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(snake_case_ ) _UpperCAmelCase = model.to(snake_case_ ) _UpperCAmelCase = AutoTokenizer.from_pretrained(snake_case_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(snake_case_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _UpperCAmelCase = model.config.max_length - 1 else: _UpperCAmelCase = model.config.max_length _UpperCAmelCase = tokenizer( snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors="pt" , return_attention_mask=snake_case_ , ).to(snake_case_ ) _UpperCAmelCase = encodings["input_ids"] _UpperCAmelCase = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _UpperCAmelCase = [] _UpperCAmelCase = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(snake_case_ ) , snake_case_ ) ): _UpperCAmelCase = min(start_index + batch_size , len(snake_case_ ) ) _UpperCAmelCase = encoded_texts[start_index:end_index] _UpperCAmelCase = attn_masks[start_index:end_index] if add_start_token: _UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(snake_case_ ) _UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _UpperCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(snake_case_ ), attn_mask] , dim=1 ) _UpperCAmelCase = encoded_batch with torch.no_grad(): _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ ).logits _UpperCAmelCase = out_logits[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = attn_mask[..., 1:].contiguous() _UpperCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , snake_case_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(snake_case_ )}
156
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[int] )-> Dict: '''simple docstring''' A__ = 0 @slow def snake_case__ ( self : List[str] )-> Any: '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(lowercase_ ),0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(lowercase_ ),0 ) def snake_case__ ( self : int )-> List[Any]: '''simple docstring''' A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size,1_2 ) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size,2_0 ) def snake_case__ ( self : str )-> List[str]: '''simple docstring''' A__ = AutoConfig.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) # Check that tokenizer_type ≠ model_type A__ = AutoTokenizer.from_pretrained(lowercase_,config=lowercase_ ) self.assertIsInstance(lowercase_,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size,1_2 ) def snake_case__ ( self : Tuple )-> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt',os.path.join(lowercase_,'vocab.txt' ) ) A__ = AutoTokenizer.from_pretrained(lowercase_,tokenizer_type='bert',use_fast=lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json',os.path.join(lowercase_,'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt',os.path.join(lowercase_,'merges.txt' ) ) A__ = AutoTokenizer.from_pretrained(lowercase_,tokenizer_type='gpt2',use_fast=lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) @require_tokenizers def snake_case__ ( self : str )-> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt',os.path.join(lowercase_,'vocab.txt' ) ) A__ = AutoTokenizer.from_pretrained(lowercase_,tokenizer_type='bert' ) self.assertIsInstance(lowercase_,lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json',os.path.join(lowercase_,'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt',os.path.join(lowercase_,'merges.txt' ) ) A__ = AutoTokenizer.from_pretrained(lowercase_,tokenizer_type='gpt2' ) self.assertIsInstance(lowercase_,lowercase_ ) def snake_case__ ( self : str )-> Tuple: '''simple docstring''' with pytest.raises(lowercase_ ): AutoTokenizer.from_pretrained('./',tokenizer_type='xxx' ) @require_tokenizers def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: A__ = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased' ) self.assertIsInstance(lowercase_,(BertTokenizer, BertTokenizerFast) ) if isinstance(lowercase_,lowercase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case,lowercase_ ) else: self.assertEqual(tokenizer.do_lower_case,lowercase_ ) self.assertEqual(tokenizer.model_max_length,5_1_2 ) @require_tokenizers def snake_case__ ( self : Optional[int] )-> Union[str, Any]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( lowercase_,'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier',): A__ = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists' ) def snake_case__ ( self : Tuple )-> int: '''simple docstring''' A__ = TOKENIZER_MAPPING.values() A__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(lowercase_ ) @require_tokenizers def snake_case__ ( self : List[str] )-> Optional[Any]: '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased',use_fast=lowercase_ ),lowercase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' ),lowercase_ ) @require_tokenizers def snake_case__ ( self : Any )-> List[Any]: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('distilbert-base-uncased',do_lower_case=lowercase_ ) A__ = 'Hello, world. How are you?' A__ = tokenizer.tokenize(lowercase_ ) self.assertEqual('[UNK]',tokens[0] ) A__ = AutoTokenizer.from_pretrained('microsoft/mpnet-base',do_lower_case=lowercase_ ) A__ = tokenizer.tokenize(lowercase_ ) self.assertEqual('[UNK]',tokens[0] ) @require_tokenizers def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config' ) self.assertEqual(type(lowercase_ ),lowercase_ ) self.assertEqual(tokenizer.model_max_length,5_1_2 ) self.assertEqual(tokenizer.vocab_size,3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token,'[UNK]' ) self.assertEqual(tokenizer.padding_side,'right' ) self.assertEqual(tokenizer.truncation_side,'right' ) def snake_case__ ( self : str )-> List[str]: '''simple docstring''' A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size,1_2 ) def snake_case__ ( self : int )-> Optional[int]: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('ctrl' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(lowercase_,lowercase_ ) def snake_case__ ( self : int )-> int: '''simple docstring''' A__ = get_tokenizer_config('bert-base-cased' ) A__ = config.pop('_commit_hash',lowercase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(lowercase_,{'do_lower_case': False} ) # This model does not have a tokenizer_config so we get back an empty dict. A__ = get_tokenizer_config(lowercase_ ) self.assertDictEqual(lowercase_,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. A__ = AutoTokenizer.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) A__ = get_tokenizer_config(lowercase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'],'BertTokenizer' ) def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' try: AutoConfig.register('custom',lowercase_ ) AutoTokenizer.register(lowercase_,slow_tokenizer_class=lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoTokenizer.register(lowercase_,slow_tokenizer_class=lowercase_ ) A__ = CustomTokenizer.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def snake_case__ ( self : List[str] )-> Any: '''simple docstring''' try: AutoConfig.register('custom',lowercase_ ) # Can register in two steps AutoTokenizer.register(lowercase_,slow_tokenizer_class=lowercase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig],(CustomTokenizer, None) ) AutoTokenizer.register(lowercase_,fast_tokenizer_class=lowercase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig],(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( lowercase_,slow_tokenizer_class=lowercase_,fast_tokenizer_class=lowercase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig],(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoTokenizer.register(lowercase_,fast_tokenizer_class=lowercase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: A__ = BertTokenizerFast.from_pretrained(lowercase_ ) bert_tokenizer.save_pretrained(lowercase_ ) A__ = CustomTokenizerFast.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) A__ = AutoTokenizer.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) A__ = AutoTokenizer.from_pretrained(lowercase_,use_fast=lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case__ ( self : Tuple )-> Optional[Any]: '''simple docstring''' with self.assertRaises(lowercase_ ): A__ = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_ ) A__ = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) A__ = AutoTokenizer.from_pretrained(lowercase_,trust_remote_code=lowercase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__,'NewTokenizerFast' ) self.assertEqual(reloaded_tokenizer.__class__.__name__,'NewTokenizerFast' ) # Test we can also load the slow version A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_,use_fast=lowercase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase_ ) A__ = AutoTokenizer.from_pretrained(lowercase_,trust_remote_code=lowercase_,use_fast=lowercase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__,'NewTokenizer' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) self.assertEqual(reloaded_tokenizer.__class__.__name__,'NewTokenizer' ) @require_tokenizers def snake_case__ ( self : Dict )-> int: '''simple docstring''' class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = False class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = NewTokenizer lowerCamelCase = False try: AutoConfig.register('custom',lowercase_ ) AutoTokenizer.register(lowercase_,slow_tokenizer_class=lowercase_ ) AutoTokenizer.register(lowercase_,fast_tokenizer_class=lowercase_ ) # If remote code is not set, the default is to use local A__ = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) A__ = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer',use_fast=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_,use_fast=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizerFast' ) self.assertTrue(tokenizer.special_attribute_present ) A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer',trust_remote_code=lowercase_,use_fast=lowercase_ ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case__ ( self : Optional[int] )-> Dict: '''simple docstring''' A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy',trust_remote_code=lowercase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__,'NewTokenizerFast' ) # Test we can also load the slow version A__ = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy',trust_remote_code=lowercase_,use_fast=lowercase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__,'NewTokenizer' ) def snake_case__ ( self : Dict )-> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( lowercase_,'bert-base is not a local folder and is not a valid model identifier' ): A__ = AutoTokenizer.from_pretrained('bert-base' ) def snake_case__ ( self : Optional[int] )-> List[str]: '''simple docstring''' with self.assertRaisesRegex( lowercase_,r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): A__ = AutoTokenizer.from_pretrained(lowercase_,revision='aaaaaa' ) def snake_case__ ( self : List[str] )-> Dict: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: A__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count,0 ) self.assertEqual(counter.head_request_count,1 ) self.assertEqual(counter.other_request_count,0 )
7
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : List[Any] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
151
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Tuple = '▁' lowercase : str = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } lowercase : Optional[int] = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } lowercase : List[Any] = { 'facebook/m2m100_418M': 1024, } # fmt: off lowercase : Optional[int] = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = PRETRAINED_VOCAB_FILES_MAP _A = ['input_ids', 'attention_mask'] _A = [] _A = [] def __init__( self :Tuple , a :List[str] , a :int , a :Dict=None , a :List[Any]=None , a :List[str]="<s>" , a :str="</s>" , a :Dict="</s>" , a :Optional[Any]="<pad>" , a :Union[str, Any]="<unk>" , a :List[Any]="m2m100" , a :Optional[Dict[str, Any]] = None , a :List[str]=8 , **a :Tuple , ) -> None: __UpperCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase : List[str] = language_codes __UpperCamelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase : str = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(a ) for lang_code in fairseq_language_code if self.get_lang_token(a ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=a , tgt_lang=a , bos_token=a , eos_token=a , sep_token=a , unk_token=a , pad_token=a , language_codes=a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=a , **a , ) __UpperCamelCase : Optional[Any] = vocab_file __UpperCamelCase : List[str] = load_json(a ) __UpperCamelCase : Dict = {v: k for k, v in self.encoder.items()} __UpperCamelCase : int = spm_file __UpperCamelCase : List[Any] = load_spm(a , self.sp_model_kwargs ) __UpperCamelCase : int = len(self.encoder ) __UpperCamelCase : Tuple = { self.get_lang_token(a ): self.encoder_size + i for i, lang_code in enumerate(a ) } __UpperCamelCase : int = {lang_code: self.encoder_size + i for i, lang_code in enumerate(a )} __UpperCamelCase : Dict = {v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase : int = src_lang if src_lang is not None else "en" __UpperCamelCase : int = tgt_lang __UpperCamelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase : Union[str, Any] = num_madeup_words @property def _lowerCamelCase ( self :int ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _lowerCamelCase ( self :List[str] ) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self :Any , a :str ) -> None: __UpperCamelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase ( self :int , a :str ) -> List[str]: return self.sp_model.encode(a , out_type=a ) def _lowerCamelCase ( self :List[str] , a :str ) -> str: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(a , self.encoder[self.unk_token] ) def _lowerCamelCase ( self :List[Any] , a :int ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(a , self.unk_token ) def _lowerCamelCase ( self :List[str] , a :Optional[Any] ) -> Tuple: __UpperCamelCase : List[Any] = [] __UpperCamelCase : Any = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a ) + token __UpperCamelCase : List[Any] = [] else: current_sub_tokens.append(a ) out_string += self.sp_model.decode(a ) return out_string.strip() def _lowerCamelCase ( self :Optional[int] , a :List[int] , a :Optional[List[int]] = None , a :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) __UpperCamelCase : Optional[Any] = [1] * len(self.prefix_tokens ) __UpperCamelCase : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(a )) + suffix_ones return prefix_ones + ([0] * len(a )) + ([0] * len(a )) + suffix_ones def _lowerCamelCase ( self :List[Any] , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self :Dict ) -> Dict: __UpperCamelCase : int = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :str ) -> Dict: __UpperCamelCase : Union[str, Any] = self.__dict__.copy() __UpperCamelCase : int = None return state def __setstate__( self :List[Any] , a :Dict ) -> None: __UpperCamelCase : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : Optional[Any] = {} __UpperCamelCase : Optional[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def _lowerCamelCase ( self :List[Any] , a :str , a :Optional[str] = None ) -> Tuple[str]: __UpperCamelCase : str = Path(a ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase : List[Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) __UpperCamelCase : List[Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , a ) if os.path.abspath(self.spm_file ) != os.path.abspath(a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , a ) elif not os.path.isfile(self.spm_file ): with open(a , "wb" ) as fi: __UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(a ) return (str(a ), str(a )) def _lowerCamelCase ( self :Dict , a :List[str] , a :str = "en" , a :Optional[List[str]] = None , a :str = "ro" , **a :Union[str, Any] , ) -> BatchEncoding: __UpperCamelCase : List[str] = src_lang __UpperCamelCase : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(a , a , **a ) def _lowerCamelCase ( self :Union[str, Any] , a :int , a :Optional[str] , a :Optional[str] , **a :List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) __UpperCamelCase : int = src_lang __UpperCamelCase : Tuple = self(a , add_special_tokens=a , **a ) __UpperCamelCase : Optional[int] = self.get_lang_id(a ) __UpperCamelCase : Any = tgt_lang_id return inputs def _lowerCamelCase ( self :Any ) -> str: self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase ( self :Optional[int] ) -> Any: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase ( self :Union[str, Any] , a :str ) -> None: __UpperCamelCase : str = self.get_lang_token(a ) __UpperCamelCase : Union[str, Any] = self.lang_token_to_id[lang_token] __UpperCamelCase : Optional[int] = [self.cur_lang_id] __UpperCamelCase : str = [self.eos_token_id] def _lowerCamelCase ( self :int , a :str ) -> None: __UpperCamelCase : Any = self.get_lang_token(a ) __UpperCamelCase : Dict = self.lang_token_to_id[lang_token] __UpperCamelCase : List[Any] = [self.cur_lang_id] __UpperCamelCase : Tuple = [self.eos_token_id] def _lowerCamelCase ( self :Optional[Any] , a :str ) -> str: return self.lang_code_to_token[lang] def _lowerCamelCase ( self :Optional[Any] , a :str ) -> int: __UpperCamelCase : Dict = self.get_lang_token(a ) return self.lang_token_to_id[lang_token] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any]) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' __UpperCamelCase : str = sentencepiece.SentencePieceProcessor(**_lowerCamelCase) spm.Load(str(_lowerCamelCase)) return spm def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> Union[Dict, List]: '''simple docstring''' with open(_lowerCamelCase , "r") as f: return json.load(_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : str) -> None: '''simple docstring''' with open(_lowerCamelCase , "w") as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2)
151
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _a (__magic_name__ ): '''simple docstring''' def __init__( self , A__ , A__ = None , A__ = None , A__ = False , A__ = False , A__ = None , A__ = None , **A__ , ): super().__init__( features=A__ , cache_dir=A__ , keep_in_memory=A__ , streaming=A__ , num_proc=A__ , **A__ , ) A__ : Union[str, Any] = Generator( cache_dir=A__ , features=A__ , generator=A__ , gen_kwargs=A__ , **A__ , ) def __A ( self ): # Build iterable dataset if self.streaming: A__ : Any = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: A__ : List[Any] = None A__ : Any = None A__ : Optional[Any] = None A__ : Optional[Any] = None self.builder.download_and_prepare( download_config=A__ , download_mode=A__ , verification_mode=A__ , base_path=A__ , num_proc=self.num_proc , ) A__ : List[Any] = self.builder.as_dataset( split="""train""" , verification_mode=A__ , in_memory=self.keep_in_memory ) return dataset
192
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _a (unittest.TestCase ): '''simple docstring''' @property def __A ( self ): torch.manual_seed(0 ) A__ : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def __A ( self ): torch.manual_seed(0 ) A__ : Dict = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def __A ( self ): torch.manual_seed(0 ) A__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(A__ ) def __A ( self ): A__ : int = self.dummy_uncond_unet A__ : Optional[int] = DDIMScheduler() A__ : List[Any] = self.dummy_vq_model A__ : Optional[int] = LDMPipeline(unet=A__ , vqvae=A__ , scheduler=A__ ) ldm.to(A__ ) ldm.set_progress_bar_config(disable=A__ ) A__ : Tuple = torch.manual_seed(0 ) A__ : List[Any] = ldm(generator=A__ , num_inference_steps=2 , output_type="""numpy""" ).images A__ : Optional[int] = torch.manual_seed(0 ) A__ : List[Any] = ldm(generator=A__ , num_inference_steps=2 , output_type="""numpy""" , return_dict=A__ )[0] A__ : str = image[0, -3:, -3:, -1] A__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ : Dict = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) A__ : List[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): A__ : Optional[Any] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(A__ ) ldm.set_progress_bar_config(disable=A__ ) A__ : Tuple = torch.manual_seed(0 ) A__ : List[Any] = ldm(generator=A__ , num_inference_steps=5 , output_type="""numpy""" ).images A__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) A__ : Any = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) A__ : int = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
192
1
"""simple docstring""" from itertools import permutations def SCREAMING_SNAKE_CASE_ ( __magic_name__ : tuple ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False UpperCamelCase :str = [7, 11, 13, 17] for i, test in enumerate(_snake_case ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 10 ) -> int: """simple docstring""" return sum( int("""""".join(map(_snake_case , _snake_case ) ) ) for num in permutations(range(_snake_case ) ) if is_substring_divisible(_snake_case ) ) if __name__ == "__main__": print(F'''{solution() = }''')
352
from math import pi def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
62
0
'''simple docstring''' import datasets from .evaluate import evaluate lowercase_ = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ lowercase_ = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ lowercase_ = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def snake_case_( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def snake_case_( self , A , A ) -> List[str]: _SCREAMING_SNAKE_CASE = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} _SCREAMING_SNAKE_CASE = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] _SCREAMING_SNAKE_CASE = evaluate(dataset=A , predictions=A ) return score
58
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = PriorTransformer UpperCamelCase__ = '''hidden_states''' @property def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Optional[Any] = 4 lowercase_ : int = 8 lowercase_ : Union[str, Any] = 7 lowercase_ : List[str] = floats_tensor((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Tuple = floats_tensor((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : List[str] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Optional[Any]=0 ): torch.manual_seed(lowercase_ ) lowercase_ : int = 4 lowercase_ : Any = 8 lowercase_ : Tuple = 7 lowercase_ : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Tuple = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Union[str, Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def SCREAMING_SNAKE_CASE_ ( self : str ): return (4, 8) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return (4, 8) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Optional[Any] = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } lowercase_ : List[Any] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ , lowercase_ : Tuple = PriorTransformer.from_pretrained( """hf-internal-testing/prior-dummy""" , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowercase_ ) lowercase_ : Optional[int] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ , lowercase_ : str = self.prepare_init_args_and_inputs_for_common() lowercase_ : List[Any] = self.model_class(**lowercase_ ) lowercase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Any = [*signature.parameters.keys()] lowercase_ : Optional[Any] = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[Any] = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" ) lowercase_ : Any = model.to(lowercase_ ) if hasattr(lowercase_ , """set_default_attn_processor""" ): model.set_default_attn_processor() lowercase_ : Any = self.get_dummy_seed_input() with torch.no_grad(): lowercase_ : List[str] = model(**lowercase_ )[0] lowercase_ : Tuple = output[0, :5].flatten().cpu() print(lowercase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase_ : Dict = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1E-2 ) ) @slow class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Union[str, Any]=1 , lowercase_ : Optional[Any]=768 , lowercase_ : Tuple=77 , lowercase_ : Optional[int]=0 ): torch.manual_seed(lowercase_ ) lowercase_ : Optional[Any] = batch_size lowercase_ : int = embedding_dim lowercase_ : int = num_embeddings lowercase_ : Dict = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Any = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : List[Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Any , lowercase_ : List[str] ): lowercase_ : List[Any] = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" ) model.to(lowercase_ ) lowercase_ : Optional[Any] = self.get_dummy_seed_input(seed=lowercase_ ) with torch.no_grad(): lowercase_ : Tuple = model(**lowercase_ )[0] assert list(sample.shape ) == [1, 768] lowercase_ : Union[str, Any] = sample[0, :8].flatten().cpu() print(lowercase_ ) lowercase_ : Optional[Any] = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1E-3 )
239
0
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): while second != 0: A : Dict = first & second first ^= second A : Dict = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE = int(input("""Enter the first number: """).strip()) __SCREAMING_SNAKE_CASE = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
351
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
256
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE__ = { 'google/fnet-base': 512, 'google/fnet-large': 512, } SCREAMING_SNAKE_CASE__ = '▁' class A__ ( UpperCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : List[str] = ["""input_ids""", """token_type_ids"""] lowerCAmelCase__ : Optional[Any] = FNetTokenizer def __init__( self : Optional[Any] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : str="<unk>" , _UpperCAmelCase : Tuple="[SEP]" , _UpperCAmelCase : int="<pad>" , _UpperCAmelCase : int="[CLS]" , _UpperCAmelCase : Optional[int]="[MASK]" , **_UpperCAmelCase : List[Any] , ) -> Union[str, Any]: """simple docstring""" __lowercase = ( AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ , normalized=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token ) super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) __lowercase = do_lower_case __lowercase = remove_space __lowercase = keep_accents __lowercase = vocab_file __lowercase = False if not self.vocab_file else True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] = None ) -> str: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any = None ) -> Any: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any = None ) -> List[Any]: """simple docstring""" if not os.path.isdir(snake_case_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
325
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCamelCase_ : str = logging.get_logger(__name__) @add_end_docstrings( UpperCAmelCase__ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if self.framework == "tf": A_ : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": A_ : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=snake_case_ ) else: raise ValueError('Unsupported framework' ) return masked_index def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : List[str] = self.get_masked_index(snake_case_ ) A_ : str = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_=None , **snake_case_ ): """simple docstring""" if return_tensors is None: A_ : Any = self.framework A_ : Dict = self.tokenizer(snake_case_ , return_tensors=snake_case_ ) self.ensure_exactly_one_mask_token(snake_case_ ) return model_inputs def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Dict = self.model(**snake_case_ ) A_ : Optional[int] = model_inputs['input_ids'] return model_outputs def lowerCamelCase_ ( self , snake_case_ , snake_case_=5 , snake_case_=None ): """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: A_ : str = target_ids.shape[0] A_ : Optional[Any] = model_outputs['input_ids'][0] A_ : List[Any] = model_outputs['logits'] if self.framework == "tf": A_ : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] A_ : Union[str, Any] = outputs.numpy() A_ : Optional[int] = outputs[0, masked_index, :] A_ : Optional[Any] = stable_softmax(snake_case_ , axis=-1 ) if target_ids is not None: A_ : Union[str, Any] = tf.gather_nd(tf.squeeze(snake_case_ , 0 ) , target_ids.reshape(-1 , 1 ) ) A_ : Optional[int] = tf.expand_dims(snake_case_ , 0 ) A_ : Any = tf.math.top_k(snake_case_ , k=snake_case_ ) A_ , A_ : str = topk.values.numpy(), topk.indices.numpy() else: A_ : int = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=snake_case_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample A_ : Tuple = outputs[0, masked_index, :] A_ : List[str] = logits.softmax(dim=-1 ) if target_ids is not None: A_ : str = probs[..., target_ids] A_ , A_ : List[str] = probs.topk(snake_case_ ) A_ : List[Any] = [] A_ : int = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): A_ : str = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place A_ : Union[str, Any] = input_ids.numpy().copy() if target_ids is not None: A_ : str = target_ids[p].tolist() A_ : Union[str, Any] = p # Filter padding out: A_ : Any = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back A_ : Any = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) A_ : Any = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(snake_case_ ) result.append(snake_case_ ) if single_mask: return result[0] return result def lowerCamelCase_ ( self , snake_case_ , snake_case_=None ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ): A_ : List[str] = [targets] try: A_ : Optional[int] = self.tokenizer.get_vocab() except Exception: A_ : int = {} A_ : Tuple = [] for target in targets: A_ : int = vocab.get(snake_case_ , snake_case_ ) if id_ is None: A_ : Tuple = self.tokenizer( snake_case_ , add_special_tokens=snake_case_ , return_attention_mask=snake_case_ , return_token_type_ids=snake_case_ , max_length=1 , truncation=snake_case_ , )['input_ids'] if len(snake_case_ ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ 'We cannot replace it with anything meaningful, ignoring it' ) continue A_ : str = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) A_ : Tuple = list(set(snake_case_ ) ) if len(snake_case_ ) == 0: raise ValueError('At least one target must be provided when passed.' ) A_ : Optional[Any] = np.array(snake_case_ ) return target_ids def lowerCamelCase_ ( self , snake_case_=None , snake_case_=None ): """simple docstring""" A_ : List[str] = {} if targets is not None: A_ : Any = self.get_target_ids(snake_case_ , snake_case_ ) A_ : Optional[Any] = target_ids if top_k is not None: A_ : int = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self , snake_case_ , *snake_case_ , **snake_case_ ): """simple docstring""" A_ : List[str] = super().__call__(snake_case_ , **snake_case_ ) if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) == 1: return outputs[0] return outputs
286
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowercase ( unittest.TestCase , a ): def __snake_case( self : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = load_tool("text-to-speech" ) self.tool.setup() def __snake_case( self : int ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = self.tool("hey" ) SCREAMING_SNAKE_CASE = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def __snake_case( self : Any ) -> int: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = self.tool("hey" ) SCREAMING_SNAKE_CASE = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
357
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def __lowerCamelCase (UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE = SwinConfig( embed_dim=1_9_2 , depths=(2, 2, 1_8, 2) , num_heads=(6, 1_2, 2_4, 4_8) , window_size=1_2 , out_features=["stage2", "stage3", "stage4"] , ) SCREAMING_SNAKE_CASE = DetaConfig( backbone_config=UpperCAmelCase__ , num_queries=9_0_0 , encoder_ffn_dim=2_0_4_8 , decoder_ffn_dim=2_0_4_8 , num_feature_levels=5 , assign_first_stage=UpperCAmelCase__ , with_box_refine=UpperCAmelCase__ , two_stage=UpperCAmelCase__ , ) # set labels SCREAMING_SNAKE_CASE = "huggingface/label-files" if "o365" in model_name: SCREAMING_SNAKE_CASE = 3_6_6 SCREAMING_SNAKE_CASE = "object365-id2label.json" else: SCREAMING_SNAKE_CASE = 9_1 SCREAMING_SNAKE_CASE = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__ , UpperCAmelCase__ , repo_type="dataset" ) ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase (UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] ): SCREAMING_SNAKE_CASE = dct.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = val def __lowerCamelCase (UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE = in_proj_bias[: dim] SCREAMING_SNAKE_CASE = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-dim :] # fmt: on def __lowerCamelCase (UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] ): # transformer decoder self-attention layers SCREAMING_SNAKE_CASE = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:hidden_size, :] SCREAMING_SNAKE_CASE = in_proj_bias[:hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ hidden_size : hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE = in_proj_weight[-hidden_size:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-hidden_size:] def __lowerCamelCase (): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] ): SCREAMING_SNAKE_CASE = get_deta_config(UpperCAmelCase__ ) # load original state dict if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F"Model name {model_name} not supported" ) SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(UpperCAmelCase__ , param.shape ) # rename keys SCREAMING_SNAKE_CASE = create_rename_keys(UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) read_in_swin_q_k_v(UpperCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCAmelCase__ , UpperCAmelCase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: SCREAMING_SNAKE_CASE = state_dict.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = val if "input_proj" in key: SCREAMING_SNAKE_CASE = state_dict.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: SCREAMING_SNAKE_CASE = state_dict.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = DetaForObjectDetection(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE = "cuda" if torch.cuda.is_available() else "cpu" model.to(UpperCAmelCase__ ) # load image processor SCREAMING_SNAKE_CASE = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = processor(images=UpperCAmelCase__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoding["pixel_values"] SCREAMING_SNAKE_CASE = model(pixel_values.to(UpperCAmelCase__ ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(UpperCAmelCase__ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(UpperCAmelCase__ ) , atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F"jozhang97/{model_name}" ) processor.push_to_hub(F"jozhang97/{model_name}" ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowerCamelCase : Any = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
206
0
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def __lowerCamelCase ( __snake_case : str, __snake_case : Union[str, Any], __snake_case : List[str] ) -> Optional[Any]: """simple docstring""" A__ : str =0 if start < end: A__ : List[str] =randint(__snake_case, __snake_case ) A__ : List[str] =a[end] A__ : Union[str, Any] =a[pivot] A__ : List[str] =temp A__ , A__ : Optional[Any] =_in_place_partition(__snake_case, __snake_case, __snake_case ) count += _in_place_quick_sort(__snake_case, __snake_case, p - 1 ) count += _in_place_quick_sort(__snake_case, p + 1, __snake_case ) return count def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[str] ) -> Any: """simple docstring""" A__ : Optional[int] =0 A__ : Optional[int] =randint(__snake_case, __snake_case ) A__ : Tuple =a[end] A__ : Union[str, Any] =a[pivot] A__ : List[str] =temp A__ : str =start - 1 for index in range(__snake_case, __snake_case ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value A__ : Dict =new_pivot_index + 1 A__ : Any =a[new_pivot_index] A__ : int =a[index] A__ : Optional[Any] =temp A__ : Tuple =a[new_pivot_index + 1] A__ : List[Any] =a[end] A__ : Union[str, Any] =temp return new_pivot_index + 1, count __snake_case : Any = TemporaryFile() __snake_case : Any = 100 # 1000 elements are to be sorted __snake_case , __snake_case : Dict = 0, 1 # mean and standard deviation __snake_case : Any = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array __snake_case : List[str] = np.load(outfile) __snake_case : Any = len(M) - 1 __snake_case : Dict = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
134
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int = None , lowerCAmelCase_ : int = None ) -> str: '''simple docstring''' super().__init__() A__ : Optional[Any] =pad_token_id A__ : int =max_length A__ : Optional[int] =vocab A__ : Any =merges A__ : Optional[Any] =BytePairTokenizer(lowerCAmelCase_ , lowerCAmelCase_ , sequence_length=lowerCAmelCase_ ) @classmethod def lowercase__ ( cls : Optional[int] , lowerCAmelCase_ : GPTaTokenizer , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' A__ : Any =[""" """.join(lowerCAmelCase_ ) for m in tokenizer.bpe_ranks.keys()] A__ : List[str] =tokenizer.get_vocab() return cls(lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) @classmethod def lowercase__ ( cls : Tuple , lowerCAmelCase_ : Union[str, os.PathLike] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[Any] ) -> List[str]: '''simple docstring''' A__ : Any =GPTaTokenizer.from_pretrained(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) return cls.from_tokenizer(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) @classmethod def lowercase__ ( cls : str , lowerCAmelCase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' return cls(**lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int = None ) -> Tuple: '''simple docstring''' A__ : Optional[int] =self.tf_tokenizer(lowerCAmelCase_ ) A__ : List[Any] =tf.ones_like(lowerCAmelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length A__ : Union[str, Any] =max_length if max_length is not None else self.max_length if max_length is not None: A__ , A__ : Any =pad_model_inputs( lowerCAmelCase_ , max_seq_length=lowerCAmelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
134
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar UpperCamelCase__ = TypeVar("T") class __SCREAMING_SNAKE_CASE ( Generic[T] ): snake_case : deque[T] # Cache store of keys snake_case : set[T] # References of the keys in cache snake_case : int = 10 # Maximum capacity of cache def __init__( self , __lowerCAmelCase ): UpperCamelCase__ = deque() UpperCamelCase__ = set() if not n: UpperCamelCase__ = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: UpperCamelCase__ = n def _lowerCamelCase ( self , __lowerCAmelCase ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase__ = self.dq_store.pop() self.key_reference.remove(__lowerCAmelCase ) else: self.dq_store.remove(__lowerCAmelCase ) self.dq_store.appendleft(__lowerCAmelCase ) self.key_reference.add(__lowerCAmelCase ) def _lowerCamelCase ( self ): for k in self.dq_store: print(__lowerCAmelCase ) def __repr__( self ): return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
354
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase__ = logging.getLogger(__name__) def _UpperCamelCase (a__ :Union[str, Any] , a__ :Optional[Any] ): """simple docstring""" return (preds == labels).mean() @dataclass class __SCREAMING_SNAKE_CASE : snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case : Optional[str] = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __SCREAMING_SNAKE_CASE : snake_case : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) snake_case : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) snake_case : int = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case : bool = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , a__ ) # Set seed set_seed(training_args.seed ) try: UpperCamelCase__ = processors[data_args.task_name]() UpperCamelCase__ = processor.get_labels() UpperCamelCase__ = len(a__ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCamelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase__ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , ) # Get datasets UpperCamelCase__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCamelCase__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(a__ :EvalPrediction ) -> Dict: UpperCamelCase__ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(a__ , p.label_ids )} # Data collator UpperCamelCase__ = DataCollatorWithPadding(a__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCamelCase__ = Trainer( model=a__ , args=a__ , train_dataset=a__ , eval_dataset=a__ , compute_metrics=a__ , data_collator=a__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase__ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase__ = trainer.evaluate() UpperCamelCase__ = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(a__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , a__ , a__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(a__ ) return results def _UpperCamelCase (a__ :Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
87
0
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowercase_ = logging.get_logger(__name__) lowercase_ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A=None , A=None , *A , **A ) -> Optional[int]: super().__init__(*A , **A ) if config is None: assert isinstance(self.model , A ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f' {self.model.__class__}' ) _SCREAMING_SNAKE_CASE = self.model.config else: _SCREAMING_SNAKE_CASE = config _SCREAMING_SNAKE_CASE = data_args _SCREAMING_SNAKE_CASE = self.config.tgt_vocab_size if isinstance(self.config , A ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' """ padding..""" ) if self.args.label_smoothing == 0: _SCREAMING_SNAKE_CASE = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _SCREAMING_SNAKE_CASE = label_smoothed_nll_loss def snake_case_( self , A ) -> int: if self.optimizer is None: _SCREAMING_SNAKE_CASE = ["""bias""", """LayerNorm.weight"""] _SCREAMING_SNAKE_CASE = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _SCREAMING_SNAKE_CASE = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _SCREAMING_SNAKE_CASE = Adafactor _SCREAMING_SNAKE_CASE = {"""scale_parameter""": False, """relative_step""": False} else: _SCREAMING_SNAKE_CASE = AdamW _SCREAMING_SNAKE_CASE = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _SCREAMING_SNAKE_CASE = self.args.learning_rate if self.sharded_ddp: _SCREAMING_SNAKE_CASE = OSS( params=A , optim=A , **A , ) else: _SCREAMING_SNAKE_CASE = optimizer_cls(A , **A ) if self.lr_scheduler is None: _SCREAMING_SNAKE_CASE = self._get_lr_scheduler(A ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def snake_case_( self , A ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _SCREAMING_SNAKE_CASE = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _SCREAMING_SNAKE_CASE = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _SCREAMING_SNAKE_CASE = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=A ) return scheduler def snake_case_( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def snake_case_( self , A , A , A ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _SCREAMING_SNAKE_CASE = model(**A , use_cache=A )[0] _SCREAMING_SNAKE_CASE = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model(**A , labels=A , use_cache=A )[:2] else: # compute label smoothed loss _SCREAMING_SNAKE_CASE = model(**A , use_cache=A )[0] _SCREAMING_SNAKE_CASE = torch.nn.functional.log_softmax(A , dim=-1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.loss_fn(A , A , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def snake_case_( self , A , A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = inputs.pop("""labels""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._compute_loss(A , A , A ) return loss def snake_case_( self , A , A , A , A = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _SCREAMING_SNAKE_CASE = self._prepare_inputs(A ) _SCREAMING_SNAKE_CASE = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _SCREAMING_SNAKE_CASE = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **A , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _SCREAMING_SNAKE_CASE = self._pad_tensors_to_max_len(A , gen_kwargs["""max_length"""] ) _SCREAMING_SNAKE_CASE = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._compute_loss(A , A , A ) _SCREAMING_SNAKE_CASE = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _SCREAMING_SNAKE_CASE = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _SCREAMING_SNAKE_CASE = self._pad_tensors_to_max_len(A , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def snake_case_( self , A , A ) -> int: # If PAD token is not defined at least EOS token has to be defined _SCREAMING_SNAKE_CASE = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f' padded to `max_length`={max_length}' ) _SCREAMING_SNAKE_CASE = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _SCREAMING_SNAKE_CASE = tensor return padded_tensor
58
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Any = np.inf def set_batch_size(SCREAMING_SNAKE_CASE ) -> None: nonlocal batch_size if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Tuple = min(SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : str = min(SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and feature.dtype == "binary": A_ : Union[str, Any] = min(SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return None if batch_size is np.inf else batch_size class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->str: '''simple docstring''' super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ : str = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ : Optional[int] = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ : Union[str, Any] = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def _snake_case ( self )->Optional[int]: '''simple docstring''' if self.streaming: A_ : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : List[str] = None A_ : List[str] = None A_ : List[Any] = None A_ : Dict = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ : Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->List[Any]: '''simple docstring''' A_ : Union[str, Any] = dataset A_ : Union[str, Any] = path_or_buf A_ : Any = batch_size or get_writer_batch_size(dataset.features ) A_ : Optional[int] = parquet_writer_kwargs def _snake_case ( self )->int: '''simple docstring''' A_ : Union[str, Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ : str = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ : Tuple = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->int: '''simple docstring''' A_ : List[Any] = 0 A_ : int = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = self.dataset.features.arrow_schema A_ : List[str] = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ : List[Any] = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
186
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py UpperCAmelCase__ = "src/transformers" UpperCAmelCase__ = "docs/source/en/tasks" def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ) -> int: '''simple docstring''' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _UpperCAmelCase = f.readlines() # Find the start prompt. _UpperCAmelCase = 0 while not lines[start_index].startswith(_UpperCAmelCase ): start_index += 1 start_index += 1 _UpperCAmelCase = start_index while not lines[end_index].startswith(_UpperCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ = direct_transformers_import(TRANSFORMERS_PATH) UpperCAmelCase__ = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). UpperCAmelCase__ = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def A ( _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = TASK_GUIDE_TO_MODELS[task_guide] _UpperCAmelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_UpperCAmelCase , set() ) _UpperCAmelCase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict=False ) -> List[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = _find_text_in_file( filename=os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) _UpperCAmelCase = get_model_list_for_task(_UpperCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" ' to fix this.' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase__ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
364
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[int] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_2_8, '''min_length''': 1_2, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_4_2, '''min_length''': 5_6, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 6_2, '''min_length''': 1_1, '''num_beams''': 6}, } } lowerCAmelCase : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 1_2_8, '''task_specific_params.summarization.min_length''': 1_2, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 1_4_2, '''task_specific_params.summarization_cnn.min_length''': 5_6, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 6_2, '''task_specific_params.summarization_xsum.min_length''': 1_1, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ ) , x.transpose() ) ) lowerCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = np.random.randn(3 , 4 ) lowerCAmelCase : Any = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ ) , transpose(UpperCamelCase_ ).numpy() ) ) lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : Tuple = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ , axes=(1, 2, 0) ) , transpose(UpperCamelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = np.random.randn(3 , 4 ) lowerCAmelCase : str = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ ) , transpose(UpperCamelCase_ ).numpy() ) ) lowerCAmelCase : Optional[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : List[Any] = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ , axes=(1, 2, 0) ) , transpose(UpperCamelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase : Union[str, Any] = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ ) , np.asarray(transpose(UpperCamelCase_ ) ) ) ) lowerCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : Dict = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(transpose(UpperCamelCase_ , axes=(1, 2, 0) ) , np.asarray(transpose(UpperCamelCase_ , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (4, 3) ) , np.reshape(UpperCamelCase_ , (4, 3) ) ) ) lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (1_2, 5) ) , np.reshape(UpperCamelCase_ , (1_2, 5) ) ) ) @require_torch def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase : Optional[Any] = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (4, 3) ) , reshape(UpperCamelCase_ , (4, 3) ).numpy() ) ) lowerCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : Union[str, Any] = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (1_2, 5) ) , reshape(UpperCamelCase_ , (1_2, 5) ).numpy() ) ) @require_tf def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = np.random.randn(3 , 4 ) lowerCAmelCase : str = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (4, 3) ) , reshape(UpperCamelCase_ , (4, 3) ).numpy() ) ) lowerCAmelCase : int = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : Tuple = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (1_2, 5) ) , reshape(UpperCamelCase_ , (1_2, 5) ).numpy() ) ) @require_flax def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Dict = np.random.randn(3 , 4 ) lowerCAmelCase : Union[str, Any] = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (4, 3) ) , np.asarray(reshape(UpperCamelCase_ , (4, 3) ) ) ) ) lowerCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : int = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(reshape(UpperCamelCase_ , (1_2, 5) ) , np.asarray(reshape(UpperCamelCase_ , (1_2, 5) ) ) ) ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ ) , np.squeeze(UpperCamelCase_ ) ) ) lowerCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ , axis=2 ) , np.squeeze(UpperCamelCase_ , axis=2 ) ) ) @require_torch def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = np.random.randn(1 , 3 , 4 ) lowerCAmelCase : Union[str, Any] = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ ) , squeeze(UpperCamelCase_ ).numpy() ) ) lowerCAmelCase : Dict = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase : Tuple = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ , axis=2 ) , squeeze(UpperCamelCase_ , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = np.random.randn(1 , 3 , 4 ) lowerCAmelCase : List[str] = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ ) , squeeze(UpperCamelCase_ ).numpy() ) ) lowerCAmelCase : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase : Optional[int] = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ , axis=2 ) , squeeze(UpperCamelCase_ , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase__ ( self : Any ): lowerCAmelCase : int = np.random.randn(1 , 3 , 4 ) lowerCAmelCase : str = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ ) , np.asarray(squeeze(UpperCamelCase_ ) ) ) ) lowerCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase : str = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase_ , axis=2 ) , np.asarray(squeeze(UpperCamelCase_ , axis=2 ) ) ) ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase_ , axis=1 ) , np.expand_dims(UpperCamelCase_ , axis=1 ) ) ) @require_torch def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = np.random.randn(3 , 4 ) lowerCAmelCase : Any = torch.tensor(UpperCamelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase_ , axis=1 ) , expand_dims(UpperCamelCase_ , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = np.random.randn(3 , 4 ) lowerCAmelCase : Optional[int] = tf.constant(UpperCamelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase_ , axis=1 ) , expand_dims(UpperCamelCase_ , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Dict = np.random.randn(3 , 4 ) lowerCAmelCase : Tuple = jnp.array(UpperCamelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase_ , axis=1 ) , np.asarray(expand_dims(UpperCamelCase_ , axis=1 ) ) ) )
60
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( _snake_case : np.ndarray , _snake_case : np.ndarray ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_snake_case , _snake_case ) ) ) def _snake_case ( _snake_case : np.ndarray , _snake_case : np.ndarray ): if dataset.ndim != value_array.ndim: lowerCAmelCase : List[Any] = ( '''Wrong input data\'s dimensions... ''' f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(_snake_case ) try: if dataset.shape[1] != value_array.shape[1]: lowerCAmelCase : Dict = ( '''Wrong input data\'s shape... ''' f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(_snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: lowerCAmelCase : Optional[Any] = ( '''Input data have different datatype... ''' f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(_snake_case ) lowerCAmelCase : str = [] for value in value_array: lowerCAmelCase : int = euclidean(_snake_case , dataset[0] ) lowerCAmelCase : Union[str, Any] = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCAmelCase : Any = euclidean(_snake_case , _snake_case ) if dist > temp_dist: lowerCAmelCase : List[Any] = temp_dist lowerCAmelCase : Tuple = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( _snake_case : np.ndarray , _snake_case : np.ndarray ): return np.dot(_snake_case , _snake_case ) / (norm(_snake_case ) * norm(_snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
60
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Any ="""ctrl""" lowercase : Optional[int] =["""past_key_values"""] lowercase : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase_=24_6534 , UpperCamelCase_=256 , UpperCamelCase_=1280 , UpperCamelCase_=8192 , UpperCamelCase_=48 , UpperCamelCase_=16 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-6 , UpperCamelCase_=0.02 , UpperCamelCase_=True , **UpperCamelCase_ , ): lowercase_ :List[Any] = vocab_size lowercase_ :Dict = n_positions lowercase_ :Union[str, Any] = n_embd lowercase_ :List[Any] = n_layer lowercase_ :Union[str, Any] = n_head lowercase_ :Any = dff lowercase_ :Dict = resid_pdrop lowercase_ :List[str] = embd_pdrop lowercase_ :int = layer_norm_epsilon lowercase_ :Any = initializer_range lowercase_ :Optional[int] = use_cache super().__init__(**UpperCamelCase_ )
252
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , **UpperCamelCase_ ): requires_backends(self , ['''bs4'''] ) super().__init__(**UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Optional[int] = [] lowercase_ :Union[str, Any] = [] lowercase_ :Union[str, Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowercase_ :Any = parent.find_all(child.name , recursive=UpperCamelCase_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(UpperCamelCase_ ) else next(i for i, s in enumerate(UpperCamelCase_ , 1 ) if s is child ) ) lowercase_ :str = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Dict = BeautifulSoup(UpperCamelCase_ , '''html.parser''' ) lowercase_ :Union[str, Any] = [] lowercase_ :Union[str, Any] = [] lowercase_ :List[Any] = [] for element in html_code.descendants: if type(UpperCamelCase_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowercase_ :Dict = html.unescape(UpperCamelCase_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(UpperCamelCase_ ) lowercase_ , lowercase_ :Tuple = self.xpath_soup(UpperCamelCase_ ) stringaxtag_seq.append(UpperCamelCase_ ) stringaxsubs_seq.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Union[str, Any] = '''''' for tagname, subs in zip(UpperCamelCase_ , UpperCamelCase_ ): xpath += f"/{tagname}" if subs != 0: xpath += f"[{subs}]" return xpath def __call__( self , UpperCamelCase_ ): lowercase_ :Dict = False # Check that strings has a valid type if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Optional[Any] = True elif isinstance(UpperCamelCase_ , (list, tuple) ): if len(UpperCamelCase_ ) == 0 or isinstance(html_strings[0] , UpperCamelCase_ ): lowercase_ :Tuple = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' f"but is of type {type(UpperCamelCase_ )}." ) lowercase_ :List[Any] = bool(isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(html_strings[0] , UpperCamelCase_ )) ) if not is_batched: lowercase_ :Dict = [html_strings] # Get nodes + xpaths lowercase_ :List[Any] = [] lowercase_ :List[str] = [] for html_string in html_strings: lowercase_ , lowercase_ , lowercase_ :List[str] = self.get_three_from_single(UpperCamelCase_ ) nodes.append(UpperCamelCase_ ) lowercase_ :str = [] for node, tag_list, sub_list in zip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :str = self.construct_xpath(UpperCamelCase_ , UpperCamelCase_ ) xpath_strings.append(UpperCamelCase_ ) xpaths.append(UpperCamelCase_ ) # return as Dict lowercase_ :int = {'''nodes''': nodes, '''xpaths''': xpaths} lowercase_ :Optional[int] = BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ ) return encoded_inputs
252
1
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowercase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : WhisperForConditionalGeneration , SCREAMING_SNAKE_CASE_ : WhisperProcessor , SCREAMING_SNAKE_CASE_ : AutoencoderKL , SCREAMING_SNAKE_CASE_ : CLIPTextModel , SCREAMING_SNAKE_CASE_ : CLIPTokenizer , SCREAMING_SNAKE_CASE_ : UNetaDConditionModel , SCREAMING_SNAKE_CASE_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , SCREAMING_SNAKE_CASE_ : StableDiffusionSafetyChecker , SCREAMING_SNAKE_CASE_ : CLIPImageProcessor , ): super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=__UpperCamelCase , speech_processor=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , feature_extractor=__UpperCamelCase , ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": lowerCAmelCase_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): self.enable_attention_slicing(__UpperCamelCase ) @torch.no_grad() def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict=1_6_0_0_0 , SCREAMING_SNAKE_CASE_ : int = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 5_1_2 , SCREAMING_SNAKE_CASE_ : int = 5_0 , SCREAMING_SNAKE_CASE_ : float = 7.5 , SCREAMING_SNAKE_CASE_ : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : Dict , ): lowerCAmelCase_ : Union[str, Any] = self.speech_processor.feature_extractor( __UpperCamelCase , return_tensors='pt' , sampling_rate=__UpperCamelCase ).input_features.to(self.device ) lowerCAmelCase_ : Optional[int] = self.speech_model.generate(__UpperCamelCase , max_length=4_8_0_0_0_0 ) lowerCAmelCase_ : Dict = self.speech_processor.tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase , normalize=__UpperCamelCase )[ 0 ] if isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCAmelCase_ : str = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCAmelCase_ : Optional[int] = len(__UpperCamelCase ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(__UpperCamelCase )}." ) # get prompt text embeddings lowerCAmelCase_ : List[Any] = self.tokenizer( __UpperCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowerCAmelCase_ : List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase_ : List[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase_ : Any = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase_ : List[str] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = text_embeddings.shape lowerCAmelCase_ : Dict = text_embeddings.repeat(1 , __UpperCamelCase , 1 ) lowerCAmelCase_ : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase_ : str = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase_ : Optional[Any] = 4_2 if negative_prompt is None: lowerCAmelCase_ : int = [''] * batch_size elif type(__UpperCamelCase ) is not type(__UpperCamelCase ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCamelCase )} !=" F" {type(__UpperCamelCase )}." ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCAmelCase_ : Union[str, Any] = [negative_prompt] elif batch_size != len(__UpperCamelCase ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(__UpperCamelCase )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: lowerCAmelCase_ : str = negative_prompt lowerCAmelCase_ : Tuple = text_input_ids.shape[-1] lowerCAmelCase_ : Optional[int] = self.tokenizer( __UpperCamelCase , padding='max_length' , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors='pt' , ) lowerCAmelCase_ : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase_ : int = uncond_embeddings.shape[1] lowerCAmelCase_ : Optional[Any] = uncond_embeddings.repeat(1 , __UpperCamelCase , 1 ) lowerCAmelCase_ : Optional[int] = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase_ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase_ : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase_ : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase_ : int = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device='cpu' , dtype=__UpperCamelCase ).to( self.device ) else: lowerCAmelCase_ : List[str] = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase_ : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase_ : List[str] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase_ : Dict = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase_ : int = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase_ : List[Any] = {} if accepts_eta: lowerCAmelCase_ : List[str] = eta for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase_ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase_ : Tuple = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual lowerCAmelCase_ : str = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase_ ,lowerCAmelCase_ : int = noise_pred.chunk(2 ) lowerCAmelCase_ : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ : int = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : Tuple = 1 / 0.1_82_15 * latents lowerCAmelCase_ : Dict = self.vae.decode(__UpperCamelCase ).sample lowerCAmelCase_ : int = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase_ : Optional[Any] = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
224
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( lowercase_ , unittest.TestCase ): UpperCamelCase = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :Union[str, Any]=0 ): A = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(__UpperCamelCase ) ) A = np.random.RandomState(__UpperCamelCase ) A = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowerCamelCase ( self :Any ): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = self.get_dummy_inputs() A = pipe(**__UpperCamelCase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) A = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowerCamelCase ( self :Dict ): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = self.get_dummy_inputs() A = pipe(**__UpperCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self :Optional[Any] ): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**__UpperCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self :Dict ): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = self.get_dummy_inputs() A = pipe(**__UpperCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self :Optional[Any] ): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = self.get_dummy_inputs() A = pipe(**__UpperCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCamelCase ( self :Union[str, Any] ): A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = self.get_dummy_inputs() A = pipe(**__UpperCamelCase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def lowerCamelCase ( self :Optional[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase ( self :Optional[int] ): A = ort.SessionOptions() A = False return options def lowerCamelCase ( self :Dict ): A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) A = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = "A fantasy landscape, trending on artstation" A = np.random.RandomState(0 ) A = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCamelCase , output_type="np" , ) A = output.images A = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) A = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowerCamelCase ( self :Any ): A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) A = init_image.resize((7_68, 5_12) ) A = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = "A fantasy landscape, trending on artstation" A = np.random.RandomState(0 ) A = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCamelCase , output_type="np" , ) A = output.images A = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) A = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
292
0
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = CustomTokenizer pass
174
'''simple docstring''' def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) _A = 0 _A = str(__lowercase ) while len(__lowercase ) != 1: _A = [int(__lowercase ) for i in num_string] _A = 1 for i in range(0 , len(__lowercase ) ): total *= numbers[i] _A = str(__lowercase ) steps += 1 return steps def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) _A = 0 _A = str(__lowercase ) while len(__lowercase ) != 1: _A = [int(__lowercase ) for i in num_string] _A = 0 for i in range(0 , len(__lowercase ) ): total += numbers[i] _A = str(__lowercase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
174
1
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Any = (DDPMScheduler,) def a ( self : List[str] , **_lowercase : Optional[int] ): __UpperCAmelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_lowercase ) return config def a ( self : Optional[Any] ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowercase ) def a ( self : Optional[Any] ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def a ( self : Tuple ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def a ( self : Any ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def a ( self : Union[str, Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def a ( self : Any ): self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def a ( self : Any ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def a ( self : Union[str, Any] ): for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=_lowercase ) def a ( self : Tuple ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5 def a ( self : Optional[Any] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter __UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual __UpperCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 __UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __UpperCAmelCase = pred_prev_sample __UpperCAmelCase = torch.sum(torch.abs(_lowercase ) ) __UpperCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def a ( self : int ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = len(_lowercase ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter __UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual __UpperCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 __UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __UpperCAmelCase = pred_prev_sample __UpperCAmelCase = torch.sum(torch.abs(_lowercase ) ) __UpperCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def a ( self : Any ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) __UpperCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: __UpperCAmelCase = -1 else: __UpperCAmelCase = timesteps[i + 1] __UpperCAmelCase = scheduler.previous_timestep(_lowercase ) __UpperCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def a ( self : Any ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_lowercase ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = [1_00, 87, 50, 1, 0] __UpperCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def a ( self : str ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) __UpperCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_lowercase )
332
"""simple docstring""" from collections import defaultdict def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = first_str.lower().strip() __UpperCAmelCase = second_str.lower().strip() # Remove whitespace __UpperCAmelCase = first_str.replace(''' ''' , '''''' ) __UpperCAmelCase = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(snake_case_ ) != len(snake_case_ ): return False # Default values for count should be 0 __UpperCAmelCase = defaultdict(snake_case_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(snake_case_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : List[Any] = input('Enter the first string ').strip() _lowercase : Tuple = input('Enter the second string ').strip() _lowercase : str = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
332
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
48
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = XLMTokenizer lowerCAmelCase__ = False def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __lowercase =dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase)))) __lowercase =['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) __lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w') as fp: fp.write(json.dumps(_lowerCAmelCase)) with open(self.merges_file , 'w') as fp: fp.write('\n'.join(_lowerCAmelCase)) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : Any): '''simple docstring''' __lowercase ='lower newer' __lowercase ='lower newer' return input_text, output_text def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =XLMTokenizer(self.vocab_file , self.merges_file) __lowercase ='lower' __lowercase =['low', 'er</w>'] __lowercase =tokenizer.tokenize(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =tokens + ['<unk>'] __lowercase =[1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase) , _lowerCAmelCase) @slow def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =XLMTokenizer.from_pretrained('xlm-mlm-en-2048') __lowercase =tokenizer.encode('sequence builders' , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase) __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
48
1
from __future__ import annotations def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not nums: return 0 __UpperCamelCase :str = nums[0] __UpperCamelCase :Optional[int] = 0 for num in nums[1:]: __UpperCamelCase , __UpperCamelCase :List[str] = ( max_excluding + num, max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), ) return max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _A = logging.getLogger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) return np.sum(outputs == labels ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): with open(SCREAMING_SNAKE_CASE__ , encoding='utf_8' ) as f: __UpperCamelCase =csv.reader(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] next(SCREAMING_SNAKE_CASE__ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE__ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =[] for dataset in encoded_datasets: __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __UpperCamelCase =np.zeros((n_batch, 2) , dtype=np.intaa ) __UpperCamelCase =np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) __UpperCamelCase =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCamelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCamelCase =with_conta __UpperCamelCase =with_conta __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) - 1 __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) - 1 __UpperCamelCase =with_conta __UpperCamelCase =with_conta __UpperCamelCase =mc_label __UpperCamelCase =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE__ ) for t in all_inputs ) ) return tensor_datasets def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE__ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE__ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE__ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE__ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE__ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=SCREAMING_SNAKE_CASE__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE__ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE__ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE__ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE__ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE__ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE__ , default=3_74 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) __UpperCamelCase =parser.parse_args() print(SCREAMING_SNAKE_CASE__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __UpperCamelCase =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __UpperCamelCase =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __UpperCamelCase =['_start_', '_delimiter_', '_classify_'] __UpperCamelCase =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) model.to(SCREAMING_SNAKE_CASE__ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE__ : str ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) for o in obj] logger.info('Encoding dataset...' ) __UpperCamelCase =load_rocstories_dataset(args.train_dataset ) __UpperCamelCase =load_rocstories_dataset(args.eval_dataset ) __UpperCamelCase =(train_dataset, eval_dataset) __UpperCamelCase =tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) # Compute the max input length for the Transformer __UpperCamelCase =model.config.n_positions // 2 - 2 __UpperCamelCase =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __UpperCamelCase =pre_process_datasets(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =tensor_datasets[0], tensor_datasets[1] __UpperCamelCase =TensorDataset(*SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =RandomSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.train_batch_size ) __UpperCamelCase =TensorDataset(*SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =SequentialSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __UpperCamelCase =args.max_steps __UpperCamelCase =args.max_steps // (len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps) + 1 else: __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps * args.num_train_epochs __UpperCamelCase =list(model.named_parameters() ) __UpperCamelCase =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] __UpperCamelCase =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] __UpperCamelCase =AdamW(SCREAMING_SNAKE_CASE__ , lr=args.learning_rate , eps=args.adam_epsilon ) __UpperCamelCase =get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE__ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE__ ) if args.do_train: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =tqdm(SCREAMING_SNAKE_CASE__ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =batch __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __UpperCamelCase =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __UpperCamelCase ='Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __UpperCamelCase =model.module if hasattr(SCREAMING_SNAKE_CASE__ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __UpperCamelCase =os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE__ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __UpperCamelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __UpperCamelCase =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE__ ) if args.do_eval: model.eval() __UpperCamelCase , __UpperCamelCase =0, 0 __UpperCamelCase , __UpperCamelCase =0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE__ , desc='Evaluating' ): __UpperCamelCase =tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =batch with torch.no_grad(): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =model( SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =mc_logits.detach().cpu().numpy() __UpperCamelCase =mc_labels.to('cpu' ).numpy() __UpperCamelCase =accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __UpperCamelCase =eval_loss / nb_eval_steps __UpperCamelCase =eval_accuracy / nb_eval_examples __UpperCamelCase =tr_loss / nb_tr_steps if args.do_train else None __UpperCamelCase ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} __UpperCamelCase =os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE__ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
62
0
from __future__ import annotations def A (__A : list[list[int]] ) -> bool: """simple docstring""" UpperCAmelCase_ = len(__A ) # We need to create solution object to save path. UpperCAmelCase_ = [[0 for _ in range(__A )] for _ in range(__A )] UpperCAmelCase_ = run_maze(__A , 0 , 0 , __A ) if solved: print('''\n'''.join(str(__A ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def A (__A : list[list[int]] , __A : int , __A : int , __A : list[list[int]] ) -> bool: """simple docstring""" UpperCAmelCase_ = len(__A ) # Final check point. if i == j == (size - 1): UpperCAmelCase_ = 1 return True UpperCAmelCase_ = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase_ = 1 # check for directions if ( run_maze(__A , i + 1 , __A , __A ) or run_maze(__A , __A , j + 1 , __A ) or run_maze(__A , i - 1 , __A , __A ) or run_maze(__A , __A , j - 1 , __A ) ): return True UpperCAmelCase_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
7
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Optional[Any] = 128022 snake_case_ : Optional[int] = 128028 @require_sentencepiece class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : List[str] = MaMaaaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(_snake_case , range(len(_snake_case)))) UpperCAmelCase_ = Path(self.tmpdirname) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab_file''']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''spm_file''']) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : str , **_snake_case : Union[str, Any]): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_snake_case) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<s>''') self.assertEqual(len(_snake_case) , tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip('''Skip this test while all models are still to be uploaded.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(_snake_case) self.assertEqual(_snake_case , '''This is a test''') @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Dict = '''facebook/m2m100_418M''' UpperCAmelCase__ : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] UpperCAmelCase__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off UpperCAmelCase__ : Any = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCamelCase ( cls : Optional[Any]): """simple docstring""" UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''') UpperCAmelCase_ = 1 return cls def lowerCamelCase ( self : List[Any]): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''') , 128006) self.assertEqual(self.tokenizer.get_lang_id('''en''') , 128022) self.assertEqual(self.tokenizer.get_lang_id('''ro''') , 128076) self.assertEqual(self.tokenizer.get_lang_id('''mr''') , 128063) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(_snake_case) , self.tokenizer.vocab_size) self.assertEqual(vocab['''<unk>'''] , 3) self.assertIn(self.tokenizer.get_lang_token('''en''') , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids) # fmt: off UpperCAmelCase_ = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case) self.assertEqual(_snake_case , _snake_case) self.assertNotIn(self.tokenizer.eos_token , _snake_case) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_snake_case) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(_snake_case) self.assertDictEqual(new_tok.lang_token_to_id , _snake_case) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''') UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''')]) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''') self.assertEqual( nested_simplify(_snake_case) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
7
1
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _UpperCamelCase : Optional[Any] = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _UpperCamelCase : Dict = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _UpperCamelCase : Optional[int] = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def _UpperCAmelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def _UpperCAmelCase ( self , a , a , a=4 , a=False ) -> Optional[int]: lowercase__ : Any = compute_bleu( reference_corpus=a , translation_corpus=a , max_order=a , smooth=a ) ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : Tuple = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
77
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( _lowercase): def __init__( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str]=13 , __UpperCamelCase : str=7 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : int=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : Dict=32 , __UpperCamelCase : int=5 , __UpperCamelCase : str=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=512 , __UpperCamelCase : List[str]=16 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : str=False , __UpperCamelCase : Dict=True , __UpperCamelCase : Tuple="None" , __UpperCamelCase : Dict=3 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Any=None , ) -> Tuple: _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = relative_attention _UpperCamelCase = position_biased_input _UpperCamelCase = pos_att_type _UpperCamelCase = scope def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: _UpperCamelCase = self.get_config() _UpperCamelCase = 300 return config def _UpperCamelCase ( self : int , __UpperCamelCase : List[Any] ) -> str: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _UpperCamelCase ( self : Any , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] ) -> List[str]: _UpperCamelCase = DebertaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase )[0] _UpperCamelCase = model(__UpperCamelCase , token_type_ids=__UpperCamelCase )[0] _UpperCamelCase = model(__UpperCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[int] ) -> Tuple: _UpperCamelCase = DebertaForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple ) -> List[Any]: _UpperCamelCase = self.num_labels _UpperCamelCase = DebertaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str ) -> Dict: _UpperCamelCase = self.num_labels _UpperCamelCase = DebertaForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ) -> List[Any]: _UpperCamelCase = DebertaForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : Any ) -> Union[str, Any]: _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase): snake_case__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = True snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: _UpperCamelCase = DebertaModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def _UpperCamelCase ( self : Optional[int] ) -> int: self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ) -> List[str]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCamelCase ) def _UpperCamelCase ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCamelCase ) def _UpperCamelCase ( self : Dict ) -> Tuple: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCamelCase ) @slow def _UpperCamelCase ( self : Any ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = DebertaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): @unittest.skip(reason='''Model not available yet''' ) def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: pass @slow def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) _UpperCamelCase = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] # compare the actual values for a slice. _UpperCamelCase = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1E-4 ) , F'''{output[:, 1:4, 1:4]}''' )
256
0
'''simple docstring''' class _lowerCAmelCase : def __init__(self , lowercase ): A_ : Optional[int] = len(lowercase ) A_ : Any = [0] * len_array if len_array > 0: A_ : str = array[0] for i in range(1 , lowercase ): A_ : Any = self.prefix_sum[i - 1] + array[i] def _a (self , lowercase , lowercase ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _a (self , lowercase ): A_ : Tuple = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowercase ) return False if __name__ == "__main__": import doctest doctest.testmod()
135
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase :Dict = logging.get_logger(__name__) lowerCamelCase :Any = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : List[Any] = 'bart' __SCREAMING_SNAKE_CASE : Union[str, Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Dict = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , lowercase=50265 , lowercase=1024 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=0.0 , lowercase=0.0 , lowercase="gelu" , lowercase=1024 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=0.0 , lowercase=False , lowercase=True , lowercase=3 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=True , lowercase=2 , lowercase=2 , **lowercase , ): A_ : Optional[int] = vocab_size A_ : Dict = max_position_embeddings A_ : Dict = d_model A_ : Any = encoder_ffn_dim A_ : Dict = encoder_layers A_ : Optional[int] = encoder_attention_heads A_ : Tuple = decoder_ffn_dim A_ : List[str] = decoder_layers A_ : int = decoder_attention_heads A_ : Dict = dropout A_ : List[str] = attention_dropout A_ : int = activation_dropout A_ : Dict = activation_function A_ : List[Any] = init_std A_ : Dict = encoder_layerdrop A_ : Tuple = decoder_layerdrop A_ : Optional[int] = classifier_dropout A_ : Union[str, Any] = use_cache A_ : Dict = encoder_layers A_ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , lowercase ): A_ : List[str] = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" ) class _lowerCAmelCase ( __UpperCAmelCase ): @property def _a (self ): if self.task in ["default", "seq2seq-lm"]: A_ : List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: A_ : Union[str, Any] = {0: """batch"""} A_ : List[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A_ : Optional[int] = {0: """batch""", 1: """decoder_sequence"""} A_ : List[str] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. A_ : List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: A_, A_ : Optional[int] = self.num_layers for i in range(lowercase ): A_ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} A_ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} else: A_ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def _a (self ): if self.task in ["default", "seq2seq-lm"]: A_ : int = super().outputs else: A_ : int = super(lowercase , self ).outputs if self.use_past: A_, A_ : Union[str, Any] = self.num_layers for i in range(lowercase ): A_ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _a (self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): A_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs A_ : int = seq_length if not self.use_past else 1 A_ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) A_ : Optional[int] = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} A_ : Dict = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_, A_ : Union[str, Any] = common_inputs["""input_ids"""].shape A_ : Optional[Any] = common_inputs["""decoder_input_ids"""].shape[1] A_, A_ : str = self.num_attention_heads A_ : Tuple = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Tuple = decoder_seq_length + 3 A_ : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A_ : List[str] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowercase , lowercase )] , dim=1 ) A_ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A_, A_ : Optional[int] = self.num_layers A_ : List[Any] = min(lowercase , lowercase ) A_ : Tuple = max(lowercase , lowercase ) - min_num_layers A_ : List[str] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. A_ : List[Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def _a (self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): A_ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_, A_ : List[str] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A_ : Optional[Any] = seqlen + 2 A_, A_ : str = self.num_layers A_, A_ : Optional[int] = self.num_attention_heads A_ : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Union[str, Any] = common_inputs["""attention_mask"""].dtype A_ : int = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) A_ : int = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def _a (self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A_ : List[Any] = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ : Union[str, Any] = tokenizer.num_special_tokens_to_add(lowercase ) A_ : List[Any] = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence A_ : str = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size A_ : Tuple = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def _a (self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): if self.task in ["default", "seq2seq-lm"]: A_ : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) elif self.task == "causal-lm": A_ : List[str] = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: A_ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def _a (self , lowercase , lowercase , lowercase , lowercase ): if self.task in ["default", "seq2seq-lm"]: A_ : Optional[Any] = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: A_ : List[Any] = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase )
135
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''', # See all SEW models at https://huggingface.co/models?filter=sew } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "sew" def __init__( self, lowerCAmelCase__=32, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=3072, lowerCAmelCase__=2, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-5, lowerCAmelCase__="group", lowerCAmelCase__="gelu", lowerCAmelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), lowerCAmelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), lowerCAmelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), lowerCAmelCase__=False, lowerCAmelCase__=128, lowerCAmelCase__=16, lowerCAmelCase__=True, lowerCAmelCase__=0.05, lowerCAmelCase__=10, lowerCAmelCase__=2, lowerCAmelCase__=0.0, lowerCAmelCase__=10, lowerCAmelCase__=0, lowerCAmelCase__="mean", lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=256, lowerCAmelCase__=0, lowerCAmelCase__=1, lowerCAmelCase__=2, **lowerCAmelCase__, ) -> str: super().__init__(**lowerCAmelCase__, pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(lowerCAmelCase__) snake_case_ = list(lowerCAmelCase__) snake_case_ = list(lowerCAmelCase__) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = squeeze_factor snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f'but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)' f'= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # sequence classification snake_case_ = use_weighted_layer_sum snake_case_ = classifier_proj_size @property def a_ ( self) -> Optional[Any]: return functools.reduce(operator.mul, self.conv_stride, 1)
69
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): def __init__( self : Any , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Tuple ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
294
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : int , lowercase__ : int ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, nicht wahr?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ : Optional[int] = { """wmt16-en-de-dist-12-1""": [28.3, 27.52], """wmt16-en-de-dist-6-1""": [27.4, 27.11], """wmt16-en-de-12-1""": [26.9, 25.75], } lowerCAmelCase_ : Optional[int] = f'{src_lang}-{tgt_lang}' lowerCAmelCase_ : Optional[Any] = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=lowercase__ , exist_ok=lowercase__ ) lowerCAmelCase_ : List[str] = os.path.join(lowercase__ , """README.md""" ) print(f'Generating {path}' ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(lowercase__ ) # make sure we are under the root of the project __UpperCAmelCase = Path(__file__).resolve().parent.parent.parent __UpperCAmelCase = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __UpperCAmelCase = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
366
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
0
def a__ ( A_ ): '''simple docstring''' __magic_name__ = [int(A_ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(A_ ) == 4 and all(0 <= int(A_ ) <= 254 for octet in octets ) if __name__ == "__main__": __lowerCAmelCase : List[str] = input().strip() __lowerCAmelCase : int = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
88
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = 42 class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : str=3 , UpperCamelCase__ : List[Any]=("DownEncoderBlock2D",) , UpperCamelCase__ : Optional[Any]=(64,) , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Union[str, Any]=32 , UpperCamelCase__ : Optional[Any]="silu" , UpperCamelCase__ : List[str]=True , ) -> str: """simple docstring""" super().__init__() __magic_name__ = layers_per_block __magic_name__ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) __magic_name__ = None __magic_name__ = nn.ModuleList([] ) # down __magic_name__ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): __magic_name__ = output_channel __magic_name__ = block_out_channels[i] __magic_name__ = i == len(UpperCamelCase__ ) - 1 __magic_name__ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid __magic_name__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out __magic_name__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1E-6 ) __magic_name__ = nn.SiLU() __magic_name__ = 2 * out_channels if double_z else out_channels __magic_name__ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) __magic_name__ = False def _lowercase ( self : List[str] , UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" __magic_name__ = x __magic_name__ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ : int ): def custom_forward(*UpperCamelCase__ : str ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle __magic_name__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: __magic_name__ = down_block(UpperCamelCase__ ) # middle __magic_name__ = self.mid_block(UpperCamelCase__ ) # post-process __magic_name__ = self.conv_norm_out(UpperCamelCase__ ) __magic_name__ = self.conv_act(UpperCamelCase__ ) __magic_name__ = self.conv_out(UpperCamelCase__ ) return sample class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : int=3 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[Any]=("UpDecoderBlock2D",) , UpperCamelCase__ : List[Any]=(64,) , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : int=32 , UpperCamelCase__ : Optional[int]="silu" , UpperCamelCase__ : Tuple="group" , ) -> Dict: """simple docstring""" super().__init__() __magic_name__ = layers_per_block __magic_name__ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) __magic_name__ = None __magic_name__ = nn.ModuleList([] ) __magic_name__ = in_channels if norm_type == """spatial""" else None # mid __magic_name__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up __magic_name__ = list(reversed(UpperCamelCase__ ) ) __magic_name__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): __magic_name__ = output_channel __magic_name__ = reversed_block_out_channels[i] __magic_name__ = i == len(UpperCamelCase__ ) - 1 __magic_name__ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) __magic_name__ = output_channel # out if norm_type == "spatial": __magic_name__ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: __magic_name__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1E-6 ) __magic_name__ = nn.SiLU() __magic_name__ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) __magic_name__ = False def _lowercase ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=None ) -> Tuple: """simple docstring""" __magic_name__ = z __magic_name__ = self.conv_in(UpperCamelCase__ ) __magic_name__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ : Optional[int] ): def custom_forward(*UpperCamelCase__ : int ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) __magic_name__ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle __magic_name__ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: __magic_name__ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: __magic_name__ = self.conv_norm_out(UpperCamelCase__ ) else: __magic_name__ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = self.conv_act(UpperCamelCase__ ) __magic_name__ = self.conv_out(UpperCamelCase__ ) return sample class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict="random" , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Dict=True ) -> Optional[Any]: """simple docstring""" super().__init__() __magic_name__ = n_e __magic_name__ = vq_embed_dim __magic_name__ = beta __magic_name__ = legacy __magic_name__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) __magic_name__ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) __magic_name__ = self.used.shape[0] __magic_name__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __magic_name__ = self.re_embed __magic_name__ = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: __magic_name__ = n_e __magic_name__ = sane_index_shape def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" __magic_name__ = inds.shape assert len(UpperCamelCase__ ) > 1 __magic_name__ = inds.reshape(ishape[0] , -1 ) __magic_name__ = self.used.to(UpperCamelCase__ ) __magic_name__ = (inds[:, :, None] == used[None, None, ...]).long() __magic_name__ = match.argmax(-1 ) __magic_name__ = match.sum(2 ) < 1 if self.unknown_index == "random": __magic_name__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: __magic_name__ = self.unknown_index return new.reshape(UpperCamelCase__ ) def _lowercase ( self : Optional[Any] , UpperCamelCase__ : str ) -> Tuple: """simple docstring""" __magic_name__ = inds.shape assert len(UpperCamelCase__ ) > 1 __magic_name__ = inds.reshape(ishape[0] , -1 ) __magic_name__ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token __magic_name__ = 0 # simply set to zero __magic_name__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def _lowercase ( self : List[str] , UpperCamelCase__ : List[str] ) -> List[str]: """simple docstring""" __magic_name__ = z.permute(0 , 2 , 3 , 1 ).contiguous() __magic_name__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __magic_name__ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) __magic_name__ = self.embedding(UpperCamelCase__ ).view(z.shape ) __magic_name__ = None __magic_name__ = None # compute loss for embedding if not self.legacy: __magic_name__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __magic_name__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __magic_name__ = z + (z_q - z).detach() # reshape back to match original input shape __magic_name__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: __magic_name__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis __magic_name__ = self.remap_to_used(UpperCamelCase__ ) __magic_name__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: __magic_name__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] ) -> int: """simple docstring""" if self.remap is not None: __magic_name__ = indices.reshape(shape[0] , -1 ) # add batch axis __magic_name__ = self.unmap_to_all(UpperCamelCase__ ) __magic_name__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors __magic_name__ = self.embedding(UpperCamelCase__ ) if shape is not None: __magic_name__ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape __magic_name__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Optional[int]: """simple docstring""" __magic_name__ = parameters __magic_name__ , __magic_name__ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) __magic_name__ = torch.clamp(self.logvar , -30.0 , 20.0 ) __magic_name__ = deterministic __magic_name__ = torch.exp(0.5 * self.logvar ) __magic_name__ = torch.exp(self.logvar ) if self.deterministic: __magic_name__ = __magic_name__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _lowercase ( self : Tuple , UpperCamelCase__ : Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" __magic_name__ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) __magic_name__ = self.mean + self.std * sample return x def _lowercase ( self : Dict , UpperCamelCase__ : Optional[int]=None ) -> Any: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict=[1, 2, 3] ) -> Optional[int]: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) __magic_name__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.mean
88
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Tuple = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
def __lowerCamelCase ( __a :float , __a :list[float] ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) A__ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__a ) ) return round(__a , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
276
1
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = MgpstrTokenizer __UpperCamelCase = False __UpperCamelCase = {} __UpperCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" super().setUp() # fmt: off lowerCamelCase = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowerCamelCase = dict(zip(_a , range(len(_a ) ) ) ) lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) def _lowerCAmelCase ( self , **_a ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = """tester""" lowerCamelCase = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowerCamelCase = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) lowerCamelCase = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) lowerCamelCase = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowerCamelCase , lowerCamelCase = self.get_input_output_texts(_a ) lowerCamelCase = tokenizer.tokenize(_a ) lowerCamelCase = tokenizer.convert_tokens_to_ids(_a ) lowerCamelCase = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCamelCase = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) lowerCamelCase = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(""" """ , """""" ) , _a ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass
291
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase : Any = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ lowerCAmelCase : Any = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ lowerCAmelCase : Any = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def _lowerCAmelCase ( self , _a , _a , _a=None , _a=1 , _a="binary" , _a=None , _a="warn" , ): """simple docstring""" lowerCamelCase = recall_score( _a , _a , labels=_a , pos_label=_a , average=_a , sample_weight=_a , zero_division=_a , ) return {"recall": float(_a ) if score.size == 1 else score}
291
1
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = None if token is not None: lowerCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} lowerCAmelCase = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' lowerCAmelCase = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() lowerCAmelCase = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = requests.get(url + f'&page={i + 2}' , headers=_SCREAMING_SNAKE_CASE ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str]=None ) -> List[str]: """simple docstring""" lowerCAmelCase = None if token is not None: lowerCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} lowerCAmelCase = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' lowerCAmelCase = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() lowerCAmelCase = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = requests.get(url + f'&page={i + 2}' , headers=_SCREAMING_SNAKE_CASE ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str] ) -> Any: """simple docstring""" lowerCAmelCase = None if token is not None: lowerCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} lowerCAmelCase = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE , allow_redirects=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = result.headers["""Location"""] lowerCAmelCase = requests.get(_SCREAMING_SNAKE_CASE , allow_redirects=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , f'{artifact_name}.zip' ) with open(_SCREAMING_SNAKE_CASE , """wb""" ) as fp: fp.write(response.content ) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ) -> Any: """simple docstring""" lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = None with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_SCREAMING_SNAKE_CASE ) as f: for line in f: lowerCAmelCase = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase = line[: line.index(""": """ )] lowerCAmelCase = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase = line[len("""FAILED """ ) :] failed_tests.append(_SCREAMING_SNAKE_CASE ) elif filename == "job_name.txt": lowerCAmelCase = line if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( f'`errors` and `failed_tests` should have the same number of elements. Got {len(_SCREAMING_SNAKE_CASE )} for `errors` ' f'and {len(_SCREAMING_SNAKE_CASE )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' """ problem.""" ) lowerCAmelCase = None if job_name and job_links: lowerCAmelCase = job_links.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return result def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int]=None ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = [] lowerCAmelCase = [os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for p in os.listdir(_SCREAMING_SNAKE_CASE ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(_SCREAMING_SNAKE_CASE , job_links=_SCREAMING_SNAKE_CASE ) ) return errors def _snake_case ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int=None ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase = counter.most_common() lowerCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=_SCREAMING_SNAKE_CASE ) ) return r def _snake_case ( _SCREAMING_SNAKE_CASE : str ) -> List[Any]: """simple docstring""" lowerCAmelCase = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase = test.split("""/""" )[2] else: lowerCAmelCase = None return test def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any=None ) -> Any: """simple docstring""" lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase = [x for x in logs if x[2] is not None] lowerCAmelCase = {x[2] for x in logs} lowerCAmelCase = {} for test in tests: lowerCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase = counter.most_common() lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase = dict(sorted(r.items() , key=lambda _SCREAMING_SNAKE_CASE : item[1]["count"] , reverse=_SCREAMING_SNAKE_CASE ) ) return r def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase = """| no. | error | status |""" lowerCAmelCase = """|-:|:-|:-|""" lowerCAmelCase = [header, sep] for error in reduced_by_error: lowerCAmelCase = reduced_by_error[error]["""count"""] lowerCAmelCase = f'| {count} | {error[:100]} | |' lines.append(_SCREAMING_SNAKE_CASE ) return "\n".join(_SCREAMING_SNAKE_CASE ) def _snake_case ( _SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = """| model | no. of errors | major error | count |""" lowerCAmelCase = """|-:|-:|-:|-:|""" lowerCAmelCase = [header, sep] for model in reduced_by_model: lowerCAmelCase = reduced_by_model[model]["""count"""] lowerCAmelCase, lowerCAmelCase = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase = f'| {model} | {count} | {error[:60]} | {_count} |' lines.append(_SCREAMING_SNAKE_CASE ) return "\n".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') UpperCAmelCase = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) UpperCAmelCase = get_job_links(args.workflow_run_id, token=args.token) UpperCAmelCase = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: UpperCAmelCase = k.find(' / ') UpperCAmelCase = k[index + len(' / ') :] UpperCAmelCase = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) UpperCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) UpperCAmelCase = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error UpperCAmelCase = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors UpperCAmelCase = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) UpperCAmelCase = reduce_by_error(errors) UpperCAmelCase = reduce_by_model(errors) UpperCAmelCase = make_github_table(reduced_by_error) UpperCAmelCase = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
187
'''simple docstring''' from __future__ import annotations def _snake_case ( _SCREAMING_SNAKE_CASE : int | str ) -> bool: """simple docstring""" lowerCAmelCase = str(_SCREAMING_SNAKE_CASE ) return n == n[::-1] def _snake_case ( _SCREAMING_SNAKE_CASE : int = 1_000_000 ) -> Dict: """simple docstring""" lowerCAmelCase = 0 for i in range(1 , _SCREAMING_SNAKE_CASE ): if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
187
1
from math import isqrt, loga def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase = False return [i for i in range(2 , lowerCamelCase__ ) if is_prime[i]] def __lowerCamelCase ( lowerCamelCase__ : int = 800800 , lowerCamelCase__ : int = 800800 ): '''simple docstring''' lowerCamelCase = degree * loga(lowerCamelCase__ ) lowerCamelCase = int(lowerCamelCase__ ) lowerCamelCase = calculate_prime_numbers(lowerCamelCase__ ) lowerCamelCase = 0 lowerCamelCase = 0 lowerCamelCase = len(lowerCamelCase__ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
252
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : List[Any] = ["input_features"] def __init__( self , A=80 , A=1_60_00 , A=1_60 , A=30 , A=4_00 , A=0.0 , A=False , **A , ) -> Dict: '''simple docstring''' super().__init__( feature_size=A , sampling_rate=A , padding_value=A , return_attention_mask=A , **A , ) lowerCamelCase = n_fft lowerCamelCase = hop_length lowerCamelCase = chunk_length lowerCamelCase = chunk_length * sampling_rate lowerCamelCase = self.n_samples // hop_length lowerCamelCase = sampling_rate lowerCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=A , norm="""slaney""" , mel_scale="""slaney""" , ) def __A ( self , A ) -> np.ndarray: '''simple docstring''' lowerCamelCase = spectrogram( A , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) lowerCamelCase = log_spec[:, :-1] lowerCamelCase = np.maximum(A , log_spec.max() - 8.0 ) lowerCamelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __A ( A , A , A = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: lowerCamelCase = np.array(A , np.intaa ) lowerCamelCase = [] for vector, length in zip(A , attention_mask.sum(-1 ) ): lowerCamelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCamelCase = padding_value normed_input_values.append(A ) else: lowerCamelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , A , A = True , A = None , A = None , A = None , A = "max_length" , A = None , A = None , A = None , **A , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): lowerCamelCase = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase = [np.asarray([raw_speech] ).T] lowerCamelCase = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding lowerCamelCase = self.pad( A , padding=A , max_length=max_length if max_length else self.n_samples , truncation=A , pad_to_multiple_of=A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCamelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) lowerCamelCase = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format lowerCamelCase = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) lowerCamelCase = [self._np_extract_fbank_features(A ) for waveform in input_features[0]] if isinstance(input_features[0] , A ): lowerCamelCase = [np.asarray(A , dtype=np.floataa ) for feature in input_features] else: lowerCamelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCamelCase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowerCamelCase = padded_inputs.convert_to_tensors(A ) return padded_inputs def __A ( self ) -> Dict[str, Any]: '''simple docstring''' lowerCamelCase = copy.deepcopy(self.__dict__ ) lowerCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
252
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: List[str] , _lowerCAmelCase: str , _lowerCAmelCase: List[str]=13 , _lowerCAmelCase: Tuple=7 , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: int=True , _lowerCAmelCase: List[str]=99 , _lowerCAmelCase: List[str]=32 , _lowerCAmelCase: Dict=5 , _lowerCAmelCase: str=4 , _lowerCAmelCase: List[Any]=37 , _lowerCAmelCase: Tuple="gelu" , _lowerCAmelCase: int=0.1 , _lowerCAmelCase: Any=0.1 , _lowerCAmelCase: Tuple=5_12 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Optional[Any]=2 , _lowerCAmelCase: List[str]=0.02 , _lowerCAmelCase: List[str]=False , _lowerCAmelCase: Optional[int]=True , _lowerCAmelCase: int="None" , _lowerCAmelCase: List[Any]=3 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: int=None , ): lowercase :int = parent lowercase :Dict = batch_size lowercase :Optional[Any] = seq_length lowercase :int = is_training lowercase :int = use_input_mask lowercase :int = use_token_type_ids lowercase :str = use_labels lowercase :Tuple = vocab_size lowercase :int = hidden_size lowercase :Any = num_hidden_layers lowercase :Any = num_attention_heads lowercase :Dict = intermediate_size lowercase :Union[str, Any] = hidden_act lowercase :Optional[Any] = hidden_dropout_prob lowercase :Tuple = attention_probs_dropout_prob lowercase :Optional[Any] = max_position_embeddings lowercase :int = type_vocab_size lowercase :Tuple = type_sequence_label_size lowercase :Optional[int] = initializer_range lowercase :Optional[Any] = num_labels lowercase :int = num_choices lowercase :List[str] = relative_attention lowercase :Tuple = position_biased_input lowercase :Tuple = pos_att_type lowercase :Dict = scope def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase :int = None if self.use_input_mask: lowercase :Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase :Optional[int] = None if self.use_token_type_ids: lowercase :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase :List[Any] = None lowercase :Any = None lowercase :Optional[int] = None if self.use_labels: lowercase :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase :str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase :Any = ids_tensor([self.batch_size] , self.num_choices ) lowercase :Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self: List[Any] ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: Dict ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: str , _lowerCAmelCase: str , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: str , _lowerCAmelCase: int , _lowerCAmelCase: List[str] , _lowerCAmelCase: Dict ): lowercase :Tuple = DebertaVaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :List[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase )[0] lowercase :Dict = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase )[0] lowercase :List[str] = model(_lowerCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Any , _lowerCAmelCase: Dict , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Optional[Any] ): lowercase :int = DebertaVaForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :Any = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ): lowercase :Any = self.num_labels lowercase :Optional[Any] = DebertaVaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :Optional[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: Any , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] ): lowercase :List[str] = self.num_labels lowercase :int = DebertaVaForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :Union[str, Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[str] ): lowercase :Optional[Any] = DebertaVaForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :List[Any] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: str , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: int , _lowerCAmelCase: List[Any] ): lowercase :Tuple = DebertaVaForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase :List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase :Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase :Optional[Any] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :int = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) :int = config_and_inputs lowercase :Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): _a = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _a = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _a = True _a = False _a = False _a = False _a = False def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :List[Any] = DebertaVaModelTester(self ) lowercase :List[Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self: str ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase :Dict = DebertaVaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase): @unittest.skip(reason="Model not available yet" ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): pass @slow def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase :Dict = DebertaVaModel.from_pretrained("microsoft/deberta-v2-xlarge" ) lowercase :Dict = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) lowercase :Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase :Optional[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] # compare the actual values for a slice. lowercase :Any = torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1e-4 ) , F"{output[:, 1:4, 1:4]}" )
158
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
158
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase :str = logging.get_logger(__name__) lowerCAmelCase :Optional[Any] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCAmelCase :List[str] = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } lowerCAmelCase :List[str] = {'''facebook/blenderbot-3B''': 1_2_8} class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[str] = VOCAB_FILES_NAMES A_ : int = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Optional[int] = ["""input_ids""", """attention_mask"""] A_ : Union[str, Any] = BlenderbotTokenizer def __init__( self : Optional[Any] , _A : Dict=None , _A : str=None , _A : str=None , _A : Optional[int]="replace" , _A : str="<s>" , _A : int="</s>" , _A : List[Any]="</s>" , _A : List[Any]="<s>" , _A : Tuple="<unk>" , _A : str="<pad>" , _A : Dict="<mask>" , _A : Optional[Any]=False , _A : str=True , **_A : Optional[Any] , ) -> Optional[int]: super().__init__( _A , _A , tokenizer_file=_A , errors=_A , bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , trim_offsets=_A , **_A , ) __magic_name__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _A ) != add_prefix_space: __magic_name__ : Tuple = getattr(_A , pre_tok_state.pop('type' ) ) __magic_name__ : Optional[int] = add_prefix_space __magic_name__ : str = pre_tok_class(**_A ) __magic_name__ : Tuple = add_prefix_space __magic_name__ : int = 'post_processor' __magic_name__ : str = getattr(self.backend_tokenizer , _A , _A ) if tokenizer_component_instance: __magic_name__ : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __magic_name__ : Union[str, Any] = tuple(state['sep'] ) if "cls" in state: __magic_name__ : Tuple = tuple(state['cls'] ) __magic_name__ : str = False if state.get('add_prefix_space' , _A ) != add_prefix_space: __magic_name__ : Optional[int] = add_prefix_space __magic_name__ : Union[str, Any] = True if state.get('trim_offsets' , _A ) != trim_offsets: __magic_name__ : List[str] = trim_offsets __magic_name__ : Optional[int] = True if changes_to_apply: __magic_name__ : List[str] = getattr(_A , state.pop('type' ) ) __magic_name__ : str = component_class(**_A ) setattr(self.backend_tokenizer , _A , _A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowerCAmelCase ( self : List[str] ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self : Optional[Any] , _A : Dict ) -> Optional[Any]: __magic_name__ : Optional[int] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else value __magic_name__ : Dict = value def __lowerCAmelCase ( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> BatchEncoding: __magic_name__ : Any = kwargs.get('is_split_into_words' , _A ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A , **_A ) def __lowerCAmelCase ( self : Optional[int] , *_A : Tuple , **_A : Union[str, Any] ) -> BatchEncoding: __magic_name__ : Any = kwargs.get('is_split_into_words' , _A ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_A , **_A ) def __lowerCAmelCase ( self : Any , _A : str , _A : Optional[str] = None ) -> Tuple[str]: __magic_name__ : str = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def __lowerCAmelCase ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: __magic_name__ : Optional[Any] = [self.sep_token_id] __magic_name__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None ) -> Tuple: return token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self : List[str] , _A : "Conversation" ) -> List[int]: __magic_name__ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(_A ) __magic_name__ : int = ' '.join(_A ) __magic_name__ : Any = self.encode(_A ) if len(_A ) > self.model_max_length: __magic_name__ : Any = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
331
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase :int = '''pt''' elif is_tf_available(): lowerCAmelCase :Optional[Any] = '''tf''' else: lowerCAmelCase :Optional[Any] = '''jax''' class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ByTaTokenizer A_ : Dict = False def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: super().setUp() __magic_name__ : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __lowerCAmelCase ( self : Tuple , **_A : Optional[int] ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int=False , _A : Union[str, Any]=20 , _A : Optional[int]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __magic_name__ : Optional[Any] = [] for i in range(len(_A ) ): try: __magic_name__ : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __magic_name__ : Any = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) __magic_name__ : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __magic_name__ : Optional[int] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __magic_name__ : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __magic_name__ : List[str] = [t[0] for t in toks] # Ensure consistency __magic_name__ : Optional[int] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __magic_name__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __magic_name__ : Union[str, Any] = ' ' + output_txt __magic_name__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : Any = self.ta_base_tokenizer __magic_name__ : Optional[Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __magic_name__ : List[str] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : Optional[int] = self.ta_base_tokenizer __magic_name__ : Optional[int] = 'Unicode €.' __magic_name__ : Optional[Any] = tokenizer(_A ) __magic_name__ : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : Any = tokenizer.decode(_A ) self.assertEqual(_A , 'Unicode €.</s>' ) __magic_name__ : Any = tokenizer('e è é ê ë' ) __magic_name__ : str = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _A ) # decoding __magic_name__ : List[str] = tokenizer.decode(_A ) self.assertEqual(_A , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __lowerCAmelCase ( self : Any ) -> int: __magic_name__ : List[Any] = self.ta_base_tokenizer __magic_name__ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __magic_name__ : List[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __magic_name__ : Any = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __magic_name__ : str = list(batch.input_ids.numpy()[0] ) else: __magic_name__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __magic_name__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = self.ta_base_tokenizer __magic_name__ : Tuple = [ 'Summary of the text.', 'Another summary.', ] __magic_name__ : Dict = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = self.ta_base_tokenizer __magic_name__ : Any = ['A long paragraph for summarization. </s>'] __magic_name__ : List[str] = ['Summary of the text. </s>'] # fmt: off __magic_name__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __magic_name__ : List[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __magic_name__ : str = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['input_ids'][0] ) self.assertEqual(_A , batch['labels'][0] ) def __lowerCAmelCase ( self : Any ) -> str: # safety check on max_len default value so we are sure the test works __magic_name__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Tuple = ' He is very happy, UNwant\u00E9d,running' __magic_name__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Optional[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : Union[str, Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __magic_name__ : Union[str, Any] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __magic_name__ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ : Any = tokenizer.__class__.from_pretrained(_A ) __magic_name__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __magic_name__ : Optional[Any] = json.load(_A ) __magic_name__ : List[str] = [F'<extra_id_{i}>' for i in range(125 )] __magic_name__ : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] __magic_name__ : Tuple = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : str = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] __magic_name__ : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowerCAmelCase ( self : Any ) -> Optional[int]: __magic_name__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) __magic_name__ : List[Any] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: pass def __lowerCAmelCase ( self : List[str] ) -> int: pass def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: pass def __lowerCAmelCase ( self : List[Any] ) -> int: pass def __lowerCAmelCase ( self : str ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __magic_name__ : List[str] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __magic_name__ : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def __lowerCAmelCase ( self : Any ) -> Tuple: __magic_name__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : List[str] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ : List[str] = 0 __magic_name__ : str = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) setattr(_A , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
331
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = {} class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''llama''' UpperCamelCase = ['''past_key_values'''] def __init__( self : Dict , A_ : List[Any]=32000 , A_ : Tuple=4096 , A_ : List[Any]=11008 , A_ : List[str]=32 , A_ : Optional[Any]=32 , A_ : int=None , A_ : Any="silu" , A_ : Union[str, Any]=2048 , A_ : List[str]=0.02 , A_ : Optional[int]=1E-6 , A_ : List[str]=True , A_ : Optional[int]=0 , A_ : Optional[Any]=1 , A_ : Optional[int]=2 , A_ : int=1 , A_ : Tuple=False , A_ : Tuple=None , **A_ : Optional[int] , ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = intermediate_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCamelCase_ = num_attention_heads lowerCamelCase_ = num_key_value_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = initializer_range lowerCamelCase_ = rms_norm_eps lowerCamelCase_ = pretraining_tp lowerCamelCase_ = use_cache lowerCamelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , tie_word_embeddings=A_ , **A_ , ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""" ) lowerCamelCase_ = self.rope_scaling.get('type' , A_ ) lowerCamelCase_ = self.rope_scaling.get('factor' , A_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(A_ , A_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
208
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
208
1
# Imports import numpy as np class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ) -> List[Any]: self.set_matricies(red=UpperCamelCase__ , green=UpperCamelCase__ , blue=UpperCamelCase__ , red_edge=UpperCamelCase__ , nir=UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ) -> Optional[int]: if red is not None: lowerCamelCase : Any = red if green is not None: lowerCamelCase : List[str] = green if blue is not None: lowerCamelCase : str = blue if red_edge is not None: lowerCamelCase : Tuple = red_edge if nir is not None: lowerCamelCase : List[str] = nir return True def _lowercase ( self , UpperCamelCase__="" , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ) -> List[str]: self.set_matricies(red=UpperCamelCase__ , green=UpperCamelCase__ , blue=UpperCamelCase__ , red_edge=UpperCamelCase__ , nir=UpperCamelCase__ ) lowerCamelCase : str = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def _lowercase ( self ) -> Optional[Any]: return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def _lowercase ( self ) -> int: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _lowercase ( self ) -> Optional[Any]: return self.nir * (self.red / (self.green**2)) def _lowercase ( self ) -> Any: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _lowercase ( self ) -> List[Any]: return (self.nir - self.red) / (self.nir + self.red) def _lowercase ( self ) -> Any: return (self.nir - self.blue) / (self.nir + self.blue) def _lowercase ( self ) -> Any: return (self.redEdge - self.red) / (self.redEdge + self.red) def _lowercase ( self ) -> List[Any]: return (self.nir - self.green) / (self.nir + self.green) def _lowercase ( self ) -> Optional[Any]: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _lowercase ( self ) -> Dict: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _lowercase ( self ) -> str: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _lowercase ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _lowercase ( self , UpperCamelCase__=0.08 , UpperCamelCase__=1.22 , UpperCamelCase__=0.03 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _lowercase ( self ) -> str: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _lowercase ( self ) -> Dict: return (self.nir / self.green) - 1 def _lowercase ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _lowercase ( self ) -> Optional[int]: return (self.red - self.blue) / self.red def _lowercase ( self ) -> Any: lowerCamelCase : Optional[Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _lowercase ( self ) -> Optional[int]: return self.nir - self.green def _lowercase ( self ) -> Tuple: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Any = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def _lowercase ( self , UpperCamelCase__=0.16 ) -> Any: return (self.nir - self.green) / (self.nir + self.green + y) def _lowercase ( self , UpperCamelCase__=0.5 ) -> Tuple: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _lowercase ( self ) -> List[Any]: return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def _lowercase ( self , UpperCamelCase__=None , UpperCamelCase__=None ) -> int: return (self.nir - b) / (a * self.red) def _lowercase ( self ) -> Dict: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _lowercase ( self ) -> Union[str, Any]: return (self.red + self.green + self.blue) / 30.5 def _lowercase ( self ) -> int: return self.nir / self.red def _lowercase ( self ) -> List[Any]: return (self.rvi() - 1) / (self.rvi() + 1) def _lowercase ( self ) -> Optional[Any]: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _lowercase ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _lowercase ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _lowercase ( self ) -> Tuple: return self.red / (self.nir + self.red + self.green) def _lowercase ( self ) -> Optional[int]: return (self.green - self.red) / (self.green + self.red) def _lowercase ( self ) -> Any: return (self.red - self.green) / (self.red + self.green) def _lowercase ( self ) -> List[str]: lowerCamelCase : Union[str, Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCamelCase : Union[str, Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _lowercase ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _lowercase ( self ) -> Optional[int]: return self.nir / self.red def _lowercase ( self ) -> Optional[Any]: return (self.ndvi() + 0.5) ** (1 / 2) def _lowercase ( self ) -> Dict: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
48
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = """blip_2_vision_model""" def __init__( self , UpperCamelCase__=1408 , UpperCamelCase__=6144 , UpperCamelCase__=39 , UpperCamelCase__=16 , UpperCamelCase__=224 , UpperCamelCase__=14 , UpperCamelCase__="gelu" , UpperCamelCase__=0.00001 , UpperCamelCase__=0.0 , UpperCamelCase__=1e-10 , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Optional[Any]: super().__init__(**UpperCamelCase__ ) lowerCamelCase : Dict = hidden_size lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : List[str] = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : Dict = patch_size lowerCamelCase : Tuple = image_size lowerCamelCase : Dict = initializer_range lowerCamelCase : Union[str, Any] = attention_dropout lowerCamelCase : Dict = layer_norm_eps lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : str = qkv_bias @classmethod def _lowercase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : List[str] = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": lowerCamelCase : Optional[int] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Dict = """blip_2_qformer""" def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=0 , UpperCamelCase__="absolute" , UpperCamelCase__=2 , UpperCamelCase__=1408 , **UpperCamelCase__ , ) -> int: super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : Optional[int] = vocab_size lowerCamelCase : int = hidden_size lowerCamelCase : Dict = num_hidden_layers lowerCamelCase : Union[str, Any] = num_attention_heads lowerCamelCase : int = hidden_act lowerCamelCase : Optional[Any] = intermediate_size lowerCamelCase : Dict = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : Dict = max_position_embeddings lowerCamelCase : List[str] = initializer_range lowerCamelCase : List[str] = layer_norm_eps lowerCamelCase : int = position_embedding_type lowerCamelCase : Tuple = cross_attention_frequency lowerCamelCase : Optional[int] = encoder_hidden_size @classmethod def _lowercase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : str = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": lowerCamelCase : int = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : List[str] = """blip-2""" lowerCamelCase_ : int = True def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=32 , **UpperCamelCase__ ) -> str: super().__init__(**UpperCamelCase__ ) if vision_config is None: lowerCamelCase : List[Any] = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values." ) if qformer_config is None: lowerCamelCase : List[Any] = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values." ) if text_config is None: lowerCamelCase : Any = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) lowerCamelCase : Optional[int] = BlipaVisionConfig(**UpperCamelCase__ ) lowerCamelCase : str = BlipaQFormerConfig(**UpperCamelCase__ ) lowerCamelCase : List[str] = text_config["model_type"] if "model_type" in text_config else "opt" lowerCamelCase : str = CONFIG_MAPPING[text_model_type](**UpperCamelCase__ ) lowerCamelCase : Optional[Any] = self.text_config.tie_word_embeddings lowerCamelCase : int = self.text_config.is_encoder_decoder lowerCamelCase : Optional[Any] = num_query_tokens lowerCamelCase : int = self.vision_config.hidden_size lowerCamelCase : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase : Dict = 1.0 lowerCamelCase : List[Any] = 0.02 @classmethod def _lowercase ( cls , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ , ) -> str: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase__ , ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Tuple = copy.deepcopy(self.__dict__ ) lowerCamelCase : Tuple = self.vision_config.to_dict() lowerCamelCase : int = self.qformer_config.to_dict() lowerCamelCase : Optional[Any] = self.text_config.to_dict() lowerCamelCase : int = self.__class__.model_type return output
48
1
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : str , ): """simple docstring""" _A: Union[str, Any] = parent _A: Any = 1_3 _A: Union[str, Any] = 7 _A: Union[str, Any] = True _A: Any = True _A: Union[str, Any] = False _A: Union[str, Any] = True _A: Union[str, Any] = 9_9 _A: Optional[int] = 3_2 _A: List[str] = 2 _A: int = 4 _A: str = 3_7 _A: List[Any] = "gelu" _A: List[str] = 0.1 _A: int = 0.1 _A: Any = 5_1_2 _A: str = 1_6 _A: Any = 2 _A: List[str] = 0.02 _A: List[Any] = 3 _A: List[str] = 4 _A: Optional[int] = None def __magic_name__ ( self : Any ): """simple docstring""" _A: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: Union[str, Any] = None if self.use_input_mask: _A: Any = random_attention_mask([self.batch_size, self.seq_length] ) _A: List[Any] = None _A: Tuple = None _A: Union[str, Any] = None if self.use_labels: _A: Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A: Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _A: List[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict ): """simple docstring""" _A: List[Any] = TFDistilBertModel(config=lowerCAmelCase__ ) _A: Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} _A: Union[str, Any] = model(lowerCAmelCase__ ) _A: str = [input_ids, input_mask] _A: Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: Dict = TFDistilBertForMaskedLM(config=lowerCAmelCase__ ) _A: List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} _A: Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): """simple docstring""" _A: Tuple = TFDistilBertForQuestionAnswering(config=lowerCAmelCase__ ) _A: Any = { "input_ids": input_ids, "attention_mask": input_mask, } _A: int = model(lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: int = self.num_labels _A: List[str] = TFDistilBertForSequenceClassification(lowerCAmelCase__ ) _A: str = {"input_ids": input_ids, "attention_mask": input_mask} _A: Union[str, Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ): """simple docstring""" _A: str = self.num_choices _A: Union[str, Any] = TFDistilBertForMultipleChoice(lowerCAmelCase__ ) _A: Optional[int] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) _A: List[Any] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) _A: Optional[int] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } _A: List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = self.num_labels _A: Any = TFDistilBertForTokenClassification(lowerCAmelCase__ ) _A: Tuple = {"input_ids": input_ids, "attention_mask": input_mask} _A: List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[Any] = self.prepare_config_and_inputs() (_A): Tuple = config_and_inputs _A: Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __UpperCamelCase : Dict = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase : Any = False __UpperCamelCase : Union[str, Any] = False def __magic_name__ ( self : str ): """simple docstring""" _A: Dict = TFDistilBertModelTester(self ) _A: int = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ ) def __magic_name__ ( self : str ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ ) def __magic_name__ ( self : int ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ ) def __magic_name__ ( self : List[str] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ ) def __magic_name__ ( self : Dict ): """simple docstring""" _A: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self : Any ): """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _A: Union[str, Any] = TFDistilBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__ ( self : List[str] ): """simple docstring""" _A: List[Any] = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _A: Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A: Optional[int] = model(lowerCAmelCase__ )[0] _A: int = [1, 6, 7_6_8] self.assertEqual(output.shape , lowerCAmelCase__ ) _A: List[str] = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
367
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
0
from __future__ import annotations def _snake_case( SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> bool: '''simple docstring''' A__ = len(SCREAMING_SNAKE_CASE__ ) # We need to create solution object to save path. A__ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] A__ = run_maze(SCREAMING_SNAKE_CASE__ , 0 , 0 , SCREAMING_SNAKE_CASE__ ) if solved: print('\n'.join(str(SCREAMING_SNAKE_CASE__ ) for row in solutions ) ) else: print('No solution exists!' ) return solved def _snake_case( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> bool: '''simple docstring''' A__ = len(SCREAMING_SNAKE_CASE__ ) # Final check point. if i == j == (size - 1): A__ = 1 return True A__ = (not i < 0) and (not j < 0) # Check lower bounds A__ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. A__ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited A__ = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE__ , i + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j + 1 , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - 1 , SCREAMING_SNAKE_CASE__ ) ): return True A__ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
7
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowercase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : tuple , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , ) -> Union[str, Any]: '''simple docstring''' output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) else: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Tuple: '''simple docstring''' A__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A__ = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A__ = 'cpu' A__ = Path(SCREAMING_SNAKE_CASE__ ) # VAE DECODER A__ = AutoencoderKL.from_pretrained(model_path + '/vae' ) A__ = vae_decoder.config.latent_channels # forward only through the decoder part A__ = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE__ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE__ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE__ , ) del vae_decoder if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowercase_ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
7
1
"""simple docstring""" import random def _A ( _a : int , _a : float , _a : bool = False ): """simple docstring""" A = {i: [] for i in range(_snake_case )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_snake_case ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_snake_case ): for j in range(i + 1 , _snake_case ): if random.random() < probability: graph[i].append(_snake_case ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_snake_case ) return graph def _A ( _a : int ): """simple docstring""" return { i: [j for j in range(_snake_case ) if i != j] for i in range(_snake_case ) } if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase = Features({'''text''': Value('''string''' )} ) _lowerCamelCase = Features({'''labels''': ClassLabel} ) _lowerCamelCase = "text" _lowerCamelCase = "labels" def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Dict: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] ,lowerCamelCase_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) A = copy.deepcopy(self ) A = self.label_schema.copy() A = features[self.label_column] A = label_schema return task_template @property def UpperCamelCase__ ( self ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
77
0